The invention relates generally to appliances, such as gas-fired appliances, and more particularly to monitoring the operation of a load in the appliance, such as a gas valve.
Control systems are known that include one or more switch units that are used to operate a load by controlling the supply of electrical power to the load. For example, gas-fired appliances are known to utilize a valve for controlling the release of gas to fuel a flammable heat source. Some such gas valves can be operable in response to an electrical current delivered from a power source.
Some embodiments of the invention provide a gas-fired appliance including an electrically-operated gas valve. The gas valve is coupled to a power source. A current sensing circuit is configured to sense a current through the gas valve. A controller monitors the current sensing circuit and determines whether the gas valve is open based upon the sensed current.
In some embodiments, the current sensing circuit includes a resistor. The voltage across the resistor is indicative of the current through the gas valve. The controller monitors the current sensing circuit by monitoring the voltage across the resistor.
In some embodiments, the gas-fired appliance includes a controller and at least one switch configured to reduce current from the power source to the gas valve when the at least one switch is open. In at least one embodiment, the controller is configured to determine an anticipated operating state of the gas valve based on the status of the at least one switch. The controller indicates an error condition if the anticipated operating state is not substantially the same as the actual operating state, as indicated by the current sensing circuit.
Some embodiments of the invention provide methods of monitoring a gas valve in a gas-fired appliance. A value is received that is indicative of the current sensed by the current sensing circuit and an actual operating state of the gas valve is determined based upon that value. In at least one embodiment, this actual operating state is compared to an anticipated operating state as indicated by the status of at least one switch.
Some embodiments provide a gas valve power checking circuit including a resistor having a relatively low resistance connected in series with the gas valve. A microcontroller, or other programmable device (e.g., microprocessor, digital signal processor, etc.) detects the voltage drop across the resistor when power is applied to the gas valve and determines if the power is greater than a threshold.
Some embodiments of the invention provide a system including an electrically-operated load. The load is coupled to a power source. A current sensing circuit is configured to sense a current through the load. A controller monitors the current sensing circuit and determines whether the load is energized based upon the sensed current.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purposes of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein are meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless specified or limited otherwise, the terms “mounted,” “connected,” “supported,” and “coupled” and variations thereof are used broadly and encompass both direct and indirect mountings, connections, supports, and couplings. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings.
Although the constructions referred to herein describe a gas-fired water heater, the invention could be embodied in other gas-fired appliances such as, for example, a boiler, a furnace, and an oven. Other constructions of the invention could also be embodied in non-gas-fired systems, such as an electric water heater, that include type of electric load other than an electrically operated gas valve.
Safety limit string 300 is interposed between power source 203 and gas valve 215. Safety limit string 300 includes a plurality of normally open or normally closed switches arranged in series. All switches in safety limit string 300 should be closed before the gas valve can be sufficiently energized (i.e., opened). The switches are linked to various safety controls 207. Positioned between gas valve 215 and ground 227 is a current sensing circuit 225. When gas valve 215 is present, open, and operating properly, current from power source 203 flows through safety limit string 300 and current sensing circuit 225 on its way toward ground 227. Microcontroller 201 is configured to control gas valve 215 as well as monitor the status of switches in safety limit string 300 and current sensing circuit 225.
In the construction shown in
Gas valve relay 313 is a switch operable by microcontroller 201 through control line 315. Microcontroller 201 can control the operation of gas valve 215 by opening and closing gas valve relay 313. Like switches 301, 303, and 305 in safety limit string 300, if microcontroller 201 opens gas valve relay 313, gas valve 215 is disconnected from power supply 203 and does not open. Conversely, if microcontroller 201 closes gas valve relay 313 and all switches in safety limit string 300 are also closed, gas valve 215 receives sufficient power from power supply 203 and opens, thereby releasing gas to fuel the burner 117.
Current sensing circuit 225 is positioned and configured to detect current between gas valve 215 and ground 227. If switches 301,303, and 305 and gas valve relay 313 are closed, current should be present between gas valve 215 and ground 227. If any switch in safety limit string 300 or gas valve relay 313 is open, the power to gas valve 215 should be either completely disconnected or significantly reduced depending upon the construction. Therefore, depending upon the construction, there should be either no current present between gas valve 215 and ground 227 or a significantly reduced current. Microcontroller 201 monitors current sensing circuit 225 through status line 317.
In alternative constructions, current sensing circuit 225 might be positioned in other locations. For example, in some constructions, current sensing circuit 225 is positioned between gas valve relay 313 and gas valve 215 to sense the current provided to the gas valve. Other constructions may include two or more current sensing circuits 225 such as, for example, one positioned between the gas valve 215 and ground 227 and another positioned between gas valve relay 313 and gas valve 215.
