Appliance device integration with alarm systems

Information

  • Patent Grant
  • 10553098
  • Patent Number
    10,553,098
  • Date Filed
    Wednesday, July 9, 2014
    9 years ago
  • Date Issued
    Tuesday, February 4, 2020
    4 years ago
Abstract
Systems, methods, and software for allowing interaction between consumer appliance devices and security systems are provided herein. An exemplary method may include allowing various interactions of a user with a consumer appliance device to generate n signal, such as a panic signal, causing various forms of security systems to escalate the signal to obtain help. Another exemplary method involves allowing the device, when placing the panic signal, to involve back end systems related to the security system to provision access to an emergency service provider (i.e., 911 provider) “just in time,” eliminating the need for costly pre-provisioning. Another exemplary method involves various sensors of the security system to communicate with consumer appliance devices to improve the performance, usability, or efficiency of the consumer appliance device or related systems.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This Application is related to U.S. patent application Ser. No. 14/283,132, filed May 20, 2014, now granted as U.S. Pat. No. 9,633,547 issued on Apr. 25, 2017, the disclosure of which is hereby incorporated by reference in its entirety.


BACKGROUND OF THE INVENTION

Field of the Invention


The present technology pertains to monitoring and control of appliances, and more specifically to monitoring and control of appliances using sensor data.


Description of Related Art


Consumer electronics, such as thermostats, smoke alarms, television remote controls, intercoms, and internet of things (IOT) devices are becoming prevalent in homes, but do not communicate with residential alarm systems. Commercial and residential alarm systems detect intrusions and hazardous conditions (e.g., fire) to prevent injury and property loss. Alarm systems generally include switches on doors and windows, motions detectors, and heat sensors, but their use and associated data are limited to the alarm system. Alarm systems optionally include panic buttons, which allow a user to initiate an alarm upon the touch of a button. However, the expense of installing panic buttons and their fixed locations have limited their adoption.


BRIEF SUMMARY OF THE INVENTION

In at least one embodiment, the present technology is directed to a method for intelligent control of an appliance device. The method may include receiving information from at least one sensor using a computer network, the at least one sensor associated with an alarm system, the alarm system associated with a structure; and operating the appliance device using the received information.


In at least one embodiment, the present technology is directed to a method for notifying first responders of an emergency situation at a structure. The method may include receiving from an appliance device a user input using a computer network; and contacting a user associated with the appliance device, the contacting including at least one of a short message service (SMS) text message, push notification, email, audio message, video message, push notification or similar network signaling method, and telephone call, the telephone call using at least one of plain old telephone service (POTS), T1, and Voice-over-Internet Protocol (VoIP).


In at least one embodiment, the present technology is directed to a method for provisioning an appliance device. The method may include receiving a service address from a user associated with an appliance device; validating the received service address; storing the validated service address; receiving a panic signal from the user using the appliance device after the validated service address is stored; providing the validated service address to an emergency telephone number service provider for provisioning; and transmitting the validated service address to a public safety access point (PSAP) associated with the validated service address, the transmitting in response to the provisioning being successful.


In at least one embodiment, the present technology is directed to a method for provisioning an appliance device. The method may include receiving a service address from a user associated with an appliance device; validating the received service address; storing the validated service address; receiving a panic signal from the user using the appliance device after the validated service address is stored; providing the validated service address to an emergency telephone number service provider for provisioning; and transmitting the validated service address to a national PSAP, the transmitting in response to the provisioning being unsuccessful.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, where like reference numerals refer to identical or functionally similar elements throughout the separate views, together with the detailed description below, are incorporated in and form part of the specification, and serve to further illustrate embodiments of concepts that include the claimed disclosure, and explain various principles and advantages of those embodiments. The methods and systems disclosed herein have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present disclosure so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.



FIG. 1 is a simplified block diagram of a system, according to some embodiments of the present invention.



FIG. 2 is a simplified block diagram of an environment of a structure, in accordance with various embodiments.



FIG. 3 is a simplified block diagram of a security system, according to several embodiments.



FIG. 4 is a simplified block diagram of processing paths for a panic button signal, in accordance with some embodiments.



FIG. 5 is a simplified flow diagram of processing a panic button signal, according to various embodiments.



FIG. 6 is a simplified flow diagram of contacting a user, in accordance with several embodiments.



FIG. 7 is another simplified flow diagram of contacting a user, according to some embodiments of the present invention.



FIG. 8 is a simplified block diagram for a computing system according to some embodiments.





DETAILED DESCRIPTION

While this technology is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail several specific embodiments with the understanding that the present disclosure is to be considered as an exemplification of the principles of the technology and is not intended to limit the technology to the embodiments illustrated. The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the technology. As used herein, the singular forms “a”, “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. It will be understood that like or analogous elements and/or components, referred to herein, may be identified throughout the drawings with like reference characters. It will be further understood that several of the figures are merely schematic representations of the present technology. As such, some of the components may have been distorted from their actual scale for pictorial clarity.


According to various embodiments of the present invention, (home or consumer) appliance devices—such as thermostats, TV remote controls, light switches, electrical outlets, home theater systems, smoke detectors, carbon monoxide detectors, pool safety alarms, intercom devices, and the like—connect to local area networks (LANs) in a commercial or residential structure (e.g., home) through wireless and/or wired connections. The LAN connection, for example, enables appliance devices to be monitored and/or controlled from a central location, improving their function, providing additional capabilities, allowing them to coordinate actions with other appliances, and the like. Additionally, the LAN connection enables appliance devices to share information obtained by each device (e.g., through sensors or user input) with other devices. Such interconnection of appliance devices can make them easier to use for the end user. Integration of appliance devices with an alarm system, for example, offers opportunities to improve the performance and/or capabilities of the alarm system by incorporating appliance devices, and to improve the performance of appliance devices by access to capabilities of the alarm system.


In various embodiments, home security systems include a plurality of sensors that provide valuable information about the state of a structure (e.g., house). Sensors, for example, monitor if any doors or windows are opened or have been left open. Motion sensors, pressure sensors, vibration sensors, and/or sound sensors can detect the presence of individuals; magnetic sensors can detect the presence of vehicles at a residence; and smoke, water, and/or carbon monoxide detectors can monitor the environment for hazardous conditions. While the sensors conventionally provide information to the security system to determine if an intruder is present or another threat has arisen, the sensors in the present technology also provide valuable and useful information to home appliance devices, which can improve the appliance device's utility, usability, and/or performance.


Panic buttons may be a feature of home security systems. Panic buttons enable a user to initiate an alarm at the touch of a button, for example, requesting police, fire, or ambulance service, or indicating that an end user requires assistance in some other way. However, the expense of the panic button and its installation are impediments to its wide adoption, and the placement of the panic button in the home can be unsightly, inconvenient, or in a location that is not accessible when needed. Some embodiments provide an affordable method to embed the desirable function of the panic button into other appliance devices in the home (in addition to the devices' associated control applications), and increases the usefulness of both the appliance device and the security system. In addition, the utility of the panic button can be increased by using network connectivity and/or additional capabilities of the appliance device.



FIG. 1 illustrates system 100 (e.g., in a commercial or residential structure) for communication, data exchange, and use of the information that has been exchanged among at least appliance devices and security systems. The system of FIG. 1 includes an electronic device (appliance device) 110, by way of example and not limitation, a thermostat, remote control, intercom, light switch, door bell, telephone handset, video game system, garage door control system, environmental sensor incorporates some mechanism allowing a user to interact with that device to indicate a panic situation, and the like. The interaction mechanism may be associated with one or more appliance devices and may be in different forms. The interaction mechanism, for example, may be at least one of a dedicated button, “soft” or programmable button on a display, accelerometer (e.g., detecting shaking and/or striking), touch sensor, audio sensor (e.g., recognizing speech or a loud scream), switch conventionally provisioned for a different purpose (e.g., light switch), and the like that when operated in a particular way (e.g. clicking 3 times rapidly than holding down) initiates the interaction or some other response/action.


Appliance device 110 in the structure communicates wirelessly and/or through a wired connection with interconnect and/or network 120. Interconnect and/or network 120 may be one or more of a public computer network (e.g., the Internet), local computer network (e.g., LAN), a wireless computer network (e.g., WiFi), a wired computer network, and the like; other network technology (e.g. Bluetooth, ZigBee, ZWave, DECT, and the like); plain old telephone service, T1, and/or Voice over IP (VoIP) phone network; a cellular network; a proprietary network connection; and the like. Interconnect and/or network 120 may include multiple devices, translators, aggregators or concentrators that allow information on one type of network to reach devices on a different type of network. Appliance device 110 (e.g., thermostats and smoke detectors) may include wireless and/or wired network capability in addition to buttons and/or control panels. Various states of appliance device 110 may be communicated over the network to other networked devices or networked application servers. In addition, the network capability of appliance device 110 may be used to send panic signals.


In various embodiments, one or more appliance devices 110 are equipped to generate a panic signal and transmit it over network/interconnect 120. After appropriate translation between different network protocols as needed, the panic signal is received by one or more of security system 130, network-connected monitoring service 140, network application server 150, and local network application server/multi-function base unit 160.


