Application-based point of sale system in mobile operating systems

Information

  • Patent Grant
  • 11100511
  • Patent Number
    11,100,511
  • Date Filed
    Monday, May 18, 2020
    4 years ago
  • Date Issued
    Tuesday, August 24, 2021
    3 years ago
Abstract
Application-based point of sale systems in mobile operating systems. A first application may generate a first URL directed to a second application, a parameter of the first URL comprising an identifier of the first application. A mobile operating system (OS) may access the first URL to open the second application. The second application may receive, from a server, a virtual account number (VAN). The second application may initiate a server on a port and generate a second URL directed to the first application, a parameter of the second URL comprising the port. The OS may access the second URL to open the first application. The first application may establish a connection with the server using the specified port and receive the VAN from the second application via the connection. The first application may autofill the VAN to a form field of a payment form in the first application.
Description
TECHNICAL FIELD

Embodiments herein generally relate to computing platforms, and more specifically, to providing an application-based point-of-sale system in a mobile operating system.


BACKGROUND

Some mobile operating systems place restrictions on communications between two or more applications executing on the same device. For example, some mobile operating systems may prevent a first application from directly communicating with a second application. Similarly, some mobile operating systems may restrict the exchange of data between such applications. Doing so may unnecessarily restrict legitimate and secure communication between applications.


SUMMARY

Embodiments disclosed herein provide systems, methods, articles of manufacture, and computer-readable media for communications between applications in a mobile operating system. In one example, a first application may generate a first URL directed to a second application, a parameter of the first URL comprising an identifier of the first application. A mobile operating system (OS) may access the first URL to open the second application. The second application may receive, from a server, a virtual account number (VAN). The second application may initiate a server on a port and generate a second URL directed to the first application, a parameter of the second URL comprising the port. The OS may access the second URL to open the first application. The first application may establish a connection with the server using the specified port and receive the VAN from the second application via the connection. The first application may autofill the VAN to a form field of a payment form in the first application.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1F illustrate embodiments of a system for an application-based point-of-sale system in a mobile operating system.



FIGS. 2A-2D illustrate embodiments of a system for an application-based point-of-sale system in a mobile operating system.



FIGS. 3A-3C illustrate embodiments of an application-based point-of-sale system in a mobile operating system.



FIG. 4 illustrates an embodiment of a first logic flow.



FIG. 5 illustrates an embodiment of a second logic flow



FIGS. 6A-6B illustrate an example contactless card.



FIG. 7 illustrates an embodiment of a computing system.





DETAILED DESCRIPTION

Embodiments disclosed herein provide techniques for an application-based point of sale system accessible by other applications in a mobile operating system (OS) that restricts communications between applications registered to different developers. Generally, a first application executing on a device may benefit from data that may be provided by a second application on the device. For example, the first application may be a merchant application registered with the merchant in the OS, and the second application may be an application provided by a financial institution that is registered with the financial institution in the OS. In such an example, a user of the merchant application may request to use data from the financial institution application, e.g., payment information, biographical information, etc., in the merchant application. Responsive to the request, the merchant application may generate a first uniform resource locator (URL) that is directed to the financial institution application. A parameter of the first URL may include an identifier of the merchant application.


The merchant application may then instruct the mobile OS to open or otherwise access the first URL. Doing so causes the mobile OS to open the financial institution application on the device. The financial institution application may then initiate a local server in the OS that is only accessible to applications executing on the mobile device. The local server may be initiated on a port and may be a transmission control protocol/internet protocol (TCP/IP) server or any other type of server (e.g., a hypertext transfer protocol (HTTP) server). In some embodiments, the financial institution application may receive authentication credentials for an account with the financial institution prior to initiating the server. For example, if the user has not provided login credentials within a threshold amount of time, e.g., 30 days, the financial institution application may require the user to provide login credentials. Additionally and/or alternatively, prior to initiating the server, the financial institution application may receive encrypted data from a contactless card associated with the account and transmit the encrypted data to an authentication server. The authentication server may attempt to decrypt the encrypted data. If the server decrypts the encrypted data, the server may transmit an indication to the financial institution application that the encrypted data was verified. Furthermore, if the server decrypts the encrypted data, the server may generate a virtual account number (VAN) for the account. The server may provide the generated VAN, an expiration date for the VAN, and card verification value (CVV) for the VAN to the financial institution application. Further still, the server may provide other data to the financial institution application, such as a first name, last name, phone number, email address, billing address, and/or shipping address.


The financial institution application may generate a second URL that is directed to the merchant application. The second URL may be based at least in part on the identifier of the merchant application specified as a parameter of the first URL. The second URL may further specify the port of the local server as a parameter. The financial institution application may further register the local server and/or the financial institution application as a background task with the OS, such that the local server and/or the financial institution application continues to execute in the background of the OS as other applications execute in the foreground of the OS (e.g., the merchant application). The financial institution application may instruct the mobile OS to open or otherwise access the second URL. Doing so causes the OS to open the merchant application in the foreground of the OS.


Once opened, the merchant application may identify the port of the local server specified in the second URL and establish a connection with the local server at the specified port on a local interface (e.g., a local loopback IP address). In some embodiments, the merchant application may provide a certificate that may be validated by the server as part of establishing the connection. Additionally and/or alternatively, the merchant application may provide a token that may be verified by the server as part of establishing the connection. Once a connection is established, the financial institution application may exchange data with the merchant application over the connection, and vice versa. For example, the financial institution application may provide the VAN, expiration date, and CVV and/or other information (e.g., address information, etc.) to the merchant application using the connection. In such an example, the merchant application may autofill the received data into a form, thereby allowing the user to complete a purchase or other operation using the received data. More generally any number and type of data may be exchanged via the connection.


Advantageously, the mobile OS may restrict access to the local server by external entities. Doing so improves the security of the device and any data. Furthermore, by securely receiving payment data from the financial institution application, the security of the payment data is enhanced. For example, a user need not manually enter the VAN, expiration date, and/or CVV, which could compromise the security of the data. Furthermore, in some embodiments, the financial institution may provide a framework (e.g., a software development kit (SDK)) that includes the required functionality to perform the operations disclosed herein. Doing so allows only the required functionality to be integrated into third party applications (e.g., the merchant application) without requiring a full SDK and/or framework that would otherwise be required to perform the operations disclosed herein. For example, by providing one or more APIs to the merchant application that can be used to exchange data, the SDK allows the merchant application to be of a reduced size relative to including the full code base of the financial institution application in the merchant application to provide the required functionality in the merchant application.


With general reference to notations and nomenclature used herein, one or more portions of the detailed description which follows may be presented in terms of program procedures executed on a computer or network of computers. These procedural descriptions and representations are used by those skilled in the art to most effectively convey the substances of their work to others skilled in the art. A procedure is here, and generally, conceived to be a self-consistent sequence of operations leading to a desired result. These operations are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical, magnetic, or optical signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It proves convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like. It should be noted, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to those quantities.


Further, these manipulations are often referred to in terms, such as adding or comparing, which are commonly associated with mental operations performed by a human operator. However, no such capability of a human operator is necessary, or desirable in most cases, in any of the operations described herein that form part of one or more embodiments. Rather, these operations are machine operations. Useful machines for performing operations of various embodiments include digital computers as selectively activated or configured by a computer program stored within that is written in accordance with the teachings herein, and/or include apparatus specially constructed for the required purpose or a digital computer. Various embodiments also relate to apparatus or systems for performing these operations. These apparatuses may be specially constructed for the required purpose. The required structure for a variety of these machines will be apparent from the description given.


Reference is now made to the drawings, wherein like reference numerals are used to refer to like elements throughout. In the following description, for the purpose of explanation, numerous specific details are set forth in order to provide a thorough understanding thereof. It may be evident, however, that the novel embodiments can be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to facilitate a description thereof. The intention is to cover all modification, equivalents, and alternatives within the scope of the claims.



FIG. 1A depicts a schematic of an exemplary system 100, consistent with disclosed embodiments. As shown, the system 100 includes one or more mobile computing devices 110. The mobile devices 110 are representative of any type of network-enabled computing devices that execute mobile operating systems, such as smartphones, tablet computers, wearable devices, laptops, portable gaming devices, and the like. The mobile device 110 may include a processor 101 and a memory 111. The processor 101 may be any computer processor, including without limitation an AMD® Athlon®, Duron® and Opteron® processors; ARM® application, embedded and secure processors; IBM® and Motorola® DragonBall® and PowerPC® processors; IBM and Sony® Cell processors; Intel® Celeron®, Core®, Core (2) Duo®, Itanium®, Pentium®, Xeon®, and XScale® processors; and similar processors. Dual microprocessors, multi-core processors, and other multi-processor architectures may also be employed as the processor 101. The memory 111 may include various types of computer-readable storage media in the form of one or more higher speed memory units, such as read-only memory (ROM), random-access memory (RAM), dynamic RAM (DRAM), Double-Data-Rate DRAM (DDRAM), synchronous DRAM (SDRAM), static RAM (SRAM), programmable ROM (PROM), erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), flash memory (e.g., one or more flash arrays), polymer memory such as ferroelectric polymer memory, ovonic memory, phase change or ferroelectric memory, silicon-oxide-nitride-oxide-silicon (SONOS) memory, magnetic or optical cards, an array of devices such as Redundant Array of Independent Disks (RAID) drives, solid state memory devices (e.g., USB memory, solid state drives (SSD) and any other type of storage media suitable for storing information.


As show, the memory 111 of the mobile device 110 includes an instance of a mobile operating system (OS) 112. Example mobile operating systems 112 include the Android® and iOS® mobile operating systems. As shown, the OS 112 includes an account application 113 and one or more other applications 114. The account application 113 allows users to perform various account-related operations, such as activating payment cards, viewing account balances, purchasing items, processing payments, and the like. In some embodiments, a user may authenticate using authentication credentials to access certain features of the account application 113. For example, the authentication credentials may include a username (or login) and password, biometric credentials (e.g., fingerprints, Face ID, etc.), and the like. The other applications 114 are representative of any type of computing application, such as web browsers, merchant applications, shopping applications, delivery service applications, ride-sharing applications, messaging applications, word processing applications, social media applications, and the like. For example, a first one of the other applications 114 may be a merchant application provided by a merchant to purchase goods, services, or any other type of item. As another example, a second one of the other applications 114 may be a ride-sharing application that allows users to arrange and pay for transportation services. As yet another example, a third one of the other applications 114 may be a delivery service application that allows users to purchase food for delivery.


Due to restrictions imposed by the OS 112, applications registered (or assigned) to different developers (or entities) may not be able to communicate and/or exchange data. For example, if such restrictions are in place, the account application 113 (registered with a financial institution as developer) cannot communicate and/or exchange data with the other applications 114 (registered with entities other than the financial institution). Similarly, a first one of the other applications 114 (registered with a first entity) cannot communicate with another one of the other applications 114 (registered with a second entity different than the first entity). The registration of applications may occur when applications are submitted to an application store associated with a provider of the OS 112. Advantageously, however, embodiments disclosed herein provide techniques to securely allow for communication and/or data exchange between applications registered with different developers (e.g., the account application 113 and any of the other applications 114, and/or any two of the other applications 114).



FIG. 1B illustrates an embodiment where an application 114-1 has received a request to communicate with the account application 113. For example, the application 114-1 may be an application registered to a merchant. In such an example, the user may select one or more items to purchase via the application 114-1. During the checkout process, the application 114-1 may give the user the option to provide payment and/or personal information using the account application 113. The user may then accept the option, thereby instructing the application 114-1 to communicate with the account application 113 to receive data. Responsive to the request, the application 114-1 may generate a URL 125. The URL 125 may be directed to the account application 113. The URL 125 may further include a parameter indicating the application 114-1 has generated the URL 125. The URL 125 may be a universal link, or any type of URL. The parameter may be any identifier suitable to uniquely identify the application 114-1, such as a unique identifier, token, or URL string. For example, the URL 125 may be “capitalone://?appid=merchantapp”, where the “capitalone://” portion is directed to the instance of the account application 113 on the device 110, and the “appid=merchantapp” is an identifier of the application 114-1 generating the URL 125.