Microcontroller 201 monitors status lines 307, 309, and 311 to determine the status of the switches in safety limit string 300 (step 503). If status lines 307, 309, and 311 indicate that all switches in safety limit string 300 are closed, then a properly functioning gas valve 215 would be energized and opened. Therefore, the anticipated operating state of the gas valve 215 is that the gas valve 215 is opened (step 507). Conversely, if status lines 307, 309, and 311 indicate that at least one switch in safety limit string 300 is open (step 505), then a properly functioning gas valve 215 would be closed. In such a situation, the anticipated operating state of the gas valve 215 would be that the gas valve 215 is closed (step 509).
Microcontroller 201 monitors status line 317 to determine whether current is detected at current sensing circuit 225 and, therefore, gas valve 215 is opened. The current passing through current sensing circuit 225 is measured (step 511) and compared to a threshold (step 513). If the threshold is exceeded, microcontroller 201 concludes that the gas valve 215 is energized. Therefore, the actual operating state of the gas valve 215 is that gas valve 215 is opened (step 515). Conversely, if the threshold is not exceeded, microcontroller 201 concludes that the gas valve 215 is not energized. In such a situation, the actual operating state of the gas valve 215 is that gas valve 215 is closed (step 517).
Microcontroller 201 then compares the anticipated operating state to the actual operating state (step 519). If the two match, the microcontroller 201 concludes that gas valve 215 is installed and operating properly (step 521). However, if the two do not match, the microcontroller 201 concludes that gas valve 215 is either not installed or not operating properly. Microcontroller 201 will display an error message to user display/output device 223 and will not allow the appliance to fire (step 523).
The anticipated operating condition may not match the actual operating state if, for example, status lines 307, 309, and 311 indicate that all switches in the safety limit string 300 are closed, but no current is detected at current sensing circuit 225. In this situation, the closed switches in safety limit string 300 and gas valve relay 313 should connect gas valve 215 to power source 203; however, the lack of current detected at current sensing circuit 225 indicates that gas valve 215 is not energized and, therefore, closed. Such a condition might be caused, for example, by an improper short circuit between switch 305 and ground 227 bypassing gas valve 215 and current sensing circuit 225. Such a condition might also arise, for example, if gas valve 215 is not installed and, therefore, the circuit between power source 203 and ground 227 is not complete.
This may also occur if, for example, status line 309 indicates that switch 303 is open, but current is detected at current sensing circuit 225. In this situation, open switch 303 should have disconnected gas valve 215 from power source 203; however, the current detected at current sensing circuit 225 indicates that gas valve 215 is energized and, therefore, opened. Such a condition might be caused, for example, by an improper short circuit between the gas valve 215 and a power source.
Microcontroller 201 then determines the “actual operating state” of the gas valve 215 based upon the status of current sensing circuit 225. The current through current sensing circuit 225 is measured (step 605) and compared to a threshold (step 607). If the threshold is not exceeded, microcontroller 201 concludes that the gas valve 215 is not energized. Therefore, the actual operating state of the gas valve 215 is that gas valve 215 is closed (step 609). However, if the threshold is exceeded, microcontroller 201 concludes that the gas valve 215 is energized. In such a situation, the actual operating state of the gas valve 215 is that gas valve 215 is opened (step 611).
Microcontroller 201 then compares the anticipated operating state to the actual operating state (step 613). If the actual operating state is that the gas valve 215 is closed, the microcontroller 201 concludes that gas valve 215 is installed and operating properly (step 615). However, if the actual operating state is that gas valve 215 is open, the microcontroller 201 concludes that gas valve 215 is not operating properly. Microcontroller 201 will display an error message to user display/output device 223 and will not allow the appliance to fire (step 523). In this situation, the gas valve 215 might be opened, thereby causing a mismatch between the anticipated operating state and the actual operating state, if, for example, an improper short circuit has occurred between the gas valve 215 and a power source.
The functionality demonstrated in some of the steps of
For example, if power source 203 is a 10 v power source, the resistance of resistor 225 is 1 ohm, and the resistance of the switches 301, 303, 305, and 313 are negligible, microcontroller 201 can determine the resistance of gas valve 215 based upon the voltage drop over resistor 225. In this example, a correctly installed gas valve 215 has a resistance of 9 ohms. Based upon this information, microcontroller 201 can conclude that the correct gas valve 215 is properly installed when 1 v is detected by the analog-to-digital converter at status line 317. Furthermore, the microcontroller can conclude that either gas valve 215 is improperly installed or an incorrect gas valve has been used if the voltage detected by the analog-to-digital converter at status line 217 is greater than or less than 1 v. The values used in this example are for illustrative purposes only and are not intended as limiting. Power source 203 may supply whatever voltage may be desired for the particular device (for example, 24 v). Similarly, the resistance of gas valve 215 and resistor 425 may be greater or lesser than 9 ohms and 1 ohm respectively.
