Aspects herein are directed to an apparel item having an integrated lighting system.
Apparel items may utilize integrated lighting systems to provide visibility. Integrating the lighting system into the apparel item while maintaining the functionality of the apparel item may be challenging.
Examples of the present invention are described in detail below with reference to the attached drawing figures, wherein:
The subject matter of the present invention is described with specificity herein to meet statutory requirements. However, the description itself is not intended to limit the scope of this disclosure. Rather, the inventors have contemplated that the claimed or disclosed subject matter might also be embodied in other ways, to include different steps or combinations of steps similar to the ones described in this document, in conjunction with other present or future technologies. Moreover, although the terms “step” and/or “block” might be used herein to connote different elements of methods employed, the terms should not be interpreted as implying any particular order among or between various steps herein disclosed unless and except when the order of individual steps is explicitly stated.
At a high level, aspects herein provide for an apparel item having an integrated lighting system comprising one or more visible light sources that provides visibility to the apparel item, and its wearer, in low light conditions such as early morning, dusk, and at night. This is especially important for those wearers that engage in outdoor athletic activities, such as running, during these hours. An integrated lighting system provides advantages over traditional reflective materials because they allow the wearer of the apparel item to be visible even when not directly illuminated. An exemplary integrated lighting system may comprise, for instance, a power supply unit affixed to the apparel item, one or more light arrays having visible light sources affixed to the apparel item, and one or more conductive traces affixed to the apparel item, where the conductive traces extend from the power supply unit to the light arrays and electrically couple the two such that the light arrays are powered when the power supply unit is operating.
In one aspect, an apparel system having an integrated lighting system is provided. For instance, the apparel system may comprise a base or mid-layer having an integrated lighting system comprising one or more visible light sources positioned at predetermined locations on the base or mid-layer as described below. In an exemplary aspect, the base layer may be worn by itself to provide visibility to the wearer. In another example, when in the form of a mid-layer, the mid-layer may be worn over a base layer to provide visibility to the wearer. The system may further comprise an outer shell layer configured to be worn over the base or mid-layer where all or portions of the outer shell layer are formed from a transparent material, a translucent material, or a nearly translucent material. The outer shell layer may help to provide protection from the elements such as rain, cold, and/or wind. When worn over the base or mid-layer, the transparent/translucent material of the outer shell layer is configured to be positioned adjacent to the visible light sources enabling the light sources to be visible. In one example, the outer shell layer may be formed of a substantially opaque material in some areas and a substantially transparent/translucent material in other areas. The location of the substantially transparent/translucent material on the outer shell layer may be dependent upon the location of the light arrays on the base or mid-layer such that when the outer shell layer is worn over the base or mid-layer, the translucent material is positioned adjacent to the light arrays.
In another exemplary aspect, reflective materials (i.e., reflective strips, reflective prints, and the like) may be positioned on the base or mid-layer and/or on the outer shell layer where they can be used in conjunction with the integrated lighting system to provide further visibility to the wearer. In one exemplary aspect, the visible light sources may be positioned at the distal ends of the extremity portions of the base or mid-layer such as at the wrist area or ankle area, and the reflective materials may be positioned at other “joint” areas of the outer shell layer and/or the base or mid-layer such as at the elbow, shoulder, knee, or hip areas although it is also contemplated that the reflective materials may be positioned at the wrist or ankle areas adjacent to the visible light sources. It may be useful to position the visible light sources and the reflective materials at these “joint” areas as these areas typically undergo a greater degree of movement as compared to, for instance, the torso portion of an apparel item when the wearer is, for instance, running and, in turn, are more likely to draw attention to the wearer.
Continuing, the location of the reflective materials on the base or mid-layer may be different from the location of the reflective materials on the outer shell layer, where the location of both may correspond to joint areas of the respective apparel items. As an example, when the base or mid-layer is in the form of a shirt or top, a visible light source may be positioned at a wrist area of the base or mid-layer, a reflective material may be positioned at an elbow area of the base or mid-layer, and a second reflective material may be positioned at a shoulder area of the outer shell layer. Since the outer shell layer is substantially transparent or translucent, both reflective materials, as well as the visible light source, may be visible when the outer shell layer is worn over the base or mid-layer. And because the reflective materials are located at different joint areas, visibility of the apparel system is enhanced.
