Appliance collapsible for insertion into a human organ and capable of resilient restoration

Abstract
An artificial blood vessel A comprises a pair of discrete end wire rings 101, 102, a tubular cover 7 made of a sheet of flexible, tensile material which connects the end wire rings 101, 102, and a plurality of intermediate wire rings 12 arranged spaced apart between the end wire rings 101, 102 and circumferentially fixed to the cover 7 by suturing or with adhesive. All of the rings are located on the outside of the cover. To implant the vessel A via a catheter, a plurality of dividing points 411, 431 which bisect the circumference of the front end wire ring 101 are pulled forward while the movement of the midpoints 421, 441 between the dividing points 411, 431 following the movement of the dividing points 411, 431 is restrained by the projections 18c on a tapered surface 18d of a funneled tube 18 so as to fold the front end wire ring 101 into a wavy shape, with the dividing points 411, 431 forming forwardly directed peaks and the midpoints 421, 441 forming the bottoms of forwardly directed valleys. The dividing points of the front wire ring are pulled farther forward so as to fold the intermediate wire rings 12 and the rear end wire ring 102 into a regular wavy shape having the same phase as that of the front wire ring 101 by the effect of restraint by the tapered surface 18d and the projections 18c, thereby to collapse the artificial blood vessel A as a whole into a small size for passage through the catheter. Upon release of the artificial vessel from the catheter at the affected portion of the blood vessel, the artificial vessel is restored to its original shape. The end wire rings, the cover, and the intermediate wire rings alone keep the shape of the artificial vessel.
Description




FIELD OF THE INVENTION




This invention relates to appliances for medical treatment and, more particularly, to an appliance collapsible for insertion into a human organ and capable of resilient restoration (which will be referred to as “the appliance to be implanted” in this specification and claims), to a method of collapsing the appliance to be implanted, and to a device for introducing the collapsed appliance to be implanted into a catheter.




PRIOR ART




The artificial blood vessel is an example of the appliance to be implanted. At present, treatment of, for example, aortic aneurysm is conducted by implanting an artificial blood vessel. In particular, the portion of a blood vessel which has an aneurysm is removed by resection, and an artificial blood vessel is implanted in place of the resected portion and connected to the remaining blood vessel by suturing or the like.




The above-mentioned method of surgically implanting artificial blood vessels for treatment of aortic aneurysm, however, is highly dangerous. Especially, an emergency operation for treatment of a ruptured aneurysm has a low life-saving rate, and an operation of dissecting aortic aneurysm is difficult to conduct and has a high death rate.




Therefore, in order to treat these diseases without a surgical operation, a method has been developed of introducing into a catheter an appliance such as an artificial blood vessel in collapsed condition into a human organ such as a blood vessel, and transporting the appliance to a desired position such as an affected or constricted portion thereof, where the appliance is released so as to be expanded and implanted there with accuracy.




The appliance to be implanted comprises a pair of end wire rings and a frame mainly composed of connecting wires which connect the above-mentioned end wire rings. The appliance is pushed at the rear end wire ring into a catheter and transported to a desired organ in a human body. In order to transport the appliance, the force applied to the rear end wire ring should be transmitted to the front end wire ring. Therefore, it is indispensable that the frame should be made of comparatively strong metal and that the appliance should have the frame as an inevitable constructing element. If the above-mentioned frame is used, interference is likely to take place between the end wire rings and the frame and prevents the end wire rings from being folded, which makes it difficult to fold the end wire rings into a regular wavy shape. The difficulty in folding the end wire rings will make it difficult to collapse the whole appliance to be implanted into a small size.




As the end wire rings have an elastic limit, if a force exceeding the elastic limit is applied to the rings, the end wire rings folded for insertion into a catheter suffer plastic deformation so that the end wire rings may not be restored to a proper shape when released at an objective position in a human organ. The distortions caused by the plastic deformation may give rise to sliding resistance and prevent the appliance to be implanted from traveling in a catheter, thereby to make it difficult or impossible for the appliance to be transported to a desired position.




In addition, a frame, if used in the appliance to be implanted, is likely to hinder the appliance from being implanted in an appropriate shape into a human organ. Especially, in placing the appliance into a bent portion of a human organ, the frame may be deformed into a flat shape because different parts of the frame interfere with each other. Even if the appliance has been implanted, it may not be able to function as it is intended to. In the conventional frame, the wire of the wire rings provided at the opposite ends of the frame is exposed, so that the inner wall of a human organ may be scratched and damaged by the wire and blood is likely to leak out from the end wire rings because the rings are not adhered closely to the inner wall of the human organ.




Even though a check valve is provided at the outer end of a catheter whose front end has been inserted into the blood vessel of a human body beforehand, the check valve must be temporarily opened when the collapsed appliance is introduced into the catheter, thereby to cause a lot of bleeding. It is therefore desirable to provide means for preventing bleeding.




The present invention has been accomplished to solve the above-mentioned problems. The object of the invention is to develop an appliance of non-frame type, which can solve all of the above-mentioned problems.




SUMMARY OF THE INVENTION




The method of collapsing the appliance to be implanted in accordance with the invention is characterized by that the appliance to be implanted comprises a pair of discrete end wire rings, a tubular cover made of a sheet of flexible, tensile material which connects the above-mentioned end wire rings, and a plurality of intermediate wire rings arranged spaced apart between the above-mentioned end wire rings and circumferentially fixed to the above-mentioned cover by suturing or with adhesive; and that the method comprises the steps of: pulling forward the front end wire ring at a plurality of dividing points which equally divide the circumference of the front end wire ring while restraining the midpoints between each adjacent two dividing points by a tapered surface from moving forward following the forward movement of the dividing points, thereby to fold the front end wire ring into a wavy shape with the dividing points forming forwardly directed peaks and the midpoints forming the bottoms of forwardly directed valleys, and pulling the dividing points of the front wire ring farther forward thereby to fold the intermediate wire rings and the rear end wire ring into a wavy shape having the same phase as that of the front end wire ring by the effect of restraint with the tapered surface.




A loop for a pull string to be passed through may be formed at each of the dividing points on the front end wire ring so that a front pull string may be passed through each of the loops and pulled forward. In particular, a common pull string may advantageously be passed through a plurality of loops so that the dividing points may be gathered together by pulling the common front pull string. A funneled guide tube whose bore diameter is gradually reduced toward its forward end may be used to gather the dividing points and the midpoints by pulling forward the dividing points on the front end wire ring of the appliance to be implanted inserted into the funneled guide tube through its rear opening. In particular, resiliently deformable projections can be formed on the tapered inner surface of the funneled guide tube so as to bring the midpoints into contact with the projections thereby to effectively restrain the midpoints from moving forward following the movement of the dividing points and cause the midpoints to approach to each other. The end wire rings can be circumferentially covered with elastic protective material.




The appliance to be implanted in accordance with the invention is characterized by a pair of discrete end wire rings which are resiliently foldable and provided at opposite ends; that the end wire rings are connected by only a tubular cover made of a sheet of flexible, tensile material; and that a plurality of intermediate wire rings are arranged between the above-mentioned end wire rings and fixed to the above-mentioned cover at appropriate points on the circumference thereof by suturing or with adhesive.




The flexible, tensile sheet may be made, for example, of warps extending in the axial direction of the appliance to be implanted woven with wefts extending in the circumferential direction thereof. The warps are made of mono-filament of polyester capable of keeping its shape and the wefts are made of multi-filament of polyester having waterproofness.




The tubular cover may be in the form of bellows. Especially, the end wire rings may advantageously be connected by restraining strings so as to prevent the bellows from overstretching to exceed a given limit. The end wire rings can be circumferentially covered with an elastic protective material. Further, thorns can be provided on the circumference of at least one of the wire rings so as to stick into a human organ to be embedded therein. The thorns may be effectively formed by curving a wire into a loop, crossing the opposite end portions of the wire, and fixing the crossing point, thereby to form the opposite end portions into the thorns.




The device for introducing the appliance to be implanted in a collapsed state into a catheter in accordance with the invention comprises an attachment having a flexible check valve which closes an open end thereof and fixed to an open end of a catheter, and a cartridge removably attachable to the above-mentioned attachment and having an open end closed by a flexible check valve and a front end portion connected to the above-mentioned catheter when the cartridge is attached to the attachment; and by that the check valve of the cartridge is pushed open to introduce the appliance to be implanted into the cartridge, and while the check valve of the cartridge is kept nearly closed, the front end portion of the cartridge is inserted into the catheter by pushing the check valve of the attachment open.




The bore diameter of the attachment of the catheter is made larger than that of the open end of the catheter, so that when the cartridge is attached, the bore of the front end portion of the cartridge may be smoothly connected to the open end of the catheter through the attachment of the catheter.




With the method of collapsing the appliance to be implanted in accordance with the invention, the operation of collapsing the appliance can be conducted with ease and accuracy. It is difficult to fold the front end wire ring into such a small size that can be contained in a catheter just by applying non-directional external force thereto. However, if the dividing points which equally divide the circumference of the front end wire ring are pulled forward with the midpoints provided between the dividing points being restrained by a tapered surface from moving forward following the dividing points, the front end wire ring is folded into a wavy shape with the midpoints serving as footholds and with the dividing points forming forwardly directed peaks and the midpoints forming the bottoms of forwardly directed valleys. After the front end wire ring has been bent, the intermediate and the rear end wire rings also are folded into a wavy shape having the same phase as that of the front end wire ring by pulling farther forward the dividing points on the front end wire ring to transmit the pulling force to the intermediate and the rear end wire rings through the tensile cover, and by simultaneously restraining the intermediate and the rear end wire rings by means of a tapered surface, thereby to collapse the whole appliance into a small size with ease.




