This Application is related to U.S. patent application Ser. No. 14/283,132, filed May 20, 2014, now granted as U.S. Pat. No. 9,633,547 issued on Apr. 25, 2017, the disclosure of which is hereby incorporated by reference in its entirety.
Field of the Invention
The present technology pertains to monitoring and control of appliances, and more specifically to monitoring and control of appliances using sensor data.
Description of Related Art
Consumer electronics, such as thermostats, smoke alarms, television remote controls, intercoms, and internet of things (IOT) devices are becoming prevalent in homes, but do not communicate with residential alarm systems. Commercial and residential alarm systems detect intrusions and hazardous conditions (e.g., fire) to prevent injury and property loss. Alarm systems generally include switches on doors and windows, motions detectors, and heat sensors, but their use and associated data are limited to the alarm system. Alarm systems optionally include panic buttons, which allow a user to initiate an alarm upon the touch of a button. However, the expense of installing panic buttons and their fixed locations have limited their adoption.
In at least one embodiment, the present technology is directed to a method for intelligent control of an appliance device. The method may include receiving information from at least one sensor using a computer network, the at least one sensor associated with an alarm system, the alarm system associated with a structure; and operating the appliance device using the received information.
In at least one embodiment, the present technology is directed to a method for notifying first responders of an emergency situation at a structure. The method may include receiving from an appliance device a user input using a computer network; and contacting a user associated with the appliance device, the contacting including at least one of a short message service (SMS) text message, push notification, email, audio message, video message, push notification or similar network signaling method, and telephone call, the telephone call using at least one of plain old telephone service (POTS), T1, and Voice-over-Internet Protocol (VoIP).
In at least one embodiment, the present technology is directed to a method for provisioning an appliance device. The method may include receiving a service address from a user associated with an appliance device; validating the received service address; storing the validated service address; receiving a panic signal from the user using the appliance device after the validated service address is stored; providing the validated service address to an emergency telephone number service provider for provisioning; and transmitting the validated service address to a public safety access point (PSAP) associated with the validated service address, the transmitting in response to the provisioning being successful.
In at least one embodiment, the present technology is directed to a method for provisioning an appliance device. The method may include receiving a service address from a user associated with an appliance device; validating the received service address; storing the validated service address; receiving a panic signal from the user using the appliance device after the validated service address is stored; providing the validated service address to an emergency telephone number service provider for provisioning; and transmitting the validated service address to a national PSAP, the transmitting in response to the provisioning being unsuccessful.
The accompanying drawings, where like reference numerals refer to identical or functionally similar elements throughout the separate views, together with the detailed description below, are incorporated in and form part of the specification, and serve to further illustrate embodiments of concepts that include the claimed disclosure, and explain various principles and advantages of those embodiments. The methods and systems disclosed herein have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present disclosure so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.
While this technology is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail several specific embodiments with the understanding that the present disclosure is to be considered as an exemplification of the principles of the technology and is not intended to limit the technology to the embodiments illustrated. The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the technology. As used herein, the singular forms “a”, “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. It will be understood that like or analogous elements and/or components, referred to herein, may be identified throughout the drawings with like reference characters. It will be further understood that several of the figures are merely schematic representations of the present technology. As such, some of the components may have been distorted from their actual scale for pictorial clarity.
According to various embodiments of the present invention, (home or consumer) appliance devices—such as thermostats, TV remote controls, light switches, electrical outlets, home theater systems, smoke detectors, carbon monoxide detectors, pool safety alarms, intercom devices, and the like—connect to local area networks (LANs) in a commercial or residential structure (e.g., home) through wireless and/or wired connections. The LAN connection, for example, enables appliance devices to be monitored and/or controlled from a central location, improving their function, providing additional capabilities, allowing them to coordinate actions with other appliances, and the like. Additionally, the LAN connection enables appliance devices to share information obtained by each device (e.g., through sensors or user input) with other devices. Such interconnection of appliance devices can make them easier to use for the end user. Integration of appliance devices with an alarm system, for example, offers opportunities to improve the performance and/or capabilities of the alarm system by incorporating appliance devices, and to improve the performance of appliance devices by access to capabilities of the alarm system.
In various embodiments, home security systems include a plurality of sensors that provide valuable information about the state of a structure (e.g., house). Sensors, for example, monitor if any doors or windows are opened or have been left open. Motion sensors, pressure sensors, vibration sensors, and/or sound sensors can detect the presence of individuals; magnetic sensors can detect the presence of vehicles at a residence; and smoke, water, and/or carbon monoxide detectors can monitor the environment for hazardous conditions. While the sensors conventionally provide information to the security system to determine if an intruder is present or another threat has arisen, the sensors in the present technology also provide valuable and useful information to home appliance devices, which can improve the appliance device's utility, usability, and/or performance.
Panic buttons may be a feature of home security systems. Panic buttons enable a user to initiate an alarm at the touch of a button, for example, requesting police, fire, or ambulance service, or indicating that an end user requires assistance in some other way. However, the expense of the panic button and its installation are impediments to its wide adoption, and the placement of the panic button in the home can be unsightly, inconvenient, or in a location that is not accessible when needed. Some embodiments provide an affordable method to embed the desirable function of the panic button into other appliance devices in the home (in addition to the devices' associated control applications), and increases the usefulness of both the appliance device and the security system. In addition, the utility of the panic button can be increased by using network connectivity and/or additional capabilities of the appliance device.
Appliance device 110 in the structure communicates wirelessly and/or through a wired connection with interconnect and/or network 120. Interconnect and/or network 120 may be one or more of a public computer network (e.g., the Internet), local computer network (e.g., LAN), a wireless computer network (e.g., WiFi), a wired computer network, and the like; other network technology (e.g. Bluetooth, ZigBee, ZWave, DECT, and the like); plain old telephone service, T1, and/or Voice over IP (VoIP) phone network; a cellular network; a proprietary network connection; and the like. Interconnect and/or network 120 may include multiple devices, translators, aggregators or concentrators that allow information on one type of network to reach devices on a different type of network. Appliance device 110 (e.g., thermostats and smoke detectors) may include wireless and/or wired network capability in addition to buttons and/or control panels. Various states of appliance device 110 may be communicated over the network to other networked devices or networked application servers. In addition, the network capability of appliance device 110 may be used to send panic signals.
In various embodiments, one or more appliance devices 110 are equipped to generate a panic signal and transmit it over network/interconnect 120. After appropriate translation between different network protocols as needed, the panic signal is received by one or more of security system 130, network-connected monitoring service 140, network application server 150, and local network application server/multi-function base unit 160.
When an emergency condition (e.g., presence of an intruder, fire, medical emergency, and the like) is perceived, the end user may activate the panic feature/mechanism associated with appliance device 110 (e.g., by pressing a button, striking appliance device 110 sufficiently to cause the embedded accelerometer to trigger, etc.). When the panic feature is activated, a panic signal is provided over the device's network connection using interconnect and/or network 120, and the panic signal notifies one or more of security system 130, network-connected monitoring service 140, network application server 150, and local network application server/multi-function base unit 160.
User communication device(s) 180 include at least one of a personal computer (PC), hand held computing system, telephone, mobile computing system, workstation, tablet, phablet, wearable, mobile phone, server, minicomputer, mainframe computer, or any other computing system. User communication device(s) 180 is described further in relation to computing system 800 in
In some embodiments user communication device(s) 180 may include a web browser (or other software application) to communicate, for example, with a 911 service provider. For example, computing device 110 is a PC running a web browser inside (or outside) a commercial or residential structure. Additionally or alternatively, computing device 110 is a smart phone running a client (or other software application).