In some embodiments, the application 114-1 uses an application programming interface (API) of the OS 112 to determine whether the URL 125 is valid (e.g., indicates whether the application targeted by the URL 125 is installed on the device 110). For example, the OS 112 may provide a “canOpenURL” API that indicates whether a URL provided as input to the API is valid. Generally, application developers may register one or more URLs with the provider of the OS 112 when submitting the application to the application store. Doing so may facilitate the validations by the API provided by the OS. In such an example, the application 114-1 may provide the URL 125 (and/or the portion of the URL 125 directed to the account application 113) to the API, which indicates whether the account application 113 is installed on the device and can be opened using the URL 125. Doing so enhances security by ensuring the correct application is installed and by thwarting attempts by third parties that provide an application masquerading as the account application 113. In the latter instance, the masquerading attempt may be thwarted because the third party application would not be registered with the URL being provided as input to the API. In such an example, if the API returns an invalid response, accessing the URL 125 may cause the OS 112 to launch a web browser directed to a website associated with the entity registering the account application 113 (e.g., the website of the financial institution and/or an application store where the account application 113 may be downloaded).


The application 114-1 and/or the OS 112 may then access, open, or otherwise follow the URL 125, thereby causing the account application 113 to open in the foreground of the OS 112. FIG. 1C depicts an embodiment where the account application 113 is opened responsive to accessing the URL 125. In response, the account application 113 may optionally receive authentication credentials for an account. In some embodiments, the account application 113 determines whether the last time the user provided authentication credentials exceeds a threshold (e.g., 30 days, 60 days, etc.). For example, if the user has not provided a login/password in 75 days, and the threshold is 30 days, the account application 113 may require that the user provide a login/password, biometric credentials, etc. In addition and/or alternatively (and as discussed in greater detail with reference to FIGS. 2A-2D), the account application 113 may optionally initiate verification of encrypted data generated by a contactless card prior.


The account application 113 may then initiate a local server 115 to execute on the mobile device 110. The local server 115 may be any type of server, such as a TCP/IP server, HTTP server, Hypertext Transfer Protocol Secure (HTTPS) server, a streaming server, and the like. However, only local applications (e.g., applications executing on the mobile device 110) may access the local server 115. The OS 112 may restrict attempts to access the local server 115 from external sources (e.g., via a network). The account application 113 may initiate the local server 115 on a specific port number. The account application 113 may select the port according to any feasible selection scheme, such as randomly generating port numbers, using a predetermined port number, and the like.



FIG. 1D depicts an embodiment where the account application 113 generates a URL 126. The URL 126 may be directed to the application 114-1 and may include the port number of the local server 115. For example, the URL 126 may be “merchantapp://?port=2080”, where the “merchantapp://” portion is directed to the application 114-1 and the “port=2080” portion indicates the local server 115 is open on port 2080. The account application 113 determines the portion of the URL 126 directed to the application 114-1 based on the identifier of the application 114-1 specified in the URL 125. In some embodiments, similar to the URL 125, the account application 113 makes an API call to the OS 112 to determine whether the URL 126 is valid prior to accessing the URL 126. More generally, the URL 126 may comprise any parameters sufficient to establish a connection to the local server 115 at the selected port. In some embodiments, the account application 113 may encrypt the port number or any additional parameters of the URL 126, e.g., using an encryption key, or a public key. In such embodiments, the application 114-1 may decrypt the port number and/or additional parameters, e.g., using a corresponding decryption key, e.g., a private key. Furthermore, any URL parameters exchanged between any applications may be encrypted to enhance security.


Furthermore, the account application 113 may register the local server 115 and/or the account application 113 as a background task with the OS 112. Doing so allows the local server 115 and/or the account application 113 to continue executing in the background of the OS 112 while other applications execute in the foreground of the OS 112. Although the local server 115 has been initiated, in some embodiments, the account application 113 may initiate the local server 115 after generating the URL 126.



FIG. 1E illustrates an embodiment where the account application 113 and/or the OS 112 has opened the URL 126 to open the application 114-1 while the local server 115 and/or the account application 113 continue to execute in the background of the OS 112. Responsive to receiving the URL 126, the application 114-1 may identify the port number of the local server 115 specified as a parameter of the URL 126. As stated, if the URL 126 includes encrypted data, the application 114-1 may decrypt the encrypted port number (or any other relevant parameters) in the URL 126. The application 114-1 may then request to establish a connection with the local server 115 at the specified port, e.g., on a local loopback IP address (e.g., 127.0.0.1 for IPv4, ::1 for IPv6, etc.), the “localhost” hostname, or other predefined local IP address. The connection may be established using the protocols supported by the local server 115 (e.g., TCP/IP connection establishment, etc.). In some embodiments, the application 114-1 provides a token and/or digital certificate (or signature) as part of the connection request to the local server 115-1. The local server 115 may determine whether the token is valid and/or expected (e.g., the token identifies the application 114-1, which may match the token received as a parameter of the URL 125). Similarly, the local server 115 may validate the certificate using a public key associated with the application 114-1. If the token and/or certificate are validated, the local server 115 may establish the connection with the application 114-1. Otherwise, the local server 115 may reject the connection request.



FIG. 1E illustrates an embodiment where a connection between the application 114-1 and the local server 115 has been established (and the local server 115 continues to execute as a background task in the OS 112). As shown, the account application 113 may include data 117. The data 117 may be any type of data stored locally on the device 110. The data 117 may include remotely stored data that is received by the account application 113. For example, the data 117 may include a payment card number, expiration date, CVV, address, first name, last name, email address, phone number, or any other attribute of the account with the account application 113. Advantageously, the local server 115 may provide the data 117 to the application 114-1 while the local server 115 executes in the background of the OS 112 and the application 114-1 executes in the foreground of the OS 112. In some embodiments, the local server 115 may encrypt the data 117. In such embodiments, the application 114-1 may decrypt the data 117 when received.



FIG. 1F illustrates an embodiment where the application 114-1 has received the data 117 from the local server 115. As stated, in some embodiments, the application 114-1 may decrypt the data 117 if encrypted. The application 114-1 may identify the data 117 and determine that the data 117 includes one or more attributes of the user and/or the associated account. The application 114-1 may then autofill the data 117 into one or more form fields, allowing the user to complete the checkout using data that has been securely received from the local server 115. As stated, doing so allows the data 117 to securely be transferred between applications on the same device 110. Furthermore, by requiring only a minimal set of requirements (e.g., APIs, a minimal SDK, etc.), the application 114-1 is able to receive any amount of data from the local server 115. Otherwise, the size of the application 114-1 would be much larger to support the disclosed functionality. Further still, embodiments disclosed herein allow the applications 114-1 and 113 to exchange data even though the applications are registered with different developers.



FIG. 2A depicts a schematic of an exemplary system 200, consistent with disclosed embodiments. As shown, the system 200 includes one or more contactless cards 201, one or more of the mobile computing devices 110, and an authentication server 220. The contactless cards 201 are representative of any type of payment cards, such as a credit card, debit card, ATM card, gift card, and the like. The contactless cards 201 may comprise one or more communications interfaces 209, such as a radio frequency identification (RFID) chip, configured to communicate with the computing devices 110 via NFC, the EMV standard, or other short-range protocols in wireless communication. Although NFC is used as an example communications protocol, the disclosure is equally applicable to other types of communications, such as the EMV standard, Bluetooth, and/or Wi-Fi. The authentication server 220 is representative of any type of computing device, such as a server, workstation, compute cluster, cloud computing platform, virtualized computing system, and the like.


As shown, a memory 202 of the contactless card includes an applet 203, a counter 204, a private key 205, a diversified key 206, and a unique customer identifier (ID) 207. The applet 203 is executable code configured to perform the operations described herein. The counter 204, private key 205, diversified key 206, and customer ID 207 are used to provide security in the system 200 as described in greater detail below.


As stated, the contactless cards 201 may be used to enhance the security of the local server 115 and the mobile device 110. For example, the user of device 110 may desire to use data from the account application 113 in the application 114-1. Therefore, FIG. 2A depicts an embodiment where the account application 114-1 has generated and accessed the URL 125 directed to the account application 113. The OS 112 may then open the account application 113, which may receive authentication credentials for the user's account. The account application 113 may then instruct the user to tap the contactless card 201 to the device 110. Generally, once the contactless card 201 is brought within communications range of the communications interface 218 (e.g., a card reader/writer) of the device 110, the applet 203 of the contactless card 201 may generate encrypted data as part of the authentication process required to activate the contactless card 201. To enable NFC data transfer between the contactless card 201 and the mobile device 110, the account application 113 may communicate with the contactless card 201 when the contactless card 201 is sufficiently close to the communications interface 218 of the mobile device 110. The communications interface 218 may be configured to read from and/or communicate with the communications interface 209 of the contactless card 201 (e.g., via NFC, Bluetooth, RFID, etc.). Therefore, example communications interfaces 218 include NFC communication modules, Bluetooth communication modules, and/or RFID communication modules.


As stated, the system 100 is configured to implement key diversification to secure data, which may be referred to as a key diversification technique herein. Generally, the server 220 (or another computing device) and the contactless card 201 may be provisioned with the same private key 205 (also referred to as a master key, or master symmetric key). More specifically, each contactless card 201 is programmed with a unique private key 205 that has a corresponding pair in (or managed by) the server 220. For example, when a contactless card 201 is manufactured, a unique private key 205 may be stored in the memory 202 of the contactless card 201. Similarly, the unique private key 205 may be stored in a record (or profile) of a customer associated with the contactless card 201 in the account data 224 of the server 220 (and/or stored in a different secure location, such as the hardware security module (HSM) 225). The private key 205 may be kept secret from all parties other than the contactless card 201 and server 220, thereby enhancing security of the system 100. In some embodiments, the applet 203 of the contactless card 201 may encrypt and/or decrypt data (e.g., the customer ID 207) using the private key 205 and the data as input a cryptographic algorithm. For example, encrypting the customer ID 207 with the private key 205 may result in an encrypted customer ID. Similarly, the authentication server 220 may encrypt and/or decrypt data associated with the contactless card 201 using the corresponding private key 205.


In some embodiments, the counters 204 and/or private keys 205 of the contactless card 201 and server 220 may be used in conjunction with the counters 204 to enhance security using key diversification. The counters 204 comprise values that are synchronized between a given contactless card 201 and server 220. The counter value 204 may comprise a number that changes each time data is exchanged between the contactless card 201 and the server 220 (and/or the contactless card 201 and the mobile device 110). When preparing to send data (e.g., to the server 220 and/or the mobile device 110), the applet 203 of the contactless card 201 may increment the counter value 204. The contactless card 201 may then provide the private key 205 and counter value 204 as input to a cryptographic algorithm, which produces a diversified key 206 as output. The cryptographic algorithm may include encryption algorithms, hash-based message authentication code (HMAC) algorithms, cipher-based message authentication code (CMAC) algorithms, and the like. Non-limiting examples of the cryptographic algorithm may include a symmetric encryption algorithm such as 3DES or AES128; a symmetric HMAC algorithm, such as HMAC-SHA-256; and a symmetric CMAC algorithm such as AES-CMAC. Examples of key diversification techniques are described in greater detail in U.S. patent application Ser. No. 16/205,119, filed Nov. 29, 2018. The aforementioned patent application is incorporated by reference herein in its entirety.


