This invention relates to items used in packaging, shipping and warehousing large, bulky items. More particularly, the invention relates to runners that are affixed to the bottom of appliances for warehousing, packaging and shipping purposes.
Runners are commonly used when warehousing, shipping and packaging large, bulky items such as appliances. Due to the weight and/or size of these items, they can be difficult to move. In warehousing situations, the ability to slide these items into and out of packaging is desired to aid both in packing and un-packing of the bulky item. The advantages in unpacking are further provided in that installation is aided due to the ability of the runner to easily slide along a floor and make it easier to move the bulky item closer to the installation position.
Runners mounted to the bottom of appliances also provide protection to the corners and edges of the appliance in that the runners extend beyond the bottom perimeter of the appliance and provide a bumper that prevents the corners from becoming dented and scratched during packaging, shipping and warehousing.
Many runners currently available are made with blow molding, which provides an inexpensive way of manufacturing a plastic runner without the material costs of injection molding a solid runner. The difficulty with currently available blow molded runners is that stiffness of the runner is often inadequate in the warehousing scenario when multiple bulky items, such as dishwashers are stacked on top of each other. The weight of the stack of bulky items is concentrated on the runners, which are often made of primarily a double walled configuration.
Although double walled configurations add bending stiffness over longer lengths, the thickness and/or configuration of the walls may provide insufficient localized stiffness. The bulky item is often positioned on the runner at specific points, which results in point like loads or loads that are distributed over a relatively small portion of the runner.
In this case, the prior art double wall configuration of the mounting areas allows for the mounting areas to buckle under load despite the fact that the overall bending stiffness of the runner is sufficient for supporting the overall weight of the bulky item. In addition, the cross section may have a tendency to deform or bend away from the axis of the force. See
The buckling and deformation problems around the mounting areas can create a situation in which the entire stack can shift and if the buckling is too much, there is the possibility that an appliance becomes damaged. For example, imagine the stack shown in
Therefore, it is desired to provide an improved runner for bulky and heavy items such as appliances so that the runner has both increased localized stiffness at the attachment points for the appliance and sufficient overall stiffness to resist deflection under load.
It is therefore an object of the invention to provide a runner having attachment points with increased stiffness.
It is yet another object of the invention to provide increased localized stiffness while still providing sufficient overall stiffness for the runner.
It is yet another object of the invention to provide a runner that deflects less under load and reduces the possibility of tipping in a stack of bulky items or appliances.
The terms “first” and “second” are used to distinguish one element, set, data, object or thing from another, and are not used to designate relative position or arrangement in time.
These and other objects are achieved by providing a blow molded runner adapted to attach to a bottom of an item including a bottom wall and a top wall forming a double wall blow molded configuration. At least one compressed double wall structure may be defined by compression of the bottom and top walls against each other such that an inner surface of the bottom wall is in contact with an inner surface of the top wall. At least two columns may be spaced apart at a distance wherein each of the at least two columns defines one of said at least one compressed double wall structure and has a top surface and said compressed double wall structure corresponding to each of said at least two columns extends from the top surface to a bottom surface of the runner at the at least two columns wherein the bottom surface is defined by an outer surface of said bottom wall.
The runner may include a channel extending from a first to a second one of said at least two columns said channel at least as long as the distance wherein at least part of said channel defines another one of said at least one compressed double wall structures. At least one of the at least two columns may include a top surface and tapered sides, the tapered sides extending outwardly in a downward direction. The inner surface of the bottom wall and the inner surface of the top wall may be fused together at the at least one compressed double wall structure. A groove may be defined in at least one of the at least two columns and may extend from the top surface towards said bottom surface.
Two double wall sections may be disposed on either side of the at least two columns such that the top surface protrudes above a second top surface of the two double wall sections. A plurality of protrusions may extend from the bottom wall to provide reduced friction between the bottom wall and a floor. A channel may extend from the bottom wall towards the top wall and may further extend between the at least two columns such that a portion of the at least one compressed double wall structure adjacent to one of the columns is disposed between the channel and the one of the columns.
A cross rib may be disposed perpendicular to an axis defined between the at least two columns, the cross rib defining a passage between first and second sides of the runner wherein the top and bottom walls of the first and second sides are disposed apart from each other to define a void in fluid communication with the passage wherein at least one of the at least one compressed double wall structure is disposed on either side of the cross rib. A rib may be disposed along a lengthwise axis of the runner and positioned between the at least two columns and a portion of the rib may be configured as a double wall structure. The rib may include another one of the at least one compressed double wall structures on either side of the portion of the rib.
In other aspects a blow molded runner is provided and adapted to attach to a bottom of an item. The blow molded runner may include a bottom wall and a top wall forming a double wall blow molded configuration. At least one compressed double wall structure may be defined by compression of the bottom and top walls against each other. At least two columns may be spaced apart at a distance wherein each of the at least two columns defines one of the at least one compressed double wall structures. Two channels may be positioned on either side of a first to a second one of the at least two columns and may extend between the first and second one of said at least two columns, the channel at least as long as the distance wherein at least part of the channel defines another one of the at least one compressed double wall structures. The item may be adapted to connect to the at least two columns.