In various embodiments user communication device(s) 180 is used for telecommunications. For example, a user from his web or smartphone client upon could initiate a panic signal (and any emergency call signals that may result) as if it were originating from the structure, rather than from the user's smartphone client. Normally a 911 call from a cell phone is directed to a PSAP associated with the geographical location of the cell phone. According to some embodiments, a PSAP is a call center responsible for answering calls to an emergency telephone number for emergency services, such as police, fire, and ambulance services. For example, telephone operators may dispatch such emergency services. The present technology is capable of caller location for landline calls and mobile phone locations. For a user at a remote location who is notified of an emergency situation at the structure, dialing 911 from his cell phone could normally result in significant delay as he explains the situation to the PSAP serving the physical location of his smartphone (rather than that of the house that has been invaded), then waits for his call to be transferred to a PSAP in the area of his home and then takes the time to communicate the location of the house that is being invaded (which may even be in another state), and convinces the authorities to go to the structure.
In some embodiments, user communication device(s) 180 receives push notifications using a client (or other software application) running on user communication device(s) 180. For example, the push access protocol (PAP) (e.g., WAP-164 of the Wireless Application Protocol (WAP) suite from the Open Mobile Alliance) may be used.
System 100 of
Data stored by provisioning data 210 provided by security system 130, monitoring service 140, remote network application server 150, local application server/multi-function base unit 160, and/or provisioning server 170 may include at least one of usage information, user preferences information, and a service address of the structure (e.g., in which the appliance device is disposed). An operator of a processing entity (e.g., alarm service which remotely monitors the alarm system) may validate the service address and/or ensure the accuracy of the address information provided by the end user/owner of the appliance device. Incorrect or inaccurate information may result in sending first responders to the wrong location in the event of an emergency.
For example, security system 130 and sensors 201-205 communicate with one or more appliance devices 211-218 (110 in
For example, thermostat 211 uses information provided by door or window close/open switch(s) 204 to determine when a window in the structure has been left open. To save energy, thermostat 211 may disable a climate control system associated with the structure while the windows are open.
For example, thermostat 211 uses the information provided by at least one of motion, pressure, and vibration sensors 201-203, and alarm system 130 (e.g., state information such as home, away, and the like) to determine occupancy and a state of the occupants (e.g., awake, sleeping, and the like). Using such information, thermostat 211 may adjust temperatures, enable or disable the climate control system, and the like. In some embodiments, thermostat 211 includes a (built-in) motion sensor (or similar sensor), and the state of the security system may be used in conjunction with information provided by the (built-in) motion sensor.
For example, at least one of phone handset/base 212, intercom/intercom controllers 213, door bell/monitor/announce system 214, and home entertainment device/controller 215 uses information provided by motion, pressure, or vibration sensors 201-203, and the state of the alarm system 130 (e.g., home, away, and the like) to determine occupancy and the state of the occupants (e.g., awake, sleeping, and the like). Using such information, at least one of phone handset/base 212, intercom/intercom controllers 213, door bell/monitor/announce system 214, and home entertainment device/controller 215 may be powered down when unused, be muted or silenced to ensure they do not disturb (sleeping) occupants, and the like. Additionally, more sophisticated actions are possible, for example, screening calls or doorbell presses selectively, allowing only very important (e.g., urgent) calls or doorbell presses.
For example, intelligent light switches 216 and power control modules 217 use information provided by at least one of motion, pressure, or vibration sensors 201-203, and the state of the alarm system 130 (e.g., at home, away, and the like) to determine occupancy and the state of the occupants (e.g., awake, sleeping, and the like). Using such information, intelligent light switches 216 and power control modules 217 may turn off power to unused devices, turn lights off, etc. In various embodiments, intelligent light switches 216 and power control modules 217 include a (built-in) motion sensor (or similar device), and the state of the security system may be used in conjunction with information provided by the (built-in) motion sensor.
For example, irrigation control system 218 uses information provided by magnetic sensor 205 to determine when a car has been left out overnight, and based on the determination suppress activation of an irrigation zone that would cause the car to become wet.
For example, irrigation control system 218 uses information provided by door or window close/open switch 204 to determine that a window near a sprinkler zone or garage door is open, and prevent that irrigation zone from running and spraying water into the structure.
As would be readily appreciated by one of ordinary skill in the art, different combinations and permutations of appliance devices 211-218 may use information provided by different combinations and permutations of sensors 201-205 to control operation of respective appliance devices 211-218. Moreover as would be readily appreciated by one of ordinary skill in the art, different appliance devices 110 (
For example, remote network application server 150 receives the panic signal (or alert) 301 generated by appliance device 110. Remote network application server 150 may access provisioning information 210 (e.g., directly and/or using provisioning server 170, shown in
For example, remote network application server 150 receives the panic signal 301 and (instead of processing it directly) panic signal 303 is provided to monitoring service 140. Monitoring service 140 may access provisioning information 210 (e.g., directly and/or using provisioning server 170, shown in
For example, local network application server/multi-function base unit 160 receives panic signal 305 generated by appliance device 110. Local network application server/multi-function base unit 160 may access provisioning information 210 (e.g., directly and/or using provisioning server 170, shown in
For example, local network application server/multi-function base unit 160 receives panic signal 305, and (instead of processing it directly) panic signal 307 is provided to monitoring service 140. Monitoring service 140 may access provisioning information 210 (e.g., directly and/or using provisioning server 170, shown in
For example, security system 130 receives panic signal 309 provided by appliance device 110. Security system 130 may access provisioning information 210 (e.g., directly and/or using provisioning server 170, shown in
For example, security system 130 receives panic signal 309, and (instead of processing it directly) panic signal 311 is provided to monitoring service 140. Monitoring service 140 may access provisioning information 210 (e.g., directly and/or using provisioning server 170, shown in
For example, security system 130 receives panic signal 309, and (instead of processing it directly) panic signal 313 is provided to remote network application server 150. Remote network application server 150 may (serving as the processing entity) processes the panic signal at 350 directly as shown by path 302 and/or may provide panic signal 303 to monitoring service 140 for processing (e.g., monitoring service serves as the processing entity) at 350, as shown by path 304. Remote application server 150 and/or monitoring service 140 may access provisioning information 210 (e.g., directly and/or using provisioning server 170, shown in
For example, security system 130 receives the panic signal 309, and (instead of processing it directly) panic signal 314 is provided to local network application server/multi-function base unit 160. Local network application server/multi-function base unit 160 (serving as the processing entity) may processes the panic signal at 350 directly, as shown by path 306, and/or provide panic signal 307 to monitoring service 140 for processing (e.g., monitoring service serves as the processing entity) at 350, as shown by path 308. Remote application server 150 or monitoring service 140 may access provisioning information 210 (e.g., directly and/or using provisioning server 170, shown in
For example, security system 130 receives panic signal 309 from appliance device 110, and panic signal 313 is provided to remote network application server 150 and/or panic signal 314 is provided to local network application server/multi-function base unit 160. Remote application server 150 and/or local application server 160 may include provisioning information and/or receive information, relating to the end user/owner of appliance device 110 issuing the panic signal, from provisioning server 170 (not shown in
For example, when call 403 is terminated to local PSAP 431, call 403 is connected to announcement server 440, and announcement server 440 notifies 404 a PSAP operator associated with PSAP 430 that (automated) call 403 was initiated by a person at the provisioned service address.