Continuing with the key diversification example, the contactless card 201 may then encrypt the data (e.g., the customer ID 207 and/or any other data) using the diversified key 206 and the data as input to the cryptographic algorithm. For example, encrypting the customer ID 207 with the diversified key 206 may result in an encrypted customer ID 208. Once generated, the applet 203 may transmit the encrypted customer ID 208 to the mobile device 110, e.g., via NFC. The account application 113 may then transmit the encrypted customer ID 208 to the authentication server 220 via the network 230.


The authentication application 223 may then attempt to authenticate the encrypted data. For example, the authentication application 223 may attempt to decrypt the encrypted customer ID 208 using a copy of the private key 205 stored by the server 220. In another example, the authentication application 223 may provide the private key 205 and counter value 204 as input to the cryptographic algorithm, which produces a diversified key 206 as output. The resulting diversified key 206 may correspond to the diversified key 206 of the contactless card 201, which may be used to decrypt the encrypted customer ID 208. Therefore, the authentication application 223 may successfully decrypt the encrypted data, thereby verifying the encrypted customer ID 208. For example, as stated, a customer ID 207 may be used to generate the encrypted customer ID 208. In such an example, the authentication application 223 may decrypt the encrypted customer ID 208 using the private key 205 of the authentication server 220. If the result of the decryption yields the customer ID 207 associated with the account in the account data 224, the authentication application 223 verifies the encrypted customer ID 208. Furthermore, the authentication application 223 may instruct the VAN generator 226 to generate a virtual account number, expiration date, and CVV for the account corresponding to the customer ID 207. The VAN generator 226 may then store an indication of the generated VAN, expiration date, and CVV in a record associated with the account in the account data 224. A virtual account number is a temporary (e.g., 1-time use) number that may be generated using a random number generator or other randomization function. In some embodiments, the VAN may be linked to the contactless card 201 that was tapped to the device 110 to generate the encrypted customer ID 208. In other embodiments, if the user has authenticated their account using valid account credentials in the account application 113, the VAN may be linked to a different contactless card 201 associated with the authenticated account (e.g., where an authenticated account holder has two or more cards 201, and taps a first card 201 to the device 110 to generate a VAN that is linked to a second card 201). Advantageously, using a VAN rather than the actual account number (e.g., the account number printed on the contactless card 201) preserves the security of the actual account number.


If the authentication application 223 is unable to decrypt the encrypted customer ID 208 to yield the expected result (e.g., the customer ID 207 of the account associated with the contactless card 201), the authentication application 223 does not validate the encrypted customer ID 208 and the VAN generator 226 does not generate a VAN. Due to the failed verification, the authentication application 223 may return an error to the account application 113, which may refrain from initiating the local server 115.


Regardless of the decryption technique used, the authentication application 223 may successfully decrypt the encrypted customer ID 208, thereby verifying the encrypted customer ID 207 (e.g., by comparing the resulting customer ID 208 to a customer ID stored in the account data 224, and/or based on an indication that the decryption using the key 205 and/or 206 was successful). Although the keys 205, 206 are depicted as being stored in the memory 222, the keys 205, 206 may be stored elsewhere, such as in a secure element and/or the HSM 225. In such embodiments, the secure element and/or the HSM 225 may decrypt the encrypted customer ID 207 using the keys 205 and/or 206 and a cryptographic function. Similarly, the secure element and/or HSM 225 may generate the diversified key 206 based on the private key 205 and counter value 204 as described above. Although depicted as being hosted on the same system, the authentication application 223 and the VAN generator 226 may be hosted on different systems. In some embodiment, an orchestration layer (OL) may arrange for the verification of the encrypted data by the authentication application 223 and/or the generation of the VAN by the VAN generator 226.



FIG. 2B depicts an embodiment where authentication application 223 verifies the encrypted customer ID 208. As shown, the authentication application 223 may return an indication of verification 210 to the account application 113. Similarly, the VAN generator 226 may transmit a VAN 227 (which includes an expiration date and CVV) to the account application 113. In some embodiments, the VAN 227 is transmitted with the verification 210. In other embodiments, the VAN 227 is transmitted separately from the verification 210. Based on the verification 210 and/or receipt of the VAN 227, the account application 113 may determine to initiate the local server 115. In some embodiments, the VAN 227 is generated and/or transmitted after the local server 115 is initiated. Furthermore, the account application 113 may receive other data from the server 220, such as first name, last name, phone number, email address, billing address, and/or shipping address associated with the account in the account data 224.



FIG. 2C depicts an embodiment where the account application 113 has initiated the local server 115 on the device 110. As shown, the local server 115 includes the VAN 227. The account application 113 may then generate a URL including a port number of the local server 115, where the URL is directed to the requesting application 114-1. The URL will then open the requesting application 114-1, which allows the application 114-1 to establish a connection with the local server 115 executing in the background of the OS 112.



FIG. 2D illustrates an embodiment where the other application 114-1 has established a connection with the local server 115. As shown, local server 115 may provide the VAN 227 (including an expiration date and CVV) to the other application 114-1. The other application 114-1 may then autofill the VAN 227 into a form presented in the other application 114-1, such as a payment form. As stated, the local server 115 may further provide other account-related details, such as a billing address associated with the VAN 227, a billing address of the account in the account data 224, a shipping address from the account data 224, the account holder's name, etc. Doing so allows the other application 114-1 to autofill the relevant data into one or more form fields to automate at least a portion of the checkout process (or other processes or workflows in the other application 114-1). More generally, the account application 113, including the local server 115, provides an application-based point-of-sale system that is accessible to other applications in the mobile operating system 112 even though these applications may be registered to different entities in the OS 112.



FIG. 3A is a schematic 300 depicting an example embodiment of enabling communication between applications in a mobile operating system. As shown, FIG. 3A includes a mobile device 110 executing an example application 114. For example, the application 114 may be an application that allows a user to place an order and provide payment information or the order. As shown, the graphical user interface (GUI) of the application 114 includes a payment form having fields 301-305, where field 301 a name field, field 302 is an account number field, field 303 is an expiration date field, field 304 is a CVV field, and field 305 is an address field. As shown, the application 114 may output a notification 309 specifying to select the notification 309 to complete the checkout using a virtual account number from a banking application, e.g., the account application 113.



FIG. 3B is a schematic 310 illustrating an embodiment where the user has selected the notification 309. Doing so may cause the application 114 to generate a URL 125 to the account application 113, where the URL 125 includes an identifier of the application 114 as a parameter. Once opened, the URL 125 causes the account application 113 to be opened in the foreground of the OS 112. As shown in FIG. 3B, the account application 113 may instruct the user to provide authentication credentials (not depicted) and output a notification 306 specifying to tap the contactless card 201 to the mobile device 110 to proceed with the authentication. Once the contactless card 201 is tapped to the mobile device 110, the account application 113 transmits, via the communications interface 218, an indication to the contactless card 201 to generate encrypted data as described above (e.g., the encrypted customer ID 208), and transmit the encrypted data to the account application 113. Once received, the account application 113 may then transmit the encrypted data to the server 220, where the authentication application 223 verifies the encrypted data using key diversification as described above. The authentication application 223 may then transmit an indication of the verification to the account application 113. Furthermore, if the encrypted data is verified, the authentication application 223 may instruct the VAN generator 226 to generate a VAN, expiration date for the VAN, and an account number for the VAN. The VAN generator 226 may then transmit the VAN, expiration date, and CVV to the account application 113. Furthermore, the server 220 may transmit additional data to the account application 113, such as account holder name, billing address, shipping address, phone number, email address, etc.


Once the account application 113 receives the indication specifying that the server 220 verified the encrypted data, the account application 113 may initiate the local server 115 on the device 110. The account application 113 may then generate a URL 126 directed to the requesting application 114, where a parameter of the URL 126 includes the port number of the local server 115. The application 114 may then connect to the local server 115 as described above, and request the relevant data, e.g., names, addresses, VAN, expiration date, and CVV.



FIG. 3C is a schematic 320 depicting an embodiment where the application 114 has received the requested data from the local server 115. The application 114 may include an SDK or APIs that allow the application 114 to request and/or receive data as well as parse any received data. As shown, the application 114 may autofill the user's name to the name field 301, the virtual account number to the account number field 302, the expiration date to the expiration date field 303, the CVV to the CVV field 304, and the address to the address field 305. The user may then complete the purchase using the button 311. Doing so may complete the purchase. Furthermore, the data filled in the fields 301-305 may be stored in a user profile associated with the application 114.


Operations for the disclosed embodiments may be further described with reference to the following figures. Some of the figures may include a logic flow. Although such figures presented herein may include a particular logic flow, it can be appreciated that the logic flow merely provides an example of how the general functionality as described herein can be implemented. Further, a given logic flow does not necessarily have to be executed in the order presented unless otherwise indicated. In addition, the given logic flow may be implemented by a hardware element, a software element executed by a processor, or any combination thereof. The embodiments are not limited in this context.



FIG. 4 illustrates an embodiment of a logic flow 400. The logic flow 400 may be representative of some or all of the operations executed by one or more embodiments described herein. For example, the logic flow 400 may include some or all of the operations to provide an application-based point-of-sale system in a mobile operating system. Embodiments are not limited in this context.


As shown, the logic flow 400 begins at block 405, where a device 110 outputs a first application in the foreground of a mobile OS 112. For example, the first application may be the application 114-1, which may be an application provided by a merchant. At block 410, the first application may receive an indication specifying to receive data from a second application. The second application may be the account application 113. For example, while attempting to order groceries using the merchant application, the user may specify to use a virtual account number from the account application 113 to pay for the groceries. At block 415, the first application generates a first URL directed to the second application. The first URL may include a unique identifier of the first application as a parameter.


At block 420, the OS 112 allows the first URL to be accessed, thereby opening the second application (e.g., the account application 113) in the foreground of the OS 112. At block 425, the second application may receive authentication credentials for an account and/or encrypted data from a contactless card 201. For example, the user may provide biometric credentials and tap their contactless card 201 to the device 110, which causes the card 201 to generate and transmit encrypted data. The second application may then transmit the encrypted data to the authentication server 220. When the encrypted data is verified, the server 220 may generate a VAN, expiration date, and CVV for the account. At block 430, the second application receives the VAN, expiration date, CVV, and verification of the encrypted data from the server 220. At block 435, the second application creates a local server 115 on the mobile device 110 at a specified port.


At block 440, the second application generates a second URL. The second URL may be directed to the first application. A parameter of the second URL may comprise the port number of the local server 115. At block 445, the second application registers the local server 115 and/or the second application as a background task with the OS 112, thereby allowing the local server 115 and/or the second application to execute in the background of the OS 112 for some time. In some embodiments, the second application encrypts the parameters of the second URL. At block 450, the second URL is accessed to open the first application in the foreground of the OS 112, while the local server 115 and/or the second application continue to execute in the background of the OS 112. The first application may decrypt the parameters of the second URL (if encrypted).


At block 455, the first application establishes a connection with the local server 115. At block 460, the first application requests and receives data comprising the VAN, expiration date, and CVV from the local server 115. If encrypted, the first application may decrypt the received VAN, expiration date, and CVV. At block 465, the first application processes the received data. For example, the application 114 may autofill the VAN, expiration date, CVV, address information, first name, and last name into a payment form. The user may then complete the grocery purchase using the autofilled payment information in the merchant application 114.



FIG. 5 illustrates an embodiment of a logic flow 500. The logic flow 500 may be representative of some or all of the operations executed by one or more embodiments described herein. For example, the logic flow 500 may include some or all of the operations to provide an application-based point-of-sale system in a mobile operating system. Embodiments are not limited in this context.