What should especially be referred to is that the method of collapsing the appliance to be implanted in accordance with the invention is characterized by that a pair of end wire rings provided at the opposite ends of the appliance are connected by only a tubular cover which is made of a sheet of flexible, tensile material; and that the front end wire ring is pulled forward. The conventional method, in which the rear end portion of the appliance to be implanted is pushed to insert the appliance into a human organ, requires a relatively strong frame made mainly of connecting wire rings in order to transmit the force applied to the rear end of the appliance to the forward portion thereof. However, the invention is based on pulling the front end wire ring forward, thereby to make it possible to insert the appliance with ease even without a frame. In addition, the cover follows the movement of the wire rings being folded and is transformed into any desired shape, thereby to avoid interference between the wire rings and the frame. Consequently, by the method of collapsing the appliance in accordance with this invention it is possible to fold each of the wire rings into a wavy shape and to collapse the whole appliance into a small size with ease.




The operation of folding the wire rings is conducted with ease by forming loops for a pull string to be passed through at the dividing points on the front end wire ring and pulling forward a front pull string passed through the loops. In particular, a common front pull string passed through a plurality of loops is more effective to change the pulling force to a force to fold the wire rings because the dividing points are gathered toward each other.




In collapsing the appliance, a funneled guide tube whose bore diameter is gradually reduced in the forward direction may advantageously be used, so that the dividing points and midpoints of the wire rings are gathered toward each other as the appliance to be implanted is inserted farther into the funneled tube, thereby to collapse the appliance as a whole into a small size. If projections resiliently deformable and engageable with the midpoints are formed on the tapered inner surface of the funneled guide tube, the midpoints are urged toward each other by the counterforce from the projections, and a space is formed between the end wire rings and the funneled guide tube, thereby effectively to prevent the appliance and the funneled guide tube from closely contacting each other to increase sliding resistance therebetween so that the appliance cannot be moved in the guide tube.




Elastic protective material circumferentially covering the end wire rings is useful to prevent the appliance from being damaged when collapsed into a small size. If the wire ring is bent to such a degree that the elastic limit is exceeded, not only does it becomes difficult for the ring to be restored to its original annular shape but also it becomes impossible to move the ring in a catheter due to the bent portion being caught in the catheter. However, if protective material is provided, the material disperses the tension which would otherwise be exerted locally on the dividing points when the points are strongly pulled, thereby to prevent tension from being applied locally to the dividing points so that the elastic limit is exceeded to bend the wire ring. The protective material prevents the front end wire ring from being plastically deformed, and provides it with a proper capability of resilient restoration to an annular shape and of traveling smoothly in a catheter, thereby to fold the front end wire ring into a regular wavy form.




The appliance having no frame, as mentioned above, properly functions as an artificial blood vessel. The appliance in accordance with the invention has a feature that the cover itself is tensile and is held by the wire rings at both ends and the intermediate wire rings at appropriate points thereof Therefore, when the whole appliance is released from the state of being collapsed and each of the wire rings are resiliently restored to the annular shape, the cover is resiliently restored to its original proper tubular shape. The conventional appliance having a frame is likely to be deformed flatly because of mutual interference of the component parts when it is arranged in a bent portion of a human organ. However, the appliance of the invention having no frame can be transformed into any desired shape so as to conform to different shapes of a human organ.




A sheet woven with warps and wefts, in which the warps are made of monofilament of polyester and the wefts are of multi-filament of polyester, makes the whole appliance flexible. In addition, the warps provide the cover of the appliance with tensile strength in the axial direction and a capability of keeping its shape, and the wefts make the sheet closely woven and increase its waterproofness.




If the sheet of the cover is in the form of bellows, the whole appliance is bent smoothly, thereby to improve the condition of the appliance when implanted into a human organ. If the sheet of the cover is in the form of bellows, restraining strings connecting the front and the rear end wire rings can prevent the bellows from stretching to such a degree that the elastic limit is exceeded to be flat.




The elastic protective material circumferentially covering the wire rings can prevent, as mentioned previously, not only the wire rings from being plastically deformed when folded into a small size but also the inner wall of a human organ from being damaged by direct contact with the wire rings. The protective material also acts as a seal to attach both ends of the appliance to be implanted tightly to the inner wall of a human body, thereby to effectively prevent leakage of blood through the ends of the appliance when implanted.




When thorns are provided projecting from the wire rings, they stick into the inner wall of a human organ to be embedded therein so that the whole appliance is fixed to the human organ. Therefore, the thorns effectively prevent the appliance from being displaced or even carried by blood flow downstream in a blood vessel. The thorns are formed with ease by curving a wire into a loop, crossing both end portions of the wire, and fixing the crossed parts with a string or the like, even though the material of the wire is difficult to weld. The thorns thus formed reliably function as mentioned above for a long time.




In addition, with the device for introducing a collapsed appliance to be implanted into a catheter in accordance with the invention it is possible to introduce the appliance to be implanted smoothly into a catheter. In particular, the appliance to be implanted is inserted into the cartridge by pushing the check valve open as far as the appliance reaches a position at which it is almost completely contained in the cartridge. Before or after the insertion, the cartridge is attached to the attachment provided at the open end of the catheter, and then the appliance is pulled farther forward in that condition so as to be introduced into the catheter through the attachment. When the check valve in the attachment is opened, the check valve of the cartridge is closed, so that blood flowing into the cartridge is prevented from flowing outside the body through the cartridge without fail. In addition, if the appliance is to be inserted directly into the catheter, the appliance cannot be inserted smoothly because of the catheter and the appliance being flexible, and the catheter is bent by the force applied to the appliance, thereby to block the passage through which the appliance is to be inserted or to make the catheter fragile. On the other hand, if the appliance is to be inserted into the catheter through the attachment and the cartridge, by making the attachment and the cartridge strong and of such a shape as to be handled with ease it is possible to solve the problem of the catheter being bent or otherwise deformed, thereby to enable the appliance to be introduced into the catheter smoothly and with ease. If the bore diameter of the attachment is made bigger than that of the catheter and the bore diameter of the front end of the cartridge is smoothly connected to that of the open end of the catheter when the cartridge is attached to the catheter, it is possible to prevent the appliance to be implanted from being temporarily swollen in the attachment and caught therein, and to introduce the appliance to be implanted deep into the catheter.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a perspective view of an artificial blood vessel used in one embodiment of the invention.





FIG. 2

is a vertical cross-sectional view of part of the artificial blood vessel.





FIG. 3

is a perspective view of a device for transporting the artificial blood vessel, used in the embodiment.





FIG. 4

is a perspective view of a device for introducing the artificial blood vessel, used in the embodiment.





FIG. 5

is an enlarged vertical cross-sectional view of part of the attachment shown in FIG.


4


.





FIG. 6

is an enlarged vertical cross-sectional view of part of the cartridge shown in FIG.


4


.





FIG. 7

is a perspective view of the artificial blood vessel through which the device for transporting the artificial blood vessel is loosely inserted.





FIG. 8

is a perspective view showing a step to hold the artificial blood vessel by means of the device for transporting the artificial blood vessel.





FIG. 9

is a perspective view showing a step to hold the artificial blood vessel by means of the device for transporting the artificial blood vessel.





FIG. 10

is an enlarged perspective view showing part of the artificial blood vessel kept by the device for transporting the artificial blood vessel.





FIG. 11

is a perspective view showing a step to introduce the artificial blood vessel into a catheter.





FIG. 12

is a perspective view showing a step to introduce the artificial blood vessel into the catheter.





FIG. 13

is a perspective view showing a step to introduce the artificial blood vessel into the catheter by means of the device for introducing the artificial blood vessel.





FIG. 14

shows the front end wire ring of the artificial blood vessel being folded.





FIG. 15

shows the front end wire ring of the artificial blood vessel being folded.





FIG. 16

shows the front end wire ring of the artificial blood vessel being folded.





FIG. 17

shows the front end wire ring of the artificial blood vessel being folded in a funneled tube.





FIG. 18

shows the intermediate wire rings and the rear end wire rings of the artificial blood vessel being folded.





FIG. 19

shows the collapsed artificial blood vessel.





FIG. 20

shows the artificial blood vessel being inserted into the cartridge.





FIG. 21

shows the artificial blood vessel inserted into the cartridge.





FIG. 22

shows the artificial blood vessel transported from the cartridge to the attachment.





FIG. 23

is a cross-sectional view showing the artificial blood vessel transported to the affected portion.





FIG. 24

shows a step to release the artificial blood vessel at an affected part in a blood vessel.





FIG. 25

shows a step to release the artificial blood vessel at the affected part in the blood vessel.





FIG. 26

is a cross-sectional view showing the artificial blood vessel released at the affected portion in the blood vessel.





FIG. 27

shows a step to expand the artificial blood vessel by means of a balloon catheter.





FIG. 28

shows the principle of another embodiment of the invention.





FIG. 29

shows the principle of a different embodiment of the invention.





FIG. 30

is a perspective view corresponding to

FIG. 12

of a further different embodiment of the invention.





FIG. 31

is an enlarged perspective view of part of the above embodiment.





FIG. 32

is an enlarged cross-sectional view along the line Z—Z in FIG.


31


.





FIG. 33

is a perspective view corresponding to

FIG. 31

of a modified form of the embodiment.





FIG. 34

is a partial cross-sectional view of an artificial blood vessel in accordance with the invention, positioned within an affected part of a blood vessel.





FIG. 35

is a partial cross-sectional view of a related art artificial blood vessel positioned within an affected part of a blood vessel.





FIG. 36

is a partial cross-sectional view of a modified embodiment of the inventive artificial blood vessel.





FIG. 37

is a schematic close-up view of a cover material usable in an artificial blood vessel in accordance with the invention.





FIG. 38

is an end elevational view of an artificial blood vessel representing another modified embodiment of the invention.





FIG. 39

is an end elevational view of an artificial blood vessel representing a further modified embodiment of the invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




The invention will be described in detail with reference to the embodiments thereof shown in the accompanying drawings.




The artificial blood vessel A as the appliance to be implanted, which is collapsed by the method in accordance with this invention, comprises, as shown in

FIG. 1

, a cover


7


, end wire rings


10




1


,


10




2


and intermediate wire rings


12


.