When an emergency condition (e.g., presence of an intruder, fire, medical emergency, and the like) is perceived, the end user may activate the panic feature/mechanism associated with appliance device 110 (e.g., by pressing a button, striking appliance device 110 sufficiently to cause the embedded accelerometer to trigger, etc.). When the panic feature is activated, a panic signal is provided over the device's network connection using interconnect and/or network 120, and the panic signal notifies one or more of security system 130, network-connected monitoring service 140, network application server 150, and local network application server/multi-function base unit 160.


User communication device(s) 180 include at least one of a personal computer (PC), hand held computing system, telephone, mobile computing system, workstation, tablet, phablet, wearable, mobile phone, server, minicomputer, mainframe computer, or any other computing system. User communication device(s) 180 is described further in relation to computing system 800 in FIG. 8.


In some embodiments user communication device(s) 180 may include a web browser (or other software application) to communicate, for example, with a 911 service provider. For example, computing device 110 is a PC running a web browser inside (or outside) a commercial or residential structure. Additionally or alternatively, computing device 110 is a smart phone running a client (or other software application).


In various embodiments user communication device(s) 180 is used for telecommunications. For example, a user from his web or smartphone client upon could initiate a panic signal (and any emergency call signals that may result) as if it were originating from the structure, rather than from the user's smartphone client. Normally a 911 call from a cell phone is directed to a PSAP associated with the geographical location of the cell phone. According to some embodiments, a PSAP is a call center responsible for answering calls to an emergency telephone number for emergency services, such as police, fire, and ambulance services. For example, telephone operators may dispatch such emergency services. The present technology is capable of caller location for landline calls and mobile phone locations. For a user at a remote location who is notified of an emergency situation at the structure, dialing 911 from his cell phone could normally result in significant delay as he explains the situation to the PSAP serving the physical location of his smartphone (rather than that of the house that has been invaded), then waits for his call to be transferred to a PSAP in the area of his home and then takes the time to communicate the location of the house that is being invaded (which may even be in another state), and convinces the authorities to go to the structure.


In some embodiments, user communication device(s) 180 receives push notifications using a client (or other software application) running on user communication device(s) 180. For example, the push access protocol (PAP) (e.g., WAP-164 of the Wireless Application Protocol (WAP) suite from the Open Mobile Alliance) may be used.


System 100 of FIG. 1 further includes provisioning data 210. In some embodiments, at least one of security system 130, monitoring service 140, remote network application server 150, and local application server/multi-function base unit 160 may access provisioning data 210, for example by accessing (e.g., reading or writing to) it directly, by communicating with provisioning server 170, and the like. Provisioning data 210 stores information related to the end user/owner of appliance device 110.


Data stored by provisioning data 210 provided by security system 130, monitoring service 140, remote network application server 150, local application server/multi-function base unit 160, and/or provisioning server 170 may include at least one of usage information, user preferences information, and a service address of the structure (e.g., in which the appliance device is disposed). An operator of a processing entity (e.g., alarm service which remotely monitors the alarm system) may validate the service address and/or ensure the accuracy of the address information provided by the end user/owner of the appliance device. Incorrect or inaccurate information may result in sending first responders to the wrong location in the event of an emergency.



FIG. 2 illustrates system 200 includes at least one sensor associated with security system 130, by way of example and not limitation, motion sensor 201, pressure sensitive pad 202, vibration sensor 203, door or window close/open switch 204, and magnetic sensor (e.g., may determine if a car is in the driveway or parking space) 205. Sensors 201-205 may communicate with home security system 130 using interconnect and/or network 120. Interconnect and/or network 120 may be wired and/or wireless, use at least one communications protocol, and use adaptors to interface different devices, media, and protocols. One or more of appliance devices 110 are communicatively coupled to interconnect and/or network 120. Appliance devices 110 may include (but are not limited to) thermostat 211, phone handset/base 212, intercom/intercom controller 213, door bell/monitor/announce system 214, home entertainment device/device controller 215, intelligent light switch 216, power controller 217, and an irrigation control system 218.


For example, security system 130 and sensors 201-205 communicate with one or more appliance devices 211-218 (110 in FIG. 1) using interconnect and/or network 120. In addition or alternatively, appliance devices 211-218 may query security system 130 and/or sensors 201-205. Information provided by security system 130 and/or sensors 201-205 may be used by appliance devices 211-218 to improve their performance, utility, and usability.


For example, thermostat 211 uses information provided by door or window close/open switch(s) 204 to determine when a window in the structure has been left open. To save energy, thermostat 211 may disable a climate control system associated with the structure while the windows are open.


For example, thermostat 211 uses the information provided by at least one of motion, pressure, and vibration sensors 201-203, and alarm system 130 (e.g., state information such as home, away, and the like) to determine occupancy and a state of the occupants (e.g., awake, sleeping, and the like). Using such information, thermostat 211 may adjust temperatures, enable or disable the climate control system, and the like. In some embodiments, thermostat 211 includes a (built-in) motion sensor (or similar sensor), and the state of the security system may be used in conjunction with information provided by the (built-in) motion sensor.


For example, at least one of phone handset/base 212, intercom/intercom controllers 213, door bell/monitor/announce system 214, and home entertainment device/controller 215 uses information provided by motion, pressure, or vibration sensors 201-203, and the state of the alarm system 130 (e.g., home, away, and the like) to determine occupancy and the state of the occupants (e.g., awake, sleeping, and the like). Using such information, at least one of phone handset/base 212, intercom/intercom controllers 213, door bell/monitor/announce system 214, and home entertainment device/controller 215 may be powered down when unused, be muted or silenced to ensure they do not disturb (sleeping) occupants, and the like. Additionally, more sophisticated actions are possible, for example, screening calls or doorbell presses selectively, allowing only very important (e.g., urgent) calls or doorbell presses.


For example, intelligent light switches 216 and power control modules 217 use information provided by at least one of motion, pressure, or vibration sensors 201-203, and the state of the alarm system 130 (e.g., at home, away, and the like) to determine occupancy and the state of the occupants (e.g., awake, sleeping, and the like). Using such information, intelligent light switches 216 and power control modules 217 may turn off power to unused devices, turn lights off, etc. In various embodiments, intelligent light switches 216 and power control modules 217 include a (built-in) motion sensor (or similar device), and the state of the security system may be used in conjunction with information provided by the (built-in) motion sensor.


For example, irrigation control system 218 uses information provided by magnetic sensor 205 to determine when a car has been left out overnight, and based on the determination suppress activation of an irrigation zone that would cause the car to become wet.


For example, irrigation control system 218 uses information provided by door or window close/open switch 204 to determine that a window near a sprinkler zone or garage door is open, and prevent that irrigation zone from running and spraying water into the structure.


As would be readily appreciated by one of ordinary skill in the art, different combinations and permutations of appliance devices 211-218 may use information provided by different combinations and permutations of sensors 201-205 to control operation of respective appliance devices 211-218. Moreover as would be readily appreciated by one of ordinary skill in the art, different appliance devices 110 (FIG. 1) and sensors associated with security system 130 (FIG. 1) may be used.



FIG. 3 illustrates processing paths for a panic button signal generated by appliance device 110 including security system 130, monitoring service 140, remote network application server 150, and local application server/multi-function base unit 160, according to some embodiments.


For example, remote network application server 150 receives the panic signal (or alert) 301 generated by appliance device 110. Remote network application server 150 may access provisioning information 210 (e.g., directly and/or using provisioning server 170, shown in FIG. 1). When the panic signal is received, remote application server 150 (serving as a processing entity) processes the panic signal at 350 as shown by path 302.


For example, remote network application server 150 receives the panic signal 301 and (instead of processing it directly) panic signal 303 is provided to monitoring service 140. Monitoring service 140 may access provisioning information 210 (e.g., directly and/or using provisioning server 170, shown in FIG. 1). When the panic signal 303 is received, the remote monitoring service (serving as the processing entity) processes the panic signal at 350 as shown by path 302.


For example, local network application server/multi-function base unit 160 receives panic signal 305 generated by appliance device 110. Local network application server/multi-function base unit 160 may access provisioning information 210 (e.g., directly and/or using provisioning server 170, shown in FIG. 1). When the panic signal 305 is received, local network application server/multi-function base unit 160 (serving as the processing entity) processes the panic signal at 350, as shown by path 306, and as described below. In various embodiments, local network application server/multi-function base unit 160 may provide other services in addition to monitoring for panic signals, for example, home automation services, home entertainment services, telephony services, and the like.


For example, local network application server/multi-function base unit 160 receives panic signal 305, and (instead of processing it directly) panic signal 307 is provided to monitoring service 140. Monitoring service 140 may access provisioning information 210 (e.g., directly and/or using provisioning server 170, shown in FIG. 1). When the panic signal 305 is received, remote monitoring service 140 (serving as the processing entity) processes the panic signal at 350, as shown by path 308.