As shown, the logic flow 500 begins at block 505, where a user brings the contactless card 201 within communications range of the mobile device 110 (e.g., using a tap gesture) to cause the contactless card 201 to generate and transmit encrypted data (e.g., the encrypted customer ID 208). At block 510, the applet 203 of the contactless card 201 generates the diversified key 206 by encrypting the counter value 204 and the master key 205 stored in the memory 202 of the contactless card using a cryptographic algorithm. In some embodiments, the applet 203 may increment the counter 204 prior to the encryption. At block 515, the contactless card 201 encrypts data (e.g., the customer identifier 207) using the diversified key 206 and the cryptographic algorithm, generating encrypted data (e.g., the encrypted customer ID 208).


At block 520, the contactless card 201 may transmit the encrypted data to the account application 113 of the mobile device 110, e.g., using NFC. At block 525, the account application 113 of the mobile device 110 may transmit the data received from the contactless card 201 to the authentication application 223 of the server 220. At block 530, the authentication application 223 of the server 220 may generate a diversified key 206 using the private key 205 and the counter value 204 as input to a cryptographic algorithm. In one embodiment, the authentication application 223 increments the counter value 204 of the server 220 to synchronize with the counter value 204 in the memory of the contactless card 201.


At block 535, the authentication application 223 decrypts the encrypted customer ID 208 received from the contactless card 201 via the mobile device 110 using the diversified key 206. Doing so may yield at least the customer ID 207. By yielding the customer ID 207, the authentication application 223 may validate the data received from the contactless card 201 at block 540. For example, the authentication application 223 may compare the customer ID 207 to a customer identifier for the associated account in the account data 224, and validate the data based on a match. At block 545, the VAN generator 226 generates a VAN, expiration date, and CVV based on the verification of the encrypted data at block 540.


At block 550, the server 220 may transmit the VAN, expiration date, CVV, and an indication to the account application 113 specifying that the encrypted data was verified. In some embodiments, the indication of verification is not transmitted. In such embodiments, the transmission of the VAN, expiration date, and CVV (and/or any other account-related data) serves as the indication that the encrypted data was verified. At block 555, the account application 113 may initiate the local server 115. Doing so allows the local server 115 to serve as a point-of-sale application to other applications executing on the mobile device 110, e.g., by providing the VAN and related data to complete purchases in the other applications.



FIG. 6A illustrates a contactless card 201, which may comprise a payment card, such as a credit card, debit card, and/or a gift card. As shown, the contactless card 201 may be issued by a service provider 602 displayed on the front or back of the card 201. In some examples, the contactless card 201 is not related to a payment card, and may comprise, without limitation, an identification card. In some examples, the payment card may comprise a dual interface contactless payment card. The contactless card 201 may comprise a substrate 610, which may include a single layer or one or more laminated layers composed of plastics, metals, and other materials. Exemplary substrate materials include polyvinyl chloride, polyvinyl chloride acetate, acrylonitrile butadiene styrene, polycarbonate, polyesters, anodized titanium, palladium, gold, carbon, paper, and biodegradable materials. In some examples, the contactless card 201 may have physical characteristics compliant with the ID-1 format of the ISO/IEC 7810 standard, and the contactless card may otherwise be compliant with the ISO/IEC 14443 standard. However, it is understood that the contactless card 201 according to the present disclosure may have different characteristics, and the present disclosure does not require a contactless card to be implemented in a payment card.


The contactless card 201 may also include identification information 615 displayed on the front and/or back of the card, and a contact pad 620. The contact pad 620 may be configured to establish contact with another communication device, such as the mobile devices 110, a user device, smart phone, laptop, desktop, or tablet computer. The contactless card 201 may also include processing circuitry, antenna and other components not shown in FIG. 6A. These components may be located behind the contact pad 620 or elsewhere on the substrate 610. The contactless card 201 may also include a magnetic strip or tape, which may be located on the back of the card (not shown in FIG. 6A).


As illustrated in FIG. 6B, the contact pad 620 of contactless card 201 may include processing circuitry 625 for storing and processing information, including a microprocessor 630 and the memory 202. It is understood that the processing circuitry 625 may contain additional components, including processors, memories, error and parity/CRC checkers, data encoders, anti-collision algorithms, controllers, command decoders, security primitives and tamper proofing hardware, as necessary to perform the functions described herein.


The memory 202 may be a read-only memory, write-once read-multiple memory or read/write memory, e.g., RAM, ROM, and EEPROM, and the contactless card 201 may include one or more of these memories. A read-only memory may be factory programmable as read-only or one-time programmable. One-time programmability provides the opportunity to write once then read many times. A write once/read-multiple memory may be programmed at a point in time after the memory chip has left the factory. Once the memory is programmed, it may not be rewritten, but it may be read many times. A read/write memory may be programmed and re-programed many times after leaving the factory. A read/write memory may also be read many times after leaving the factory.


The memory 202 may be configured to store one or more applets 203, the counter value 204, private key 205, the diversified key 206, and one or more customer IDs 207. The one or more applets 203 may comprise one or more software applications configured to execute on one or more contactless cards, such as a Java® Card applet. However, it is understood that applets 203 are not limited to Java Card applets, and instead may be any software application operable on contactless cards or other devices having limited memory. The customer ID 207 may comprise a unique alphanumeric identifier assigned to a user of the contactless card 201, and the identifier may distinguish the user of the contactless card from other contactless card users. In some examples, the customer ID 207 may identify both a customer and an account assigned to that customer and may further identify the contactless card associated with the customer's account. In some embodiments, the applet 203 may use the customer ID 207 as input to a cryptographic algorithm with the keys 205 and/or 206 to encrypt the customer ID 207. Similarly, the applet 203 may construct a URL that includes the encrypted customer ID 207 as a parameter.


The processor and memory elements of the foregoing exemplary embodiments are described with reference to the contact pad, but the present disclosure is not limited thereto. It is understood that these elements may be implemented outside of the pad 620 or entirely separate from it, or as further elements in addition to processor 630 and memory 202 elements located within the contact pad 620.


In some examples, the contactless card 201 may comprise one or more antennas 655. The one or more antennas 655 may be placed within the contactless card 201 and around the processing circuitry 625 of the contact pad 620. For example, the one or more antennas 655 may be integral with the processing circuitry 625 and the one or more antennas 655 may be used with an external booster coil. As another example, the one or more antennas 655 may be external to the contact pad 620 and the processing circuitry 625.


In an embodiment, the coil of contactless card 201 may act as the secondary of an air core transformer. The terminal may communicate with the contactless card 201 by cutting power or amplitude modulation. The contactless card 201 may infer the data transmitted from the terminal using the gaps in the contactless card's power connection, which may be functionally maintained through one or more capacitors. The contactless card 201 may communicate back by switching a load on the contactless card's coil or load modulation. Load modulation may be detected in the terminal's coil through interference. More generally, using the antennas 655, processing circuitry 625, and/or the memory 202, the contactless card 201 provides a communications interface to communicate via NFC, Bluetooth, and/or Wi-Fi communications.


As explained above, contactless cards 201 may be built on a software platform operable on smart cards or other devices having limited memory, such as JavaCard, and one or more or more applications or applets may be securely executed. Applets may be added to contactless cards to provide a one-time password (OTP) for multifactor authentication (MFA) in various mobile application-based use cases. Applets may be configured to respond to one or more requests, such as near field data exchange requests, from a reader, such as a mobile NFC reader (e.g., the communications interface 218 of the device 110), and produce an NDEF message that comprises a cryptographically secure OTP (e.g., an encrypted customer ID) encoded as an NDEF text tag.



FIG. 7 illustrates an embodiment of an exemplary computing architecture 700 comprising a computing system 702 that may be suitable for implementing various embodiments as previously described. In various embodiments, the computing architecture 700 may comprise or be implemented as part of an electronic device. In some embodiments, the computing architecture 700 may be representative, for example, of a system that implements one or more components of the systems 100 and/or 200. In some embodiments, computing system 702 may be representative, for example, of the contactless card 201, mobile devices 110, and authentication server 220. The embodiments are not limited in this context. More generally, the computing architecture 700 is configured to implement all logic, applications, systems, methods, apparatuses, and functionality described herein with reference to FIGS. 1-6B.


As used in this application, the terms “system” and “component” and “module” are intended to refer to a computer-related entity, either hardware, a combination of hardware and software, software, or software in execution, examples of which are provided by the exemplary computing architecture 700. For example, a component can be, but is not limited to being, a process running on a computer processor, a computer processor, a hard disk drive, multiple storage drives (of optical and/or magnetic storage medium), an object, an executable, a thread of execution, a program, and/or a computer. By way of illustration, both an application running on a server and the server can be a component. One or more components can reside within a process and/or thread of execution, and a component can be localized on one computer and/or distributed between two or more computers. Further, components may be communicatively coupled to each other by various types of communications media to coordinate operations. The coordination may involve the uni-directional or bi-directional exchange of information. For instance, the components may communicate information in the form of signals communicated over the communications media. The information can be implemented as signals allocated to various signal lines. In such allocations, each message is a signal. Further embodiments, however, may alternatively employ data messages. Such data messages may be sent across various connections. Exemplary connections include parallel interfaces, serial interfaces, and bus interfaces.


The computing system 702 includes various common computing elements, such as one or more processors, multi-core processors, co-processors, memory units, chipsets, controllers, peripherals, interfaces, oscillators, timing devices, video cards, audio cards, multimedia input/output (I/O) components, power supplies, and so forth. The embodiments, however, are not limited to implementation by the computing system 702.


As shown in FIG. 7, the computing system 702 comprises a processor 704, a system memory 706 and a system bus 708. The processor 704 can be any of various commercially available computer processors, including without limitation an AMD® Athlon®, Duron® and Opteron® processors; ARM® application, embedded and secure processors; IBM® and Motorola® DragonBall® and PowerPC® processors; IBM and Sony® Cell processors; Intel® Celeron®, Core®, Core (2) Duo®, Itanium®, Pentium®, Xeon®, and XScale® processors; and similar processors. Dual microprocessors, multi-core processors, and other multi-processor architectures may also be employed as the processor 704.


The system bus 708 provides an interface for system components including, but not limited to, the system memory 706 to the processor 704. The system bus 708 can be any of several types of bus structure that may further interconnect to a memory bus (with or without a memory controller), a peripheral bus, and a local bus using any of a variety of commercially available bus architectures. Interface adapters may connect to the system bus 708 via a slot architecture. Example slot architectures may include without limitation Accelerated Graphics Port (AGP), Card Bus, (Extended) Industry Standard Architecture ((E)ISA), Micro Channel Architecture (MCA), NuBus, Peripheral Component Interconnect (Extended) (PCI(X)), PCI Express, Personal Computer Memory Card International Association (PCMCIA), and the like.


The system memory 706 may include various types of computer-readable storage media in the form of one or more higher speed memory units, such as read-only memory (ROM), random-access memory (RAM), dynamic RAM (DRAM), Double-Data-Rate DRAM (DDRAM), synchronous DRAM (SDRAM), static RAM (SRAM), programmable ROM (PROM), erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), flash memory (e.g., one or more flash arrays), polymer memory such as ferroelectric polymer memory, ovonic memory, phase change or ferroelectric memory, silicon-oxide-nitride-oxide-silicon (SONOS) memory, magnetic or optical cards, an array of devices such as Redundant Array of Independent Disks (RAID) drives, solid state memory devices (e.g., USB memory, solid state drives (SSD) and any other type of storage media suitable for storing information. In the illustrated embodiment shown in FIG. 7, the system memory 706 can include non-volatile memory 710 and/or volatile memory 712. A basic input/output system (BIOS) can be stored in the non-volatile memory 710.