The cover


7


, as shown in

FIG. 2

, consists of a flexible, tensile sheet shaped into a tube of bellows, the diameter of which generally corresponds to the normal diameter of that portion of the human blood vessel at which the artificial blood vessel A is to be implanted. The sheet of the cover


7


is, for example, of warps extending in the axial direction of the artificial blood vessel A woven with wefts extending in the circumferential direction thereof, wherein the warps are of mono-filament made of polyester (about 15 denier) and the wefts are of multi-filament made of a plurality of superfine filaments (about 50 denier) interwoven. The cover


7


is coated, if necessary, with waterproof material, for example, collagen or albumin, to prevent leakage of blood.




The end wire rings


10




1


,


10




2


, whose inner diameter generally corresponds to that of the above-mentioned cover


7


, are axially spaced apart and arranged face to face, and are fixed to the opposite ends of the cover


7


by suturing or with adhesive as shown in FIG.


2


. The circumferences of the end wire rings


10




1


,


10




2


are covered with protective braid members


10




a,


which are closely fixed to the end wire rings


10




1


,


10




2


at appropriate positions with thread, adhesive or the like.




The intermediate wire rings


12


, which comprise, as shown in

FIGS. 1 and 2

, one or two wire rings


12




a


wrapped with protective film


12




b


made of cloth or the like, are arranged axially equidistantly between the end wire rings


10




1


and


10




2


, and fixed to the cover


7


at appropriate positions on the circumference thereof with thread, adhesive or the like. The above-mentioned end wire rings


10




1


,


10




2


and the intermediate wire rings


12


help keep the tubular shape of the cover


7


. Thorns


12




a1


are formed at two diametrically opposite positions on each of those two intermediate wire rings


12


each of which comprises two wire rings


12




a,


so that the thorns


12




a1


may stick into a human organ so as to be embedded therein. In particular, the wires


12




a


of the intermediate rings


12


as well as those of the end wire rings


10




1


,


10




2


are made of Ti—Ni alloy or the like. The wires of Ti—Ni alloy have a high resilient restoring force, but are hard to weld. As the Ti—Ni alloy has the above-mentioned characteristic, the thorns


12




a1


are formed by forming a length of wire


12




a


into a loop, whose opposite end portions are crossed so as to provide a pair of short lengths of wire projecting from the crossing point, which is tied with a string or the like, and the projecting end wire portions are bent to provide the thorns


12




a1


on the ring. In the same manner, a pair of thorns


12




a1


are provided on another ring formed of a length of wire


12




a.


The two rings are arranged side by side, with the thorns


12




a1


on one of the rings arranged diametrically opposite to the thorns


12




a1


on the other ring. The two rings


12




a


are covered with a protective film


12




b,


through which the thorns


12




a1


project outside.




As shown in

FIG. 1

, let it be assumed here that the circumference of the front end wire ring


10




1


to be first introduced into the catheter


8


is bisected by two points which will be referred to as the dividing points


41




1


,


43




1


, and the two midpoints between the two dividing points


41




1


,


43




1


will be referred to as the midpoints


42




1


,


44




1


. On the circumference of the rear end wire ring


10




2


, those points whose phases are the same as the dividing points


41




1


,


43




1


and the midpoints


42




1


,


44




1


will be referred to as the points


41




2


,


43




2


corresponding to the dividing points


41




1


,


43




1


and the points


42




2


,


44




2


corresponding to the midpoints


42




1


,


44




1


, respectively. On the circumference of the intermediate wire ring


12


, those points whose phases are the same as the dividing points


41




1


,


43




1


and the midpoints


42




1


,


44




1


will be referred to as the points


41




3


,


43




3


corresponding to the dividing points


41




1


,


43




1


and the points


42




3


,


44




3


corresponding to the midpoints


42




1


,


44




1


, respectively. As shown in

FIG. 1

, a pair of loops


13


of thread or the like are so formed that the centers thereof are positioned at the dividing points


41




1


,


43




1


of the front end wire ring


10




1


. Restraining strings


14


bridge the end wire rings


10




1


and


10




2


so as to prevent the artificial blood vessel A from being stretched unnecessarily too much along the axis thereof.




In order to implant the artificial blood vessel A of the above-mentioned construction into a target organ of a human body, a device B for transporting artificial blood vessels (see

FIG. 3

) is used to transport the artificial blood vessel A to the target organ of the human body through the catheter


8


and a device C for introducing artificial blood vessels (see

FIG. 4

) is used to introduce the artificial blood vessel A into the catheter


8


.




The device B for transporting artificial blood vessels, as shown in

FIG. 3

, comprises a flexible metallic tube


2


whose front end portion is connected to a helical spring


2




a


for guiding, a side window


1


formed adjacent the front end of the tube


2


, a pair of strings


4


having both their ends fixed to the tube


2


adjacent the side window


1


and their middle portions formed into loops


4




a,


and a length of wire


3


slidably inserted into the tube


2


.




The device C for introducing artificial blood vessels, as shown in

FIG. 4

, comprises an attachment


5


integrally connected to the catheter


8


through an open end


8




a


thereof, and a cartridge


6


removably attached to the attachment


5


. As shown in

FIGS. 4 and 5

, the attachment


5


comprises a first and a second annular member


51


,


52


which are internally threaded to form female screws, a third annular member


53


which is externally threaded to form male screws at opposite ends, which engage the above-mentioned female screws thereby to connect the first and the second annular members


51


,


52


, and a straw member


54


which liquid tightly joins the interior of the first annular member


51


with that of the open end


8




a


of the catheter


8


. A check valve


55


made of elastic membrane is provided inside the second annular member


52


to close the open end thereof The cartridge


6


, as shown in

FIG. 4 and 6

, is of generally the same construction as the attachment


5


and comprises first and second annular members


61


,


62


which are internally threaded to provide internal female screws, a third annular member


63


which is externally threaded to form male screws at opposite ends, which engage the above-mentioned female screws at opposite ends to connect the first and second annular members


61


,


62


, and a straw member


64


which projects from the first annular member


61


in the direction of insertion. A check valve


65


made of elastic membrane is provided inside the second annular member


62


to close the open end thereof.




As shown in

FIG. 4

, the straw member


64


of the cartridge


6


is so constructed that the front end portion


6




a


thereof is removably fitted into the rear end portion


5




a


of the attachment


5


which is connected integrally to the open end


8




a


of the above-mentioned catheter


8


. In particular, as shown in

FIGS. 4

,


5


, and


6


, the bore diameter d


1


of the straw member


54


of the attachment


5


is a little larger than the bore diameter d


2


of the straw member


64


of the cartridge


6


, and the length L


2


of the straw member


64


is approximately equal to the full length L


1


of the attachment


5


. Similarly the bore diameter d


2


of the straw member


64


of the cartridge


6


is approximately equal to the bore diameter d


3


of the open end


8




a


of the catheter


8


. When the cartridge


6


is inserted a certain length into the attachment


5


, the straw member


64


is inserted into the straw member


54


so that the bore d


2


of the straw member


54


is smoothly connected to the bore d


3


of the open end


8




a


of the catheter


8


. The above-mentioned check valves


55


,


65


are made of elastic membrane, in each of which a normally closed hole, not shown in drawings, is formed.




A funneled tube


18


, as shown in

FIG. 4

, is provided as a guide tube to help collapse the artificial blood vessel A. The funneled tube


18


is provided with an inlet opening


18




a


of an enlarged diameter at the rear end portion, through which the tubular artificial blood vessel A is inserted into the funneled tube


18


. The funneled tube


18


is gradually reduced in diameter from the inlet opening


18




a


to end in a tubular connector


18




b


of a smaller diameter at the front end portion thereof, so that the tube


18


has a tapered inner surface


18




d.


The funneled tube


18


is removably connected to the cartridge by inserting the front connector


18




b


into the rear end portion


6




b


of the cartridge


6


. Elastically transformable projections


18




c


are provided at regular intervals from the rear end portion to the front along two specific generatrices on the tapered inner surface


18




d


of the funneled tube


18


. When the artificial blood vessel A travels along the tapered inner surface


18




d


of the funneled tube


18


, the projections


18




c


are elastically transformed by the vessel A to exert a resilient counterforce to the artificial blood vessel A thereby to contract vessel A.




In order to form the projections


18




c


with ease, as shown in

FIG. 4

, several pairs of holes


18




e


are formed on the tapered wall


18




d


of the funneled tube


18


, and a wire


18




f


is inserted through one of each pair of holes


18




e


and drawn out through the other of the pair of holes


18




e


so as to form a looped projection


18




c


erect on the inner side of the tapered inner surface


18




d,


with appropriate portions of the wire


18




f


being tied with a string


18




g.






The operations of collapsing the artificial blood vessel A and implanting it into a target portion (an affected part


26


) of a blood vessel


9


by means of the device B for transporting artificial blood vessels and the device C for introducing artificial blood vessels of the above-mentioned constructions, will now be described below.




First, the tube


2


is inserted through the artificial blood vessel A as shown in

FIG. 7

, and each of a pair of strings


4


is passed through each loop


13


of the artificial blood vessel A as shown in

FIG. 8

, and the looped portions of the strings


4


overlap as shown at


4




a.


Next, a wire


3


has its forward end taken out of the side window


1


as shown in

FIG. 9

, and the overlapped portions of the looped portions


4




a


are hooked over the wire


3


, and then the wire


3


has its forward end inserted again into the tube


2


through the side window


1


so as to hold the artificial blood vessel A on the wire


3


and the tube


2


through the strings


4


. Then, the artificial blood vessel A is inserted into the cartridge


6


shown in FIG.


4


through the funneled tube


18


. In particular, the midpoints


42




1


,


44




1


are aligned with the above-mentioned generatrices of the funneled tube


18


, with a common front pull string


20


being passed through the loops


13


provided at the dividing points


41




1


,


43




1


on the front end wire ring


10




1


of the artificial blood vessel A as shown in

FIG. 11. A

balloon catheter


23


, as shown in

FIG. 12

, may be used, if necessary. The balloon catheter


23


comprises a pipe


23




a,


a balloon


23




b


formed on the front end portion of the pipe


23




a,


and an opening


23




c


provided in the rear end of the pipe


23




a


for air to be introduced into or taken out of the above-mentioned balloon


23




b


through the pipe


23




a.