In another exemplary aspect, when the base or mid-layer is in the form of a tight or pant, a visible light source may be positioned at an ankle area of the base or mid-layer, a first reflective material may be positioned at the knee area of the base or mid-layer, and a second reflective material may be positioned at a hip area of the outer shell layer. Since the outer shell layer is substantially transparent or translucent, both reflective materials, as well as the visible light source positioned at the ankle area of the base or mid-layer, may be visible when the outer shell layer is worn over the base or mid-layer.
The configurations of the light arrays and the reflective materials described above are exemplary only and it is contemplated herein that other configurations may be utilized. For instance, the base or mid-layer may comprise just light arrays without reflective materials. And reflective materials may be utilized on the base or mid-layer and/or on the outer shell layer at other locations than those described. Any and all aspects, and any variation thereof, are contemplated as being within aspects herein.
In an exemplary aspect, the lighting system comprises one or more light arrays that are positioned on the apparel item at predetermined locations to enable recognition of the wearer as a human. In other words, the light arrays are positioned on the apparel item such that a person viewing the wearer would recognize the wearer as human as opposed to an inanimate object or an animal especially in low light conditions. By way of example, to enable human recognition, the visible light arrays may be positioned on the sleeve or leg portions of the apparel item near or at the terminal ends of the sleeve and leg portions such that they extend from a posterior aspect, around the lateral aspect, and to the anterior aspect of the sleeve or leg portions. Moreover, when the apparel item is in the form of a shirt or top, an additional light array may be positioned in the center back of the apparel item. This particular light array may act as a somewhat stationary focal or reference point that provides context for the lights sources positioned on the leg and sleeve portions as these light sources will generally be moving due to the wearer's arm and leg motions during, for instance, running. In other words, the stationary light array would give an indication of the height of the wearer and the light arrays positioned on the sleeve and/or leg portions would give an indication that the wearer is moving. By using both of these locations, recognition that the wearer is human is further enhanced.
In an additional aspect, a method of forming an apparel item having an integrated lighting system is provided. The method described below facilitates easier construction of the apparel item thereby reducing manufacturing costs. At a high level, the components of the lighting system are applied to a panel of material, and the panel of material is subsequently joined to one or more additional panels of materials to form the apparel item. By constructing the apparel item in this way, instead of applying the components of the lighting system to the finished or already-formed apparel item, easier construction is achieved. An apparel item constructed by this method, for instance, may comprise a panel of material to which the components of the lighting system are applied and one or more additional panels of material that are devoid of any lighting components.
In yet another exemplary aspect, a double-layer construction is contemplated for an apparel item having an integrated lighting system. The double-layer construction helps to improve wearer comfort and to “hide” the components of the integrated lighting system. This may be especially useful in athletic apparel which is often form fitting. In some constructions where lighting components are applied to the inner-facing surface of a single layer of material, the outlines or impressions of the conductive traces and/or the light arrays may be visible when viewing the apparel item from its outer-facing surface thus providing an undesirable aesthetic to the apparel item. Moreover, a single layer construction may prove to be uncomfortable to the wearer as the lighting components may be positioned directly adjacent to the wearer's skin surface. To help hide the components and to improve wearer comfort, a double-layer construction is contemplated where the lighting components are positioned in the space or void formed between the two layers. More specifically, when using a first “outer” panel and a second “inner” panel, the conductive traces may mainly be affixed to the second inner panel and the light array may be affixed to the first outer panel such that the light sources of the array may be visible through one or more openings formed in the outer panel. To create an electrical connection between the conductive traces and the light array, a terminal end portion of the conductive traces may be brought up to the outer panel and coupled to the light array. By primarily positioning the conductive traces on the inner panel, the conductive traces are effectively hidden by the outer panel. It is also contemplated that the conductive traces and the light array may both be affixed to the inner panel and a mesh material may be used in at least portions of the outer panel that are positioned adjacent to the light array to enable the light sources to be visible.