The computing system 702 may include various types of computer-readable storage media in the form of one or more lower speed memory units, including an internal (or external) hard disk drive (HDD) 714, a magnetic floppy disk drive (FDD) 716 to read from or write to a removable magnetic disk 718, and an optical disk drive 720 to read from or write to a removable optical disk 722 (e.g., a CD-ROM or DVD). The HDD 714, FDD 716 and optical disk drive 720 can be connected to the system bus 708 by an HDD interface 724, an FDD interface 726 and an optical drive interface 728, respectively. The HDD interface 724 for external drive implementations can include at least one or both of Universal Serial Bus (USB) and IEEE 1394 interface technologies. The computing system 702 is generally is configured to implement all logic, systems, methods, apparatuses, and functionality described herein with reference to FIGS. 1-6B.


The drives and associated computer-readable media provide volatile and/or nonvolatile storage of data, data structures, computer-readable instructions, computer-executable instructions, and so forth. For example, a number of program modules can be stored in the drives and memory units 710, 712, including an operating system 730, one or more application programs 732, other program modules 734, and program data 736. In one embodiment, the one or more application programs 732, other program modules 734, and program data 736 can include, for example, the various applications and/or components of the systems 100, 200, e.g., the applet 203, counter 204, private key 205, diversified key 206, customer ID 207, operating system 112, account application 113, other applications 114, the authentication application 223, the account data 224, and/or the encrypted customer ID 208.


A user can enter commands and information into the computing system 702 through one or more wire/wireless input devices, for example, a keyboard 738 and a pointing device, such as a mouse 740. Other input devices may include microphones, infra-red (IR) remote controls, radio-frequency (RF) remote controls, game pads, stylus pens, card readers, dongles, finger print readers, gloves, graphics tablets, joysticks, keyboards, retina readers, touch screens (e.g., capacitive, resistive, etc.), trackballs, trackpads, sensors, styluses, and the like. These and other input devices are often connected to the processor 704 through an input device interface 742 that is coupled to the system bus 708, but can be connected by other interfaces such as a parallel port, IEEE 1394 serial port, a game port, a USB port, an IR interface, and so forth.


A monitor 744 or other type of display device is also connected to the system bus 708 via an interface, such as a video adaptor 746. The monitor 744 may be internal or external to the computing system 702. In addition to the monitor 744, a computer typically includes other peripheral output devices, such as speakers, printers, and so forth.


The computing system 702 may operate in a networked environment using logical connections via wire and/or wireless communications to one or more remote computers, such as a remote computer 748. The remote computer 748 can be a workstation, a server computer, a router, a personal computer, portable computer, microprocessor-based entertainment appliance, a peer device or other common network node, and typically includes many or all of the elements described relative to the computing system 702, although, for purposes of brevity, only a memory/storage device 750 is illustrated. The logical connections depicted include wire/wireless connectivity to a local area network (LAN) 752 and/or larger networks, for example, a wide area network (WAN) 754. Such LAN and WAN networking environments are commonplace in offices and companies, and facilitate enterprise-wide computer networks, such as intranets, all of which may connect to a global communications network, for example, the Internet. In embodiments, the network 230 of FIG. 2 is one or more of the LAN 752 and the WAN 754.


When used in a LAN networking environment, the computing system 702 is connected to the LAN 752 through a wire and/or wireless communication network interface or adaptor 756. The adaptor 756 can facilitate wire and/or wireless communications to the LAN 752, which may also include a wireless access point disposed thereon for communicating with the wireless functionality of the adaptor 756.


When used in a WAN networking environment, the computing system 702 can include a modem 758, or is connected to a communications server on the WAN 754, or has other means for establishing communications over the WAN 754, such as by way of the Internet. The modem 758, which can be internal or external and a wire and/or wireless device, connects to the system bus 708 via the input device interface 742. In a networked environment, program modules depicted relative to the computing system 702, or portions thereof, can be stored in the remote memory/storage device 750. It will be appreciated that the network connections shown are exemplary and other means of establishing a communications link between the computers can be used.


The computing system 702 is operable to communicate with wired and wireless devices or entities using the IEEE 802 family of standards, such as wireless devices operatively disposed in wireless communication (e.g., IEEE 802.16 over-the-air modulation techniques). This includes at least Wi-Fi (or Wireless Fidelity), WiMax, and Bluetooth™ wireless technologies, among others. Thus, the communication can be a predefined structure as with a conventional network or simply an ad hoc communication between at least two devices. Wi-Fi networks use radio technologies called IEEE 802.11x (a, b, g, n, etc.) to provide secure, reliable, fast wireless connectivity. A Wi-Fi network can be used to connect computers to each other, to the Internet, and to wire networks (which use IEEE 802.3-related media and functions).


Various embodiments may be implemented using hardware elements, software elements, or a combination of both. Examples of hardware elements may include processors, microprocessors, circuits, circuit elements (e.g., transistors, resistors, capacitors, inductors, and so forth), integrated circuits, application specific integrated circuits (ASIC), programmable logic devices (PLD), digital signal processors (DSP), field programmable gate array (FPGA), logic gates, registers, semiconductor device, chips, microchips, chip sets, and so forth. Examples of software may include software components, programs, applications, computer programs, application programs, system programs, machine programs, operating system software, middleware, firmware, software modules, routines, subroutines, functions, methods, procedures, software interfaces, application program interfaces (API), instruction sets, computing code, computer code, code segments, computer code segments, words, values, symbols, or any combination thereof. Determining whether an embodiment is implemented using hardware elements and/or software elements may vary in accordance with any number of factors, such as desired computational rate, power levels, heat tolerances, processing cycle budget, input data rates, output data rates, memory resources, data bus speeds and other design or performance constraints.


One or more aspects of at least one embodiment may be implemented by representative instructions stored on a machine-readable medium which represents various logic within the processor, which when read by a machine causes the machine to fabricate logic to perform the techniques described herein. Such representations, known as “IP cores” may be stored on a tangible, machine readable medium and supplied to various customers or manufacturing facilities to load into the fabrication machines that make the logic or processor. Some embodiments may be implemented, for example, using a machine-readable medium or article which may store an instruction or a set of instructions that, if executed by a machine, may cause the machine to perform a method and/or operations in accordance with the embodiments. Such a machine may include, for example, any suitable processing platform, computing platform, computing device, processing device, computing system, processing system, computer, processor, or the like, and may be implemented using any suitable combination of hardware and/or software. The machine-readable medium or article may include, for example, any suitable type of memory unit, memory device, memory article, memory medium, storage device, storage article, storage medium and/or storage unit, for example, memory, removable or non-removable media, erasable or non-erasable media, writeable or re-writeable media, digital or analog media, hard disk, floppy disk, Compact Disk Read Only Memory (CD-ROM), Compact Disk Recordable (CD-R), Compact Disk Rewriteable (CD-RW), optical disk, magnetic media, magneto-optical media, removable memory cards or disks, various types of Digital Versatile Disk (DVD), a tape, a cassette, or the like. The instructions may include any suitable type of code, such as source code, compiled code, interpreted code, executable code, static code, dynamic code, encrypted code, and the like, implemented using any suitable high-level, low-level, object-oriented, visual, compiled and/or interpreted programming language.


The foregoing description of example embodiments has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the present disclosure to the precise forms disclosed. Many modifications and variations are possible in light of this disclosure. It is intended that the scope of the present disclosure be limited not by this detailed description, but rather by the claims appended hereto. Future filed applications claiming priority to this application may claim the disclosed subject matter in a different manner, and may generally include any set of one or more limitations as variously disclosed or otherwise demonstrated herein.