The pipe


23




a


is loosely fitted over the tube


2


of the above-mentioned device B for transporting artificial blood vessels. In other words, the rear portion of the device B for transporting artificial blood vessels is drawn outside from the rear end of the balloon catheter


23


while the front end portion of the device is passed through the balloon


23




b


of the balloon catheter


23


and exposed outside, with the portions of the catheter


23


through which the tube


2


is passed being air tightly sealed. The rear end portion of the pipe


23




a


is removably connected to the tube


2


of the device B for transporting artificial blood vessels by a fixing member


24


, and the balloon catheter


23


and the tube


2


of the device B for transporting artificial blood vessels can be moved together as a unit longitudinally when the fixing member


24


is fastened, and the balloon catheter


23


can be moved longitudinally relative to the tube


2


of the device B when the fixing member


24


is loosened. The balloon catheter


23


is so positioned that the front end thereof is spaced about 2 to 3 cm apart from the rear end of the artificial blood vessel A loosely fitted over the tube


2


. Then the fixing member


24


on the balloon catheter


23


is fastened to fix the catheter


23


to the tube


2


so that the catheter


23


and the tube


2


can be moved together as a unit.




Before or after the above step, the funneled tube


18


is attached to a cartridge


6


as shown in FIG.


13


. In attaching the funneled tube


18


to the cartridge


6


, the connector


18




b


of the funneled tube


18


is inserted into the annular member


62


of the cartridge


6


so that the check valve


65


of the elastic membrane provided inside the annular member


62


is pushed open by the connector


18




b


of the funneled tube


18


, and the connector


18




b


is inserted a little into the straw


64


of the cartridge


6


. The front pull string


20


is inserted into the funneled tube


18


through the rear end portion


18




a


thereof and withdrawn forward through the straw


64


at the front end of the cartridge


6


, with the tube


2


inserted a certain length into the funneled tube


18


. Under the condition, the front pull string


20


is pulled forward to introduce the artificial blood vessel A into the funneled tube


18


through the enlarged inlet opening


18




a


thereof.




Under the condition, as the front pull string


20


is farther pulled, the dividing points


41




1


,


43




1


on the front end wire ring


10




1


of the artificial blood vessel A are pulled by the front pull string


20


, as shown in

FIG. 14

, and the midpoints


42




1


,


44




1


are engaged by the projections


18




c


provided along the generatrices on the tapered surface


18




d,


so that the front end wire ring


10




1


is deformed with the dividing points


41




1


,


43




1


approaching toward each other with the midpoints


42




1


,


44




1


serving as footholds as shown in FIG.


15


. The midpoints


42




1


,


44




1


are restricted by the projections


18




c


and left behind the dividing points


41




1


,


43




1


, and urged by the resilient counterforce of the projections


18




c


to approach each other, thereby to cause the front end wire ring


10




1


to be folded flat as shown in FIG.


16


. In short, the front end wire ring


10




1


is transformed from the shape shown in

FIG. 14

to the shape shown in

FIG. 15

, and thence to the shape shown in

FIG. 16

, with the dividing points


41




1


,


43




1


where the loops


13


are provided forming forwardly directed peaks and the midpoints


42




1


,


44




1


forming the bottoms of forwardly directed valleys, so that the front end wire ring


10




1


as a whole takes a regular wavy shape. In short, as shown in

FIG. 17

, the front end wire ring


10




1


is passed through the funneled tube


18


while being farther folded. Since the cover


7


is tensile, as the front pull string


20


is pulled forward, the pulling force is transmitted through the cover


7


to the points


41




3


,


43




3


on the intermediate rings


12


corresponding to the dividing points and the points


41




2


,


43




2


on the rear end wire ring


10




2


corresponding to the dividing points, as shown in FIG.


18


. The points


42




3


,


44




3


on the intermediate rings


12


corresponding to the midpoints and the points


42




2


,


44




2


on the rear end wire ring


10




2


corresponding to the midpoints are restrained by the projections


18




c


when they move along the generatrices on the tapered surface


18




d,


with the points


41




3


,


43




3


,


41




2


,


43




2


corresponding to the dividing points forming forwardly directed peaks and the points


42




3


,


44




3


,


42




2


,


44




2


corresponding to the midpoints forming the bottoms of forwardly directed valleys, as shown in

FIG. 19

, so that the intermediate wire rings


12


and the rear end wire ring


10




2


are also folded to take a wavy shape having the same phase as that of the front end wire ring


10




1


. As the rings


10




1


and


10




2


are folded, the braid members


10




a


circumferentially arranged about the end wire rings


10




1


,


10




2


are also folded to take a wavy shape. As the artificial blood vessel A is collapsed, the thorns


12




a1


are pushed down to extend rearward or forward because of the above-mentioned construction.




Thus, the artificial blood vessel A inserted into the connector


18




b


is introduced into the straw


64


of the cartridge


6


, as shown in

FIG. 20

, by pulling the front pull string


20


farther forwardly. Under the condition, the front pull string


20


is untied and pulled at its end so as to be withdrawn from the loops


13


, and the funneled tube


18


is withdrawn from the cartridge


6


through the rear end portion


6




b


thereof. Consequently, the artificial blood vessel A is contained in the straw


64


of the cartridge


6


, as shown in

FIG. 21

, and only the pipe


23




a


of the balloon catheter


23


through which the tube


2


is passed is exposed outside through the rear end portion


6




b


of the cartridge


6


with the check valve


65


opened a little.




On the other hand, the catheter


8


has been previously inserted through, for example, the coxal artery adjacent the groin F into the blood vessel


9


as far as the front end of the catheter


8


has been positioned a little beyond the affected portion


26


such as an aneurysm of the aorta. The attachment


5


connected to the open end


8




a


of the catheter


8


is, as shown in

FIG. 22

, exposed outside the body. Next, the cartridge


6


into which the artificial blood vessel A has been inserted is pushed into the attachment


5


through the rear end portion


5




a


thereof with the check valve


5


opened, and the straw


64


of the cartridge


6


is positioned so that the front end


6




a


thereof is smoothly connected to the inner surface of the open end


8




a


of the catheter


8


. Under the condition, the pipe


23




a


of the balloon catheter


23


is gripped and the balloon catheter


23


is pushed so as to be inserted gradually deeply into the catheter


8


. As the tube


2


is connected to the balloon catheter


23


through the fixing member


24


and the artificial blood vessel A is held by the tube


2


, movement of the balloon catheter


23


causes the artificial blood vessel A to be transported gradually to the deep position in the body. The balloon catheter


23


is pushed until the front end of the tube


2


is positioned at the front end of the catheter


8


, as shown in FIG.


23


. At this time the artificial blood vessel A is positioned at the affected portion


26


as the target position. Then, as the catheter


8


is withdrawn as shown in

FIG. 24

, with the balloon catheter


23


and the tube


2


into which the wire


3


is inserted left at the objective position, the collapsed artificial blood vessel A in the catheter


8


is released at the affected portion


26


in the blood vessel


9


while expanding gradually from the front end as shown in

FIGS. 24

,


25


and


26


. The released artificial blood vessel A is restored to its original tubular shape and urged against the inner wall of the blood vessel


9


. Then the fixing member


24


shown in

FIG. 12

is loosened to disconnect the balloon catheter


23


from the tube


2


, and the balloon catheter


23


is advanced along the tube


2


into the artificial blood vessel A with the tube


2


kept at the objective position as far as the front end of the balloon catheter


23


reaches the front end of the artificial blood vessel A as shown in

FIG. 27

, whereupon the balloon


23




b


is inflated by introducing air through the opening


23




c


as shown by dash-and-dot lines in

FIG. 27

thereby to restore the artificial blood vessel A completely to its original shape and securely fix it onto the inner wall of the blood vessel. At this time the thorns stick into the inner wall of the blood vessel


9


and are embedded therein. After the artificial blood vessel A has been thus fixed, the balloon


23




b


of the balloon catheter


23


is deflated by drawing air through the opening


23




c


and the balloon catheter


23


is pulled out from the artificial blood vessel A by pulling the pipe


23




a


rearwardly. Then it is confirmed that the artificial blood vessel A has been fixed onto the inner wall of the blood vessel


9


, and then the wire


3


is pulled out of the tube


2


. As the front end of the wire


3


passes the rear edge of the side window


1


of the tube


2


as shown in

FIG. 8

, the loop portion


4




a


of the string


4


that has been caught by the wire


3


at the side window


1


is released from the wire


3


. Under the condition, when the tube


2


is pulled out, the string


4


slips out of the loops


13


of the artificial blood vessel A. The balloon catheter


23


and the tube


2


are then connected again by the fastener


24


and pulled out of the human body with only the artificial blood vessel A left at the desired position in the blood vessel


9


.




As mentioned above, in accordance with the invention, the artificial blood vessel A is implanted into the affected portion


26


, and restored to its original shape thereby to effectively prevent occlusion of the affected portion


26


in the blood vessel


9


. With the above-mentioned collapsing method, the artificial blood vessel A can be collapsed with ease and accuracy. It is difficult to fold the front end wire ring


10




1


into such a small shape that can be contained in a catheter


8


merely by applying non-directional external forces thereto. However, the dividing points


41




1


,


43




1


which equally divide the circumference of the front wire ring


10




1


are pulled forward and the midpoints


42




1


,


44




1


between the dividing points


41




1


,


43




1


are restrained from moving forward following the dividing points


41




1


,


43




1


by a tapered surface


18




d,


so that the dividing points


41




1


,


43




1


form forwardly directed peaks and the midpoints


42




1


,


44




1


form the bottoms of forwardly directed valleys with the midpoints


42




1


,


44




1


serving as footholds, so that the front end wire ring


10




1


as a whole takes a regular wavy shape. After the front end wire ring


10




1


has been folded, as the dividing points


41




1


,


43




1


provided on the front end wire ring


10




1


are farther pulled forward by the front pull string


20


, the pulling force is transmitted to the points


41




3


,


43




3


on the intermediate rings


12


corresponding to the dividing points and the points


41




2


,


43




2


on the rear end wire ring


10




2


corresponding to the dividing points through the tensile cover


7


, and at the same time the points


42




3


,


44




3


on the intermediate rings


12


corresponding to the midpoints and the points


42




2


,


44




2


on the rear end wire ring


10




2


corresponding to the midpoints are restrained by the tapered surface


18




d,


so that the intermediate wire rings


12


and the rear end wire ring


10




2


are also folded to take a wavy shape having the same phase as that of the front end wire ring


10




1


, thereby to enable the artificial blood vessel A to be collapsed into a small size with ease.