Aspects herein further relate to a conductive trace configuration that reduces the number of conductive traces that are connected to a power supply unit of the lighting system. As set forth above, each light array is electrically coupled to a pair of conductive traces (e.g., a positive trace and a negative trace), which in turn are connected to a power supply unit. When multiple light arrays are used on the apparel item, a large number of conductive traces may be connected to the power supply unit which may not only be cumbersome, but may reduce the pliability of the apparel item in the area where the multiple traces are located, increase the weight of the apparel item, and prove to be aesthetically displeasing and uncomfortable to the wearer. Aspects herein provide for one or more junction areas on the apparel item that enable a single set of conductive traces to extend from the power supply unit where the single set of conductive traces are electrically coupled to additional traces at the junction area. The additional traces, in turn, may be electrically coupled to two or more light arrays.
Continuing, more specifically, a single pair of conductive traces may extend from a power supply unit to a junction area located at a different area of the apparel item than the power supply unit. The junction area may comprise a first junction structure where the negative trace of the pair of conductive traces may be electrically coupled to at least a second and a third negative trace. Similarly, the junction area may further comprise a second junction structure where the positive trace of the pair of conductive traces may be electrically coupled to at least a fourth and a fifth positive trace. In exemplary aspects, the second and the fourth conductive traces may be electrically coupled to a first light array, and the third and fifth conductive traces may be electrically coupled to a second light array.
Each junction structure may comprise, for instance, an electrically conductive material positioned between a first and second electrically insulating layer, which, in exemplary aspects, may comprise a polymer layer. The conductive material may comprise a conductive fabric, a conductive ink, a conductive epoxy, and the like. One or more channels or openings may be formed in the conductive material for receiving the end portions of the conductive traces. It is contemplated that the junction structures may be formed independently of an apparel item and may be applied to the apparel item when needed. For instance one of the polymer layers may be positioned adjacent the fabric of the apparel item and a heat bonding process may be used to seal the junction structure and secure it to the fabric.
Turning now to
With respect to the first light array 118, the light array 118 may comprise, for instance, a plurality of discrete visible light sources 125 (e.g., LED, OLED, an electroluminescent material, and the like) arranged in, for instance, a single line of lights or two or more rows of lights. In exemplary aspects, the light sources 125 may be electrically coupled to an electrical circuit such as a printed electrical circuit or a lithographically etched electrical circuit, where the electrical circuit may control the brightness of the visible light sources, the number of light sources that emit light at any given time, and the like. The light array 118 may also comprise a continuous line of lights using, for instance, a fiber optic light and/or an optical fiber. The light array 118 is configured to be, thin, bendable, and flexible so as to conform to body curvatures when the apparel item 100 is worn. The light array 118 may be affixed to the apparel item using, for instance, a polymer layer such as a thermoplastic polyurethane (TPU) or a silicone-based polymer.
In exemplary aspects, the light array 118 is positioned on the apparel item 100 such that a first end of the light array 118 is positioned on the posterior aspect 116 of the first leg portion 111, a second end of the light array 118 is positioned on the anterior aspect 110 of the first leg portion 111, and the portion of the light array 118 that extends between the two ends (e.g., the intervening portion) is positioned on the lateral aspect 114 of the first leg portion 111. Moreover, the light array 118 is positioned adjacent (i.e., within 12 to 15 inches) to the bottom margin of the first leg portion 111 (e.g., near the ankle area of the wearer). This area of the apparel item 100 may exhibit greater movement than other areas of the apparel item 100 during, for instance, a running motion when worn by a wearer.
By positioning the light array 118 as described, the light sources 125 are visible when viewing the wearer from the front, from the back, and from the sides. This combined with the movement of the light sources 125 when the wearer is running helps to enable recognition of the wearer as a human. Although positioned just at the ankle area of the apparel item 100, light arrays may also be located at other areas of the apparel item 100 that are positioned adjacent to, for example, joint areas of the wearer such as the knee area or the hip area of the apparel item 100. Alternatively, or in addition to, reflective materials may be used at the hip or knee area to further increase visibility of the wearer.