For example, when call 403 is terminated to local PSAP 430, call 403 is connected 405 (directly) to provisioned user 450 through 406 a communication device or devices 180 using a call initiated by the processing entity to the user's preferred phone number; or using some other interactive communications mechanism (SMS, IM, video, smartphone application, or other communications mechanism) supported by communication device(s) 180 of 406 user 450.
For example, when call 403 is terminated to local PSAP 430, call 403 is connected 404 to announcement server 440 and additional calls 405 are placed sequentially or concurrently to a plurality of alternate telephone numbers associated with communication device(s) 180 of 406 user 450; or using some other interactive communications mechanism 406 (e.g., SMS, IM, video, smartphone application, or other communications mechanism) supported by communication device(s) 180 of user 450. The PSAP operator can talk to a live human to handle the emergent situation if the user is available, but still receives the notification via the server immediately even if the user does not answer.
For example, when call 403 is terminated to local PSAP 430, call 403 is connected 408 directly to provisioned user 450 using 409 consumer appliance device 110 in the structure with capability for voice, video, and/or instant messaging (IM) communication.
For example, when call 403 is terminated to local PSAP 430, call 403 is connected 404 to announcement server 440 while the system places additional calls 408 to telephone numbers associated with appliance device 110 of 409 user 450 in the structure with capability for voice, video, IM, or other form of communication. The PSAP operator can talk to a live human to handle the emergent situation if the user is available, but still receives the notification via the server immediately or if the user does not answer.
For example, processing entity 410, in response to receiving panic signal 401 through network 120 (and optionally at least one of security system 130, remote network application server 150, and local application server/multi-function base unit 160, shown in
Providers of network-connected devices may also provide a remote software control mechanism, for example, smartphone application, web access, telephone touch-tone control, and the like. Such remote software control mechanisms may be useful for monitoring and controlling the appliance device 110 remotely (e.g., from the office, while on vacation, and the like). In various embodiments, the additional panic-button functionality of the consumer appliance device is also available through the remote software control mechanism. For example, the emergency infrastructure described above is used to allow such remote software control mechanisms to initiate emergency calls that appear as if they came from the service address of the monitored device (provisioned location), rather than the physical location of the smartphone running the application. The user 450 may be connected to and communicating with emergency services (e.g., PSAP) from a remote location using one or more user communications device (s), but it will appear to the emergency services personnel that the communication is originating from the structure.
For example, the remote software control mechanism may have the capability of issuing panic signals from the location of a smartphone (not illustrated in
A service connecting a caller to a PSAP with proper address information may be provided for a fee on a monthly basis. Such an expense can be several cents per month. Further, some municipalities charge a dollar or more per month in taxes/service fees for each customer of a telephone service capable of dialing 911. Given the potentially long operating life of appliance device 110 (e.g., a thermostat, remote control, and similar appliance in the home), the relatively low likelihood of an emergency event in any particular month, and the fact that appliance device 110 does not provide a regular phone service, this prohibitive expense should be avoided. In some embodiments, provisioning of the address for the triggering device is not done until an actual emergency event is established. Since provisioning may be performed electronically, such that there is no perceptible delay in the handling of a 911 call and costs associated with providing a phone number and ongoing 911 service, and associated government taxes/fees are avoided until the service is needed.
Provisioning of addresses with a 911 service provider 432 (
A panic signal may be triggered in response to user 450 pressing a button, shaking, striking, etc. the consumer appliance device 110, selecting an option via remote software control mechanism accessed by a user communication device 180, and the like, at path 703. When the end user generates their first panic signal, the panic signal is sent to the appliance device's OSS 710, at step 704. When this initial panic signal leading to their first call to 911 is received, an emergency call signal is sent to the 911 server which determines if the user's device has already been provisioned with 911 services at step 705. When the user is not provisioned, OSS server 710 retrieves a previously validated address from the database 720 at step 706 and submits the previously validated address to the 911 service provider's API at step 707.
In response to provisioning being confirmed, a 911 server portion of OSS 710 may send a control emergency call signal 708 to the 911 service provider asking it to initiate a 911 call. The 911 service provider, having the provisioned address of the device initiating the call, presents the provisional address 709 to the appropriate PSAP 431, and connects the call. The 911 server determines the appropriate call handling for the origination side of the call (e.g., connecting the call to an announcement server, to a user's pre-selected phone number, and the like).
When the provisioning fails, the address proves to be invalid (in spite of having been previously validated), etc., the 911 service provider may pass the call to a national center 730 at step 710 for proper routing to the appropriate PSAP at step 711.
Mass storage 830, which may be implemented with a magnetic disk drive, solid-state drive (SSD), or an optical disk drive, is a non-volatile storage device for storing data and instructions for use by processor 810. Mass storage 830 can store the system software for implementing embodiments of the present technology for purposes of loading that software into memory 820.
Portable storage 840 operates in conjunction with a portable non-volatile storage medium, such as a floppy disk, compact disk or digital video disc, to input and output data and code to and from the computing system 800 of
Input devices 860 provide a portion of a user interface. Input devices 860 may include an alphanumeric keypad, such as a keyboard, for inputting alphanumeric and other information, or a pointing device, such as a mouse, a trackball, stylus, or cursor direction keys. Additionally, the system 800 as shown in
Display system 870 includes a liquid crystal display (LCD) or other suitable display device. Display system 870 receives textual and graphical information, and processes the information for output to the display device.
Peripherals 880 include any type of computer support device to add additional functionality to the computing system. Peripherals 880 may include a modem or a router.
The components contained in the computing system 800 of
Some of the above-described functions may be composed of instructions that are stored on storage media (e.g., computer-readable medium). The instructions may be retrieved and executed by the processor. Some examples of storage media are memory devices, tapes, disks, and the like. The instructions are operational when executed by the processor to direct the processor to operate in accord with the technology. Those skilled in the art are familiar with instructions, processor(s), and storage media.
In some embodiments, the computing system 800 may be implemented as a cloud-based computing environment, such as a virtual machine operating within a computing cloud. In other embodiments, the computing system 800 may itself include a cloud-based computing environment, where the functionalities of the computing system 800 are executed in a distributed fashion. Thus, the computing system 800, when configured as a computing cloud, may include pluralities of computing devices in various forms, as will be described in greater detail below.
In general, a cloud-based computing environment is a resource that typically combines the computational power of a large grouping of processors (such as within web servers) and/or that combines the storage capacity of a large grouping of computer memories or storage devices. Systems that provide cloud-based resources may be utilized exclusively by their owners or such systems may be accessible to outside users who deploy applications within the computing infrastructure to obtain the benefit of large computational or storage resources.
The cloud is formed, for example, by a network of web servers that comprise a plurality of computing devices, such as the computing system 800, with each server (or at least a plurality thereof) providing processor and/or storage resources. These servers manage workloads provided by multiple users (e.g., cloud resource customers or other users). Typically, each user places workload demands upon the cloud that vary in real-time, sometimes dramatically. The nature and extent of these variations typically depends on the type of business associated with the user.