What should especially be referred to is that the method of collapsing the appliance to be implanted in accordance with the invention is characterized by that the end wire rings


10




1


,


10




2


provided at the opposite ends of the artificial blood vessel A are connected by only a tubular cover


7


which is made of a flexible and tensile sheet; and that the front end wire ring


10




1


is pulled forward by means of the device B for transporting artificial blood vessels. The conventional method, in which the appliance to be implanted is pushed at the rear end so as to be inserted into a human organ, requires a relatively strong frame mainly of connecting wire rings in order to transmit the force applied to the rear end portion of the appliance to the forward portion thereof. However, the invention is based on the idea of pulling the front end wire ring


10




1


forward, thereby to make insertion of the appliance easy even though no frame is provided. In addition, the cover


7


is transformed into any desired shape as the wire rings


10




1


,


12


,


10




2


are folded, thereby to avoid the mutual interference of the cover


7


and the wire rings


10




1


,


12


,


10




2


which would otherwise occur if frames are provided. Therefore, the method of collapsing the appliance in accordance with this invention makes it possible to collapse the whole artificial blood vessel A into a small size with ease by folding each of the wire rings


10




1


,


12


,


10




2


, into a wavy shape.




In this embodiment, in order to collapse the appliance, the loops


13


are formed at the dividing points


41




1


,


43




1


of the front end wire ring


10




1


and the front pull string


20


is passed through the loops


13


and pulled forward, thereby to make the operation of collapsing the appliance very easy. In particular, the pulling force can effectively be transformed to a collapsing force because the dividing points


41




1


,


43




1


are gathered to approach each other by pulling the common front pull string


20


passed through the pair of loops


13


,


13


.




In this embodiment, the funneled tube


18


whose inner surface is gradually reduced in diameter toward the front end thereof is used to collapse the artificial blood vessel A. As the artificial blood vessel A is inserted into the funneled tube


18


deeper, the dividing points


41




1


,


43




1


and the midpoints


42




1


,


44




1


are gathered to approach each other, thereby to enable the artificial blood vessel A as a whole to be collapsed into a small size. In this embodiment, as resiliently deformable projections


18




c


are formed on the tapered inner surface


18




d


of the funneled tube


18


so as to engage with the midpoints


42




1


,


44




1


, the midpoints


42




1


,


44




1


are pushed to approach each other by the counterforce of the projections


13




c.


A space is formed between the front end wire ring


10




1


and the funneled tube


18


due to the projections


18




c,


thereby effectively to prevent the artificial blood vessel A from being securely caught in the funneled tube


18


due to the sliding resistance which would otherwise be increased if the front end wire ring


10




1


were in tight contact with the funneled tube


18


. The same is true with the intermediate wire rings


12


and the rear end wire ring


10




2


.




In this embodiment, the flexible braid members


10




a


are circumferentially arranged on the end wire rings


10




1


,


10




2


so as to prevent particularly the front end wire ring


10




1


from being damaged to cause the artificial blood vessel A to lose its function. In particular, if the front end wire ring


10




1


is bent beyond its elastic limit, not only does it become difficult for the ring to be restored to its original annular shape but also it becomes impossible to move the ring in the catheter


8


because the bent portion is caught in the catheter


8


. However, as the braid members


10




a


are provided, they diffuse the tension which would otherwise be locally applied to the dividing points


41




1


,


43




1


when the dividing points


41




1


,


43




1


are strongly pulled, thereby to prevent the dividing points from being bent beyond the elastic limit of the ring


10




1


. Consequently, the braid members


10




a


prevent plastic deformation of the front end wire ring


10




1


, provide the ring with a proper capability of restoring to the annular shape and of traveling smoothly in a catheter, and enable the front end wire ring


10




1


to be folded into a regular wavy form.




The artificial blood vessel A constructed without a frame as mentioned above properly functions for the intended purpose. The artificial blood vessel A in accordance with the invention is so constructed that the cover


7


itself is made of a tensile material and is held by the intermediate wire rings


12


at appropriate points thereof, and that when the whole artificial blood vessel A is released from the state of being collapsed and each of the wire rings


10




1


,


10




2


,


12


is resiliently restored to the annular shape, the cover


7


is restored to the original proper tubular shape by the wire rings


10




1


,


10




2


,


12


. The conventional appliance having a frame, if put in a bent portion of a human organ, is likely to be deformed flatly because of mutual interference of the component parts. However, the artificial blood vessel A having no frame in this embodiment can be transformed into any desired shape so as to conform to different shapes of human organs.




In this case, as the cover


7


is of a sheet woven with warps and wefts, and the warps are made of mono-filament of polyester (about 15 denier), whose stiffness helps keep the shape of the cover


7


, and the wefts are of multi-filament of polyester (about 50 denier), whose closeness gives the sheet waterproofness, the whole cover


7


is flexible, resistive to axial tension, keeps its tubular shape by itself, and can prevent leakage of blood.




As the sheet of the cover


7


is in the form of bellows, the whole artificial blood vessel A is easily bendable so that the condition of the artificial blood vessel A implanted into a human organ is improved. As the restraining strings


14


bridge the end wire rings


10




1


,


10




2


, the bellows can be prevented from stretching beyond the limit to become flat.




In this embodiment, as the flexible braid members


10




a


are circumferentially arranged on the end wire rings


10




1


,


10




2


of the artificial blood vessel A, the inner wall of a human organ can be prevented from being damaged by direct contact with the end wire rings


10




1


,


10




2


in addition to the advantage that the front end wire ring


10




1


can be prevented from being plastically deformed when folded into a small size as mentioned above. The braid members


10




a


also help seal both ends of the implanted artificial blood vessel A tightly to the inner wall of a human body, thereby to effectively prevent leakage of blood through the ends of the artificial blood vessel A when implanted.




As the thorns


12




a1


project from the intermediate wire rings


12


, they stick into the inner wall of a human organ to be embedded therein so that the whole artificial blood vessel A is fixed to the human organ. Therefore, after the artificial blood vessel A has been implanted in the human organ, the thorns


12




a1


effectively prevent displacement of the artificial blood vessel A, which may cause the vessel A to be carried by blood flow downstream in the blood vessel. As each of the thorns


12




a1


is formed by curving a wire into a loop, crossing both end portions of the wire, and fixing the crossed parts with a string or the like, the thorns


12




a1


can be formed with ease and remain reliable in use for a long time, even though the intermediate wire rings


12


are made of a material which is difficult to weld.




On the other hand, by using the device C for introducing artificial blood vessels in accordance with the invention, the artificial blood vessel A can be smoothly introduced into the catheter


8


. In particular, the artificial blood vessel A is inserted into the cartridge


6


by opening the check valve


55


as far as the artificial blood vessel A reaches a position so that it is completely contained therein. Before or after the above insertion, the cartridge


6


is attached to the attachment


5


provided at the open end


8




a


of the catheter


8


, and then the artificial blood vessel A is pulled forward farther so as to be introduced into the catheter


8


through the attachment


5


. In this case, when the check valve


55


in the attachment


5


is opened, the check valve


65


of the cartridge


6


is closed, so that blood flowing into the cartridge


6


is prevented from flowing outside the body through the cartridge


6


without fail. In addition, if the artificial blood vessel A is inserted directly into the catheter


8


, the artificial blood vessel A cannot be inserted smoothly because the catheter


8


and the artificial blood vessel A are flexible, and the catheter


8


is likely to be bent by the force applied to the catheter


8


or the artificial blood vessel A, thereby to block the path of the artificial blood vessel A or to damage the catheter


8


itself However, in this embodiment, as the artificial blood vessel A is to be inserted into the catheter


8


through the attachment


5


and the cartridge


6


, the attachment


5


and the cartridge


6


are made relatively strong and easy to handle, so that the catheter


8


will not be broken, thereby to enable the artificial blood vessel A to be introduced into the catheter


8


smoothly with ease. In this case, as the bore diameter d


1


of the attachment


5


of the catheter


8


is made bigger than the bore diameter d


3


of the open end


8




a


of the catheter


8


and the bore diameter d


2


of the front end portion of the cartridge


6


is smoothly connected to the bore diameter d


3


of the open end


8




a


of the catheter


8


when the cartridge


6


is attached to the attachment


5


, the artificial blood vessel A can be prevented from being swollen in the attachment


5


and caught therein, so that the artificial blood vessel A can be introduced directly deeper into the catheter


8


.




The invention is not limited to the above-mentioned embodiments. For example, in the above embodiment, the front end wire ring


10




1


has its circumference divided into two equal arcs to set two dividing points


41




1


,


43




1


and the two midpoints


42




1


,


44




1


. As shown in

FIG. 28

, four dividing points


141




1


,


143




1


,


145




1


,


147




1


and four midpoints


142




1


,


144




1


,


146




1


,


148




1


may be set by quadrisecting a front end wire ring


110




1


. As shown in

FIG. 29

, three dividing points


241




1


,


243




1


,


245




1


and three midpoints


242




1


,


244




1


,


246




1


may be set by trisecting a front end wire ring


210




1


.




In the above embodiment, the device B for transporting artificial blood vessels is provided with a pair of strings


4


with loop portions


4




a.


The strings


4


need not always be provided in a pair. However, the strings provided in a pair are effective because a balanced pulling force can be applied to the artificial blood vessel A. The loop portions


4




a


may be twisted as a whole.




As the balloon catheter


23


is used in the above embodiment, the device B for transporting artificial blood vessels is incorporated into the balloon catheter


23


. If the balloon catheter


23


is unnecessary, the artificial blood vessel A may be introduced into or taken out of the catheter by directly operating the tube


2


of the device B for transporting artificial blood vessels.