Claims
  • 1. A mobile device, comprising: a processor; anda memory storing a first application, a second application, and instructions which when executed by the processor cause the processor to: generate, by the first application executing on the processor, a first URL directed to the second application, wherein a parameter of the first URL comprises an identifier of the first application;access, by a mobile operating system (OS) executing on the processor, the first URL to open the second application;receive, by the second application from a server, a virtual account number (VAN) associated with an account;initiate, by the second application, a transmission control protocol/internet protocol (TCP/IP) server on a port;generate, by the second application, a second URL directed to the first application, wherein a parameter of the second URL comprises the port;access, by the OS, the second URL to open the first application;establish, by the first application, a connection with the TCP/IP server using the port specified in the parameter of the second URL;receive, by the first application, the VAN from the second application via the connection with the TCP/IP server; andautofill, by the first application, the VAN to a form field of a payment form in the first application.
  • 2. The mobile device of claim 1, the memory storing instructions which when executed by the processor cause the processor to, prior to the second application receiving the VAN: receive, by the second application, encrypted data from a contactless card assigned to the account, wherein the encrypted data is based on a diversified key, wherein the diversified key is based on a master key and a counter value associated with the contactless card;transmit, by the second application, the encrypted data to the server; andreceive, by the second application, an indication from the server specifying the server decrypted the encrypted data based on the diversified key, wherein the second application receives the VAN based at least in part on the received indication from the server.
  • 3. The mobile device of claim 1, the memory storing instructions which when executed by the processor cause the processor to: select, by the second application, a port number from a plurality of port numbers as the port, wherein the TCP/IP server is initiated on the selected port number;receive, by the TCP/IP server, a request to establish the connection from the first application, wherein the request comprises a certificate of the first application;validate, by the second application, the certificate of the first application; anddetermine, by the second application, to establish the connection based on identifying the identifier of the first application in the request and the validation of the certificate of the first application, wherein the TCP/IP server is accessible only to applications executing on the mobile device.
  • 4. The mobile device of claim 1, the memory storing instructions which when executed by the processor cause the processor to, prior to the second application receiving the VAN: determine, by the second application, that the account has not been accessed using the second application within a time threshold;output, by the second application, an indication specifying to provide authentication credentials for the account;receive, by the second application, authentication credentials for the account; andvalidate, by the second application, the received authentication credentials for the account.
  • 5. The mobile device of claim 1, the memory storing instructions which when executed by the processor cause the processor to: validate, by the first application using an application programming interface (API) of the OS, at least a portion of the first URL;validate, by the second application using the API of the OS, at least a portion of the second URL;receive, by the TCP/IP server, a connection request from a second device via a network; andreject, by the TCP/IP server, the connection request based on the connection request being received from the second device via the network and the TCP/IP server being accessible only to applications executing on the processor of the mobile device.
  • 6. The mobile device of claim 1, the memory storing instructions which when executed by the processor cause the processor to: receive, by the second application from the server, a plurality of attributes comprising a name associated with the account, an expiration date of the VAN, and a card verification value (CVV) of the VAN;receive, by the first application, the plurality of attributes from the second application via the connection with the TCP/IP server;autofill, by the first application, each attribute to a respective field of the payment form in the first application; andprocess, by the first application, payment for a purchase using the VAN and the received attributes.
  • 7. The mobile device of claim 1, wherein the first and second URLs comprise universal link URLs, wherein the OS restricts communication between the first and second applications without using the TCP/IP server based on the first and second applications being registered with different developers, the memory storing instructions which when executed by the processor cause the processor to: register, by the second application using an application programming interface of the OS, the second application as a background task to execute in a background of the OS; andexecute, by the OS, the TCP/IP server as part of the background task in the background of the OS.
  • 8. A non-transitory computer-readable storage medium comprising computer-readable program code which when executed by a processor of a mobile device cause the processor to: generate, by a first application executing on the processor, a first URL directed to a second application, wherein a parameter of the first URL comprises an identifier of the first application;access, by a mobile operating system (OS) executing on the processor, the first URL to open the second application;receive, by the second application from a server, a virtual account number (VAN) associated with an account;initiate, by the second application, a transmission control protocol/internet protocol (TCP/IP) server on a port;generate, by the second application, a second URL directed to the first application, wherein a parameter of the second URL comprises the port;access, by the OS, the second URL to open the first application;establish, by the first application, a connection with the TCP/IP server using the port specified in the parameter of the second URL;receive, by the first application, the VAN from the second application via the connection with the TCP/IP server; andautofill, by the first application, the VAN to a form field of a payment form in the first application.
  • 9. The computer-readable storage medium of claim 8, comprising computer-readable program code which when executed by the processor cause the processor to: receive, by the second application, encrypted data from a contactless card assigned to the account, wherein the encrypted data is based on a diversified key, wherein the diversified key is based on a master key and a counter value associated with the contactless card;transmit, by the second application, the encrypted data to the server; andreceive, by the second application, an indication from the server specifying the server decrypted the encrypted data based on the diversified key, wherein the second application receives the VAN based at least in part on the received indication from the server.
  • 10. The computer-readable storage medium of claim 8, comprising computer-readable program code which when executed by the processor cause the processor to: select, by the second application, a port number from a plurality of port numbers as the port, wherein the TCP/IP server is initiated on the selected port number;receive, by the TCP/IP server of the second application, a request to establish the connection from the first application, wherein the request comprises a certificate of the first application;validate, by the second application, the certificate of the first application; anddetermine, by the second application, to establish the connection based on identifying the identifier of the first application in the request and the validation of the certificate of the first application, wherein the TCP/IP server is accessible only to applications executing on the mobile device.
  • 11. The computer-readable storage medium of claim 8, comprising computer-readable program code which when executed by the processor cause the processor to: validate, by the first application using an application programming interface (API) of the OS, at least a portion of the first URL;validate, by the second application using the API of the OS, at least a portion of the second URL;receive, by the TCP/IP server, a connection request from a second device via a network; andreject, by the TCP/IP server, the connection request based on the connection request being received from the second device via the network and the TCP/IP server being accessible only to applications executing on the processor of the mobile device.
  • 12. The computer-readable storage medium of claim 8, comprising computer-readable program code which when executed by the processor cause the processor to: receive, by the first application, an updated value for an attribute of the account;transmit, by the first application, the updated value for the attribute of the account to the second application via the connection with the TCP/IP server; andoutput, by the second application, an indication specifying to store the updated value for the attribute in the account.
  • 13. The computer-readable storage medium of claim 8, comprising computer-readable program code which when executed by the processor cause the processor to: receive, by the second application from the server, a plurality of attributes comprising a name associated with the account, an expiration date of the VAN, and a card verification value (CVV) of the VAN;receive, by the first application, the plurality of attributes from the second application via the connection with the TCP/IP server;autofill, by the first application, each attribute to a respective field of the payment form in the first application; andprocess, by the first application, payment for a purchase using the VAN and the received attributes.
  • 14. A method, comprising: generating, by a first application executing on a processor of a mobile device, a first URL directed to a second application, wherein a parameter of the first URL comprises an identifier of the first application;accessing, by a mobile operating system (OS) executing on the processor, the first URL to open the second application;receiving, by the second application from a server, a virtual account number (VAN) associated with an account;initiating, by the second application, a transmission control protocol/internet protocol (TCP/IP) server on a port;generating, by the second application, a second URL directed to the first application, wherein a parameter of the second URL comprises the port;accessing, by the OS, the second URL to open the first application;establishing, by the first application, a connection with the TCP/IP server using the port specified in the parameter of the second URL;receiving, by the first application, the VAN from the second application via the connection with the TCP/IP server; andautofilling, by the first application, the VAN to a form field of a payment form in the first application.