For example, security system 130 receives panic signal 309 provided by appliance device 110. Security system 130 may access provisioning information 210 (e.g., directly and/or using provisioning server 170, shown in FIG. 1). When panic signal 309 is received, security system 103 (serving as the processing entity) processes the panic signal at 350, as shown by path 310.


For example, security system 130 receives panic signal 309, and (instead of processing it directly) panic signal 311 is provided to monitoring service 140. Monitoring service 140 may access provisioning information 210 (e.g., directly and/or using provisioning server 170, shown in FIG. 1). When panic signal 311 is received, remote monitoring service 140 (serving as the processing entity) processes the panic signal at 350, as shown by path 312.


For example, security system 130 receives panic signal 309, and (instead of processing it directly) panic signal 313 is provided to remote network application server 150. Remote network application server 150 may (serving as the processing entity) processes the panic signal at 350 directly as shown by path 302 and/or may provide panic signal 303 to monitoring service 140 for processing (e.g., monitoring service serves as the processing entity) at 350, as shown by path 304. Remote application server 150 and/or monitoring service 140 may access provisioning information 210 (e.g., directly and/or using provisioning server 170, shown in FIG. 1).


For example, security system 130 receives the panic signal 309, and (instead of processing it directly) panic signal 314 is provided to local network application server/multi-function base unit 160. Local network application server/multi-function base unit 160 (serving as the processing entity) may processes the panic signal at 350 directly, as shown by path 306, and/or provide panic signal 307 to monitoring service 140 for processing (e.g., monitoring service serves as the processing entity) at 350, as shown by path 308. Remote application server 150 or monitoring service 140 may access provisioning information 210 (e.g., directly and/or using provisioning server 170, shown in FIG. 1).


For example, security system 130 receives panic signal 309 from appliance device 110, and panic signal 313 is provided to remote network application server 150 and/or panic signal 314 is provided to local network application server/multi-function base unit 160. Remote application server 150 and/or local application server 160 may include provisioning information and/or receive information, relating to the end user/owner of appliance device 110 issuing the panic signal, from provisioning server 170 (not shown in FIG. 3). When panic signal 313 and/or 314 is received, remote application server 150 and/or local application server 160 (respectively, serving as the processing entity) go on to processes the panic signal at 350.



FIG. 4 illustrates processing paths for a panic button signal 401 received by processing entity 410. Processing entity 410 may be one or more of security system 130, monitoring service 140, remote network application server 150, and local network application server/multi-function base unit 160 (shown in FIG. 3), or be another entity receiving signal 401 from one of security system 130, monitoring service 140, remote network application server 150, and local network application server/multi-function base unit 160. In response to receiving panic signal 401 using network 120 (and optionally at least one of security system 130, remote network application server 150, and local application server/multi-function base unit 160, shown in FIG. 1), processing entity 410 may instruct 402 a 911 (or other emergency telephone number) server 420 to initiate a call. Call 403 is placed to the Public Safety Answering Point (PSAP) 430 associated with the physical address where appliance device 110 is located. Optionally, one or more intermediary 911 service providers 432 are used to facilitate the connection to the local PSAP 431. Call 403 may be completed using at least one of plain old telephone service, T1, VoIP protocols such as session initiation protocol (SIP), cellular signaling, and the like.


For example, when call 403 is terminated to local PSAP 431, call 403 is connected to announcement server 440, and announcement server 440 notifies 404 a PSAP operator associated with PSAP 430 that (automated) call 403 was initiated by a person at the provisioned service address.


For example, when call 403 is terminated to local PSAP 430, call 403 is connected 405 (directly) to provisioned user 450 through 406 a communication device or devices 180 using a call initiated by the processing entity to the user's preferred phone number; or using some other interactive communications mechanism (SMS, IM, video, smartphone application, or other communications mechanism) supported by communication device(s) 180 of 406 user 450.


For example, when call 403 is terminated to local PSAP 430, call 403 is connected 404 to announcement server 440 and additional calls 405 are placed sequentially or concurrently to a plurality of alternate telephone numbers associated with communication device(s) 180 of 406 user 450; or using some other interactive communications mechanism 406 (e.g., SMS, IM, video, smartphone application, or other communications mechanism) supported by communication device(s) 180 of user 450. The PSAP operator can talk to a live human to handle the emergent situation if the user is available, but still receives the notification via the server immediately even if the user does not answer.


For example, when call 403 is terminated to local PSAP 430, call 403 is connected 408 directly to provisioned user 450 using 409 consumer appliance device 110 in the structure with capability for voice, video, and/or instant messaging (IM) communication.


For example, when call 403 is terminated to local PSAP 430, call 403 is connected 404 to announcement server 440 while the system places additional calls 408 to telephone numbers associated with appliance device 110 of 409 user 450 in the structure with capability for voice, video, IM, or other form of communication. The PSAP operator can talk to a live human to handle the emergent situation if the user is available, but still receives the notification via the server immediately or if the user does not answer.



FIG. 5 depicts a simplified flow diagram for processing entity 410 processing a panic signal. An incoming panic signal is received (e.g., by processing entity 410) at step 510. At step 520, a call to the PSAP 430 is initiated, connecting an operator at PSAP 430 to announcement server 440, and in response to being connected an emergency announcement with the provisioned location information is provided. Concurrently at step 530 user 450 is contacted using one or more user communications devices 180. At step 540, whether the user has been reached through an interactive mechanism (e.g., voice, video, SMS, other interactive communications software, etc.) is determined. When the user is not reached within a predetermined period of time, the announcement continues to play for the PSAP operator at step 550. When the user is reached, the user is connected to the PSAP operator at step 560.


For example, processing entity 410, in response to receiving panic signal 401 through network 120 (and optionally at least one of security system 130, remote network application server 150, and local application server/multi-function base unit 160, shown in FIG. 1) sends a notification 407 to user 450 through 406 user communication device 180 (e.g., via a smartphone app, push notification, SMS message, phone call, email, or other mechanism). In this way, the user has an opportunity (e.g., with a time limit or password to ensure the user is not under duress) to prevent the 911 call from being placed in the case of a false alarm. When the user is unreachable or confirms the panic signal relates to a legitimate security event, the 911 call is placed to PSAP 430 as described above in relation to steps 403 and 404 of FIG. 4.



FIG. 6 shows a simplified flow diagram for processing entity 410 processing a panic signal. An incoming panic signal is received (e.g., by the processing entity) at step 610. At step 620 user 450 (not shown) is contacted using one or more of user communications devices 180 and appliance device 110 with voice, video, IM, or other communication capabilities. At step 630, the system waits a predetermined time to see if the user has been reached. If not, at step 640 a call is initiated to PSAP 430, connecting PSAP 430 to an announcement server 440 and playing the emergency announcement with the provisioned location information. In response to the user being reached, a mechanism is used to determine if the panic event is legitimate and if the user is under duress, at step 650. If the panic signal relates to a legitimate security event and the user is under duress, the processing entity initiates a call to PSAP 430 and the user is connected directly to PSAP 430, at step 660. In response to the user indicating the panic signal was a false alarm at step 650, the emergency process is canceled at step 670.


Providers of network-connected devices may also provide a remote software control mechanism, for example, smartphone application, web access, telephone touch-tone control, and the like. Such remote software control mechanisms may be useful for monitoring and controlling the appliance device 110 remotely (e.g., from the office, while on vacation, and the like). In various embodiments, the additional panic-button functionality of the consumer appliance device is also available through the remote software control mechanism. For example, the emergency infrastructure described above is used to allow such remote software control mechanisms to initiate emergency calls that appear as if they came from the service address of the monitored device (provisioned location), rather than the physical location of the smartphone running the application. The user 450 may be connected to and communicating with emergency services (e.g., PSAP) from a remote location using one or more user communications device (s), but it will appear to the emergency services personnel that the communication is originating from the structure.


For example, the remote software control mechanism may have the capability of issuing panic signals from the location of a smartphone (not illustrated in FIG. 6; e.g., located using at least one of GPS coordinates, WiFi location, cellular triangulation, and the like), and/or from the location of appliance device 110 being controlled (provisioned location). In this way, panic capabilities may be used to indicate a problem at the site of the consumer appliance device and/or at user's location.


A service connecting a caller to a PSAP with proper address information may be provided for a fee on a monthly basis. Such an expense can be several cents per month. Further, some municipalities charge a dollar or more per month in taxes/service fees for each customer of a telephone service capable of dialing 911. Given the potentially long operating life of appliance device 110 (e.g., a thermostat, remote control, and similar appliance in the home), the relatively low likelihood of an emergency event in any particular month, and the fact that appliance device 110 does not provide a regular phone service, this prohibitive expense should be avoided. In some embodiments, provisioning of the address for the triggering device is not done until an actual emergency event is established. Since provisioning may be performed electronically, such that there is no perceptible delay in the handling of a 911 call and costs associated with providing a phone number and ongoing 911 service, and associated government taxes/fees are avoided until the service is needed.