The first set of conductive traces 120 may comprise a positive trace and a negative trace each having a first end that is electrically coupled to the first light array 118 and a second end that is electrically coupled to the power supply unit 124. An intervening portion extends between the first and second ends of the first set of conductive traces 120. The conductive traces 120 may comprise, for instance, a flexible conductive wire, a flexible conductive yarn, a screen-printed conductive path, and the like. In an alternative aspect, the conductive traces may be fiber optic cables or fibers configured to transmit data and/or light. The conductive traces 120 may be secured to an inner-facing aspect of the apparel item 100 using a polymer layer such as an electrically insulating polymer layer (e.g., TPU or silicone-based polymer). The apparel item 100 further comprises the second set of conductive traces 126 that extend from the power supply unit 124 to the second light array (not shown due to the perspective view of
Although shown in dashed lines, it is contemplated that the power supply unit 124 may be located on the inner or outer-facing surface of the apparel item 10 or a combination of both. The power supply unit 124 may be configured to transmit power and/or data through the conductive traces 120 and 126. In one aspect, the power supply unit 124 may also be configured as a light emitting device that transmits light through the conductive traces 120 and/or 126 when the conductive traces 120 and/or 126 are in the form of fiber optic cables or fibers. In yet another aspect, when the light array 118 is configured as a fiber optic cable and the power supply unit 124 is configured as a light emitting device, the light array 118 may be coupled directly to the power supply unit 124. Any and all aspects, and any variation thereof, are contemplated as being within aspects herein.
Continuing, the power supply unit 124 may comprise a hub affixed to the apparel item and into which the actual power unit may be releasably positioned (i.e., it may be inserted when needed and removed when, for instance, the apparel item 100 is washed). In an exemplary aspect, the power supply unit 124 may be positioned on the lateral aspect 114 of the torso portion 109 near the upper margin of the apparel item 100 such that it is positioned adjacent to a hip area of the wearer when the apparel item 100 is worn. This location provides easy access to the wearer. Other locations are contemplated herein.
As shown in
Turning now to
A first light array 318 having visible light sources 325 is positioned near the terminal end (e.g., within 6 to 12 inches of the terminal end) of the first sleeve portion 303, and a second light array 320 having visible light sources 325 is positioned near the terminal end of the second sleeve portion 304. These areas of the sleeve portions 303 and 304 generally experience a high degree of movement when the apparel item 300 is worn and the wearer is performing a running motion. Further, the first light array 318 is positioned on the first sleeve portion 303 such that a first end of the first light array 318 is positioned on the posterior aspect 310 of the sleeve portion 303, a second end of the first light array 318 is positioned on the anterior aspect 312 of the sleeve portion 303, and the portion of the light array 318 extending between the first and second ends is positioned on the lateral aspect 314 of the sleeve portion 303. Similarly, the second light array 320 is positioned on the second sleeve portion 304 such that a first end of the second light array 320 is positioned on the posterior aspect 310 of the sleeve portion 304, a second end of the second light array 320 is positioned on the anterior aspect 312 of the sleeve portion 304, and the portion of the light array 320 extending between the first and second ends is positioned on the lateral aspect 314 of the second sleeve portion 304.
By positioning the first and second light arrays 318 and 320 as described, a person viewing the wearer of the apparel item 300 would see the visible light sources 325 from the front, the back, and the sides of the wearer especially in low light conditions. Moreover, because the light arrays 318 and 320 are positioned in areas of high movement, human recognition of the wearer is facilitated. Although positioned just at the terminal ends or wrist areas of the apparel item 300, light arrays may also be located at other areas of the sleeve portions 303 and 304 such as adjacent to joint areas of the wearer such as the elbow area or the shoulder are of the sleeve portions 303 and 304. Alternatively, or in addition to, reflective materials may be used at these areas to further increase visibility of the wearer.
The apparel item 300 may further comprise a third light array 322 positioned, in one exemplary aspect, in a central area of the posterior torso portion 302 of the apparel item 300 where the third light array 322 comprises visible light sources 325. The third light array 322 may be positioned in a vertical orientation at an upper portion of the posterior torso portion 302 although other locations are contemplated such as a vertical orientation at a lower portion of the posterior torso portion 302 near the bottom margin of the apparel item 300, and/or in a horizontal orientation at the upper or lower portion of the posterior torso portion 302 of the apparel item 300. Since these areas of the apparel item 300 generally undergo little movement during, for example, a running motion by the wearer, the light array 322 may act as a stationary or somewhat stationary reference point when a person views the apparel item 300 from behind or from the side. To put it another way, the light array 322 may act as a reference point by which the movement of the light arrays 318 and 320 in response to a running motion by the wearer may be compared. Thus, the combination of the three light arrays 318, 320, and 322 work together to facilitate the recognition of the wearer as a human.