  • 15. The method of claim 14, further comprising, prior to the second application receiving the VAN: receiving, by the second application, encrypted data from a contactless card assigned to the account, wherein the encrypted data is generated based on a diversified key, wherein the diversified key is generated based on a master key and a counter value associated with the contactless card;transmitting, by the second application, the encrypted data to the server; andreceiving, by the second application, an indication from the server specifying the server decrypted the encrypted data by generating an instance of the diversified key based on the master key and the counter value associated with the contactless card, wherein the second application receives the VAN based at least in part on the received indication from the server.
  • 16. The method of claim 14, further comprising: selecting, by the second application, a port number from a plurality of port numbers as the port, wherein the TCP/IP server is initiated on the selected port number;receiving, by the TCP/IP server of the second application, a request to establish the connection from the first application, wherein the request comprises a certificate of the first application;validating, by the second application, the certificate of the first application; anddetermining, by the second application, to establish the connection based on identifying the identifier of the first application in the request and the validation of the certificate of the first application, wherein the TCP/IP server is accessible only to applications executing on the mobile device.
  • 17. The method of claim 14, further comprising: determining, by the second application, that the account has not been accessed using the second application within a time threshold;outputting, by the second application, an indication specifying to provide authentication credentials for the account;receiving, by the second application, authentication credentials for the account; andvalidating, by the second application, the received authentication credentials for the account.
  • 18. The method of claim 14, further comprising: validating, by the first application using an application programming interface (API) of the OS, at least a portion of the first URL;validating, by the second application using the API of the OS, at least a portion of the second URL;receiving, by the TCP/IP server, a connection request from a second device via a network; andrejecting, by the TCP/IP server, the connection request based on the connection request being received from the second device via the network and the TCP/IP server being accessible only to applications executing on the processor of the mobile device.
  • 19. The method of claim 14, further comprising: receiving, by the second application from the server, a plurality of attributes comprising a name associated with the account, an expiration date of the VAN, and a card verification value (CVV) of the VAN;receiving, by the first application, the plurality of attributes from the second application via the connection with the TCP/IP server;autofilling, by the first application, each attribute to a respective field of the payment form in the first application; andprocessing, by the first application, payment for a purchase using the VAN and the received attributes.
  • 20. The method of claim 14, wherein the first and second URLs comprise universal link URLs, wherein the OS restricts communication between the first and second applications without using the TCP/IP server based on the first and second applications being registered with different developers, the method further comprising: registering, by the second application using an application programming interface of the OS, the second application as a background task to execute in a background of the OS; andexecuting, by the OS, the TCP/IP server as part of the background task in the background of the OS.
US Referenced Citations (550)
Number Name Date Kind
4683553 Mollier Jul 1987 A
4827113 Rikuna May 1989 A
4910773 Hazard et al. Mar 1990 A
5036461 Elliott et al. Jul 1991 A
5363448 Koopman, Jr. et al. Nov 1994 A
5377270 Koopman, Jr. et al. Dec 1994 A
5533126 Hazard Jul 1996 A
5537314 Kanter Jul 1996 A
5592553 Guski et al. Jan 1997 A
5616901 Crandall Apr 1997 A
5666415 Kaufman Sep 1997 A
5763373 Robinson et al. Jun 1998 A
5764789 Pare, Jr. et al. Jun 1998 A
5768373 Lohstroh et al. Jun 1998 A
5778072 Samar Jul 1998 A
5796827 Coppersmith et al. Aug 1998 A
5832090 Raspotnik Nov 1998 A
5883810 Franklin et al. Mar 1999 A
5901874 Deters May 1999 A
5929413 Gardner Jul 1999 A
5960411 Hartman et al. Sep 1999 A
6021203 Douceur et al. Feb 2000 A
6049328 Vanderheiden Apr 2000 A
6058373 Blinn et al. May 2000 A
6061666 Do et al. May 2000 A
6105013 Curry et al. Aug 2000 A
6199114 White et al. Mar 2001 B1
6199762 Hohle Mar 2001 B1
6216227 Goldstein et al. Apr 2001 B1
6227447 Campisano May 2001 B1
6282522 Davis et al. Aug 2001 B1
6324271 Sawyer et al. Nov 2001 B1
6342844 Rozin Jan 2002 B1
6367011 Lee et al. Apr 2002 B1
6402028 Graham, Jr. et al. Jun 2002 B1
6438550 Doyle et al. Aug 2002 B1
6501847 Helot et al. Dec 2002 B2
6631197 Taenzer Oct 2003 B1
6641050 Kelley et al. Nov 2003 B2
6655585 Shinn Dec 2003 B2
6662020 Aaro et al. Dec 2003 B1
6721706 Strubbe et al. Apr 2004 B1
6731778 Oda et al. May 2004 B1
6779115 Naim Aug 2004 B1
6792533 Jablon Sep 2004 B2
6829711 Kwok et al. Dec 2004 B1
6834271 Hodgson et al. Dec 2004 B1
6834795 Rasmussen et al. Dec 2004 B1
6852031 Rowe Feb 2005 B1
6865547 Brake, Jr. et al. Mar 2005 B1
6873260 Lancos et al. Mar 2005 B2
6877656 Jaros et al. Apr 2005 B1
6889198 Kawan May 2005 B2
6905411 Nguyen et al. Jun 2005 B2
6910627 Simpson-Young et al. Jun 2005 B1
6971031 Haala Nov 2005 B2
6990588 Yasukura Jan 2006 B1
7006986 Sines et al. Feb 2006 B1
7085931 Smith et al. Aug 2006 B1
7127605 Montgomery et al. Oct 2006 B1
7128274 Kelley et al. Oct 2006 B2
7140550 Ramachandran Nov 2006 B2
7152045 Hoffman Dec 2006 B2
7165727 de Jong Jan 2007 B2
7175076 Block et al. Feb 2007 B1
7202773 Oba et al. Apr 2007 B1
7206806 Pineau Apr 2007 B2
7232073 de Jong Jun 2007 B1
7237261 Huber Jun 2007 B1
7246752 Brown Jul 2007 B2
7254569 Goodman et al. Aug 2007 B2
7263507 Brake, Jr. et al. Aug 2007 B1
7270276 Vayssiere Sep 2007 B2
7278025 Saito et al. Oct 2007 B2
7287692 Patel et al. Oct 2007 B1
7290709 Tsai et al. Nov 2007 B2
7306143 Bonneau, Jr. et al. Dec 2007 B2
7319986 Praisner et al. Jan 2008 B2
7325132 Takayama et al. Jan 2008 B2
7373515 Owen et al. May 2008 B2
7374099 de Jong May 2008 B2
7375616 Rowse et al. May 2008 B2
7380710 Brown Jun 2008 B2
7424977 Smets et al. Sep 2008 B2
7453439 Kushler et al. Nov 2008 B1
7472829 Brown Jan 2009 B2
7487357 Smith et al. Feb 2009 B2
7568631 Gibbs et al. Aug 2009 B2
7584153 Brown et al. Sep 2009 B2
7597250 Finn Oct 2009 B2
7628322 Holtmanns et al. Dec 2009 B2
7652578 Braun et al. Jan 2010 B2
7689832 Talmor et al. Mar 2010 B2
7703142 Wilson et al. Apr 2010 B1
7748609 Sachdeva et al. Jul 2010 B2
7748617 Gray Jul 2010 B2
7748636 Finn Jul 2010 B2
7762457 Bonalle et al. Jul 2010 B2
7789302 Tame Sep 2010 B2
7793851 Mullen Sep 2010 B2
7796013 Murakami et al. Sep 2010 B2
7801799 Brake, Jr. et al. Sep 2010 B1
7801827 Bishop Sep 2010 B2
7801829 Gray et al. Sep 2010 B2
7805755 Brown et al. Sep 2010 B2
7809643 Phillips et al. Oct 2010 B2
7827115 Weller et al. Nov 2010 B2
7828214 Narendra et al. Nov 2010 B2
7848746 Juels Dec 2010 B2
7882553 Tuliani Feb 2011 B2
7900048 Andersson Mar 2011 B2
7908216 Davis et al. Mar 2011 B1
7922082 Muscato Apr 2011 B2
7933589 Mamdani et al. Apr 2011 B1
7949559 Freiberg May 2011 B2
7954716 Narendra et al. Jun 2011 B2
7954723 Charrat Jun 2011 B2
7962369 Rosenberg Jun 2011 B2
7993197 Kaminkow Aug 2011 B2
8005426 Huomo et al. Aug 2011 B2
8010405 Bortolin et al. Aug 2011 B1
RE42762 Shin et al. Sep 2011 E
8041954 Plesman Oct 2011 B2
8060012 Sklovsky et al. Nov 2011 B2
8074877 Mullen et al. Dec 2011 B2
8082450 Frey et al. Dec 2011 B2
8095113 Kean et al. Jan 2012 B2
8099332 Lemay et al. Jan 2012 B2
8103249 Markison Jan 2012 B2
8108687 Ellis et al. Jan 2012 B2
8127143 Abdallah et al. Feb 2012 B2
8135648 Oram et al. Mar 2012 B2
8140010 Symons et al. Mar 2012 B2
8141136 Lee et al. Mar 2012 B2
8150321 Winter et al. Apr 2012 B2
8150767 Wankmueller Apr 2012 B2
8186602 Itay et al. May 2012 B2
8196131 von Behren et al. Jun 2012 B1
8215563 Levy et al. Jul 2012 B2
8224753 Atef et al. Jul 2012 B2
8232879 Davis Jul 2012 B2
8233841 Griffin et al. Jul 2012 B2
8245292 Buer Aug 2012 B2
8249654 Zhu Aug 2012 B1
8266451 Leydier et al. Sep 2012 B2
8285329 Zhu Oct 2012 B1
8302872 Mullen Nov 2012 B2
8312519 Bailey et al. Nov 2012 B1
8316237 Felsher et al. Nov 2012 B1
8332272 Fisher Dec 2012 B2
8365988 Medina, III et al. Feb 2013 B1
8369960 Tran et al. Feb 2013 B2
8371501 Hopkins Feb 2013 B1
8381307 Cimino Feb 2013 B2
8391719 Alameh et al. Mar 2013 B2
8417231 Sanding et al. Apr 2013 B2
8439271 Smets et al. May 2013 B2
8475367 Yuen et al. Jul 2013 B1
8489112 Roeding et al. Jul 2013 B2
8511542 Pan Aug 2013 B2
8559872 Butler Oct 2013 B2
8566916 Bailey et al. Oct 2013 B1
8567670 Stanfield et al. Oct 2013 B2
8572386 Takekawa et al. Oct 2013 B2
8577810 Dalit et al. Nov 2013 B1
8583454 Beraja et al. Nov 2013 B2
8589335 Smith et al. Nov 2013 B2
8594730 Bona et al. Nov 2013 B2
8615468 Varadarajan Dec 2013 B2
8620218 Awad Dec 2013 B2
8667285 Coulier et al. Mar 2014 B2
8723941 Shirbabadi et al. May 2014 B1
8726405 Bailey et al. May 2014 B1
8740073 Vijayshankar et al. Jun 2014 B2
8750514 Gallo et al. Jun 2014 B2
8752189 de Jong Jun 2014 B2
8794509 Bishop et al. Aug 2014 B2
8799668 Cheng Aug 2014 B2
8806592 Ganesan Aug 2014 B2
8807440 von Behren et al. Aug 2014 B1
8811892 Khan et al. Aug 2014 B2
8814039 Bishop et al. Aug 2014 B2
8814052 Bona et al. Aug 2014 B2
8818867 Baldwin et al. Aug 2014 B2
8850538 Vernon et al. Sep 2014 B1
8861733 Benteo et al. Oct 2014 B2
8880027 Darringer Nov 2014 B1
8888002 Marshall Chesney et al. Nov 2014 B2
8898088 Springer et al. Nov 2014 B2
8934837 Zhu et al. Jan 2015 B2
8977569 Rao Mar 2015 B2
8994498 Agrafioti et al. Mar 2015 B2
9004365 Bona et al. Apr 2015 B2
9038894 Khalid May 2015 B2
9042814 Royston et al. May 2015 B2
9047531 Showering et al. Jun 2015 B2
9069976 Toole et al. Jun 2015 B2
9081948 Magne Jul 2015 B2
9104853 Venkataramani et al. Aug 2015 B2
9118663 Bailey et al. Aug 2015 B1
9122964 Krawczewicz Sep 2015 B2
9129280 Bona et al. Sep 2015 B2
9152832 Royston et al. Oct 2015 B2
9203800 Izu et al. Dec 2015 B2
9209867 Royston Dec 2015 B2
9251330 Boivie et al. Feb 2016 B2
9251518 Levin et al. Feb 2016 B2
9258715 Borghei Feb 2016 B2
9270337 Zhu et al. Feb 2016 B2
9306626 Hall et al. Apr 2016 B2
9306942 Bailey et al. Apr 2016 B1
9324066 Archer et al. Apr 2016 B2
9324067 Van Os et al. Apr 2016 B2
9332587 Salahshoor May 2016 B2
9338622 Bjontegard May 2016 B2
9373141 Shakkarwar Jun 2016 B1
9379841 Fine et al. Jun 2016 B2
9413430 Royston et al. Aug 2016 B2
9413768 Gregg et al. Aug 2016 B1
9420496 Indurkar Aug 2016 B1
9426132 Alikhani Aug 2016 B1
9432339 Bowness Aug 2016 B1
9455968 Machani et al. Sep 2016 B1
9473509 Arsanjani et al. Oct 2016 B2
9491626 Sharma et al. Nov 2016 B2
9553637 Yang et al. Jan 2017 B2
9619952 Zhao et al. Apr 2017 B1
9635000 Muftic Apr 2017 B1
9665858 Kumar May 2017 B1
9674705 Rose et al. Jun 2017 B2
9679286 Colnot et al. Jun 2017 B2
9680942 Dimmick Jun 2017 B2
9710804 Zhou et al. Jul 2017 B2
9740342 Paulsen et al. Aug 2017 B2
9740988 Levin et al. Aug 2017 B1
9763097 Robinson et al. Sep 2017 B2
9767329 Forster Sep 2017 B2
9769662 Queru Sep 2017 B1
9773151 Mil'shtein et al. Sep 2017 B2
9780953 Gaddam et al. Oct 2017 B2
9891823 Feng et al. Feb 2018 B2
9940571 Herrington Apr 2018 B1
9953323 Candelore et al. Apr 2018 B2
9961194 Wiechman et al. May 2018 B1
9965756 Davis et al. May 2018 B2
9965911 Wishne May 2018 B2
9978058 Wurmfeld et al. May 2018 B2
10043164 Dogin et al. Aug 2018 B2
10075437 Costigan et al. Sep 2018 B1
10129648 Hernandez et al. Nov 2018 B1
10133979 Eidam et al. Nov 2018 B1
10217105 Sangi et al. Feb 2019 B1
20010010723 Pinkas Aug 2001 A1
20010029485 Brody et al. Oct 2001 A1
20010034702 Mockett et al. Oct 2001 A1
20010054003 Chien et al. Dec 2001 A1
20020078345 Sandhu et al. Jun 2002 A1
20020093530 Krothapalli et al. Jul 2002 A1