FIG. 7 illustrates a simplified block diagram for a system 700 for provisioning a user and his or her location on an as-needed basis with a 911 service provider.


Provisioning of addresses with a 911 service provider 432 (FIG. 4) may be provided using an application programming interface (API) used by the network operator's (e.g., organization producing appliance device 110) operations support system (OSS) 710 to communicate with the 911 service provider. When an end user 450 initially activates their consumer appliance device, they provide their service address as part of the activation process at step 701. OSS 710 may perform a variety of checks of the service address to ensure that it is valid and then stores it in address database 720, for future provisioning at step 702.


A panic signal may be triggered in response to user 450 pressing a button, shaking, striking, etc. the consumer appliance device 110, selecting an option via remote software control mechanism accessed by a user communication device 180, and the like, at path 703. When the end user generates their first panic signal, the panic signal is sent to the appliance device's OSS 710, at step 704. When this initial panic signal leading to their first call to 911 is received, an emergency call signal is sent to the 911 server which determines if the user's device has already been provisioned with 911 services at step 705. When the user is not provisioned, OSS server 710 retrieves a previously validated address from the database 720 at step 706 and submits the previously validated address to the 911 service provider's API at step 707.


In response to provisioning being confirmed, a 911 server portion of OSS 710 may send a control emergency call signal 708 to the 911 service provider asking it to initiate a 911 call. The 911 service provider, having the provisioned address of the device initiating the call, presents the provisional address 709 to the appropriate PSAP 431, and connects the call. The 911 server determines the appropriate call handling for the origination side of the call (e.g., connecting the call to an announcement server, to a user's pre-selected phone number, and the like).


When the provisioning fails, the address proves to be invalid (in spite of having been previously validated), etc., the 911 service provider may pass the call to a national center 730 at step 710 for proper routing to the appropriate PSAP at step 711.



FIG. 8 illustrates an exemplary computing system 800 that is used to implement some embodiments of the present systems and methods. The computing system 800 of FIG. 8 is implemented in the contexts of the likes of computing devices, networks, webservers, databases, or combinations thereof. The computing device 800 of FIG. 8 includes a processor 810 and memory 820. Memory 820 stores, in part, instructions and data for execution by processor 810. Memory 820 stores the executable code when in operation. The computing system 800 of FIG. 8 further includes a mass storage 830, portable storage 840, output devices 850, input devices 860, a display system 870, and peripherals 880. The components shown in FIG. 8 are depicted as being connected via a single bus 890. The components are connected through one or more data transport means. Processor 810 and memory 820 may be connected via a local microprocessor bus, and the mass storage 830, peripherals 880, portable storage 840, and display system 870 may be connected via one or more input/output (I/O) buses.


Mass storage 830, which may be implemented with a magnetic disk drive, solid-state drive (SSD), or an optical disk drive, is a non-volatile storage device for storing data and instructions for use by processor 810. Mass storage 830 can store the system software for implementing embodiments of the present technology for purposes of loading that software into memory 820.


Portable storage 840 operates in conjunction with a portable non-volatile storage medium, such as a floppy disk, compact disk or digital video disc, to input and output data and code to and from the computing system 800 of FIG. 8. The system software for implementing embodiments of the present technology may be stored on such a portable medium and input to the computing system 800 via the portable storage 840.


Input devices 860 provide a portion of a user interface. Input devices 860 may include an alphanumeric keypad, such as a keyboard, for inputting alphanumeric and other information, or a pointing device, such as a mouse, a trackball, stylus, or cursor direction keys. Additionally, the system 800 as shown in FIG. 8 includes output devices 850. Suitable output devices include speakers, printers, network interfaces, and monitors.


Display system 870 includes a liquid crystal display (LCD) or other suitable display device. Display system 870 receives textual and graphical information, and processes the information for output to the display device.


Peripherals 880 include any type of computer support device to add additional functionality to the computing system. Peripherals 880 may include a modem or a router.


The components contained in the computing system 800 of FIG. 8 are those typically found in computing systems that may be suitable for use with embodiments of the present technology and are intended to represent a broad category of such computer components that are well known in the art. Thus, the computing system 800 can be a personal computer, hand held computing system, telephone, mobile phone, smartphone, tablet, phablet, wearable technology, mobile computing system, workstation, server, minicomputer, mainframe computer, or any other computing system. The computer can also include different bus configurations, networked platforms, multi-processor platforms, etc. Various operating systems can be used including UNIX, LINUX, WINDOWS, MACINTOSH OS, IOS, ANDROID, CHROME, and other suitable operating systems.


Some of the above-described functions may be composed of instructions that are stored on storage media (e.g., computer-readable medium). The instructions may be retrieved and executed by the processor. Some examples of storage media are memory devices, tapes, disks, and the like. The instructions are operational when executed by the processor to direct the processor to operate in accord with the technology. Those skilled in the art are familiar with instructions, processor(s), and storage media.


In some embodiments, the computing system 800 may be implemented as a cloud-based computing environment, such as a virtual machine operating within a computing cloud. In other embodiments, the computing system 800 may itself include a cloud-based computing environment, where the functionalities of the computing system 800 are executed in a distributed fashion. Thus, the computing system 800, when configured as a computing cloud, may include pluralities of computing devices in various forms, as will be described in greater detail below.


In general, a cloud-based computing environment is a resource that typically combines the computational power of a large grouping of processors (such as within web servers) and/or that combines the storage capacity of a large grouping of computer memories or storage devices. Systems that provide cloud-based resources may be utilized exclusively by their owners or such systems may be accessible to outside users who deploy applications within the computing infrastructure to obtain the benefit of large computational or storage resources.


The cloud is formed, for example, by a network of web servers that comprise a plurality of computing devices, such as the computing system 800, with each server (or at least a plurality thereof) providing processor and/or storage resources. These servers manage workloads provided by multiple users (e.g., cloud resource customers or other users). Typically, each user places workload demands upon the cloud that vary in real-time, sometimes dramatically. The nature and extent of these variations typically depends on the type of business associated with the user.


It is noteworthy that any hardware platform suitable for performing the processing described herein is suitable for use with the technology. The terms “computer-readable storage medium” and “computer-readable storage media” as used herein refer to any medium or media that participate in providing instructions to a CPU for execution. Such media can take many forms, including, but not limited to, non-volatile media, volatile media and transmission media. Non-volatile media include, for example, optical, magnetic, and solid-state disks, such as a fixed disk. Volatile media include dynamic memory, such as system RAM. Transmission media include coaxial cables, copper wire and fiber optics, among others, including the wires that comprise one embodiment of a bus. Transmission media can also take the form of acoustic or light waves, such as those generated during radio frequency (RF) and infrared (IR) data communications. Common forms of computer-readable media include, for example, a floppy disk, a flexible disk, a hard disk, magnetic tape, any other magnetic medium, a CD-ROM disk, digital video disk (DVD), any other optical medium, any other physical medium with patterns of marks or holes, a RAM, a PROM, an EPROM, an EEPROM, a FLASH memory, any other memory chip or data exchange adapter, a carrier wave, or any other medium from which a computer can read.


Various forms of computer-readable media may be involved in carrying one or more sequences of one or more instructions to a CPU for execution. A bus carries the data to system RAM, from which a CPU retrieves and executes the instructions. The instructions received by system RAM can optionally be stored on a fixed disk either before or after execution by a CPU.


Computer program code for carrying out operations for aspects of the present technology may be written in any combination of one or more programming languages, including an object oriented programming language such as JAVA, SMALLTALK, C++ or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).


The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present technology has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. Exemplary embodiments were chosen and described in order to best explain the principles of the present technology and its practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.


Aspects of the present technology are described above with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.


These computer program instructions may also be stored in a computer readable medium that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks.


The computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.


The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present technology. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.


While the present technology has been described in connection with a series of preferred embodiment, these descriptions are not intended to limit the scope of the technology to the particular forms set forth herein. It will be further understood that the methods of the technology are not necessarily limited to the discrete steps or the order of the steps described. To the contrary, the present descriptions are intended to cover such alternatives, modifications, and equivalents as may be included within the spirit and scope of the technology as defined by the appended claims and otherwise appreciated by one of ordinary skill in the art.