As shown in
As shown in
The apparel item 500 comprises a power supply unit 522 which, in an exemplary aspect, may be located on the first sleeve portion 503 of the apparel item 500, although it is contemplated herein that the power supply unit 522 may alternatively be located on the second sleeve portion 504. As shown in
The placement of the power supply unit on the apparel items 100, 300 and 500 is variable and may differ from the locations shown for the apparel items 100, 300, and 500. In general, the power supply unit is positioned in an area that is easily accessible to the wearer. The placement of the power supply unit, in turn, may influence the particular configuration of the conductive traces.
Turning now to
As shown in
Continuing, the light array 624 may be affixed to the second surface 616 of the first layer 610 in an exemplary aspect using, for instance, a polymer layer (not shown). To electrically couple the conductive traces 622 to the light array 624, a terminal end portion of the conductive traces 622 (e.g., a first end or a second end of the conductive traces 622) may extend across the space 613 between the two layers 610 and 612 before being electrically coupled to the light array 624 positioned adjacent the second surface 616. In exemplary aspects, the terminal end portion of the conductive traces 622 may be secured to the second surface 616 a predetermined distance before being coupled to the light array 624. In another exemplary aspect, the terminal end portion of the conductive traces 622 may be directly secured to the light array 624 without being secured to the second surface 616 of the first layer 610.
When the panel of material 600 is incorporated into an apparel item, the first surface 614 may comprise an outer-facing surface of the apparel item, and the fourth surface 620 may comprise an inner-facing surface of the apparel item. By positioning the conductive traces 622 on the “inner” layer 612, the outlines of the conductive traces 622 may be hidden from view when looking at the outer-facing surface of the apparel item. Moreover, by positioning the conductive traces 622 and the light array 624 in the space 613 between the two layers 610 and 612, wearer comfort is improved since the components are not directly adjacent to the wearer's skin surface. As mentioned, the panel of material 600 is joined to additional panels that are devoid of lighting components when forming an apparel item. These additional panels may comprise single layer panels which may reduce the overall weight of the apparel item.
In one exemplary aspect, and as shown in
Another exemplary configuration is depicted in
As described above, having multiple sets of conductive traces extend from a single point such as the power supply unit 710 may create problems such as decreased pliability of the material at the area where the multiple sets of traces connect to the power supply unit 710, difficulty in construction, wearer discomfort, increased weight of the apparel item, and the like. To overcome this problem, it is contemplated herein that a single set of conductive traces 712 and 714 (e.g., a positive trace and a negative trace) may extend from the power supply unit 710. Since a single set of conductive traces would only power a single light array, it is necessary to introduce additional conductive traces to power additional light arrays. Use of the junction structures 716 and 722 solves this problem.
Before further describing
The junction structure 800 may be manufactured or formed as a separate component that may be applied to apparel items in different locations depending on the particular trace configuration desired. To apply, the second polymer layer 814 may be affixed to the fabric of the apparel item using, for instance, a releasable or temporary adhesive. Conductive traces may be inserted into the channels 816, 818, and 820 and then heat may be applied to bond the second polymer layer 814 to the fabric of the apparel item and to bond the first polymer layer 810 to the second polymer layer 814 thereby sealing and electrically insulating the junction structure 800.
The shape of the junction structure 800 is exemplary only and it is contemplated that the junction structure 800 may assume different shapes such as a circle, a square, a diamond, and the like. It is further contemplated that the junction structure 800 may comprise more than three channels such that the junction structure 800 may be capable of electrically coupling more than three conductive traces.
In an exemplary aspect, an electrically conductive layer may not be utilized in the junction structure. In this aspect, the conductive traces may be directly coupled to one another to complete the electrical connection. The coupled traces could then be sandwiched between two layers of electrically insulating material such as the polymer layers 810 and 814 discussed above. Any and all aspects, and any variation thereof, are contemplated as being within aspects herein.