It is noteworthy that any hardware platform suitable for performing the processing described herein is suitable for use with the technology. The terms “computer-readable storage medium” and “computer-readable storage media” as used herein refer to any medium or media that participate in providing instructions to a CPU for execution. Such media can take many forms, including, but not limited to, non-volatile media, volatile media and transmission media. Non-volatile media include, for example, optical, magnetic, and solid-state disks, such as a fixed disk. Volatile media include dynamic memory, such as system RAM. Transmission media include coaxial cables, copper wire and fiber optics, among others, including the wires that comprise one embodiment of a bus. Transmission media can also take the form of acoustic or light waves, such as those generated during radio frequency (RF) and infrared (IR) data communications. Common forms of computer-readable media include, for example, a floppy disk, a flexible disk, a hard disk, magnetic tape, any other magnetic medium, a CD-ROM disk, digital video disk (DVD), any other optical medium, any other physical medium with patterns of marks or holes, a RAM, a PROM, an EPROM, an EEPROM, a FLASH memory, any other memory chip or data exchange adapter, a carrier wave, or any other medium from which a computer can read.
Various forms of computer-readable media may be involved in carrying one or more sequences of one or more instructions to a CPU for execution. A bus carries the data to system RAM, from which a CPU retrieves and executes the instructions. The instructions received by system RAM can optionally be stored on a fixed disk either before or after execution by a CPU.
Computer program code for carrying out operations for aspects of the present technology may be written in any combination of one or more programming languages, including an object oriented programming language such as JAVA, SMALLTALK, C++ or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present technology has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. Exemplary embodiments were chosen and described in order to best explain the principles of the present technology and its practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.
Aspects of the present technology are described above with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
These computer program instructions may also be stored in a computer readable medium that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks.
The computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present technology. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
While the present technology has been described in connection with a series of preferred embodiment, these descriptions are not intended to limit the scope of the technology to the particular forms set forth herein. It will be further understood that the methods of the technology are not necessarily limited to the discrete steps or the order of the steps described. To the contrary, the present descriptions are intended to cover such alternatives, modifications, and equivalents as may be included within the spirit and scope of the technology as defined by the appended claims and otherwise appreciated by one of ordinary skill in the art.
Number | Name | Date | Kind |
---|---|---|---|
5323444 | Ertz | Jun 1994 | A |
5425085 | Weinberger et al. | Jun 1995 | A |
5463595 | Rodhall et al. | Oct 1995 | A |
5519769 | Weinberger et al. | May 1996 | A |
5596625 | LeBlanc | Jan 1997 | A |
5598460 | Tendler | Jan 1997 | A |
5775267 | Hou et al. | Jul 1998 | A |
5796736 | Suzuki | Aug 1998 | A |
5991301 | Christie | Nov 1999 | A |
5999611 | Tatchell et al. | Dec 1999 | A |
6023724 | Bhatia et al. | Feb 2000 | A |
6104711 | Voit | Aug 2000 | A |
6128481 | Houde | Oct 2000 | A |
6148190 | Bugnon | Nov 2000 | A |
6201856 | Orwick | Mar 2001 | B1 |
6202169 | Razzaghe-Ashrafi et al. | Mar 2001 | B1 |
6266397 | Stoner | Jul 2001 | B1 |
6282574 | Voit | Aug 2001 | B1 |
6298064 | Christie | Oct 2001 | B1 |
6304572 | Christie | Oct 2001 | B1 |
6377938 | Block et al. | Apr 2002 | B1 |
6452932 | Christie | Sep 2002 | B1 |
6463052 | Christie | Oct 2002 | B1 |
6473429 | Christie | Oct 2002 | B1 |
6487197 | Elliott | Nov 2002 | B1 |
6577638 | Tashiro et al. | Jun 2003 | B1 |
6594246 | Jorgensen | Jul 2003 | B1 |
6615264 | Stoltz et al. | Sep 2003 | B1 |
6633561 | Christie | Oct 2003 | B2 |
6661340 | Saylor et al. | Dec 2003 | B1 |
6665429 | Christie | Dec 2003 | B1 |
6690932 | Barnier | Feb 2004 | B1 |
6697358 | Bernstein | Feb 2004 | B2 |
6714545 | Hugenberg et al. | Mar 2004 | B1 |
6778517 | Lou et al. | Aug 2004 | B1 |
6778528 | Blair et al. | Aug 2004 | B1 |
6781983 | Armistead | Aug 2004 | B1 |
6914900 | Komatsu et al. | Jul 2005 | B1 |
6934258 | Smith et al. | Aug 2005 | B1 |
7113090 | Saylor | Sep 2006 | B1 |
7124506 | Yamanashi et al. | Oct 2006 | B2 |
7127043 | Morris | Oct 2006 | B2 |
7127506 | Schmidt et al. | Oct 2006 | B1 |
7154891 | Callon | Dec 2006 | B1 |
7295660 | Higginbotham et al. | Nov 2007 | B1 |
7342925 | Cherchali et al. | Mar 2008 | B2 |
7376124 | Lee et al. | May 2008 | B2 |
7394803 | Petit-Huguenin et al. | Jul 2008 | B1 |
7599356 | Barzegar et al. | Oct 2009 | B1 |
7733850 | Croak et al. | Jun 2010 | B1 |
7733859 | Takahashi et al. | Jun 2010 | B2 |
7844034 | Oh | Nov 2010 | B1 |
8098798 | Goldman | Jan 2012 | B2 |
8140392 | Altberg et al. | Mar 2012 | B2 |