Claims
  • 1. A method for notifying first responders of an emergency situation at a structure comprising: receiving, by at least one of an appliance device located at the structure and a processing entity, an alarm indicating a presence of the emergency situation;providing, by the at least one of the appliance device and the processing entity, a notification to a mobile device of a user, the notification including indicia of the emergency situation;when a user confirmation of the emergency situation, in response to receiving the notification, is received by the at least one of the appliance device and the processing entity within a predetermined amount of time: initiating, by the at least one of the appliance device and the processing entity, first communications between the mobile device and a public-safety answering point (PSAP); andwhen the user confirmation of the emergency situation, in response to receiving the notification, is not received by the at least one of the appliance device and the processing entity within the predetermined amount of time: initiating, by the at least one of the appliance device and the processing entity, second communications between the PSAP and an announcement server to notify a PSAP operator associated with the PSAP an emergency announcement with a location associated with the structure, the second communications providing the location associated with the structure to the PSAP.
  • 2. The method of claim 1 wherein the processing entity is at least one of a remote server box, a local server or multi-function base unit, an alarm system in the structure, and a remote monitoring service.
  • 3. The method of claim 1 wherein the mobile device is one or more of a desktop computer, a notebook computer, a tablet computer, a phablet, and a smart phone, the mobile device using one or more applications for the notification and the user confirmation.
  • 4. The method of claim 1 wherein the appliance device determines the presence of the emergency situation using one or more sensors, the one or more sensors sensing at least one of a panic indication from the user, smoke, a predetermined temperature greater than 117° F., and carbon monoxide.
  • 5. The method of claim 1 wherein receiving the alarm, providing the notification, and receiving the user confirmation each use at least one of a short message service (SMS) text message, a push notification, an email, an audio message, a video message, plain old telephone service (POTS), T1, wireless broad band, and voice over internet protocol (VoIP) phone network.
  • 6. The method of claim 1, wherein the appliance device is at least one of a thermostat, an intercom, a light switch, a door bell, a telephone handset, a garage door control system, and an environmental sensor incorporating a mechanism allowing the user to interact with the appliance device to indicate a panic situation.
  • 7. The method of claim 1, wherein the structure is at least one of a commercial and a residential structure.
  • 8. The method of claim 1, wherein at least one of the appliance device and the processing entity is communicatively coupled to the mobile device using at least one of a public computer network, the Internet, a local computer network, a wireless computer network, WiFi, a wired computer network, Bluetooth, ZigBee, ZWave, DECT, plain old telephone service, T1, Voice over IP (VoIP) phone network, a cellular network, and a proprietary network connection.
  • 9. The method of claim 1, wherein the emergency situation is at least one of a door and/or window is open, an intruder is present, smoke is detected, water is detected, and carbon monoxide is detected.
  • 10. The method of claim 1 wherein the processing entity is at least one of a cloud server, a cloud-based computing system, and a cloud-based monitoring service.
  • 11. The method of claim 1, further comprising: when receiving a user indication that the alarm is a false alarm by the at least one of the appliance device and the processing entity, canceling emergency process.
  • 12. A system for notifying first responders of an emergency situation at a structure, the system comprising: a processor; anda memory coupled to the processor, the memory storing instructions executable by the processor to perform a method comprising:receiving, by at least one of an appliance device associated with the structure and a processing entity, an alarm indicating a presence of the emergency situation;providing, by the at least one of the appliance device and the processing entity, a notification to a mobile device of a user, the notification including indicia of the emergency situation;when a user confirmation of the emergency situation, in response to receiving the notification, is received by the at least one of the appliance device and the processing entity within a predetermined amount of time: initiating, by, the at least one of the appliance device and the processing entity, first communications between the mobile device and a public-safety answering point (PSAP); andwhen the user confirmation of the emergency situation, in response to receiving the notification, is not received by the at least one of the appliance device and the processing entity within the predetermined amount of time: initiating, by the at least one of the appliance device and the processing entity, second communications between the PSAP and an announcement server to notify a PSAP operator associated with the PSAP an emergency announcement with a location associated with the structure, the second communications providing the location associated with the structure to the PSAP.
  • 13. The system of claim 12 wherein the processing entity is at least one of a remote server box, a local server or multi-function base unit, an alarm system in the structure, and a remote monitoring service.
  • 14. The system of claim 12 wherein the mobile device is one or more of a desktop computer, a notebook computer, a tablet computer, a phablet, and a smart phone, the mobile device using one or more applications for the notification and the user confirmation.
  • 15. The system of claim 12 wherein the appliance device determines the presence of the emergency situation using one or more sensors, the one or more sensors sensing at least one of a panic indication from the user, smoke, a predetermined temperature greater than 117° F., and carbon monoxide.
  • 16. The system of claim 12 wherein receiving the alarm, providing the notification, and receiving the user confirmation each use at least one of a short message service (SMS) text message, a push notification, an email, an audio message, a video message, plain old telephone service (POTS), T1, wireless broad band, and voice over internet protocol (VoIP) phone network.
  • 17. The system of claim 12, wherein the appliance device is at least one of a thermostat, an intercom, a light switch, a door bell, a telephone handset, a garage door control system, and an environmental sensor incorporating a mechanism allowing the user to interact with the appliance device to indicate a panic situation.
  • 18. The system of claim 12, wherein at least one of the appliance device and the processing entity is communicatively coupled to the mobile device using at least one of a public computer network, the Internet, a local computer network, a wireless computer network, WiFi, a wired computer network, Bluetooth, ZigBee, ZWave, DECT, plain old telephone service, T1, Voice over IP (VoIP) phone network, a cellular network, and a proprietary network connection.
  • 19. The system of claim 12, wherein the emergency situation is at least one of a door and/or window is open, an intruder is present, smoke is detected, water is detected, and carbon monoxide is detected.