The following method of supporting restoration of the appliance to be implanted is effectively used in the above embodiment. The method is to enable the artificial blood vessel A as the appliance to be implanted to be pulled rearward at the rear end wire ring


10




2


through the rear loops


13




a


formed on the rear end wire ring


10




2


of the artificial blood vessel A at the points


42




2


,


44




2


corresponding to the midpoints as shown in FIG.


30


. In particular, in the above embodiment, for example, the artificial blood vessel A may be mistakenly released at a position off the affected portion


26


shown in FIG.


26


. In such a case, when the artificial blood vessel A is pulled backward by operating the device B for transporting artificial blood vessels, the front end wire ring


10




1


only moves toward the rear end wire ring


10




2


, so that the artificial blood vessel A shrinks in the axial direction thereof and may not be restored to a proper shape. In case the balloon catheter


23


is inserted into the artificial blood vessel which has been released at a constricted part, the balloon catheter


23


may not be inserted with accuracy into the opening of the rear end wire ring


10




2


of the artificial blood vessel A but be caught by the peripheral edge of the opening, and the rear end wire wing


10




2


is pushed toward the front end wire ring


10




1


and shrinks in the axial direction thereof, so that the artificial blood vessel A may not be restored to a proper shape. Once this happens, the above-mentioned device B for transporting artificial blood vessels can no longer be an effective means for correcting the shrinkage of the artificial blood vessel A or pulling it back to where it should have been released, as it has a function of only pulling the front end wire ring forward.




In such a case, it is effective to use both a method of and a device for pulling the artificial blood vessel A back to the proper position after it has been released.





FIGS. 30 and 31

show a device D for helping restoration for the above purpose, which comprises a pair of tubes


102


each of which is provided with a side window


101


near its front end, and a pair of wires


103


each of which is inserted into one of the tubes


102


. Rear loops


13




a


are formed at the points


42




2


,


44




2


on the rear end wire ring


10




2


corresponding to the midpoints, and the rear loops


13




a


are directly hooked by the wires


103


which have been pulled out of the tubes


102


through the side window


101


, and the rear loops


13




a


are held by the wires


103


by inserting the wires


103


into the tubes


102


again. Then the tubes


102


each of which contains the wire


103


are introduced into the catheter


8


together with the artificial blood vessel A. In particular, a bore


23




d


oblong in transverse section is formed in the wall of the pipe


23




a


of the balloon catheter


23


used in the above embodiment to extend along the length of the pipe from the rear end thereof to near the balloon


23




b


as shown in FIG.


32


. An open window


23




d




1


is formed at the rear end of the bore


23




d,


into which a pair of tubes


102


are introduced through the window


23




d




1


and drawn out through an open window


23




d




2


formed at the forward end of the bore


23




d.


The tubes


102


can be moved together with the balloon catheter


23


longitudinally when the balloon catheter


23


is pulled forward, and they can also be moved relative to the balloon catheter


23


longitudinally when the tubes


102


alone are operated. The device D for helping restoration is used when the position of the artificial blood vessel A is to be adjusted after it has been released as shown in

FIG. 26

, or when the balloon catheter


23


is inserted into the artificial blood vessel A as shown in

FIGS. 26 and 27

. When the artificial blood vessel A has been released at a position a little ahead of the affected portion


26


as shown in

FIG. 26

, the tubes


102


containing the wire


103


is pulled rearward to pull back the rear end wire ring


10




2


thereby to cause the front end wire ring


10




1


to follow the rear end wire ring


10




2


. When the balloon catheter


23


is inserted as shown in

FIGS. 26 and 27

, the tubes


102


containing the wires


103


are pulled back to hold the rear end wire ring


10




2


not to move forward, and the balloon catheter


23


is pushed into the artificial blood vessel A. Then, only the wires


103


which are contained in the tubes


102


are pulled rearward as far as the front end of the wires


103


reaches the side window


101


of the tubes


102


, whereupon the rear loops


13




a


of the artificial blood vessel A are released from the wires


103


, so that the artificial blood vessel A is detached from the device D for helping restoration. As a result, the device D for helping restoration as well as the balloon catheter


23


can be withdrawn with only the artificial blood vessel A left in the affected portion


26


.




By using these devices jointly, a proper distance between the front end wire ring


10




1


and the rear end wire ring


10




2


can always be maintained. Therefore, it is possible to prevent the artificial blood vessel A from being shrunk longitudinally to deform its proper shape, and to complete insertion of the balloon catheter


23


and adjustment of the position of the artificial blood vessel A quickly and accurately.




The device for helping restoration of the appliance to be implanted can be of a construction shown in FIG.


33


. The device is provided near the side window


101


of the tube


102


with a pair of strings


104


each of which has its front end portion formed into a loop. The loop portion of each string


104


is passed through a pair of rear loops


13




a


and hooked by the wire


103


like the device B for transporting artificial blood vessels. The tube


102


also is contained in the pipe


24




a


of the balloon catheter


23


and transported like the above-mentioned tube


102


.




In the above-mentioned embodiments, in some cases the balloon catheter


23


is not used. In such cases the tube


102


is to be detachably connected with the device for transporting the artificial blood vessel so that the tube and the device can be transported as a unit.




The appliance according to the present invention, especially when used as an artificial blood vessel, has various effects or advantages such that (1) the appliance has improved liquid proofness and positional stability or fixedness at the position where it has been implanted, and (2) that it has improved implanted condition with resulting reduction of adverse influences otherwise caused by implantation of such artificial appliances in a human body. Reasons for the improvement of the liquid proofness and fixedness will be explained with reference to

FIGS. 34 and 35

.




When the artificial blood vessel has been released in a blood vessel adjacent to an affected portion thereof where an aortic aneurysm exists, the wire rings p


1


arranged outside the cover p


2


are brought into direct contact with the inner wall surface p


3


of the blood vessel due to its own restoring force without the cover p


2


intervening. On the contrary, if the wire rings were arranged inside the cover q


2


as shown at q


1


in

FIG. 35

, the cover would intervene between the wire rings q


1


and the inner wall surface q


3


of the blood vessel to effect an indirect surface contact therebetween, with the resilient restoring force of the rings q


1


being dissipated by the intervening cover.




In

FIG. 34

the wire rings p


1


of the artificial blood vessel of the present invention directly contact the inner wall surface p


3


of the blood vessel without the cover p


2


intervening, thereby to effect a linear contact rather than a surface contact therebetween, so that the wire rings p


1


exercise a pressing force onto localized areas on the inner wall surface p


3


of the blood vessel. This effects a good sealed condition between the wire rings and the inner wall of the blood vessel.




Since the wire rings p


1


are arranged outside the cover p


2


, the blood p flowing through the cover p


2


exerts a fluid pressure as shown at p


5


from inside the cover to expand it, and the expanding force of the cover is likely to be concentrated on the wire rings p


1


to expand them radially outwardly, so that the expanding force added to the resilient restoring force of the wire rings increases the sealing effect between the implanted artificial blood vessel and the inner wall surface p


3


of the blood vessel. In

FIG. 35

, the pressure q


5


of the blood q


4


flowing through the cover q


2


acts on the cover q


2


from inside it but scarcely acts on the wire rings q


1


to expand them radially outwardly, so that the sealing effect of the wire rings q


1


on the inner wall surface q


3


of the blood vessel is scarcely increased.




The artificial blood vessel of the present invention is able to provide an effective seal at the wire rings contacting the inner wall of the blood vessel thereby to prevent leakage of blood through a gap therebetween, to provide an improved liquid tightness between the implanted artificial blood vessel and the adjacent portions of the blood vessel thereby to prevent leaking blood, if any, from reaching the affected part of the blood vessel such as an aortic aneurysm, and to provide improved positional stability of the implanted artificial blood vessel by effectively preventing the wire rings from slipping on the inner wall of the blood vessel and consequently the whole of the implanted artificial blood vessel from being displaced or moved away from the position where it must stay.




The above effects are marked especially where the intermediate wire rings contact the inner wall surface of the blood vessel. Unlike the end wire rings, the intermediate wire rings are fixed to the cover at positions other than the opposite ends of the cover, so that the expanding force of the cover caused by the blood pressure inside it acts as a whole to uniformly expand the intermediate wire rings radially outwardly, and the total force acting on the intermediate wire rings is greater than that acting on the opposite end wire rings. Therefore, even if blood should enter the space between the end wire rings and the inner wall surface of the blood vessel, the intermediate wire rings contact the inner wall surface of the blood vessel at a greater pressure and more tightly than the end wires so as to efficiently prevent the entering blood from reaching the aneurysm. Thus, the invention provides a double or multiple-stage sealing system.




In one conventional type of artificial blood vessel (not shown) in which the opposite end wire rings are connected by an elastic wire framework, the support rod exerts a force on the wire rings to prevent the resilient restoration thereof, so that the artificial blood vessel has a lower adhesiveness and positional stability of the wire rings to the inner wall of the blood vessel than in the prevent invention (which is free of an elastic wire framework extending between and connecting the end wire rings) and it is difficult to prevent leakage of blood without fail.




Reasons for the improved condition of the implanted blood vessel and reduction of adverse influences caused by the implantation of the artificial blood vessel of the present invention will now be described.




The human body has a characteristic such that when a foreign body enters a blood vessel, the intima of the blood vessel covers or envelopes the foreign body to assimilate it. In particular, when an artificial blood vessel has been implanted in a blood vessel to be treated, the intima of the blood vessel expands over the inner wall surface of the implanted artificial blood vessel to cover and assimilate it. In the arrangement of

FIG. 35

, in which the wire rings are disposed inside the cover, the projections provided by the rings q


1


on the inner surface of the cover q


2


become an obstacle to smooth, uniform expansion of the intima from the adjoining blood vessel. In other words, the expansion of the intima is likely to be impeded by the projections and it takes a considerably long time for the intima to uniformly cover the implanted artificial blood vessel, in which a thrombus is likely to be formed in the course of expansion of the intima. As the thrombus grows, the blood vessel becomes constricted, and there is danger of the thrombus coming off to be carried over to a capillary vessel and cause necrosis in the adjacent cells.