8180316 | Hwang | May 2012 | B2 |
8208955 | Nelson | Jun 2012 | B1 |
8331547 | Smith et al. | Dec 2012 | B2 |
8515021 | Farrand et al. | Aug 2013 | B2 |
8577000 | Brown | Nov 2013 | B1 |
8634520 | Morrison et al. | Jan 2014 | B1 |
8804697 | Capper et al. | Aug 2014 | B1 |
8837698 | Altberg et al. | Sep 2014 | B2 |
8988232 | Sloo et al. | Mar 2015 | B1 |
9147054 | Beal et al. | Sep 2015 | B1 |
9179279 | Zussman | Nov 2015 | B2 |
9225626 | Capper et al. | Dec 2015 | B2 |
9319531 | Capper et al. | Apr 2016 | B1 |
9386148 | Farrand et al. | Jul 2016 | B2 |
9386414 | Mayor | Jul 2016 | B1 |
9426288 | Farrand et al. | Aug 2016 | B2 |
9521069 | Gillon et al. | Dec 2016 | B2 |
9560198 | Farrand et al. | Jan 2017 | B2 |
9633547 | Farrand et al. | Apr 2017 | B2 |
9667782 | Farrand et al. | May 2017 | B2 |
9787611 | Gillon et al. | Oct 2017 | B2 |
9826372 | Jeong | Nov 2017 | B2 |
9905103 | Hsieh | Feb 2018 | B2 |
9929981 | Gillon et al. | Mar 2018 | B2 |
10009286 | Gillon et al. | Jun 2018 | B2 |
10116796 | Im et al. | Oct 2018 | B2 |
10135976 | Farrand et al. | Nov 2018 | B2 |
10158584 | Gillon et al. | Dec 2018 | B2 |
10255792 | Farrand et al. | Apr 2019 | B2 |
10263918 | Gillon et al. | Apr 2019 | B2 |
10297250 | Blanksteen et al. | May 2019 | B1 |
10341490 | Im et al. | Jul 2019 | B2 |
20010053194 | Johnson | Dec 2001 | A1 |
20020016718 | Rothschild et al. | Feb 2002 | A1 |
20020035556 | Shah et al. | Mar 2002 | A1 |
20020037750 | Hussain et al. | Mar 2002 | A1 |
20020038167 | Chirnomas | Mar 2002 | A1 |
20020057764 | Salvucci | May 2002 | A1 |
20020085692 | Katz | Jul 2002 | A1 |
20020130784 | Suzuki | Sep 2002 | A1 |
20020133614 | Weerahandi et al. | Sep 2002 | A1 |
20020140549 | Tseng | Oct 2002 | A1 |
20020165966 | Widegren et al. | Nov 2002 | A1 |
20030027602 | Han et al. | Feb 2003 | A1 |
20030058844 | Sojka et al. | Mar 2003 | A1 |
20030099334 | Contractor | May 2003 | A1 |
20030119492 | Timmins et al. | Jun 2003 | A1 |
20030133443 | Klinker et al. | Jul 2003 | A1 |
20030141093 | Tirosh et al. | Jul 2003 | A1 |
20030164877 | Murai | Sep 2003 | A1 |
20030184436 | Seales et al. | Oct 2003 | A1 |
20030189928 | Xiong | Oct 2003 | A1 |
20040001512 | Challener et al. | Jan 2004 | A1 |
20040010472 | Hilby et al. | Jan 2004 | A1 |
20040010569 | Thomas et al. | Jan 2004 | A1 |
20040017803 | Lim et al. | Jan 2004 | A1 |
20040059821 | Tang et al. | Mar 2004 | A1 |
20040086093 | Schranz | May 2004 | A1 |
20040090968 | Kimber et al. | May 2004 | A1 |
20040105444 | Korotin et al. | Jun 2004 | A1 |
20040160956 | Hardy et al. | Aug 2004 | A1 |
20040235509 | Burritt et al. | Nov 2004 | A1 |
20050027887 | Zimler et al. | Feb 2005 | A1 |
20050036590 | Pearson et al. | Feb 2005 | A1 |
20050053209 | D'Evelyn | Mar 2005 | A1 |
20050074114 | Fotta et al. | Apr 2005 | A1 |
20050078681 | Sanuki et al. | Apr 2005 | A1 |
20050089018 | Schessel | Apr 2005 | A1 |
20050097222 | Jiang et al. | May 2005 | A1 |
20050105708 | Kouchri et al. | May 2005 | A1 |
20050141485 | Miyajima et al. | Jun 2005 | A1 |
20050152339 | Scott et al. | Jul 2005 | A1 |
20050169247 | Chen | Aug 2005 | A1 |
20050180549 | Chiu et al. | Aug 2005 | A1 |
20050222820 | Chung | Oct 2005 | A1 |
20050238034 | Gillespie et al. | Oct 2005 | A1 |
20050238142 | Winegarden | Oct 2005 | A1 |
20050246174 | DeGolia | Nov 2005 | A1 |
20050259637 | Chu et al. | Nov 2005 | A1 |
20050282518 | D'Evelyn | Dec 2005 | A1 |
20050287979 | Rollender | Dec 2005 | A1 |
20060007915 | Frame | Jan 2006 | A1 |
20060009240 | Katz | Jan 2006 | A1 |
20060013195 | Son et al. | Jan 2006 | A1 |
20060059238 | Slater et al. | Mar 2006 | A1 |
20060071775 | Otto et al. | Apr 2006 | A1 |
20060092011 | Simon | May 2006 | A1 |
20060114894 | Cherchali et al. | Jun 2006 | A1 |
20060140352 | Morris | Jun 2006 | A1 |
20060156251 | Suhail et al. | Jul 2006 | A1 |
20060167746 | Zucker | Jul 2006 | A1 |
20060187898 | Chou et al. | Aug 2006 | A1 |
20060206933 | Molen et al. | Sep 2006 | A1 |
20060243797 | Apte et al. | Nov 2006 | A1 |
20060251048 | Yoshino et al. | Nov 2006 | A1 |
20060258341 | Miller et al. | Nov 2006 | A1 |
20060259767 | Mansz et al. | Nov 2006 | A1 |
20060268848 | Larsson et al. | Nov 2006 | A1 |
20070030161 | Yang | Feb 2007 | A1 |
20070032220 | Feher | Feb 2007 | A1 |
20070036314 | Kloberdans et al. | Feb 2007 | A1 |
20070037560 | Yun et al. | Feb 2007 | A1 |
20070037605 | Logan | Feb 2007 | A1 |
20070041517 | Clarke et al. | Feb 2007 | A1 |
20070049342 | Mayer et al. | Mar 2007 | A1 |
20070054645 | Pan | Mar 2007 | A1 |
20070061363 | Ramer et al. | Mar 2007 | A1 |
20070061735 | Hoffberg et al. | Mar 2007 | A1 |
20070067219 | Altberg et al. | Mar 2007 | A1 |
20070071212 | Quittek et al. | Mar 2007 | A1 |
20070118750 | Owen et al. | May 2007 | A1 |
20070121593 | Vance et al. | May 2007 | A1 |
20070121596 | Kurapati et al. | May 2007 | A1 |
20070132844 | Katz | Jun 2007 | A1 |
20070133757 | Girouard et al. | Jun 2007 | A1 |
20070135088 | Alessandro | Jun 2007 | A1 |
20070153776 | Joseph et al. | Jul 2007 | A1 |
20070165811 | Reumann et al. | Jul 2007 | A1 |
20070183407 | Bennett et al. | Aug 2007 | A1 |
20070203999 | Townsley et al. | Aug 2007 | A1 |
20070223455 | Chang et al. | Sep 2007 | A1 |
20070238472 | Wanless | Oct 2007 | A1 |
20070255702 | Orme | Nov 2007 | A1 |
20070283430 | Lai et al. | Dec 2007 | A1 |
20070298772 | Owens et al. | Dec 2007 | A1 |
20080016556 | Selignan | Jan 2008 | A1 |
20080036585 | Gould | Feb 2008 | A1 |
20080049748 | Bugenhagen et al. | Feb 2008 | A1 |