Returning to
Continuing, second ends 727 and 729 of the conductive traces 718 and 724 respectively may be electrically coupled to the first light array 728, and second ends 731 and 733 of the conductive traces 720 and 726 respectively may be electrically coupled to the second light array 730. Thus, a single set of conductive traces, such as the conductive traces 712 and 714, may be used to power two different light arrays using the junction structures 716 and 722. As mentioned with respect to
Turning now to
The second layer apparel item 1212 may comprise an external shell layer configured to provide protection from the elements. As shown in
In exemplary aspects, the first layer apparel item 1210 may comprise visible light sources 1214 positioned on the sleeve portions of the apparel item 1210 as described above for the apparel item 300 or the apparel item 500. When the first layer apparel item 1210 is worn, the light sources 1214 are configured to be positioned near the wrist areas of the wearer. Although not shown, the first layer apparel item 1210 may further comprise light sources positioned along a central back portion of the apparel item 1210 as described for the apparel item 300 and for the apparel item 500. The second layer apparel item 1212, in exemplary aspects, may comprise a reflective material 1216 such as a reflective strip positioned at a point approximately midway the length of the sleeve portions. When the second layer apparel item 1212 is worn, the reflective material 1216 may be positioned adjacent an elbow area of the wearer. In exemplary aspects, the second layer apparel item 1212 may be devoid of any visible light sources.
In exemplary aspects, the second layer apparel item 1212 is configured to be donned over the first layer apparel item 1210 when needed as shown in
When the first layer apparel item 1210 is in the form of a tight, the light sources may be positioned at an ankle area of the apparel item such as shown for the apparel item 100. Similarly, when the second layer apparel item 1212 is in the form of a pant meant to be donned over the tight, the reflective material may be positioned at the knee and/or hip areas of the pant.
Aspects herein further contemplate that the second layer apparel item 1212 be formed of both translucent materials and more opaque materials. For example, sleeve portions, or parts of the sleeve portions, of the second layer apparel item 1212 may be transparent or translucent while some or all of the torso portions of the second layer apparel item 1212 may be formed of a more insulating—and hence more opaque—material. By configuring the sleeve portions of the second layer apparel item 1212 of a transparent or translucent material, the light sources 1214 positioned on the first layer apparel item 1210 remain visible when the second layer apparel item 1212 is donned over the first layer apparel item 1210. Any and all aspects, and any variation thereof, are contemplated as being within aspects herein.
Turning now to
Continuing, at a step 1118, first and second conductive traces are provided each having first ends and second ends. At a step 1120, the first ends of the first and second conductive traces are electrically coupled to the power supply unit. At a step 1122, third, fourth, fifth, and sixth conductive traces are provided. At a step 1124, the second end of the first conductive trace is electrically coupled to the first ends of the third and fourth conductive traces at a first junction structure. And, at a step 1126, the second end of the second conductive trace is electrically coupled to the first ends of the fifth and sixth conductive traces. At a step 1128, the second ends of the third and fifth conductive traces are electrically coupled to the first light array, and, at a step 1120, the second ends of the fourth and sixth conductive traces are electrically coupled to the second light array.
Aspects of the present disclosure have been described with the intent to be illustrative rather than restrictive. Alternative aspects will become apparent to those skilled in the art that do not depart from its scope. A skilled artisan may develop alternative means of implementing the aforementioned improvements without departing from the scope of the present invention.
It will be understood that certain features and subcombinations are of utility and may be employed without reference to other features and subcombinations and are contemplated within the scope of the claims. Not all steps listed in the various figures need be carried out in the specific order described.
