The present device generally relates to household appliances, and more specifically, to an oven appliance.
In at least one aspect, an appliance is provided that comprises a housing including an internal compartment, wherein at least a portion of the housing comprises an electrically conductive portion, and an antenna for at least one of receiving RF signals and transmitting RF signals, wherein the antenna comprises an active component and a connection to the electrically conductive portion such that the electrically conductive portion serves as a ground plane of the antenna. According to one variation, the housing further comprises a door assembly having a closed position and an open position for allowing user ingress into the internal compartment, the door assembly including a window for allowing viewing of the internal compartment from outside the internal compartment, and the window including the electrically conductive portion in the form of at least one transparent conductive layer. According to another variation, the housing comprises a light fixture for illuminating the internal compartment, wherein the active component of the antenna is disposed in the light fixture. According to yet another variation, the appliance further comprises: a coaxial cable having a center pin and a metal sheath surrounding the metal pin, and a conductive plate electrically coupled to the center pin, wherein the housing further comprises a door frame and a door assembly detachably mounted to the door frame and having a closed position and an open position for allowing user ingress into the internal compartment, wherein the active component of the antenna is disposed at the door assembly, and wherein the conductive plate is mounted to the door frame and is spaced apart but proximate to the door assembly when the door assembly is in the closed position such that the conductive plate is capacitively coupled to the active component of the antenna when the door assembly is in the closed position.
In at least another aspect, an appliance is provided that comprises a housing including an internal compartment; a door assembly having a closed position and an open position for allowing user ingress into the internal compartment; a window provided in the door assembly for allowing viewing of the internal compartment from outside the compartment, the window including at least one transparent conductive layer; and an antenna for at least one of receiving RF signals and transmitting RF signals, wherein the antenna comprises an active component and a connection to the at least one transparent conductive layer such that the at least one transparent conductive layer serves as a ground plane of the antenna.
In at least another aspect, an appliance is provided that comprises a housing including an internal compartment, wherein at least a portion of the housing comprises an electrically conductive portion, wherein the housing comprises a light fixture for illuminating the internal compartment, and an antenna for at least one of receiving RF signals and transmitting RF signals, wherein the antenna comprises an active component and a connection to the electrically conductive portion such that the electrically conductive portion serves as a ground plane of the antenna, wherein the active component of the antenna is disposed in the light fixture.
These and other features, advantages, and objects of the present device will be further understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.
In the drawings:
For purposes of description herein, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the appliance as oriented in
It is known in the art of cooking appliances to include a temperature probe that may be inserted into the food being cooked. Such temperature probes may communicate via wireless RF signals to an antenna inside an internal compartment of the appliance. However, the integration of antennas into an appliance cavity can be difficult due to style, cleanability, and damage concerns. The antenna should fit within aesthetic considerations and also must be in a place where it cannot be easily damaged. Moreover, in some instances, it may be desirable to transmit RF signals into and out of the internal compartment of the appliance. However, appliances are predominantly made of metal either as inside cavities or external enclosures. In the case of ovens, both internal and external. Door glass can also be coated with metals (such as tin oxide or silver oxide). This leads to a space that is shielded such that transmission of electromagnetic waves is impossible to cross into/out of the appliance.
Antennas are sensitive to metal surroundings. Metal surroundings can inhibit or disrupt the signal radiation. It is difficult to incorporate an antenna inside an oven cavity due to the metal interior and exterior and the aforementioned style, cleanability, and damage concerns. Where the antenna is a patch antenna, the dielectric substrate used between the patch and the ground plane is sensitive to high temperatures. Such high temperatures can result in signal drop or loss.
Referring to the embodiment illustrated in
As shown in
Housing 12 includes a door assembly 18 having a closed position (
Window 26 may include multiple spaced glass panes. As shown in
A metal skin 28 of door assembly 18 may be disposed around window 26 and have a front side 28a and an interior side 28b. Metal skin 28 may be made of various materials including stainless steel.
As shown in
According to a first implementation, the at least one transparent conductive layer is first transparent conductive layer 61 disposed on interior surface 40a of interior glass substrate 40. Thus, first transparent conductive layer 61 serves as ground plane 34 of antenna 30. Active component 32 of antenna 30 includes a thin conductive substance (such as metallic ink, wire, etc.) printed on interior surface 40a of interior glass substrate 40. As shown in
If it is desired to provide exterior signal coverage, active component 32 may be printed on the interior surface 42a of exterior glass substrate 42 and the at least one transparent conductive layer is fifth transparent conductive layer 65 disposed on exterior surface 48b of second glass sheet 48 such that fifth transparent conductive layer 65 serves as ground plane 34.
As shown in
According to another implementation, interior side 28a of metal skin 28 (which may be stainless steel) surrounding window 26 of door assembly 18 is electrically coupled to center pin 102 such that interior side 28a of metal skin 28 acts as active component 32 of antenna 30. In this implementation, the at least one transparent conductive layer 61, 62, 63, 64, 65 is first transparent conductive layer 61 disposed on interior surface 40a of interior glass substrate 40 such that first transparent conductive layer 61 serves as ground plane 34. In this arrangement the antenna 30 communicates with one or more devices within the internal compartment 20. To communicate with external devices, the exterior side 28b of metal skin 28 may be used as the active component 32 while the at least one transparent conductive layer 61, 62, 63, 64, 65 is fifth transparent conductive layer 65 disposed on exterior surface 48b of second glass sheet 48 such that fifth transparent conductive layer 65 serves as ground plane 34.