  • 20. The system of claim 12 wherein the processing entity is at least one of a cloud server, a cloud-based computing system, and a cloud-based monitoring service.
  • 21. The system of claim 12 wherein the system comprises a cloud-based computing system.
  • 22. A non-transitory, computer-readable storage medium having embodied thereon a program, the program being executable by a processor to perform a method for notifying first responders of an emergency situation at a structure, the method comprising: receiving, by at least one of an appliance device associated with the structure and a processing entity, an alarm indicating a presence of the emergency situation;providing, by the at least one of the appliance, device and the processing entity, a notification to a mobile device of a user, the notification including indicia of the emergency situation;when a user confirmation of the emergency situation, in response to receiving the notification, is received by the at least one of the appliance device and the processing entity within a predetermined amount of time: initiating, by the at least one of the appliance device and the processing entity, first communications between the mobile device and a public-safety answering point (PSAP); andwhen the user confirmation of the emergency situation, in response to receiving the notification, is not received by the at least one of the appliance device and the processing entity within the predetermined amount of time: initiating, by the at least one of the appliance device and the processing entity, second communications between the PSAP and an announcement server to notify a PSAP operator associated with the PSAP an emergency announcement with a location associated with the structure, the second communications providing the location associated with the structure to the PSAP.
  • 23. The non-transitory, computer-readable storage medium of claim 22 wherein the processing entity is at least one of a cloud server, a cloud-based computing system, and a cloud-based monitoring service.
US Referenced Citations (372)
Number Name Date Kind
5323444 Ertz Jun 1994 A
5425085 Weinberger et al. Jun 1995 A
5463595 Rodhall et al. Oct 1995 A
5519769 Weinberger et al. May 1996 A
5596625 LeBlanc Jan 1997 A
5598460 Tendler Jan 1997 A
5775267 Hou et al. Jul 1998 A
5796736 Suzuki Aug 1998 A
5991301 Christie Nov 1999 A
5999611 Tatchell et al. Dec 1999 A
6023724 Bhatia et al. Feb 2000 A
6104711 Voit Aug 2000 A
6128481 Houde Oct 2000 A
6148190 Bugnon Nov 2000 A
6201856 Orwick Mar 2001 B1
6202169 Razzaghe-Ashrafi et al. Mar 2001 B1
6266397 Stoner Jul 2001 B1
6282574 Voit Aug 2001 B1
6298064 Christie Oct 2001 B1
6304572 Christie Oct 2001 B1
6377938 Block et al. Apr 2002 B1
6452932 Christie Sep 2002 B1
6463052 Christie Oct 2002 B1
6473429 Christie Oct 2002 B1
6487197 Elliott Nov 2002 B1
6577638 Tashiro et al. Jun 2003 B1
6594246 Jorgensen Jul 2003 B1
6615264 Stoltz et al. Sep 2003 B1
6633561 Christie Oct 2003 B2
6661340 Saylor et al. Dec 2003 B1
6665429 Christie Dec 2003 B1
6690932 Barnier Feb 2004 B1
6697358 Bernstein Feb 2004 B2
6714545 Hugenberg et al. Mar 2004 B1
6778517 Lou et al. Aug 2004 B1
6778528 Blair et al. Aug 2004 B1
6781983 Armistead Aug 2004 B1
6914900 Komatsu et al. Jul 2005 B1
6934258 Smith et al. Aug 2005 B1
7113090 Saylor Sep 2006 B1
7124506 Yamanashi et al. Oct 2006 B2
7127043 Morris Oct 2006 B2
7127506 Schmidt et al. Oct 2006 B1
7154891 Callon Dec 2006 B1
7295660 Higginbotham et al. Nov 2007 B1
7342925 Cherchali et al. Mar 2008 B2
7376124 Lee et al. May 2008 B2
7394803 Petit-Huguenin et al. Jul 2008 B1
7599356 Barzegar et al. Oct 2009 B1
7733850 Croak et al. Jun 2010 B1
7733859 Takahashi et al. Jun 2010 B2
7844034 Oh Nov 2010 B1
8098798 Goldman Jan 2012 B2
8140392 Altberg et al. Mar 2012 B2
8180316 Hwang May 2012 B2
8208955 Nelson Jun 2012 B1
8331547 Smith et al. Dec 2012 B2
8515021 Farrand et al. Aug 2013 B2
8577000 Brown Nov 2013 B1
8634520 Morrison et al. Jan 2014 B1
8804697 Capper et al. Aug 2014 B1
8837698 Altberg et al. Sep 2014 B2
8988232 Sloo et al. Mar 2015 B1
9147054 Beal et al. Sep 2015 B1
9179279 Zussman Nov 2015 B2
9225626 Capper et al. Dec 2015 B2
9319531 Capper et al. Apr 2016 B1
9386148 Farrand et al. Jul 2016 B2
9386414 Mayor Jul 2016 B1
9426288 Farrand et al. Aug 2016 B2
9521069 Gillon et al. Dec 2016 B2
9560198 Farrand et al. Jan 2017 B2
9633547 Farrand et al. Apr 2017 B2
9667782 Farrand et al. May 2017 B2
9787611 Gillon et al. Oct 2017 B2
9826372 Jeong Nov 2017 B2
9905103 Hsieh Feb 2018 B2
9929981 Gillon et al. Mar 2018 B2
10009286 Gillon et al. Jun 2018 B2
10116796 Im et al. Oct 2018 B2
10135976 Farrand et al. Nov 2018 B2
10158584 Gillon et al. Dec 2018 B2
10255792 Farrand et al. Apr 2019 B2
10263918 Gillon et al. Apr 2019 B2
10297250 Blanksteen et al. May 2019 B1
10341490 Im et al. Jul 2019 B2
20010053194 Johnson Dec 2001 A1
20020016718 Rothschild et al. Feb 2002 A1
20020035556 Shah et al. Mar 2002 A1
20020037750 Hussain et al. Mar 2002 A1
20020038167 Chirnomas Mar 2002 A1
20020057764 Salvucci May 2002 A1
20020085692 Katz Jul 2002 A1
20020130784 Suzuki Sep 2002 A1
20020133614 Weerahandi et al. Sep 2002 A1
20020140549 Tseng Oct 2002 A1
20020165966 Widegren et al. Nov 2002 A1
20030027602 Han et al. Feb 2003 A1
20030058844 Sojka et al. Mar 2003 A1
20030099334 Contractor May 2003 A1
20030119492 Timmins et al. Jun 2003 A1
20030133443 Klinker et al. Jul 2003 A1
20030141093 Tirosh et al. Jul 2003 A1
20030164877 Murai Sep 2003 A1
20030184436 Seales et al. Oct 2003 A1
20030189928 Xiong Oct 2003 A1
20040001512 Challener et al. Jan 2004 A1
20040010472 Hilby et al. Jan 2004 A1
20040010569 Thomas et al. Jan 2004 A1
20040017803 Lim et al. Jan 2004 A1
20040059821 Tang et al. Mar 2004 A1
20040086093 Schranz May 2004 A1
20040090968 Kimber et al. May 2004 A1
20040105444 Korotin et al. Jun 2004 A1
20040160956 Hardy et al. Aug 2004 A1
20040235509 Burritt et al. Nov 2004 A1
20050027887 Zimler et al. Feb 2005 A1
20050036590 Pearson et al. Feb 2005 A1
20050053209 D'Evelyn Mar 2005 A1
20050074114 Fotta et al. Apr 2005 A1
20050078681 Sanuki et al. Apr 2005 A1
20050089018 Schessel Apr 2005 A1
20050097222 Jiang et al. May 2005 A1
20050105708 Kouchri et al. May 2005 A1
20050141485 Miyajima et al. Jun 2005 A1
20050152339 Scott et al. Jul 2005 A1
20050169247 Chen Aug 2005 A1
20050180549 Chiu et al. Aug 2005 A1
20050222820 Chung Oct 2005 A1
20050238034 Gillespie et al. Oct 2005 A1
20050238142 Winegarden Oct 2005 A1
20050246174 DeGolia Nov 2005 A1
20050259637 Chu et al. Nov 2005 A1
20050282518 D'Evelyn Dec 2005 A1
20050287979 Rollender Dec 2005 A1
20060007915 Frame Jan 2006 A1
20060009240 Katz Jan 2006 A1
20060013195 Son et al. Jan 2006 A1
20060059238 Slater et al. Mar 2006 A1
20060071775 Otto et al. Apr 2006 A1
20060092011 Simon May 2006 A1
20060114894 Cherchali et al. Jun 2006 A1
20060140352 Morris Jun 2006 A1
20060156251 Suhail et al. Jul 2006 A1
20060167746 Zucker Jul 2006 A1
20060187898 Chou et al. Aug 2006 A1
20060206933 Molen et al. Sep 2006 A1
20060243797 Apte et al. Nov 2006 A1
20060251048 Yoshino et al. Nov 2006 A1
20060258341 Miller et al. Nov 2006 A1
20060259767 Mansz et al. Nov 2006 A1
20060268848 Larsson et al. Nov 2006 A1
20070030161 Yang Feb 2007 A1
20070032220 Feher Feb 2007 A1
20070036314 Kloberdans et al. Feb 2007 A1
20070037560 Yun et al. Feb 2007 A1
20070037605 Logan Feb 2007 A1
20070041517 Clarke et al. Feb 2007 A1
20070049342 Mayer et al. Mar 2007 A1
20070054645 Pan Mar 2007 A1
20070061363 Ramer et al. Mar 2007 A1
20070061735 Hoffberg et al. Mar 2007 A1
20070067219 Altberg et al. Mar 2007 A1
20070071212 Quittek et al. Mar 2007 A1