20080062997 | Nix | Mar 2008 | A1 |
20080075248 | Kim | Mar 2008 | A1 |
20080075257 | Nguyen et al. | Mar 2008 | A1 |
20080084975 | Schwartz | Apr 2008 | A1 |
20080089325 | Sung | Apr 2008 | A1 |
20080097819 | Whitman, Jr. | Apr 2008 | A1 |
20080111765 | Kim | May 2008 | A1 |
20080118039 | Elliot et al. | May 2008 | A1 |
20080125095 | Mornhineway et al. | May 2008 | A1 |
20080144625 | Wu et al. | Jun 2008 | A1 |
20080144884 | Habibi | Jun 2008 | A1 |
20080159515 | Rines | Jul 2008 | A1 |
20080166992 | Ricordi | Jul 2008 | A1 |
20080168145 | Wilson | Jul 2008 | A1 |
20080196099 | Shastri | Aug 2008 | A1 |
20080200142 | Abdel-Kader | Aug 2008 | A1 |
20080205386 | Purnadi et al. | Aug 2008 | A1 |
20080225749 | Peng et al. | Sep 2008 | A1 |
20080247382 | Verma et al. | Oct 2008 | A1 |
20080247401 | Bhal et al. | Oct 2008 | A1 |
20080270457 | Zilbershtein et al. | Oct 2008 | A1 |
20080293374 | Berger | Nov 2008 | A1 |
20080298348 | Frame et al. | Dec 2008 | A1 |
20080309486 | McKenna | Dec 2008 | A1 |
20080310599 | Purnadi | Dec 2008 | A1 |
20080313297 | Heron et al. | Dec 2008 | A1 |
20080316946 | Capper et al. | Dec 2008 | A1 |
20090097474 | Ray | Apr 2009 | A1 |
20090100178 | Gonzales et al. | Apr 2009 | A1 |
20090106318 | Mantripragada et al. | Apr 2009 | A1 |
20090135008 | Kirchmeier et al. | May 2009 | A1 |
20090168755 | Peng et al. | Jul 2009 | A1 |
20090172131 | Sullivan | Jul 2009 | A1 |
20090186596 | Kaltsukis | Jul 2009 | A1 |
20090213999 | Farrand et al. | Aug 2009 | A1 |
20090224931 | Dietz | Sep 2009 | A1 |
20090240586 | Ramer et al. | Sep 2009 | A1 |
20090253428 | Bhatia et al. | Oct 2009 | A1 |
20090261958 | Sundararajan | Oct 2009 | A1 |
20090264093 | Rothschild | Oct 2009 | A1 |
20090295572 | Grim, III et al. | Dec 2009 | A1 |
20090303042 | Song et al. | Dec 2009 | A1 |
20090319271 | Gross | Dec 2009 | A1 |
20100003960 | Ray | Jan 2010 | A1 |
20100034121 | Bozionek | Feb 2010 | A1 |
20100046530 | Hautakorpi et al. | Feb 2010 | A1 |
20100046731 | Gisby et al. | Feb 2010 | A1 |
20100098034 | Tang et al. | Apr 2010 | A1 |
20100098235 | Cadiz et al. | Apr 2010 | A1 |
20100114896 | Clark et al. | May 2010 | A1 |
20100136982 | Zabawskyj et al. | Jun 2010 | A1 |
20100158223 | Fang et al. | Jun 2010 | A1 |
20100191829 | Cagenius | Jul 2010 | A1 |
20100195805 | Zeigler | Aug 2010 | A1 |
20100215153 | Ray | Aug 2010 | A1 |
20100220840 | Ray | Sep 2010 | A1 |
20100229452 | Suk | Sep 2010 | A1 |
20100246781 | Bradburn | Sep 2010 | A1 |
20100261448 | Peters | Oct 2010 | A1 |
20100277307 | Horton et al. | Nov 2010 | A1 |
20100278173 | Dalton et al. | Nov 2010 | A1 |
20100302025 | Script | Dec 2010 | A1 |
20110013591 | Kakumaru | Jan 2011 | A1 |
20110047031 | Weerasinghe | Feb 2011 | A1 |
20110054689 | Nielsen et al. | Mar 2011 | A1 |
20110111728 | Ferguson | May 2011 | A1 |
20110140868 | Hovang | Jun 2011 | A1 |
20110170680 | Chislett et al. | Jul 2011 | A1 |
20110183652 | Eng et al. | Jul 2011 | A1 |
20110208822 | Rathod | Aug 2011 | A1 |
20110265145 | Prasad et al. | Oct 2011 | A1 |
20110320274 | Patil | Dec 2011 | A1 |
20120009904 | Modi | Jan 2012 | A1 |
20120010955 | Ramer et al. | Jan 2012 | A1 |
20120027191 | Baril et al. | Feb 2012 | A1 |
20120035993 | Nangia | Feb 2012 | A1 |
20120036576 | Iyer | Feb 2012 | A1 |
20120047442 | Nicolaou | Feb 2012 | A1 |
20120092158 | Kumbhar et al. | Apr 2012 | A1 |
20120099716 | Rae et al. | Apr 2012 | A1 |
20120167086 | Lee | Jun 2012 | A1 |
20120178404 | Chin | Jul 2012 | A1 |
20120180122 | Yan et al. | Jul 2012 | A1 |
20120284778 | Chiou et al. | Nov 2012 | A1 |
20120320905 | Ilagan | Dec 2012 | A1 |
20120329420 | Zotti | Dec 2012 | A1 |
20130018509 | Korus | Jan 2013 | A1 |
20130024197 | Jang et al. | Jan 2013 | A1 |
20130035774 | Warren et al. | Feb 2013 | A1 |
20130052982 | Rohde | Feb 2013 | A1 |
20130053005 | Ramer et al. | Feb 2013 | A1 |
20130070928 | Ellis | Mar 2013 | A1 |
20130111589 | Cho | May 2013 | A1 |
20130136241 | Dillon | May 2013 | A1 |
20130154822 | Kumar et al. | Jun 2013 | A1 |
20130214925 | Weiss | Aug 2013 | A1 |
20130229282 | Brent | Sep 2013 | A1 |
20130267791 | Halperin et al. | Oct 2013 | A1 |
20130272219 | Singh et al. | Oct 2013 | A1 |
20130288639 | Varsavsky Waisman-Diamond | Oct 2013 | A1 |
20130293368 | Ottah et al. | Nov 2013 | A1 |
20130336174 | Rubin et al. | Dec 2013 | A1 |
20140011470 | D'Amato | Jan 2014 | A1 |
20140022915 | Caron et al. | Jan 2014 | A1 |
20140066063 | Park | Mar 2014 | A1 |
20140084165 | Fadell | Mar 2014 | A1 |
20140085093 | Mittleman et al. | Mar 2014 | A1 |
20140101082 | Matsuoka et al. | Apr 2014 | A1 |
20140120863 | Ferguson et al. | May 2014 | A1 |
20140129942 | Rathod | May 2014 | A1 |
20140156279 | Okamoto et al. | Jun 2014 | A1 |
20140169274 | Kweon et al. | Jun 2014 | A1 |
20140172953 | Blanksteen | Jun 2014 | A1 |
20140181865 | Koganei | Jun 2014 | A1 |
20140199946 | Flippo | Jul 2014 | A1 |
20140207929 | Hoshino et al. | Jul 2014 | A1 |
20140222436 | Binder et al. | Aug 2014 | A1 |
20140253326 | Cho | Sep 2014 | A1 |
20140266699 | Poder | Sep 2014 | A1 |
20140273912 | Peh | Sep 2014 | A1 |
20140273979 | Van Os et al. | Sep 2014 | A1 |
20140306802 | Hibbs, Jr. | Oct 2014 | A1 |
20140334645 | Yun et al. | Nov 2014 | A1 |
20140358666 | Baghaie et al. | Dec 2014 | A1 |
20150065078 | Mejia | Mar 2015 | A1 |
20150071450 | Boyden et al. | Mar 2015 | A1 |
20150082451 | Ciancio-Bunch | Mar 2015 | A1 |
20150086001 | Farrand et al. | Mar 2015 | A1 |