In accordance with the present invention, the wire rings p


1


are provided outside the cover p


2


, the inner surface of which is continuously smooth from one end thereof to the other, so that the intima of the blood vessel will expand over the inner surface of the cover of the implanted artificial blood vessel smoothly and at an efficient speed. This means that the implanted artificial blood vessel is easily assimilated into the tissue of the inner wall of the blood vessel, with resulting reduction of the danger of a thrombus being formed to cause serious damage, such as necrosis, and realization of a long, stable fixed condition of the implanted artificial blood vessel.




In the previously described conventional type of artificial blood vessel including an elastic wire framework inside the cover, the framework impedes expansion of the intima as in the arrangement of

FIG. 35

so that no such effects or advantages as in the present invention can be expected.




In accordance with the invention, if the inner pressure of the cover of the implanted artificial blood vessel should increase to an abnormally high level, the wire rings provided outside the cover can effectively prevent occurrence of serious situations such as rupture of the cover to cause profuse bleeding.




Further advantages provided by preferred features of the invention are described below.




Relatively hard, stiff thread must be used to form an artificial blood vessel as a concrete, solid structure if it is not to be supported by an elastic wire frame. If such stiff thread were used in the whole of the cover of the artificial blood vessel, however, the cover would become too bulky and stiff to be smoothly introduced into a blood vessel.




In accordance with the invention, the warps with which the cover is woven are preferably made of mono-filament so as to keep the cover sufficiently rigid as a structure and make it possible to fold the artificial blood vessel into a less bulky size than otherwise. Since the artificial blood vessel of this type is usually introduced into a relatively thin blood vessel such as the femoral blood vessels, the fact that the artificial blood vessel of the present invention can be folded into a small size is an important factor to enable successful implantation of the artificial blood vessel. In addition, since the wefts of the cover are preferably made of multifilament, when the intima of the blood vessel expands over the implanted artificial blood vessel to assimilate it, the intima is likely to enter the spaces among the filament fibers to effect a stable fixed state of the implanted artificial blood vessel. Due to entanglement of the fibers of the wefts the cover is finely meshed and highly liquid proof.




When an artificial blood vessel is to be implanted in a curved portion of a blood vessel, that portion of the wall of the artificial blood vessel which is to lie along the outer lateral side of the wall of the curved blood vessel, which has a relatively large radius of curvature, must be stretched or lengthened while the opposite side portion of the wall of the artificial blood vessel which is to lie along the opposite inner lateral side of the wall of the curved blood vessel, which has a relatively small radius of curvature, must be shrunk or shortened so that the implanted artificial blood vessel may be properly positioned with the openings of the opposite end wire rings being held perpendicularly to the wall of the blood vessel. This is readily achieved in accordance with the present invention by forming the cover of the artificial blood vessel as a bellows. With implanted artificial blood vessels not formed into bellows, it is difficult for the implanted artificial blood vessel to be transformed in such a manner and to be brought into close contact with the wall of the blood vessel particularly at that portion thereof which has a relatively small radius of curvature.




This is particularly true with that type of artificial blood vessel which contains a wire frame, which is highly resistive to curving or transformation of the artificial blood vessel and consequently makes it extremely difficult to effect proper implantation thereof. Moreover, there is a danger of the opposite ends of the frame sticking into the wall of the blood vessel to break it. With the conventional type of artificial blood vessel with a wire framework or without bellows it is quite difficult to accomplish a proper implanted condition, and leakage is likely to occur between the blood vessel and the implanted artificial blood vessel in loose contact therewith. Due to the loose contact or low positional stability the implanted artificial blood vessel is likely to be pushed away by the blood flow.




The artificial blood vessel of the invention, having the cover formed into bellows, can easily conform to the curvature of the blood vessel in which it is to be implanted so as to be kept in close contact therewith at a fixed condition. In addition, due to the bellows, it is possible to change the axial length of the artificial blood vessel within a certain range, so that after the artificial blood vessel has been implanted, it may be axially adjusted so as to accomplish the most appropriate implanted condition. Due to the bellows, it is also possible to lengthen or shorten the artificial blood vessel so that it can be reduced in size for easier introduction into a catheter.




The above is not possible with the conventional type of artificial blood vessel, in which the wire frame connecting the opposite end rings is detrimental to transformation of the artificial blood vessel.




In the artificial blood vessel of the present invention, all the wire rings, including the end wire rings, are arranged outside the cover. There is a risk that the exposed end wire rings may pierce the wall of the blood vessel to cause bleeding. To minimize this risk, in accordance with a preferred aspect of the invention, a protective material covering the end rings functions as a buffer against the inner wall of the blood vessel.




The thorns of the inventive artificial blood vessel preferably project from the circumference of at least one of the wire rings. Since the wire rings are outside the cover, there is no danger of the thorns piercing the cover, so that it is possible to fix the artificial blood vessel onto the inner wall of a blood vessel with good liquid proofness and positional stability.




Since the artificial blood vessel of the present invention has no supporting frame or rod, the provision of the rear pull means (see, e.g., rear loops


13




a


in

FIG. 30

) makes it possible to freely adjust the length of the artificial blood vessel after it has been released from the catheter at a position in a blood vessel where it is to be implanted. A blood vessel has branches such as the aortic arch having the brachiocephalic trunk branching therefrom, and the artificial blood vessel must be positioned accurately at the required position so as not to block those branches which are not to be blocked. Erroneous blocking of such branches is likely to result in a critical damage. With the rear pull means accurate positioning of the artificial blood vessel is facilitated.





FIG. 36

shows a modified embodiment of the invention, in which the end wire rings W


1


comprise a plurality, e.g., four, wire elements W


2


bound together, and in a similar manner the intermediate wire rings W


3


comprise a plurality, e.g., four, elements W


4


bound together. The wire elements W


2


and W


4


are preferably made of nickel-titanium alloy. With the arrangement, the wire rings W


1


and W


3


have both sufficient flexibility and strength so that there is little danger of the wire rings injuring the blood vessel, and they are able to move in response to the pulsation of the blood vessel, and endure the repeated load caused thereby, for a long time. Should any of the wire elements be broken, the rings would not immediately do harm to the human body.




As the wire rings comprise a bundle of wire elements, they are more flexible than a wire ring which comprises a single wire element having a high strength. The rings can softly contact the inner wall of the blood vessel while maintaining a sufficient strength. Rigid wire rings might stick the inner wall of a human blood vessel and break it. Since the wire rings of the artificial blood vessel of the present invention are flexible, there is less danger of the wire rings breaking the wall of the blood vessel, and the flexibility of the material enables proper restoration of the folded wire rings. Since the human blood vessel pulsates, the implanted artificial blood vessel receives from the pulsating blood vessel a repeated load for a long time. The wire rings of the invention made of a plurality of wire elements are flexible so as to move in response to the pulsation and more resistive to the repeated load than if they were made of a single strong wire element. Breakage of one of the wire elements does not result in immediate failure of the whole wire ring and consequently the implanted artificial blood vessel.





FIG. 38

shows a modified embodiment of the invention, in which each of the intermediate wire rings


1012


is provided with a pair of thorns


1010


shaped like a Japanese Katakana letter “” (a squared U-shape) in transverse section. The thorns


1010


are fixed at the diametrically opposite positions of the wire ring


1012


by means of a thread


1011


so as to be directed radially outwardly. Since the intermediate wire rings


1012


are provided outside the cover


1013


, the thorns thereon do not pierce the cover, so that the artificial blood vessel may be kept liquid tight. In

FIG. 39

the thorns


1020


are L-shaped in transverse section and fixed to the intermediate wire ring


1022


by means of a thread


1021


, similar to the thorns


1010


in FIG.


38


.




Since all the wire rings are arranged outside the cover, the thorns are provided on the rings without piercing the sheet of the cover. Thus, the artificial blood vessel can be fixed at a required position in a blood vessel without influencing the liquid tightness of the implanted artificial blood vessel.




Nickel-titanium alloy is highly flexible and resilient. With the wire rings of the invention made of this alloy the artificial blood vessel can be folded into a small size when it is inserted into a catheter and restored to its original size without fail when it is released at the target position. Even if the implanted artificial blood vessel receives a pulsating load caused by the pulsation of the blood vessel via its wall for a long time, the flexible, resilient nickel-titanium alloy enables the wire rings to move in response to the pulsation without causing damage to the implanted artificial blood vessel. The end wire rings which comprise a bundle of wire elements made of nickel-titanium alloy have increased strength and flexibility and reduced probability of being broken. The manners in which the thorns are formed and fixed to the wire rings, as shown in

FIGS. 38 and 39

and described above, are effective especially when the wire rings are made of nickel-titanium alloy which is hard to weld.





FIG. 37

schematically shows the material or sheet of an artificial blood vessel cover


1001


expanded and enlarged. The sheet is woven with warps of mono-filament


1002


and wefts of multi-filament


1003


. In particular, the mono-filament


1002


may comprise about 12-denier thick polyester fiber. The multi-filament


1003


comprises a twist of an about 52-denier bundle of ultra fine micro fibers


1003




a


of polyester and an about 10-denier reinforcing thread


1003




b


of Vectran (a trade name of thermotropic liquid crystal). The resulting cover of the artificial blood vessel has a combined strength of the mono-filament


1002


and the reinforcing thread


1003




b


and the flexibility, liquid proofness and fixability to the inner wall of the blood vessel of the ultra fine micro fibers


1003




a


of the multi-filament


1003


. Since the artificial blood vessel must endure a high blood pressure for as long a time as decades of years, it is essential that it should have a sufficient strength in the radial direction. The above-mentioned Vectran provides not only as high a strength as the conventional artificial blood vessel used in the surgical replacement of blood vessels, but also a flexibility to enable easy folding of the artificial blood vessel of the invention.




POSSIBLE APPLICATIONS IN INDUSTRY




As mentioned above, the method of collapsing the appliance to be implanted in accordance with the invention is useful to fold the wire rings, which are components of the appliance, into small, regular wavy shapes of the same phase, thereby to collapse the appliance into a small size. The appliance to be implanted in accordance with the invention can be implanted into a target position without fail and has an appropriate construction so as not to hinder the operation of collapsing. The device for introducing the appliance to be implanted into the catheter is useful to introduce the appliance into the catheter without bleeding.