20070118750 Owen et al. May 2007 A1
20070121593 Vance et al. May 2007 A1
20070121596 Kurapati et al. May 2007 A1
20070132844 Katz Jun 2007 A1
20070133757 Girouard et al. Jun 2007 A1
20070135088 Alessandro Jun 2007 A1
20070153776 Joseph et al. Jul 2007 A1
20070165811 Reumann et al. Jul 2007 A1
20070183407 Bennett et al. Aug 2007 A1
20070203999 Townsley et al. Aug 2007 A1
20070223455 Chang et al. Sep 2007 A1
20070238472 Wanless Oct 2007 A1
20070255702 Orme Nov 2007 A1
20070283430 Lai et al. Dec 2007 A1
20070298772 Owens et al. Dec 2007 A1
20080016556 Selignan Jan 2008 A1
20080036585 Gould Feb 2008 A1
20080049748 Bugenhagen et al. Feb 2008 A1
20080062997 Nix Mar 2008 A1
20080075248 Kim Mar 2008 A1
20080075257 Nguyen et al. Mar 2008 A1
20080084975 Schwartz Apr 2008 A1
20080089325 Sung Apr 2008 A1
20080097819 Whitman, Jr. Apr 2008 A1
20080111765 Kim May 2008 A1
20080118039 Elliot et al. May 2008 A1
20080125095 Mornhineway et al. May 2008 A1
20080144625 Wu et al. Jun 2008 A1
20080144884 Habibi Jun 2008 A1
20080159515 Rines Jul 2008 A1
20080166992 Ricordi Jul 2008 A1
20080168145 Wilson Jul 2008 A1
20080196099 Shastri Aug 2008 A1
20080200142 Abdel-Kader Aug 2008 A1
20080205386 Purnadi et al. Aug 2008 A1
20080225749 Peng et al. Sep 2008 A1
20080247382 Verma et al. Oct 2008 A1
20080247401 Bhal et al. Oct 2008 A1
20080270457 Zilbershtein et al. Oct 2008 A1
20080293374 Berger Nov 2008 A1
20080298348 Frame et al. Dec 2008 A1
20080309486 McKenna Dec 2008 A1
20080310599 Purnadi Dec 2008 A1
20080313297 Heron et al. Dec 2008 A1
20080316946 Capper et al. Dec 2008 A1
20090097474 Ray Apr 2009 A1
20090100178 Gonzales et al. Apr 2009 A1
20090106318 Mantripragada et al. Apr 2009 A1
20090135008 Kirchmeier et al. May 2009 A1
20090168755 Peng et al. Jul 2009 A1
20090172131 Sullivan Jul 2009 A1
20090186596 Kaltsukis Jul 2009 A1
20090213999 Farrand et al. Aug 2009 A1
20090224931 Dietz Sep 2009 A1
20090240586 Ramer et al. Sep 2009 A1
20090253428 Bhatia et al. Oct 2009 A1
20090261958 Sundararajan Oct 2009 A1
20090264093 Rothschild Oct 2009 A1
20090295572 Grim, III et al. Dec 2009 A1
20090303042 Song et al. Dec 2009 A1
20090319271 Gross Dec 2009 A1
20100003960 Ray Jan 2010 A1
20100034121 Bozionek Feb 2010 A1
20100046530 Hautakorpi et al. Feb 2010 A1
20100046731 Gisby et al. Feb 2010 A1
20100098034 Tang et al. Apr 2010 A1
20100098235 Cadiz et al. Apr 2010 A1
20100114896 Clark et al. May 2010 A1
20100136982 Zabawskyj et al. Jun 2010 A1
20100158223 Fang et al. Jun 2010 A1
20100191829 Cagenius Jul 2010 A1
20100195805 Zeigler Aug 2010 A1
20100215153 Ray Aug 2010 A1
20100220840 Ray Sep 2010 A1
20100229452 Suk Sep 2010 A1
20100246781 Bradburn Sep 2010 A1
20100261448 Peters Oct 2010 A1
20100277307 Horton et al. Nov 2010 A1
20100278173 Dalton et al. Nov 2010 A1
20100302025 Script Dec 2010 A1
20110013591 Kakumaru Jan 2011 A1
20110047031 Weerasinghe Feb 2011 A1
20110054689 Nielsen et al. Mar 2011 A1
20110111728 Ferguson May 2011 A1
20110140868 Hovang Jun 2011 A1
20110170680 Chislett et al. Jul 2011 A1
20110183652 Eng et al. Jul 2011 A1
20110208822 Rathod Aug 2011 A1
20110265145 Prasad et al. Oct 2011 A1
20110320274 Patil Dec 2011 A1
20120009904 Modi Jan 2012 A1
20120010955 Ramer et al. Jan 2012 A1
20120027191 Baril et al. Feb 2012 A1
20120035993 Nangia Feb 2012 A1
20120036576 Iyer Feb 2012 A1
20120047442 Nicolaou Feb 2012 A1
20120092158 Kumbhar et al. Apr 2012 A1
20120099716 Rae et al. Apr 2012 A1
20120167086 Lee Jun 2012 A1
20120178404 Chin Jul 2012 A1
20120180122 Yan et al. Jul 2012 A1
20120284778 Chiou et al. Nov 2012 A1
20120320905 Ilagan Dec 2012 A1
20120329420 Zotti Dec 2012 A1
20130018509 Korus Jan 2013 A1
20130024197 Jang et al. Jan 2013 A1
20130035774 Warren et al. Feb 2013 A1
20130052982 Rohde Feb 2013 A1
20130053005 Ramer et al. Feb 2013 A1
20130070928 Ellis Mar 2013 A1
20130111589 Cho May 2013 A1
20130136241 Dillon May 2013 A1
20130154822 Kumar et al. Jun 2013 A1
20130214925 Weiss Aug 2013 A1
20130229282 Brent Sep 2013 A1
20130267791 Halperin et al. Oct 2013 A1
20130272219 Singh et al. Oct 2013 A1
20130288639 Varsavsky Waisman-Diamond Oct 2013 A1
20130293368 Ottah et al. Nov 2013 A1
20130336174 Rubin et al. Dec 2013 A1
20140011470 D'Amato Jan 2014 A1
20140022915 Caron et al. Jan 2014 A1
20140066063 Park Mar 2014 A1
20140084165 Fadell Mar 2014 A1
20140085093 Mittleman et al. Mar 2014 A1
20140101082 Matsuoka et al. Apr 2014 A1
20140120863 Ferguson et al. May 2014 A1
20140129942 Rathod May 2014 A1
20140156279 Okamoto et al. Jun 2014 A1
20140169274 Kweon et al. Jun 2014 A1
20140172953 Blanksteen Jun 2014 A1
20140181865 Koganei Jun 2014 A1
20140199946 Flippo Jul 2014 A1
20140207929 Hoshino et al. Jul 2014 A1
20140222436 Binder et al. Aug 2014 A1
20140253326 Cho Sep 2014 A1
20140266699 Poder Sep 2014 A1
20140273912 Peh Sep 2014 A1
20140273979 Van Os et al. Sep 2014 A1
20140306802 Hibbs, Jr. Oct 2014 A1
20140334645 Yun et al. Nov 2014 A1
20140358666 Baghaie et al. Dec 2014 A1
20150065078 Mejia Mar 2015 A1
20150071450 Boyden et al. Mar 2015 A1
20150082451 Ciancio-Bunch Mar 2015 A1
20150086001 Farrand et al. Mar 2015 A1
20150087280 Farrand et al. Mar 2015 A1
20150089032 Agarwal et al. Mar 2015 A1
20150100167 Sloo et al. Apr 2015 A1
20150117624 Rosenshine Apr 2015 A1
20150138333 DeVaul et al. May 2015 A1
20150145693 Toriumi et al. May 2015 A1
20150200973 Nolan Jul 2015 A1
20150221207 Hagan Aug 2015 A1
20150229770 Shuman et al. Aug 2015 A1
20150242932 Beguin et al. Aug 2015 A1
20150244873 Boyden et al. Aug 2015 A1
20150255071 Chiba Sep 2015 A1
20150262435 Delong et al. Sep 2015 A1
20150281450 Shapiro et al. Oct 2015 A1
20150302725 Sager et al. Oct 2015 A1
20150327039 Jain Nov 2015 A1
20150334227 Whitten et al. Nov 2015 A1
20150339912 Farrand Nov 2015 A1
20150358795 You Dec 2015 A1
20150379562 Spievak et al. Dec 2015 A1
20160036751 Ban Feb 2016 A1
20160036962 Rand Feb 2016 A1
20160066011 Ro et al. Mar 2016 A1
20160078750 King et al. Mar 2016 A1
20160117684 Khor et al. Apr 2016 A1
20160142758 Karp et al. May 2016 A1
20160173693 Spievak et al. Jun 2016 A1
20160219150 Brown Jul 2016 A1
20160248847 Saxena Aug 2016 A1
20160269882 Balthasar Sep 2016 A1
20160277573 Farrand et al. Sep 2016 A1
20160300260 Cigich et al. Oct 2016 A1
20160315909 von Gravrock et al. Oct 2016 A1
20160323446 Farrand et al. Nov 2016 A1
20160330108 Gillon et al. Nov 2016 A1
20160330319 Farrand et al. Nov 2016 A1
20160330770 Lee Nov 2016 A1
20160373372 Gillon et al. Dec 2016 A1
20170021802 Mims Jan 2017 A1
20170024995 Gu et al. Jan 2017 A1
20170034044 Gillon et al. Feb 2017 A1
20170034045 Gillon et al. Feb 2017 A1
20170034062 Gillon et al. Feb 2017 A1
20170034081 Gillon et al. Feb 2017 A1
20170084164 Farrand et al. Mar 2017 A1
20170104875 Im et al. Apr 2017 A1
20170188216 Koskas Jun 2017 A1
20170270569 Altberg et al. Sep 2017 A1
20170293301 Myslinski Oct 2017 A1
20170339228 Azgin et al. Nov 2017 A1
20180061213 Morehead Mar 2018 A1
20180075540 Bernard et al. Mar 2018 A1
20180152557 White et al. May 2018 A1
20180262441 Gillon et al. Sep 2018 A1
20180302334 Osterlund et al. Oct 2018 A1
20180324105 Gillon et al. Nov 2018 A1
20180365969 Krein et al. Dec 2018 A1
20180375927 Nozawa Dec 2018 A1
20190045058 Im et al. Feb 2019 A1
20190052752 Farrand et al. Feb 2019 A1
20190206227 Farrand et al. Jul 2019 A1
20190222993 Maheshwari Jul 2019 A1
Foreign Referenced Citations (7)
Number Date Country
2949211 Feb 2019 CA
3050287 Dec 2018 EP
WO2015041738 Mar 2015 WO
WO2015179120 Nov 2015 WO
WO2016007244 Jan 2016 WO
WO2016182796 Nov 2016 WO
WO2018044657 Mar 2018 WO
Non-Patent Literature Citations (81)
Entry
Lief Alert—Protection at Home, Nov. 27, 2012.
International Search Report and Written Opinion dated Nov. 7, 2014 for App. No. PCT/US2014/044945, filed Jun. 30, 2014.
