In some printing apparatuses, images are formed on media using a marking material. Such printing apparatuses can include a roll and a belt that define a nip. Media are fed to the nip and heated to treat the marking material. The media is typically stripped from the belt.
It would be desirable to provide apparatuses useful for printing and methods that can strip media from surfaces efficiently.
Apparatuses useful for printing and methods of stripping media from surfaces in apparatuses useful for printing are provided. An exemplary embodiment of an apparatus useful for printing includes a first roll, a belt including an inner surface and an outer surface, the first roll and the outer surface of the belt forming a nip, and a stripping member located internal to the belt. The stripping member includes a first needle bearing, wherein the first needle bearing contacts with the inner surface of the belt to facilitate stripping of media fed to the nip from the outer surface of the belt.
The disclosed embodiments include an apparatus useful for printing. The apparatus includes a first roll, a belt including an inner surface and an outer surface, the first roll and the outer surface of the belt forming a nip, and a stripping member located internal to the belt, the stripping member including a first needle bearing, wherein the first needle bearing contacts with the inner surface of the belt to facilitate stripping of media fed to the nip from the outer surface of the belt
The disclosed embodiments further an apparatus useful for printing. The apparatus includes a first roll, a second roll, a belt disposed between the first roll and second roll, the belt including an inner surface and an outer surface, and a stripping member located between the second roll and the inner surface of the belt, the stripping member having a first surface facing the inner surface of the belt, and the stripping member having a second surface facing the second roll, wherein the first surface of the stripping member includes a first needle bearing contacting the inner surface of the belt, and the second surface of the stripping member includes at least one second needle bearing contacting the second roll.
The disclosed embodiments further include a method of stripping a medium from a surface in an apparatus useful for printing, the apparatus comprising a first roll, a belt including an inner surface and an outer surface, and a nip formed by the first roll and the outer surface of the belt. The method includes contacting the medium with the outer surface of the belt at the nip, and stripping the first medium from the belt using the stripping member, the stripping member including a first needle bearing, wherein the first needle bearing contacts with the inner surface of the belt to facilitate stripping of medium from the outer surface of the belt.
As used herein, the term “printing apparatus” encompasses any apparatus that performs a print outputting function for any purpose. Such apparatuses can include, e.g., a digital copier, bookmaking machine, multifunction machine, and the like. The printing apparatuses can use various types of solid and liquid marking materials, including toner and inks (e.g., liquid inks, gel inks, heat-curable inks and radiation-curable inks), and the like. The printing apparatuses can use various thermal, pressure and other conditions to treat the marking materials and form images on media.
As used herein, the term “needle bearing” encompasses a cylindrical roller having a substantially circular cross section useful in reducing friction of a rolling or moving device.
The printing apparatus 100 includes two media feeder modules 102 arranged in series, a printer module 106 adjacent the media feeding modules 102, an inverter module 114 adjacent the printer module 106, and two stacker modules 116 arranged in series adjacent the inverter module 114. In the printing apparatus 100, the media feeder modules 102 feed media to the printer module 106. In the printer module 106, toner is transferred from a series of developer stations 110 to a charged photoreceptor belt 108 to form toner images on the photoreceptor belt 108 and produce color prints. The toner images are transferred to respective media 104 fed through the paper path. The media are advanced through a fuser 112 including a fuser roll 113 and pressure roll 115, which form a nip where heat and pressure are applied to the media to fuse toner images onto the media. The inverter module 114 manipulates media exiting the printer module 106 by either passing the media through to the stacker modules 116, or inverting and returning the media to the printer module 106. In the stacker modules 116, the printed media are loaded onto stacker carts 118 to form stacks 120.
Apparatuses useful for printing and methods of stripping media in apparatuses useful for printing are provided. Embodiments of the apparatuses are constructed to treat marking material on different media types. Embodiments of the apparatuses include a belt. The belt can be heated to supply thermal energy to media.
As shown in
The fuser roll 202, external roll 206 and internal rolls 210, 214 have outer surfaces 204, 208, 212 and 216, respectively, contacting the belt 220. The fuser roll 202, external roll 206 and internal rolls 210, 214 include internal heating elements 250, 252, 254 and 256, respectively. The heating elements 250, 252, 254 and 256 can be, e.g., axially-extending lamps. The heating elements are connected to a power supply 270 in a conventional manner. In embodiments, each of the fuser roll 202, external roll 206, and internal rolls 210, 214 can include more than one heating element. For example, each of these rolls can include one long lamp and one short lamp. The power supply 270 is connected to a controller 272 in a conventional manner. The controller 272 controls the operation of the power supply 270 to control the supply of voltage to the heating elements 250, 252, 254 and 256, so as to heat the belt 220 to the desired temperature.
The fuser 200 further includes an external pressure roll 230 having an outer surface 232, which is shown engaging the belt 220. The pressure roll 230 and belt 220 forms a nip 205 between the outer surface 232 and the outer surface 222. In embodiments, the pressure roll 230 includes a core and an outer layer with the outer surface 232 overlying the core. The core can be comprised of aluminum or the like, and the outer layer can be comprised of an elastically deformable polymeric material.
Embodiments of the belt 220 can include, e.g., a base layer, an intermediate layer on the base layer, and an outer layer on the intermediate layer. In such embodiments, the base layer forms the inner surface 224 and the outer layer forms the outer surface 222 of the belt 220. In an exemplary embodiment of the belt 220, the base layer is comprised of a polymeric material, such as polyimide, or the like; the intermediate layer is comprised of silicone, or the like; and the outer layer is comprised of a polymeric material, such as a fluoroelastomer sold under the trademark Viton® by DuPont Performance Elastomers, L.L.C., polytetrafluoroethylene (Teflon®), or the like.