A rib may be disposed along a lengthwise axis of the runner and positioned between the at least two columns and a portion of the rib may be configured as a double wall structure. The rib may include another one of the at least one compressed double wall structures on either side of the portion of the rib. At least one of the at least two columns may define a top surface and the compressed double wall structure corresponding to the at least one of the at least two columns may extend from the top surface to a bottom surface of the runner wherein the bottom surface is defined by an outer surface of the bottom wall. At least one of the at least two columns may include a top surface and tapered sides, the tapered sides extending outwardly in a downward direction. The inner surface of the bottom wall and the inner surface of the top wall may be fused together at the at least one compressed double wall structure.
A groove may be defined in at least one of the at least two columns and may extend from the top surface towards said bottom surface. Two double wall sections may be disposed on either side of the at least two columns such that the top surface protrudes above a second top surface of the two double wall sections. A plurality of protrusions may extend from the bottom wall, the plurality of protrusions reducing a friction between said bottom wall and a floor for easy movement of the item.
A channel may extend from the bottom wall towards the top wall and may further extend between the at least two columns such that a portion of the at least one compressed double wall structure adjacent to one of the columns is disposed between the channel and the one of the columns.
Yet other objects are achieved by providing a blow molded runner adapted to attach to a bottom of an item, the blow molded runner including at least two supports each having a top, said at least two supports spaced apart at a distance and each one of the two supports adapted to contact the item such that at least part of a weight of the item is supported by said at least two supports, and a compressed double wall structure extending continuously from a base of each of said at least two supports located at a bottom of the blow molded runner to the top of each of said at least two supports.
In one aspect the two supports each define a perimeter, the compressed double wall structure extending around at least 50% of the perimeter of at least one of the two supports. In other aspects the compressed double wall structure extends around at least 75% of the perimeter of the at least one of the two supports.
Other objects of the invention and its particular features and advantages will become more apparent from consideration of the following drawings and accompanying detailed description.
Referring now to the drawings, wherein like reference numerals designate corresponding structure throughout the views, the following examples are presented to further illustrate and explain the present invention and should not be taken as limiting in any regard. In
In
During molding the top 4 and bottom 6 walls may be joined or fused together in some locations on the runner 1 due to the temperature of the parison and pressure between the mold halves. This joining of two walls may form what is referred to as a compressed double wall structure in that inner surfaces of the top and bottom walls are in contact and may be fused together during molding. See
In some locations along the runner, the top and bottom walls may remain separated to form an internal void which may be referred to as a double wall structure.
One example of a compressed double wall structure is shown with respect to the columns, for example column 2 has a top section with a top surface 14 and a bottom surface 11. The top surface is part of the top wall and the bottom surface is part of the bottom wall and the inner surfaces of the top and bottom wall in this location are joined together to form a compressed double wall structure. The compressed double wall structure extends along the sides of the column such that outside surface 40 and inside surface 42 are respectively part of the top 4 and bottom 6 walls and are joined at their inner surfaces. As can be seen the compressed double wall structure extends from the top surface 14 of the column towards the bottom surface 12 of the runner 1. Because this compressed double wall structure extends from the top surface 14 where the appliance or other item attaches and extends down to the bottom surface 12 of the runner, the possibility that buckling occurs between the top 4 and bottom 6 walls in a localized manner at the columns is reduced. The outer side of the column 2 also has series of inwardly directed grooves 44 and outwardly directed protrusions 46. These grooves 44 and protrusions 46 correspond to inside protrusions 48 and inside grooves 50. These grooves 44/50 and protrusions 46/48 provide additional buckling stiffness that resists the tendency of the compressed double wall structure to buckle due to the compression load from the weight of the appliance or item mounted to the runner 1.
Along the lengthwise direction of the runner 1, sides 24/26 are located on either side of the columns and are in a double wall configuration. These sides 24/26 provide increased rigidity in bending over the lengthwise direction of the runner 1. Extending between the columns and adjacent to the sides 24/26 are channels 18/18′. These channels may have both compressed double wall sections 19 and a cross rib 20 defines a double wall section. Between channels 18/18′ is a rib 22 that is a double wall section. During molding, it may be necessary for fluid pressure such as air to be directed into the cavity formed by the rib 22 and its double wall configuration. The cross rib 20 defines a passage 23 that allows fluid communication with the space 25/27 inside the sides 24/26.
When a bending load is imposed on the runner 1, the combination of the sides 24/26, channels 18/18′ and rib 22 may provide increased rigidity in comparison to structure that is only double wall, for example with a rectangular cross section. Although a rectangular cross section may be stiffer in pure bending, it is possible that the cross section may collapse due to localized buckling which would cause pure bending not to exist in real world applications of the runner 1. Here, the thickness 52 of the sides 24/26 is approximately the same as the height 66. In other embodiments the thickness 52 may be up to twice as much as the height 66. However, in some applications, the overall bending stiffness of the runner 1 may be less important that the localized stiffness of the runner 1 at the column 2.
As a comparison, consider the prior art runner shown in
The channels on either side of Applicant's column are located relatively are located at the bottom 56 of the column which provides support across the runner 1 to prevent or at least reduce the flexing action flexing action (movement from A to B) shown in
Consider compressed double wall sections 60/58 which are located at the bottom 56 of the column. Because the distance 62 is relatively small in comparison to the height 64, the possibility of sides 68 and 70 moving away from each other (similar to the flexing action of
Referring to
In
Although the invention has been described with reference to a particular arrangement of parts, features and the like, these are not intended to exhaust all possible arrangements or features, and indeed many other modifications and variations will be ascertainable to those of skill in the art.