According to another implementation shown in
In another implementation, a patch antenna may be used for antenna 30. In this case, active component 32 may comprise one of the transparent conductive layers in window 26 while another one of the transparent conductive layers serves as ground plane 34 and air and/or glass is the dielectric layer between active component 32 and ground plane 34. For example, for interior signal coverage, the active component patch 32 may be the first transparent conductive layer 61 disposed on interior surface 40a of interior glass substrate 40 while ground plane 34 may be the first transparent conductive layer 61 disposed on interior surface 46a of first glass sheet 46 as shown in
As shown above with respect to
As discussed above, there is also the possibility of having multiple antennas mounted to the door assembly 18 as well as multiple conductive plates capacitively coupling the antennas to respective coaxial cables. Providing multiple antennas 30 can help with signal strength and omnidirectionality inside of the internal compartment 20 or to allow communications both inside and outside the appliance.
As shown in
Light fixture 150 may include the electrically conductive portion constituting ground plane 34 of antenna 30. Alternatively, a portion or all of interior wall 22 of housing 12 may include the electrically conductive portion constituting ground plane 34. Light fixture 150 includes an enclosure 152 having at least one metal wall 154, which may serve as ground plane 34. Light fixture 150 includes a transparent cover 156, which may be made of glass, through which light from a light source is transmitted into internal compartment 20. Active component 32 of antenna 30 may be disposed on either surface of transparent cover 156. As shown, the active component 32 may be a circular F antenna. Transparent cover 156 is preferably made of glass, which transmits light and does not inhibit radio waves.
In one implementation, active component 32 is disposed on the surface of transparent cover 156 that faces internal compartment 20. In this case, a transparent conductive coating may be provided on the opposite surface of cover 156 to serve as ground plane 34. Accordingly, metal sheath 104 of coaxial cable 100 is coupled to the transparent conductive coating serving as ground plane 34 and center pin 102 is connected to active component 32, which may be in the form of a wire or printed conductive material.
In another implementation, active component 32 is disposed on the surface of transparent cover 156 opposite the one that faces internal compartment 20. In this case, at least one metal wall 154 of enclosure 152 may serve as ground plane 34. Accordingly, metal sheath 104 of coaxial cable 100 is coupled to metal wall 154 and center pin 102 is connected directly to active component 32 through a hold in the back of enclosure 152 of light fixture 150.
Although the above embodiments are described as having the active component 32 of the antenna 30 provided in door assembly 18 and/or light fixture 150, the active component 32 may be disposed in any other component within internal compartment 20 while a portion of housing 12 may be used as the ground plane 34.
By having the active component 32 of the antenna 30 provided in door assembly 18, light fixture 150, or other component while a portion of housing 12 is used as the ground plane 34, an antenna 30 may be integrated in an appliance in such as way that it does not impact the style or cleanability of the appliance and without raising any damage concerns. Moreover, antennas can be integrated so as to transmit and receive signals into and out of the internal compartment of the appliance. Further, antennas can be integrated into the appliance while using some of the existing structure as a ground plane and/or active component of the antenna and thereby reduce construction time and expense.
It will be understood by one having ordinary skill in the art that construction of the described device and other components is not limited to any specific material. Other exemplary embodiments of the device disclosed herein may be formed from a wide variety of materials, unless described otherwise herein.
For purposes of this disclosure, the term “coupled” (in all of its forms—couple, coupling, coupled, etc.) generally means the joining of two components (electrical or mechanical) directly or indirectly to one another. Such joining may be stationary in nature or movable in nature. Such joining may be achieved with the two components (electrical or mechanical) and any additional intermediate members being integrally formed as a single unitary body with one another or with the two components. Such joining may be permanent in nature or may be removable or releasable in nature unless otherwise stated.
It is also important to note that the construction and arrangement of the elements of the device as shown in the exemplary embodiments is illustrative only. Although only a few embodiments of the present innovations have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts, elements shown as multiple parts may be integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members or connector or other elements of the system may be varied, the nature or number of adjustment positions provided between the elements may be varied. It should be noted that the elements and/or assemblies of the system may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Accordingly, all such modifications are intended to be included within the scope of the present innovations. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the desired and other exemplary embodiments without departing from the spirit of the present innovations.
It will be understood that any described processes or steps within described processes may be combined with other disclosed processes or steps to form structures within the scope of the present device. The exemplary structures and processes disclosed herein are for illustrative purposes and are not to be construed as limiting.
It is also to be understood that variations and modifications can be made on the aforementioned structures and methods without departing from the concepts of the present device, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
The above description is considered that of the illustrated embodiments only. Modifications of the device will occur to those skilled in the art and to those who make or use the device. Therefore, it is understood that the embodiments shown in the drawings and described above is merely for illustrative purposes and not intended to limit the scope of the device, which is defined by the following claims as interpreted according to the principles of patent law, including the Doctrine of Equivalents.