Furthermore, although the functionality described in
An optocoupler (such as 715, 725, and 735) typically includes an emitter and a receiver. Referring to optocoupler 715 in
Because the switch circuit in this construction is significantly less resistant than the leakage circuit, little or no current flows through the leakage circuit if switch 712 is closed. Microcontroller 201 monitors optocoupler 715 and is configured to associate this condition with a closed switch 712. If switch 712 is open, current flows through the leakage circuit and the microcontroller 201 detects this current through optocoupler 715.
In some optocouplers (such as 715, 725, and 735), the amount of current detected on the receiver (e.g., the phototransistor 715) is proportional to the amount of current on the emitter (e.g., the LEDs 714); however, if the current on the emitter is below a certain threshold, no current is detected on the emitter. As such, in some constructions, components are selected such that when switch 712 is closed, no current is detected at optocoupler 715. In these constructions, the receiver of optocoupler 715 is connected to a digital input pin on microcontroller 201 and provides a high or low logic signal indicative of the status of switch 712.
In other constructions, the receiver of optocoupler 715 may detect a relatively small current even when switch 712 is closed. In such constructions, microcontroller 201 and associated circuitry on the receiver side of optocoupler 715 are configured to associate a current in excess of a predetermined threshold with an open switch. This comparison can be implemented by various methods including connecting the receiver of optocoupler 715 to a voltage or current comparator circuit that compares the detected current or voltage to a reference current or voltage. Such a comparator circuit is further configured to provide a high or low logic signal to microcontroller 201 indicative of the status of switch 712.
Alternatively, the receiver side of optocoupler 715 can be connected to an analog-to-digital converter on microcontroller 201. Microcontroller 201 can be configured to compare the value at the analog-to-digital converter to a predetermined threshold or can adaptively associate switches into “open” and “closed” groupings depending on the relative voltage or current detected at the corresponding optocoupler.
In an example construction, switch 712 is a pressure switch monitoring air intake from blower 109, switch 722 is a pressure switch monitoring exhaust pressure from vent 121, and switch 732 is a bimetallic temperature switch configured to open if the temperature of the water in tank 103 exceeds a high-limit. It will be understood by those having ordinary skill in the art that safety limit string 300 may include various combinations of these and other switches and need not be assigned as in this construction.
Current flows through the leakage circuit in switching unit 711 and is detected by microcontroller 201 through optocoupler 715. Microcontroller 201 is configured to associate this condition with an insufficient intake pressure from blower 109. Current continues to switching unit 721 and passes through the switch circuit. Little or no current is directed through the leakage circuit and, as such, is not detected by microcontroller 201 through optocoupler 725. Microcontroller 201 is configured to associate this condition with a sufficient exhaust pressure at vent 121. Current then passes through the leakage circuit of switching unit 731 and is detected by microcontroller 201 through optocoupler 735. Microcontroller 201 is configured to associate this condition with a water temperature in tank 103 that exceeds the high-limit threshold. Finally, current arrives at gas valve 215. However, resistors 713 and 733 have reduced the current such that the available power is insufficient to operate the gas valve 215. Consequently, gas valve 215 remains closed and microcontroller 201 is aware of the adverse safety conditions.
It should be understood that the constructions described above are exemplary and other configurations and designs are possible. For example, although the above constructions describe an AC circuit, DC circuits might also be constructed. Furthermore, terms such as “resistor” and “emitter” are used broadly. Unless otherwise specified, the term “resistor,” for example, may refer to a single discrete component or it may refer to an arrangement of multiple components that together introduce resistance into a circuit. As such, additional components may be added to the describe circuit constructions without departing from the intended scope. Likewise, unless otherwise specified, the term “emitter,” for example, may refer to any device that emits or communicates a signal.
Although some of the above examples include a gas-fired appliance such as a gas-fired water heater, the invention may be applied to other non-gas-fired systems unless explicitly stated otherwise. For example, the gas-fired water heater system as illustrated in
This patent application claims the benefit of U.S. provisional patent application No. 60/968,424, filed on Aug. 28, 2007, the entirety of which is hereby incorporated by reference. This patent application also incorporates by reference the entire contents of co-pending U.S. patent application No. ______, filed on ______, 2008, entitled “APPLIANCE HAVING A SAFETY STRING” (Attorney Docket No. 010121-8164-00).
Number | Date | Country | |
---|---|---|---|
60968424 | Aug 2007 | US |