This Application, is a continuation application of U.S. patent application Ser. No. 17/147,159, filed on Jan. 12, 2021 and entitled “Apparel Item with Integrated Lighting System”; which is a continuation application of U.S. patent application Ser. No. 16/864,397, issued as U.S. Pat. No. 10,966,470, filed on May 1, 2020, and entitled “Apparel Item with Integrated Lighting System”; which is a continuation application of U.S. patent application Ser. No. 16/315,813, issued as U.S. Pat. No. 10,701,990, filed on Jan. 7, 2019, and entitled “Apparel Item with Integrated Lighting System”; which is a 35 U.S.C. § 371 application of PCT Application No. PCT/US2017/040221, filed Jun. 30, 2017, and entitled “Apparel Item with Integrated Lighting System”; which claims priority to both U.S. Provisional Application No. 62/356,960, filed Jun. 30, 2016, and entitled “Apparel Item with Integrated Lighting System” and U.S. Provisional Application No. 62/359,879, filed Jul. 8, 2016, and entitled “Apparel Item with Integrated Lighting System.” The entireties of the aforementioned applications are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4234907 | Daniel | Nov 1980 | A |
4727603 | Howard | Mar 1988 | A |
4754372 | Harrison | Jun 1988 | A |
5502903 | Barker | Apr 1996 | A |
5649755 | Rapisarda | Jul 1997 | A |
5921674 | Koczi | Jul 1999 | A |
7168862 | Qi et al. | Jan 2007 | B2 |
8376564 | Finn | Feb 2013 | B2 |
10493352 | Beneyto-Ferre | Dec 2019 | B2 |
20040015117 | Gauthier | Jan 2004 | A1 |
20050095406 | Gunzel et al. | May 2005 | A1 |
20100029157 | Brochier et al. | Feb 2010 | A1 |
20110075399 | Yuan | Mar 2011 | A1 |
20110235311 | Stone | Sep 2011 | A1 |
20130010004 | Ligorano et al. | Jan 2013 | A1 |
20140259269 | Clements | Sep 2014 | A1 |
20190200690 | Carbo et al. | Jul 2019 | A1 |
20200253298 | Carbo et al. | Aug 2020 | A1 |
20210127763 | Fisher et al. | May 2021 | A1 |
Number | Date | Country |
---|---|---|
2329197 | Jul 1999 | CN |
201640518 | Nov 2010 | CN |
203058322 | Jul 2013 | CN |
204763503 | Nov 2015 | CN |
204930432 | Jan 2016 | CN |
3430716 | Mar 1986 | DE |
2472297 | Jul 2012 | EP |
2788105 | Jul 2000 | FR |
20-0424918 | Aug 2006 | KR |
0052385 | Sep 2000 | WO |
03007740 | Jan 2003 | WO |
2005039338 | May 2005 | WO |
2011082420 | Jul 2011 | WO |
2016074689 | May 2016 | WO |
WO-2016074689 | May 2016 | WO |
2016122400 | Aug 2016 | WO |
2018005932 | Jan 2018 | WO |
Entry |
---|
“Fiber Optic Kits”, Fiber Optic Products, Inc., fiberopticproducts.com,Available Online at: <http://www.fiberopticproducts.com/Kits.html>, Accessed in 2013., 4 pages. |
“Led Lighting Belly Dance Wing Isis Wing Costume With Fiber Optical Fabric Rgb Changeable Colors Remote Control”,Ali Express, aliexpress.com,Available Online at : <http://www.aliexpress.com/item/LED-lighting-belly-dance-wing-isis-wing-costume-with-1ber-optical-fabric-RGB-changeable-colors-remote/32216401998.html>, Accessed on Mar. 23, 2020, 1 page. |
“Luminous items for Marketing & Advertising, Fiberoptic Logos & Signages”, LumiGram, lumigram.com.Available Online at: <http://www.lumigram.com/catalog/P4_1LLUMINAIED_FABRIC_LOGO.php>, Accessed in 2013., 2 pages. |
The_Gella,“Lightwings: Fiber Optic Fairy Wings Step 7: Connect battery holder to LEDs”, instructables, instructables.com,Available Online at: <http://www.instructables.com/id-/Lightwings-Fiber-Optic-Fairy-Wings/step7/Connect-battery-holder-to-LEDs/>, Accessed in 2015., 2 pages. |
Extended European Search Report received for European Patent Application No. 21192132.5, dated Dec. 8, 2021, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20220053845 A1 | Feb 2022 | US |
Number | Date | Country | |
---|---|---|---|
62359879 | Jul 2016 | US | |
62356960 | Jun 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17147159 | Jan 2021 | US |
Child | 17517034 | US | |
Parent | 16864397 | May 2020 | US |
Child | 17147159 | US | |
Parent | 16315813 | US | |
Child | 16864397 | US |