20150087280 | Farrand et al. | Mar 2015 | A1 |
20150089032 | Agarwal et al. | Mar 2015 | A1 |
20150100167 | Sloo et al. | Apr 2015 | A1 |
20150117624 | Rosenshine | Apr 2015 | A1 |
20150138333 | DeVaul et al. | May 2015 | A1 |
20150145693 | Toriumi et al. | May 2015 | A1 |
20150200973 | Nolan | Jul 2015 | A1 |
20150221207 | Hagan | Aug 2015 | A1 |
20150229770 | Shuman et al. | Aug 2015 | A1 |
20150242932 | Beguin et al. | Aug 2015 | A1 |
20150244873 | Boyden et al. | Aug 2015 | A1 |
20150255071 | Chiba | Sep 2015 | A1 |
20150262435 | Delong et al. | Sep 2015 | A1 |
20150281450 | Shapiro et al. | Oct 2015 | A1 |
20150302725 | Sager et al. | Oct 2015 | A1 |
20150327039 | Jain | Nov 2015 | A1 |
20150334227 | Whitten et al. | Nov 2015 | A1 |
20150339912 | Farrand | Nov 2015 | A1 |
20150358795 | You | Dec 2015 | A1 |
20150379562 | Spievak et al. | Dec 2015 | A1 |
20160036751 | Ban | Feb 2016 | A1 |
20160036962 | Rand | Feb 2016 | A1 |
20160066011 | Ro et al. | Mar 2016 | A1 |
20160078750 | King et al. | Mar 2016 | A1 |
20160117684 | Khor et al. | Apr 2016 | A1 |
20160142758 | Karp et al. | May 2016 | A1 |
20160173693 | Spievak et al. | Jun 2016 | A1 |
20160219150 | Brown | Jul 2016 | A1 |
20160248847 | Saxena | Aug 2016 | A1 |
20160269882 | Balthasar | Sep 2016 | A1 |
20160277573 | Farrand et al. | Sep 2016 | A1 |
20160300260 | Cigich et al. | Oct 2016 | A1 |
20160315909 | von Gravrock et al. | Oct 2016 | A1 |
20160323446 | Farrand et al. | Nov 2016 | A1 |
20160330108 | Gillon et al. | Nov 2016 | A1 |
20160330319 | Farrand et al. | Nov 2016 | A1 |
20160330770 | Lee | Nov 2016 | A1 |
20160373372 | Gillon et al. | Dec 2016 | A1 |
20170021802 | Mims | Jan 2017 | A1 |
20170024995 | Gu et al. | Jan 2017 | A1 |
20170034044 | Gillon et al. | Feb 2017 | A1 |
20170034045 | Gillon et al. | Feb 2017 | A1 |
20170034062 | Gillon et al. | Feb 2017 | A1 |
20170034081 | Gillon et al. | Feb 2017 | A1 |
20170084164 | Farrand et al. | Mar 2017 | A1 |
20170104875 | Im et al. | Apr 2017 | A1 |
20170188216 | Koskas | Jun 2017 | A1 |
20170270569 | Altberg et al. | Sep 2017 | A1 |
20170293301 | Myslinski | Oct 2017 | A1 |
20170339228 | Azgin et al. | Nov 2017 | A1 |
20180061213 | Morehead | Mar 2018 | A1 |
20180075540 | Bernard et al. | Mar 2018 | A1 |
20180152557 | White et al. | May 2018 | A1 |
20180262441 | Gillon et al. | Sep 2018 | A1 |
20180302334 | Osterlund et al. | Oct 2018 | A1 |
20180324105 | Gillon et al. | Nov 2018 | A1 |
20180365969 | Krein et al. | Dec 2018 | A1 |
20180375927 | Nozawa | Dec 2018 | A1 |
20190045058 | Im et al. | Feb 2019 | A1 |
20190052752 | Farrand et al. | Feb 2019 | A1 |
20190206227 | Farrand et al. | Jul 2019 | A1 |
20190222993 | Maheshwari | Jul 2019 | A1 |
Number | Date | Country |
---|---|---|
2949211 | Feb 2019 | CA |
3050287 | Dec 2018 | EP |
WO2015041738 | Mar 2015 | WO |
WO2015179120 | Nov 2015 | WO |
WO2016007244 | Jan 2016 | WO |
WO2016182796 | Nov 2016 | WO |
WO2018044657 | Mar 2018 | WO |
Entry |
---|
Lief Alert—Protection at Home, Nov. 27, 2012. |
International Search Report and Written Opinion dated Nov. 7, 2014 for App. No. PCT/US2014/044945, filed Jun. 30, 2014. |
Non-Final Office Action, dated Aug. 26, 2008, U.S. Appl. No. 10/888,603, filed Jul. 9, 2004. |
Non-Final Office Action, dated May 11, 2009, U.S. Appl. No. 11/717,947, filed Mar. 13, 2007. |
Non-Final Office Action, dated Nov. 24, 2009, U.S. Appl. No. 11/717,947, filed Mar. 13, 2007. |
Final Office Action, dated Jun. 23, 2010, U.S. Appl. No. 11/717,947, filed Mar. 13, 2007. |
Non-Final Office Action, dated Sep. 13, 2010, U.S. Appl. No. 11/717,947, filed Mar. 13, 2007. |
Non-Final Office Action, dated Feb. 16, 2011, U.S. Appl. No. 11/717,947, filed Mar. 13, 2007. |
Final Office Action, dated May 25, 2011, U.S. Appl. No. 11/717,947, filed Mar. 13, 2007. |
Non-Final Office Action, dated Dec. 6, 2011, U.S. Appl. No. 12/214,756, filed Jun. 20, 2008. |
Final Office Action, dated May 31, 2012, U.S. Appl. No. 12/214,756, filed Jun. 20, 2008. |
Non-Final Office Action, dated Feb. 12, 2014, U.S. Appl. No. 12/214,756, filed Jun. 20, 2008. |
Final Office Action, dated Jul. 31, 2014, U.S. Appl. No. 12/214,756, filed Jun. 20, 2008. |
Non-Final Office Action, dated Dec. 27, 2011, U.S. Appl. No. 12/156,562, filed Jun. 2, 2008. |
Final Office Action, dated Apr. 3, 2012, U.S. Appl. No. 12/156,562, filed Jun. 2, 2008. |
Non-Final Office Action, dated Jul. 13, 2012, U.S. Appl. No. 12/156,562, filed Jun. 2, 2008. |
Final Office Action, dated Jul. 31, 2013, U.S. Appl. No. 12/156,562, filed Jun. 2, 2008. |
Non-Final Office Action, dated Jul. 7, 2011, U.S. Appl. No. 12/006,587, filed Jan. 2, 2008. |
Final Office Action, dated Jan. 18, 2012, U.S. Appl. No. 12/006,587, filed Jan. 2, 2008. |
Advisory Action, dated Feb. 14, 2012, U.S. Appl. No. 12/006,587, filed Jan. 2, 2008. |
Non-Final Office Action, dated Sep. 10, 2013, U.S. Appl. No. 12/006,587, filed Jan. 2, 2008. |
Final Office Action, dated Jan. 31, 2014, U.S. Appl. No. 12/006,587, filed Jan. 2, 2008. |
Advisory Action, dated Mar. 24, 2014, U.S. Appl. No. 12/006,587, filed Jan. 2, 2008. |
Non-Final Office Action, dated Sep. 16, 2014, U.S. Appl. No. 12/006,587, filed Jan. 2, 2008. |
Non-Final Office Action, dated Sep. 29, 2011, U.S. Appl. No. 12/072,381, filed Feb. 25, 2008. |
Final Office Action, dated Feb. 10, 2012, U.S. Appl. No. 12/072,381, filed Feb. 25, 2008. |
Advisory Action, dated Apr. 16, 2012, U.S. Appl. No. 12/072,381, filed Feb. 25, 2008. |