Claims
  • 1. An appliance to be implanted wherein a plurality of elastically foldable wire rings arranged spaced apart from each other are interconnected by a tubular cover formed with a flexible, tensile sheet and characterized by that said tubular cover is woven with warps along the axial direction of the appliance to be implanted and wefts along the circumferential direction thereof, wherein said warps are of mono-filament of polyester capable of keeping its shape and the wefts are of multi-filaments of polyester having a closeness imparting waterproofness to the sheet.
  • 2. The appliance to be implanted described in claim 1, characterized by that the sheet of said cover is formed into bellows.
  • 3. The appliance to be implanted described in claim 1, characterized by that said tubular cover is coated with waterproofing material.
  • 4. The appliance to be implanted described in claim 2, characterized by that said tubular cover is coated with waterproofing material.
  • 5. The appliance to be implanted described in claim 1, characterized by that said mono-filament is about 15 denier.
  • 6. The appliance to be implanted described in claim 2, characterized by that said mono-filament is about 15 denier.
  • 7. The appliance to be implanted described in claim 3, characterized by that said mono-filament is about 15 denier.
  • 8. The appliance to be implanted described in claim 4, characterized by that said mono-filament is about 15 denier.
  • 9. The appliance to be implanted described in claim 1, characterized by that said multi-filament is about 50 denier.
  • 10. The appliance to be implanted described in claim 2, characterized by that said multi-filament is about 50 denier.
  • 11. The appliance to be implanted described in claim 3, characterized by that said multi-filament is about 50 denier.
  • 12. The appliance to be implanted described in claim 4, characterized by that said multi-filament is about 50 denier.
  • 13. The appliance to be implanted described in claim 5, characterized by that said multi-filament is about 50 denier.
  • 14. The appliance to be implanted described in claim 6, characterized by that said multi-filament is about 50 denier.
  • 15. The appliance to be implanted described in claim 7, characterized by that said multi-filament is about 50 denier.
  • 16. The appliance to be implanted described in claim 8, characterized by that said multi-filament is about 50 denier.
  • 17. The appliance to be implanted described in claim 1, characterized by that said wire rings comprise a front and rear end wire rings, each of which is discretely arranged facing to the other and connected by said tubular cover, and an intermediate wire ring arranged between said front and rear end wire rings and which is fixedly connected to said tubular cover at appropriate circumferential positions.
  • 18. The appliance to be implanted described in claim 2, characterized by that said wire rings comprise a front and rear end wire rings, each of which is discretely arranged facing to the other and connected by said tubular cover, and an intermediate wire ring arranged between said front and rear end wire rings and which is fixedly connected to said tubular cover at appropriate circumferential positions.
  • 19. The appliance to be implanted described in claim 3, characterized by that said wire rings comprise a front and rear end wire rings, each of which is discretely arranged facing to the other and connected by said tubular cover, and an intermediate wire ring arranged between said front and rear end wire rings and which is fixedly connected to said tubular cover at appropriate circumferential positions.
  • 20. The appliance to be implanted described in claim 4, characterized by that said wire rings comprise a front and rear end wire rings, each of which is discretely arranged facing to the other and connected by said tubular cover, and an intermediate wire ring arranged between said front and rear end wire rings and which is fixedly connected to said tubular cover at appropriate circumferential positions.
  • 21. The appliance to be implanted described in claim 5, characterized by that said wire rings comprise a front and rear end wire rings, each of which is discretely arranged facing to the other and connected by said tubular cover, and an intermediate wire ring arranged between said front and rear end wire rings and which is fixedly connected to said tubular cover at appropriate circumferential positions.
  • 22. The appliance to be implanted described in claim 6, characterized by that said wire rings comprise a front and rear end wire rings, each of which is discretely arranged facing to the other and connected by said tubular cover, and an intermediate wire ring arranged between said front and rear end wire rings and which is fixedly connected to said tubular cover at appropriate circumferential positions.
  • 23. The appliance to be implanted described in claim 7, characterized by that said wire rings comprise a front and rear end wire rings, each of which is discretely arranged facing to the other and connected by said tubular cover, and an intermediate wire ring arranged between said front and rear end wire rings and which is fixedly connected to said tubular cover at appropriate circumferential positions.
  • 24. The appliance to be implanted described in claim 8, characterized by that said wire rings comprise a front and rear end wire rings, each of which is discretely arranged facing to the other and connected by said tubular cover, and an intermediate wire ring arranged between said front and rear end wire rings and which is fixedly connected to said tubular cover at appropriate circumferential positions.
  • 25. The appliance to be implanted described in claim 9, characterized by that said wire rings comprise a front and rear end wire rings, each of which is discretely arranged facing to the other and connected by said tubular cover, and an intermediate wire ring arranged between said front and rear end wire rings and which is fixedly connected to said tubular cover at appropriate circumferential positions.
  • 26. The appliance to be implanted described in claim 10, characterized by that said wire rings comprise a front and rear end wire rings, each of which is discretely arranged facing to the other and connected by said tubular cover, and an intermediate wire ring arranged between said front and rear end wire rings and which is fixedly connected to said tubular cover at appropriate circumferential positions.
  • 27. The appliance to be implanted described in claim 11, characterized by that said wire rings comprise a front and rear end wire rings, each of which is discretely arranged facing to the other and connected by said tubular cover, and an intermediate wire ring arranged between said front and rear end wire rings and which is fixedly connected to said tubular cover at appropriate circumferential positions.
  • 28. The appliance to be implanted described in claim 12, characterized by that said wire rings comprise a front and rear end wire rings, each of which is discretely arranged facing to the other and connected by said tubular cover, and an intermediate wire ring arranged between said front and rear end wire rings and which is fixedly connected to said tubular cover at appropriate circumferential positions.
  • 29. The appliance to be implanted described in claim 13, characterized by that said wire rings comprise a front and rear end wire rings, each of which is discretely arranged facing to the other and connected by said tubular cover, and an intermediate wire ring arranged between said front and rear end wire rings and which is fixedly connected to said tubular cover at appropriate circumferential positions.
  • 30. The appliance to be implanted described in claim 14, characterized by that said wire rings comprise a front and rear end wire rings, each of which is discretely arranged facing to the other and connected by said tubular cover, and an intermediate wire ring arranged between said front and rear end wire rings and which is fixedly connected to said tubular cover at appropriate circumferential positions.
  • 31. The appliance to be implanted described in claim 15, characterized by that said wire rings comprise a front and rear end wire rings, each of which is discretely arranged facing to the other and connected by said tubular cover, and an intermediate wire ring arranged between said front and rear end wire rings and which is fixedly connected to said tubular cover at appropriate circumferential positions.
  • 32. The appliance to be implanted described in claim 16, characterized by that said wire rings comprise a front and rear end wire rings, each of which is discretely arranged facing to the other and connected by said tubular cover, and an intermediate wire ring arranged between said front and rear end wire rings and which is fixedly connected to said tubular cover at appropriate circumferential positions.
Parent Case Info

This application is a divisional of application Ser. No. 08/777,717, filed Dec. 20, 1996, now U.S. Pat. No. 5,976,179, which is a continuation-in-part of application Ser. No. 08/411,670, filed Apr. 12, 1995, now abandoned, which is a U.S. national phase application of PCT/JP93/01171, filed Aug. 20, 1993.

US Referenced Citations (35)
Number Name Date Kind
3304557 Polansky Feb 1967 A
4300244 Bokros Nov 1981 A
4313231 Koyamada Feb 1982 A
4872874 Taheri Oct 1989 A
4877030 Beck et al. Oct 1989 A
5098406 Sawyer Mar 1992 A
5104399 Lazarus Apr 1992 A
5122154 Rhodes Jun 1992 A
5151105 Kwan-Gett Sep 1992 A
5183085 Timmermans Feb 1993 A
5207695 Trout, III May 1993 A
5234456 Silvestrini Aug 1993 A
5236447 Kubo et al. Aug 1993 A
5242452 Inoue Sep 1993 A
5290305 Inoue Mar 1994 A
5330528 Lazim Jul 1994 A
5383926 Lock et al. Jan 1995 A
5387235 Chuter Feb 1995 A
5507767 Maeda et al. Apr 1996 A
5507771 Gianturco Apr 1996 A
5554181 Das Sep 1996 A
5562724 Vorwerk et al. Oct 1996 A
5607445 Summers Mar 1997 A
5609628 Keranen Mar 1997 A
5628783 Quiachon et al. May 1997 A
5665117 Rhodes Sep 1997 A
5676671 Inoue Oct 1997 A
5693089 Inoue Dec 1997 A
5755772 Evans et al. May 1998 A
5755773 Evans et al. May 1998 A
5782904 White et al. Jul 1998 A
5824037 Fogarty et al. Oct 1998 A
5843162 Inoue Dec 1998 A
5925076 Inoue Jul 1999 A
5976179 Inoue Nov 1999 A
Foreign Referenced Citations (24)
Number Date Country
4219949 Dec 1993 DE
0472731 Mar 1992 EP
0464755 A1 Aug 1992 EP
0786267 Jul 1997 EP
0858784 Aug 1998 EP
0933070 Aug 1999 EP
2164562 Mar 1996 GB
3-236836 Oct 1991 JP
4-25755 Feb 1992 JP
4-263852 Sep 1992 JP
5-212121 Aug 1993 JP
7-24072 Jan 1995 JP
3009638 Feb 1995 JP
6-63155 Mar 1995 JP
9-506524 Jun 1995 JP
9-511160 Nov 1997 JP
10-506292 Jun 1998 JP
9112047 Aug 1991 WO
9505788 Feb 1995 WO
WO 9516406 Jun 1995 WO
WO 9521592 Aug 1995 WO
WO 9534255 Dec 1995 WO
WO 9636297 Nov 1996 WO
WO 9636387 Nov 1996 WO
Continuation in Parts (1)
Number Date Country
Parent 08/411670 US
Child 08/777717 US