In embodiments, the belt 220 can have a thickness of about 0.1 mm to about 0.6 mm. For example, the belt 220 can include a base layer having a thickness of about 50 μm to about 100 μm, an intermediate layer having a thickness of about 100 μm to about 500 μm, and an outer layer having a thickness of about 20 μm to about 40 μm. The belt 220 can typically have a width of about 350 mm to about 450 mm, and a length of about 500 mm to at least about 1000 mm.
The outer surface 232 of the pressure roll 230 is deformed by contact with the belt 220 on the fuser roll 202. The outer surface 204 of the fuser roll 202 may also be deformed by this contact depending on the hardness of the material forming the outer surface 204. For example, when the outer surface 204 is made of an elastically deformable material, the outer surface 204 can also be deformed by contact with the pressure roll 230.
The “nip width” is the distance between the nip entrance and the nip exit in the process direction. The nip width can be expressed as the product of the dwell and process speed (i.e., nip width=dwell×process speed).
The fuser 300 includes a continuous belt 320 provided on a fuser roll 302, external roll 306, internal rolls 310, 314 and an idler roll 318. The belt 320 has an outer surface 322 and an inner surface 324.
The fuser roll 302, external roll 306 and internal rolls 310, 314 have outer surfaces 304, 308, 312 and 316, respectively, contacting the belt 320. The fuser roll 302, external roll 306 and internal rolls 310, 314 include internal heating elements 350, 352, 354 and 356, respectively. The heating elements are connected to a power supply 370 in a conventional manner. The power supply 370 is connected to a controller 372 in a conventional manner. The controller 372 controls the operation of the power supply 370 to control the supply of voltage to the heating elements 350, 352, 354 and 356, so as to heat the belt 320 to the desired temperature.
The fuser 300 further includes an external pressure roll 330 having an outer surface 332, which is shown engaging the belt 320. The pressure roll 330 and belt 320 forms a nip 305 between the outer surface 332 and the outer surface 322. In embodiments, the pressure roll 330 includes a core and an outer layer with the outer surface 332 overlying the core. The materials forming the various elements of fuser 300 may be the same as those described in conjunction with fuser 200.
The stripping member 340 is disposed between the inner surface 324 of the belt 320 and the outer surface 304 of the fuser roll 302. The stripping member 340 may include a first needle bearing 374, which may have a circular cross section, and may have a length extending in a direction of an axis of the fuser roll 302. The needle bearing 374 may rotate along its axis, so as to reduce friction on the inner surface 324 of the belt 320. The needle bearing 374 may have a diameter of about 1 mm to 2 mm, and a length of about 8 mm. The needle bearing 374 may be formed from stainless steel or the like.
The needle bearing 374 reduces an area of the stripping member 340 that comes into contact with the inner surface 324 of the belt 320, which reduces wear that would occur on the inner surface 324 of the belt 320 without the presence of the needle bearing. Further, because the needle bearing 374 has a circular cross section and can rotate along its axis, this further reduces wear on the inner surface 324 of the belt 320.
As shown in
Embodiments of the stripping members can also be used in apparatuses useful for printing to assist stripping of media from belts that have different structures and functions than fuser belts. For example, the stripping members can be used in printing apparatuses to assist stripping of media from photoreceptor belts used to transfer images to media, and in printing apparatuses to assist stripping of media from intermediate belts used to transport images that are transferred to media. Apparatuses useful for printing can include more than one stripping member for stripping media from more than one belt included in printing apparatuses.
Although the above description is directed toward fuser apparatuses used in xerographic printing, it will be understood that the teachings and claims herein can be applied to any treatment of marking material on a medium. For example, the marking material can be toner, liquid or gel ink, and/or heat- or radiation-curable ink; and/or the medium can utilize certain process conditions, such as temperature, for successful printing. The process conditions, such as heat, pressure and other conditions that are desired for the treatment of ink on media in a given embodiment may be different from the conditions that are suitable for xerographic fusing.
It will be appreciated that various ones of the above-disclosed, as well as other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Also, various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art, which are also intended to be encompassed by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3923298 | Ishida | Dec 1975 | A |
4000942 | Ito et al. | Jan 1977 | A |
5130758 | Takeda et al. | Jul 1992 | A |
5517292 | Yajima et al. | May 1996 | A |
5543908 | Suzuki | Aug 1996 | A |
5634404 | Okuda | Jun 1997 | A |
5882124 | Diemer et al. | Mar 1999 | A |
5911100 | Hasegawa et al. | Jun 1999 | A |
6049393 | Knierim et al. | Apr 2000 | A |
6164432 | Monsees | Dec 2000 | A |
6736500 | Takahashi et al. | May 2004 | B2 |
7073436 | Takahashi | Jul 2006 | B2 |
7086713 | Triplett | Aug 2006 | B2 |
20060210331 | Baba et al. | Sep 2006 | A1 |
20070048035 | Baba et al. | Mar 2007 | A1 |
20070048042 | Uehara et al. | Mar 2007 | A1 |
20070092277 | Miyata et al. | Apr 2007 | A1 |
20070166084 | Yoshino et al. | Jul 2007 | A1 |
20070172272 | Miyata et al. | Jul 2007 | A1 |
20080037069 | Mestha et al. | Feb 2008 | A1 |
20100232848 | Naitoh | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
2007078090 | Mar 2007 | JP |
Number | Date | Country | |
---|---|---|---|
20100239350 A1 | Sep 2010 | US |