Non-Final Office Action, dated Dec. 30, 2013, U.S. Appl. No. 14/034,457, filed Sep. 23, 2013. |
Final Office Action, dated Jul. 1, 2014, U.S. Appl. No. 14/034,457, filed Sep. 23, 2013. |
Advisory Action, dated Sep. 18, 2014, U.S. Appl. No. 14/034,457, filed Sep. 23, 2013. |
Advisory Action, dated Oct. 9, 2014, U.S. Appl. No. 12/214,756, filed Jun. 20, 2008. |
Advisory Action, dated Nov. 5, 2014, U.S. Appl. No. 12/214,756, filed Jun. 20, 2008. |
Non-Final Office Action, dated Mar. 26, 2015, U.S. Appl. No. 12/156,562, filed Jun. 2, 2008. |
Final Office Action, dated Jan. 23, 2015, U.S. Appl. No. 12/006,587, filed Jan. 2, 2008. |
Advisory Action, dated Apr. 8, 2015, U.S. Appl. No. 12/006,587, filed Jan. 2, 2008. |
Non-Final Office Action, dated Jan. 29, 2015, U.S. Appl. No. 14/034,457, filed Sep. 23, 2013. |
Non-Final Office Action, dated Jan. 7, 2015, U.S. Appl. No. 14/318,630, filed Jun. 28, 2014. |
International Search Report and Written Opinion dated Jul. 27, 2015 for App. No. PCT/US2015/029109, filed May 4, 2015. |
Notice of Allowance, dated Sep. 10, 2015, U.S. Appl. No. 12/214,756, filed Jun. 20, 2008. |
Final Office Action, dated Jul. 15, 2015, U.S. Appl. No. 12/156,562, filed Jun. 2, 2008. |
Final Office Action, dated Apr. 5, 2013, U.S. Appl. No. 12/072,381, filed Feb. 25, 2008. |
Advisory Action, dated May 16, 2013, U.S. Appl. No. 12/072,381, filed Feb. 25, 2008. |
Notice of Allowance, dated Jun. 13, 2013, U.S. Appl. No. 12/072,381, filed Feb. 25, 2008. |
Non-Final Office Action, dated Aug. 24, 2015, U.S. Appl. No. 14/034,457, filed Sep. 23, 2013. |
Non-Final Office Action, dated Jul. 21, 2015, U.S. Appl. No. 14/318,630, filed Jun. 28, 2014. |
Non-Final Office Action, dated Nov. 12, 2015, U.S. Appl. No. 14/283,132, filed May 20, 2014. |
Non-Final Office Action, dated Nov. 13, 2015, U.S. Appl. No. 14/318,630, filed Jun. 28, 2014. |
International Search Report and Written Opinion dated Nov. 2, 2015 for App. No. PCT/US2015/034054, filed Jun. 3, 2015. |
Non-Final Office Action, dated Nov. 5, 2012, U.S. Appl. No. 12/072,381, filed Jun. 20, 2008. |
Non-Final Office Action, dated Sep. 9, 2016, U.S. Appl. No. 15/212,185, filed Jul. 15, 2016. |
Notice of Allowance, dated Sep. 26, 2016, U.S. Appl. No. 15/212,185, filed Jul. 15, 2016. |
Non-Final Office Action, dated Nov. 16, 2016, U.S. Appl. No. 12/156,562, filed Jun. 2, 2008. |
Non-Final Office Action, dated May 17, 2016, U.S. Appl. No. 12/156,562, filed Jun. 2, 2008. |
Notice of Allowance, dated May 31, 2016, U.S. Appl. No. 14/318,630, filed Jun. 28, 2014. |
Non-Final Office Action, dated Jun. 9, 2016, U.S. Appl. No. 14/283,132, filed May 20, 2014. |
Non-Final Office Action, dated Jul. 14, 2016, U.S. Appl. No. 15/169,615, filed May 31, 2016. |
Notice of Allowance, dated Aug. 1, 2016, U.S. Appl. No. 14/708,132, filed May 8, 2015. |
International Search Report and Written Opinion dated Jun. 30, 2016 for App. No. PCT/US2016/030597, filed May 3, 2016. |
Notice of Allowance, dated Dec. 15, 2016, U.S. Appl. No. 14/283,132, filed May 20, 2014. |
Notice of Allowance, dated Jan. 18, 2017, U.S. Appl. No. 15/169,615, filed May 31, 2016. |
Non-Final Office Action, dated Nov. 5, 2012, U.S. Appl. No. 12/214,756, filed Jun. 20, 2008. |
Notice of Allowance, dated Mar. 6, 2017, U.S. Appl. No. 15/292,043, filed Oct. 12, 2016. |
Non-Final Office Action, dated Mar. 23, 2017, U.S. Appl. No. 15/208,004, filed Jul. 12, 2016. |
Non-Final Office Action, dated Mar. 29, 2017, U.S. Appl. No. 14/879,329, filed Oct. 9, 2015. |
Non-Final Office Action, dated Apr. 18, 2017, U.S. Appl. No. 15/292,051, filed Oct. 12, 2016. |
Non-Final Office Action, dated Apr. 18, 2017, U.S. Appl. No. 15/369,655, filed Dec. 5, 2016. |
European Patent Application No. 14845956.3, “Extended European Search Report,” dated Feb. 16, 2017, 8 pages. |
Canadian Patent Application No. 2949211, “Office Action,” dated Aug. 16, 2017, 4 pages. |
“Office Action,” Canadian Patent Application No. 2954351, dated Oct. 27, 2017, 3 pages. |
“International Search Report” and “Written Opinion of the International Searching Authority,” Patent Cooperation Treaty Application No. PCT/US2017/048284, dated Nov. 8, 2017, 8 pages. |
“Office Action,” European Patent Application No. 14845956.3, dated Apr. 9, 2018, 4 pages. |
“Extended European Search Report,” European Patent Application No. 15796148.3, dated Jan. 8, 2018, 8 pages. |
“Extended European Search Report,” European Patent Application No. 15818258.4, dated Feb. 26, 2018, 8 pages. |
Vaidya, Govind, “Automatic Object Detection and Recognition via a Camera System”, U.S. Appl. No. 16/163,521, filed Oct. 17, 2018, 40 pages. |
“Partial Supplementary European Search Report,” European Patent Application No. 16793194.8, dated Nov. 19, 2018, 10 pages. |
“Notice of Allowance,” European Patent Application No. 14845956.3, dated Jul. 11, 2018, 7 pages. |
Osterlund, Karl et al., “Communications Network Failure Detection and Remediation,” U.S. Appl. No. 16/011,479, dated Jun. 18, 2018, Specification, Claims, Abstract, and Drawings, 92 pages. |
“Notice of Allowance”, Canadian Patent Application No. 2949211, dated Jul. 31, 2018, 1 page. |
“Office Action,” Canadian Patent Application No. 2954351, dated Aug. 22, 2018, 4 pages. |
“Extended European Search Report,” European Patent Application No. 16793194.8, dated Feb. 26, 2019, 9 pages. |
“Notice of Allowance”, Canadian Patent Application No. 2954351, dated Aug. 27, 2019, 1 page. |
Number | Date | Country | |
---|---|---|---|
20160012702 A1 | Jan 2016 | US |