Non-Final Office Action, dated Aug. 26, 2008, U.S. Appl. No. 10/888,603, filed Jul. 9, 2004.
Non-Final Office Action, dated May 11, 2009, U.S. Appl. No. 11/717,947, filed Mar. 13, 2007.
Non-Final Office Action, dated Nov. 24, 2009, U.S. Appl. No. 11/717,947, filed Mar. 13, 2007.
Final Office Action, dated Jun. 23, 2010, U.S. Appl. No. 11/717,947, filed Mar. 13, 2007.
Non-Final Office Action, dated Sep. 13, 2010, U.S. Appl. No. 11/717,947, filed Mar. 13, 2007.
Non-Final Office Action, dated Feb. 16, 2011, U.S. Appl. No. 11/717,947, filed Mar. 13, 2007.
Final Office Action, dated May 25, 2011, U.S. Appl. No. 11/717,947, filed Mar. 13, 2007.
Non-Final Office Action, dated Dec. 6, 2011, U.S. Appl. No. 12/214,756, filed Jun. 20, 2008.
Final Office Action, dated May 31, 2012, U.S. Appl. No. 12/214,756, filed Jun. 20, 2008.
Non-Final Office Action, dated Feb. 12, 2014, U.S. Appl. No. 12/214,756, filed Jun. 20, 2008.
Final Office Action, dated Jul. 31, 2014, U.S. Appl. No. 12/214,756, filed Jun. 20, 2008.
Non-Final Office Action, dated Dec. 27, 2011, U.S. Appl. No. 12/156,562, filed Jun. 2, 2008.
Final Office Action, dated Apr. 3, 2012, U.S. Appl. No. 12/156,562, filed Jun. 2, 2008.
Non-Final Office Action, dated Jul. 13, 2012, U.S. Appl. No. 12/156,562, filed Jun. 2, 2008.
Final Office Action, dated Jul. 31, 2013, U.S. Appl. No. 12/156,562, filed Jun. 2, 2008.
Non-Final Office Action, dated Jul. 7, 2011, U.S. Appl. No. 12/006,587, filed Jan. 2, 2008.
Final Office Action, dated Jan. 18, 2012, U.S. Appl. No. 12/006,587, filed Jan. 2, 2008.
Advisory Action, dated Feb. 14, 2012, U.S. Appl. No. 12/006,587, filed Jan. 2, 2008.
Non-Final Office Action, dated Sep. 10, 2013, U.S. Appl. No. 12/006,587, filed Jan. 2, 2008.
Final Office Action, dated Jan. 31, 2014, U.S. Appl. No. 12/006,587, filed Jan. 2, 2008.
Advisory Action, dated Mar. 24, 2014, U.S. Appl. No. 12/006,587, filed Jan. 2, 2008.
Non-Final Office Action, dated Sep. 16, 2014, U.S. Appl. No. 12/006,587, filed Jan. 2, 2008.
Non-Final Office Action, dated Sep. 29, 2011, U.S. Appl. No. 12/072,381, filed Feb. 25, 2008.
Final Office Action, dated Feb. 10, 2012, U.S. Appl. No. 12/072,381, filed Feb. 25, 2008.
Advisory Action, dated Apr. 16, 2012, U.S. Appl. No. 12/072,381, filed Feb. 25, 2008.
Non-Final Office Action, dated Dec. 30, 2013, U.S. Appl. No. 14/034,457, filed Sep. 23, 2013.
Final Office Action, dated Jul. 1, 2014, U.S. Appl. No. 14/034,457, filed Sep. 23, 2013.
Advisory Action, dated Sep. 18, 2014, U.S. Appl. No. 14/034,457, filed Sep. 23, 2013.
Advisory Action, dated Oct. 9, 2014, U.S. Appl. No. 12/214,756, filed Jun. 20, 2008.
Advisory Action, dated Nov. 5, 2014, U.S. Appl. No. 12/214,756, filed Jun. 20, 2008.
Non-Final Office Action, dated Mar. 26, 2015, U.S. Appl. No. 12/156,562, filed Jun. 2, 2008.
Final Office Action, dated Jan. 23, 2015, U.S. Appl. No. 12/006,587, filed Jan. 2, 2008.
Advisory Action, dated Apr. 8, 2015, U.S. Appl. No. 12/006,587, filed Jan. 2, 2008.
Non-Final Office Action, dated Jan. 29, 2015, U.S. Appl. No. 14/034,457, filed Sep. 23, 2013.
Non-Final Office Action, dated Jan. 7, 2015, U.S. Appl. No. 14/318,630, filed Jun. 28, 2014.
International Search Report and Written Opinion dated Jul. 27, 2015 for App. No. PCT/US2015/029109, filed May 4, 2015.
Notice of Allowance, dated Sep. 10, 2015, U.S. Appl. No. 12/214,756, filed Jun. 20, 2008.
Final Office Action, dated Jul. 15, 2015, U.S. Appl. No. 12/156,562, filed Jun. 2, 2008.
Final Office Action, dated Apr. 5, 2013, U.S. Appl. No. 12/072,381, filed Feb. 25, 2008.
Advisory Action, dated May 16, 2013, U.S. Appl. No. 12/072,381, filed Feb. 25, 2008.
Notice of Allowance, dated Jun. 13, 2013, U.S. Appl. No. 12/072,381, filed Feb. 25, 2008.
Non-Final Office Action, dated Aug. 24, 2015, U.S. Appl. No. 14/034,457, filed Sep. 23, 2013.
Non-Final Office Action, dated Jul. 21, 2015, U.S. Appl. No. 14/318,630, filed Jun. 28, 2014.
Non-Final Office Action, dated Nov. 12, 2015, U.S. Appl. No. 14/283,132, filed May 20, 2014.
Non-Final Office Action, dated Nov. 13, 2015, U.S. Appl. No. 14/318,630, filed Jun. 28, 2014.
International Search Report and Written Opinion dated Nov. 2, 2015 for App. No. PCT/US2015/034054, filed Jun. 3, 2015.
Non-Final Office Action, dated Nov. 5, 2012, U.S. Appl. No. 12/072,381, filed Jun. 20, 2008.
Non-Final Office Action, dated Sep. 9, 2016, U.S. Appl. No. 15/212,185, filed Jul. 15, 2016.
Notice of Allowance, dated Sep. 26, 2016, U.S. Appl. No. 15/212,185, filed Jul. 15, 2016.
Non-Final Office Action, dated Nov. 16, 2016, U.S. Appl. No. 12/156,562, filed Jun. 2, 2008.
Non-Final Office Action, dated May 17, 2016, U.S. Appl. No. 12/156,562, filed Jun. 2, 2008.
Notice of Allowance, dated May 31, 2016, U.S. Appl. No. 14/318,630, filed Jun. 28, 2014.
Non-Final Office Action, dated Jun. 9, 2016, U.S. Appl. No. 14/283,132, filed May 20, 2014.
Non-Final Office Action, dated Jul. 14, 2016, U.S. Appl. No. 15/169,615, filed May 31, 2016.
Notice of Allowance, dated Aug. 1, 2016, U.S. Appl. No. 14/708,132, filed May 8, 2015.
International Search Report and Written Opinion dated Jun. 30, 2016 for App. No. PCT/US2016/030597, filed May 3, 2016.
Notice of Allowance, dated Dec. 15, 2016, U.S. Appl. No. 14/283,132, filed May 20, 2014.
Notice of Allowance, dated Jan. 18, 2017, U.S. Appl. No. 15/169,615, filed May 31, 2016.
Non-Final Office Action, dated Nov. 5, 2012, U.S. Appl. No. 12/214,756, filed Jun. 20, 2008.
Notice of Allowance, dated Mar. 6, 2017, U.S. Appl. No. 15/292,043, filed Oct. 12, 2016.
Non-Final Office Action, dated Mar. 23, 2017, U.S. Appl. No. 15/208,004, filed Jul. 12, 2016.
Non-Final Office Action, dated Mar. 29, 2017, U.S. Appl. No. 14/879,329, filed Oct. 9, 2015.
Non-Final Office Action, dated Apr. 18, 2017, U.S. Appl. No. 15/292,051, filed Oct. 12, 2016.
Non-Final Office Action, dated Apr. 18, 2017, U.S. Appl. No. 15/369,655, filed Dec. 5, 2016.
European Patent Application No. 14845956.3, “Extended European Search Report,” dated Feb. 16, 2017, 8 pages.
Canadian Patent Application No. 2949211, “Office Action,” dated Aug. 16, 2017, 4 pages.
“Office Action,” Canadian Patent Application No. 2954351, dated Oct. 27, 2017, 3 pages.
“International Search Report” and “Written Opinion of the International Searching Authority,” Patent Cooperation Treaty Application No. PCT/US2017/048284, dated Nov. 8, 2017, 8 pages.
“Office Action,” European Patent Application No. 14845956.3, dated Apr. 9, 2018, 4 pages.
“Extended European Search Report,” European Patent Application No. 15796148.3, dated Jan. 8, 2018, 8 pages.
“Extended European Search Report,” European Patent Application No. 15818258.4, dated Feb. 26, 2018, 8 pages.
Vaidya, Govind, “Automatic Object Detection and Recognition via a Camera System”, U.S. Appl. No. 16/163,521, filed Oct. 17, 2018, 40 pages.
“Partial Supplementary European Search Report,” European Patent Application No. 16793194.8, dated Nov. 19, 2018, 10 pages.
“Notice of Allowance,” European Patent Application No. 14845956.3, dated Jul. 11, 2018, 7 pages.
Osterlund, Karl et al., “Communications Network Failure Detection and Remediation,” U.S. Appl. No. 16/011,479, dated Jun. 18, 2018, Specification, Claims, Abstract, and Drawings, 92 pages.
“Notice of Allowance”, Canadian Patent Application No. 2949211, dated Jul. 31, 2018, 1 page.
“Office Action,” Canadian Patent Application No. 2954351, dated Aug. 22, 2018, 4 pages.
“Extended European Search Report,” European Patent Application No. 16793194.8, dated Feb. 26, 2019, 9 pages.
“Notice of Allowance”, Canadian Patent Application No. 2954351, dated Aug. 27, 2019, 1 page.
Related Publications (1)
Number Date Country
20160012702 A1 Jan 2016 US