20020100808 Norwood et al. Aug 2002 A1
20020120583 Keresman, III et al. Aug 2002 A1
20020152116 Yan et al. Oct 2002 A1
20020153424 Li Oct 2002 A1
20020165827 Gien et al. Nov 2002 A1
20030023554 Yap et al. Jan 2003 A1
20030034873 Chase et al. Feb 2003 A1
20030055727 Walker et al. Mar 2003 A1
20030078882 Sukeda et al. Apr 2003 A1
20030167350 Davis et al. Sep 2003 A1
20030208449 Diao Nov 2003 A1
20040015958 Veil et al. Jan 2004 A1
20040039919 Takayama et al. Feb 2004 A1
20040127256 Goldthwaite et al. Jul 2004 A1
20040215674 Odinak et al. Oct 2004 A1
20040230799 Davis Nov 2004 A1
20040243520 Bishop Dec 2004 A1
20050044367 Gasparini et al. Feb 2005 A1
20050075985 Cartmell Apr 2005 A1
20050081038 Arditti Modiano et al. Apr 2005 A1
20050138387 Lam et al. Jun 2005 A1
20050156026 Ghosh et al. Jul 2005 A1
20050160049 Lundholm Jul 2005 A1
20050195975 Kawakita Sep 2005 A1
20050247797 Ramachandran Nov 2005 A1
20060006230 Bear et al. Jan 2006 A1
20060040726 Szrek et al. Feb 2006 A1
20060041402 Baker Feb 2006 A1
20060044153 Dawidowsky Mar 2006 A1
20060047954 Sachdeva et al. Mar 2006 A1
20060085848 Aissi et al. Apr 2006 A1
20060136334 Atkinson et al. Jun 2006 A1
20060173985 Moore Aug 2006 A1
20060174331 Schuetz Aug 2006 A1
20060242698 Inskeep et al. Oct 2006 A1
20060280338 Rabb Dec 2006 A1
20070033642 Ganesan et al. Feb 2007 A1
20070055630 Gauthier et al. Mar 2007 A1
20070061266 Moore et al. Mar 2007 A1
20070061487 Moore et al. Mar 2007 A1
20070116292 Kurita et al. May 2007 A1
20070118745 Buer May 2007 A1
20070197261 Humbel Aug 2007 A1
20070224969 Rao Sep 2007 A1
20070241182 Buer Oct 2007 A1
20070256134 Lehtonen et al. Nov 2007 A1
20070258594 Sandhu et al. Nov 2007 A1
20070278291 Rans et al. Dec 2007 A1
20080008315 Fontana et al. Jan 2008 A1
20080011831 Bonalle et al. Jan 2008 A1
20080014867 Finn Jan 2008 A1
20080035738 Mullen Feb 2008 A1
20080071681 Khalid Mar 2008 A1
20080072303 Syed Mar 2008 A1
20080086767 Kulkarni et al. Apr 2008 A1
20080103968 Bies et al. May 2008 A1
20080109309 Landau et al. May 2008 A1
20080110983 Ashfield May 2008 A1
20080120711 Dispensa May 2008 A1
20080156873 Wilhelm et al. Jul 2008 A1
20080162312 Sklovsky et al. Jul 2008 A1
20080164308 Aaron et al. Jul 2008 A1
20080207307 Cunningham, II et al. Aug 2008 A1
20080209543 Aaron Aug 2008 A1
20080223918 Williams et al. Sep 2008 A1
20080285746 Landrock et al. Nov 2008 A1
20080308641 Finn Dec 2008 A1
20090037275 Pollio Feb 2009 A1
20090048026 French Feb 2009 A1
20090132417 Scipioni et al. May 2009 A1
20090143104 Loh et al. Jun 2009 A1
20090171682 Dixon et al. Jul 2009 A1
20090210308 Toomer et al. Aug 2009 A1
20090235339 Mennes et al. Sep 2009 A1
20090249077 Gargaro et al. Oct 2009 A1
20090282264 Ameil et al. Nov 2009 A1
20100023449 Skowronek et al. Jan 2010 A1
20100023455 Dispensa et al. Jan 2010 A1
20100029202 Jolivet et al. Feb 2010 A1
20100033310 Narendra et al. Feb 2010 A1
20100036769 Winters et al. Feb 2010 A1
20100078471 Lin et al. Apr 2010 A1
20100082491 Rosenblatt et al. Apr 2010 A1
20100094754 Bertran et al. Apr 2010 A1
20100095130 Bertran et al. Apr 2010 A1
20100100480 Altman et al. Apr 2010 A1
20100114731 Kingston et al. May 2010 A1
20100192230 Steeves et al. Jul 2010 A1
20100207742 Buhot et al. Aug 2010 A1
20100211797 Westerveld et al. Aug 2010 A1
20100240413 He et al. Sep 2010 A1
20100257357 McClain Oct 2010 A1
20100312634 Cervenka Dec 2010 A1
20100312635 Cervenka Dec 2010 A1
20110028160 Roeding et al. Feb 2011 A1
20110035604 Habraken Feb 2011 A1
20110060631 Grossman et al. Mar 2011 A1
20110068170 Lehman Mar 2011 A1
20110084132 Tofighbakhsh Apr 2011 A1
20110101093 Ehrensvard May 2011 A1
20110113245 Varadarajan May 2011 A1
20110125638 Davis et al. May 2011 A1
20110131415 Schneider Jun 2011 A1
20110153437 Archer et al. Jun 2011 A1
20110153496 Royyuru Jun 2011 A1
20110208658 Makhotin Aug 2011 A1
20110208965 Machani Aug 2011 A1
20110211219 Bradley et al. Sep 2011 A1
20110218911 Spodak Sep 2011 A1
20110238564 Lim et al. Sep 2011 A1
20110246780 Yeap et al. Oct 2011 A1
20110258452 Coulier et al. Oct 2011 A1
20110280406 Ma et al. Nov 2011 A1
20110282785 Chin Nov 2011 A1
20110294418 Chen Dec 2011 A1
20110312271 Ma et al. Dec 2011 A1
20110321173 Weston Dec 2011 A1
20120024947 Naelon Feb 2012 A1
20120030047 Fuentes et al. Feb 2012 A1
20120030121 Grellier Feb 2012 A1
20120047071 Mullen et al. Feb 2012 A1
20120079281 Lowenstein et al. Mar 2012 A1
20120109735 Krawczewicz et al. May 2012 A1
20120109764 Martin et al. May 2012 A1
20120143754 Patel Jun 2012 A1
20120150737 Rottink et al. Jun 2012 A1
20120178366 Levy et al. Jul 2012 A1
20120196583 Kindo Aug 2012 A1
20120207305 Gallo et al. Aug 2012 A1
20120209773 Ranganathan Aug 2012 A1
20120238206 Singh et al. Sep 2012 A1
20120239560 Pourfallah et al. Sep 2012 A1
20120252350 Steinmetz et al. Oct 2012 A1
20120254394 Barras Oct 2012 A1
20120284194 Liu et al. Nov 2012 A1
20120290472 Mullen et al. Nov 2012 A1
20120296818 Nuzzi et al. Nov 2012 A1
20120316992 Oborne Dec 2012 A1
20120317035 Royyuru et al. Dec 2012 A1
20120317628 Yeager Dec 2012 A1
20130005245 Royston Jan 2013 A1
20130008956 Ashfield Jan 2013 A1
20130026229 Jarman et al. Jan 2013 A1
20130048713 Pan Feb 2013 A1
20130054474 Yeager Feb 2013 A1
20130065564 Conner et al. Mar 2013 A1
20130080228 Fisher Mar 2013 A1
20130080229 Fisher Mar 2013 A1
20130099587 Lou et al. Apr 2013 A1
20130104251 Moore et al. Apr 2013 A1
20130106576 Hinman et al. May 2013 A1
20130119130 Braams May 2013 A1
20130130614 Busch-Sorensen May 2013 A1
20130144793 Royston Jun 2013 A1
20130171929 Adams et al. Jul 2013 A1
20130179351 Wallner Jul 2013 A1
20130185772 Jaudon et al. Jul 2013 A1
20130191279 Calman et al. Jul 2013 A1
20130200999 Spodak et al. Aug 2013 A1
20130216108 Hwang et al. Aug 2013 A1
20130226791 Springer et al. Aug 2013 A1
20130226796 Jiang et al. Aug 2013 A1
20130232082 Krawczewicz et al. Sep 2013 A1
20130238894 Ferg et al. Sep 2013 A1
20130282360 Shimota et al. Oct 2013 A1
20130303085 Boucher et al. Nov 2013 A1
20130304651 Smith Nov 2013 A1
20130312082 Izu et al. Nov 2013 A1
20130314593 Reznik et al. Nov 2013 A1
20130344857 Berionne et al. Dec 2013 A1
20140002238 Taveau et al. Jan 2014 A1
20140019352 Shrivastava Jan 2014 A1
20140027506 Heo et al. Jan 2014 A1
20140032409 Rosario Jan 2014 A1
20140032410 Georgiev et al. Jan 2014 A1
20140040120 Cho et al. Feb 2014 A1
20140040139 Brudnicki et al. Feb 2014 A1
20140040147 Varadarakan et al. Feb 2014 A1
20140047235 Lessiak et al. Feb 2014 A1
20140067690 Pitroda et al. Mar 2014 A1
20140074637 Hammad Mar 2014 A1
20140074655 Lim et al. Mar 2014 A1
20140081720 Wu Mar 2014 A1
20140138435 Khalid May 2014 A1
20140171034 Aleksin et al. Jun 2014 A1
20140171039 Bjontegard Jun 2014 A1
20140172700 Teuwen et al. Jun 2014 A1
20140180851 Fisher Jun 2014 A1
20140208112 McDonald et al. Jul 2014 A1
20140214674 Narula Jul 2014 A1
20140229375 Zaytzsev et al. Aug 2014 A1
20140245391 Adenuga Aug 2014 A1
20140256251 Caceres et al. Sep 2014 A1
20140258099 Rosano Sep 2014 A1
20140258113 Gauthier et al. Sep 2014 A1
20140258125 Gerber et al. Sep 2014 A1
20140274179 Zhu et al. Sep 2014 A1
20140279479 Maniar et al. Sep 2014 A1
20140337235 Van Heerden et al. Nov 2014 A1
20140339315 Ko Nov 2014 A1
20140346860 Aubry et al. Nov 2014 A1
20140365780 Movassaghi Dec 2014 A1
20140379361 Mahadkar et al. Dec 2014 A1
20150012444 Brown et al. Jan 2015 A1
20150032635 Guise Jan 2015 A1
20150071486 Rhoads et al. Mar 2015 A1
20150088757 Zhou et al. Mar 2015 A1
20150089586 Ballesteros Mar 2015 A1
20150134452 Williams May 2015 A1
20150140960 Powell et al. May 2015 A1
20150154595 Collinge et al. Jun 2015 A1
20150170138 Rao Jun 2015 A1
20150178724 Ngo et al. Jun 2015 A1
20150186871 Laracey Jul 2015 A1
20150205379 Mag et al. Jul 2015 A1
20150302409 Malek et al. Oct 2015 A1
20150317626 Ran et al. Nov 2015 A1
20150332266 Friedlander et al. Nov 2015 A1
20150339474 Paz et al. Nov 2015 A1
20150371234 Huang et al. Dec 2015 A1
20160012465 Sharp Jan 2016 A1
20160026997 Tsui et al. Jan 2016 A1
20160048913 Rausaria et al. Feb 2016 A1
20160055480 Shah Feb 2016 A1
20160057619 Lopez Feb 2016 A1
20160065370 Le Saint et al. Mar 2016 A1
20160087957 Shah et al. Mar 2016 A1
20160092696 Guglani et al. Mar 2016 A1
20160148193 Kelley et al. May 2016 A1
20160232523 Venot et al. Aug 2016 A1
20160239672 Khan et al. Aug 2016 A1
20160253651 Park et al. Sep 2016 A1
20160255072 Liu Sep 2016 A1
20160267486 Mitra et al. Sep 2016 A1
20160277383 Guyomarc'h et al. Sep 2016 A1
20160277388 Lowe et al. Sep 2016 A1
20160307187 Guo et al. Oct 2016 A1
20160307189 Zarakas et al. Oct 2016 A1
20160314472 Ashfield Oct 2016 A1
20160330027 Ebrahimi Nov 2016 A1
20160335531 Mullen et al. Nov 2016 A1
20160379217 Hammad Dec 2016 A1
20170004502 Quentin et al. Jan 2017 A1
20170011395 Pillai et al. Jan 2017 A1
20170011406 Tunnell et al. Jan 2017 A1
20170017957 Radu Jan 2017 A1
20170017964 Janefalkar et al. Jan 2017 A1
20170024716 Jiam et al. Jan 2017 A1
20170039566 Schipperheijn Feb 2017 A1
20170041759 Gantert et al. Feb 2017 A1
20170068950 Kwon Mar 2017 A1
20170103388 Pillai et al. Apr 2017 A1
20170104739 Lansler et al. Apr 2017 A1
20170109509 Baghdasaryan Apr 2017 A1
20170109730 Locke et al. Apr 2017 A1
20170116447 Cimino et al. Apr 2017 A1
20170124568 Moghadam May 2017 A1
20170140379 Deck May 2017 A1
20170154328 Zarakas et al. Jun 2017 A1
20170154333 Gleeson et al. Jun 2017 A1
20170180134 King Jun 2017 A1
20170230189 Toll et al. Aug 2017 A1
20170237301 Elad et al. Aug 2017 A1
20170289127 Hendrick Oct 2017 A1
20170295013 Claes Oct 2017 A1
20170316696 Bartel Nov 2017 A1
20170317834 Smith et al. Nov 2017 A1
20170330173 Woo et al. Nov 2017 A1
20170374070 Shah et al. Dec 2017 A1
20180034507 Wobak et al. Feb 2018 A1
20180039986 Essebag et al. Feb 2018 A1
20180068316 Essebag et al. Mar 2018 A1
20180129945 Saxena et al. May 2018 A1
20180160255 Park Jun 2018 A1
20180191501 Lindemann Jul 2018 A1
20180205712 Versteeg et al. Jul 2018 A1
20180240106 Garrett et al. Aug 2018 A1
20180254909 Hancock Sep 2018 A1
20180268132 Buer et al. Sep 2018 A1
20180270214 Caterino et al. Sep 2018 A1
20180294959 Traynor et al. Oct 2018 A1
20180300716 Carlson Oct 2018 A1
20180302396 Camenisch et al. Oct 2018 A1
20180315050 Hammad Nov 2018 A1
20180316666 Koved et al. Nov 2018 A1
20180322486 Deliwala et al. Nov 2018 A1
20180359100 Gaddam et al. Dec 2018 A1
20190014107 George Jan 2019 A1
20190019375 Foley Jan 2019 A1
20190036678 Ahmed Jan 2019 A1
20190095217 Wang Mar 2019 A1
20190238517 D'Agostino et al. Aug 2019 A1
Foreign Referenced Citations (38)
Number Date Country
3010336 Jul 2017 CA
101192295 Jun 2008 CN
103023643 Apr 2013 CN
103417202 Dec 2013 CN
1085424 Mar 2001 EP
1223565 Jul 2002 EP
1265186 Dec 2002 EP
1783919 May 2007 EP
2139196 Dec 2009 EP
1469419 Aug 2012 EP
2852070 Mar 2015 EP
2457221 Aug 2009 GB
2516861 Feb 2015 GB
2551907 Jan 2018 GB
101508320 Apr 2015 KR
0049586 Aug 2000 WO
2006070189 Jul 2006 WO
2008055170 May 2008 WO
2009025605 Feb 2009 WO
2010049252 May 2010 WO
2011112158 Sep 2011 WO
2012001624 Jan 2012 WO
2013039395 Mar 2013 WO
2013155562 Oct 2013 WO
2013192358 Dec 2013 WO
2014043278 Mar 2014 WO
2014170741 Oct 2014 WO
2015179649 Nov 2015 WO
2015183818 Dec 2015 WO
2016097718 Jun 2016 WO
2016160816 Oct 2016 WO
2016168394 Oct 2016 WO
2017042375 Mar 2017 WO
2017042400 Mar 2017 WO
2017157859 Sep 2017 WO
2017208063 Dec 2017 WO
2018063809 Apr 2018 WO
2018137888 Aug 2018 WO
Non-Patent Literature Citations (41)
Entry
Batina, L. and Poll, E., “SmartCards and RFID”, Course PowerPoint Presentation for IPA Security Course, Digital Security at University of Nijmegen, Netherlands (date unknown) 75 pages.
Haykin, M. and Warnar, R., “Smart Card Technology: New Methods for Computer Access Control”, Computer Science and Technology NIST Special Publication 500-157:1-60 (1988).
Lehpamer, H., “Component of the RFID System”, RFID Design Principles, 2nd edition pp. 133-201 (2012).
Author Unknown, “CardrefresherSM from American Express®”, [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://merchant-channel.americanexpress.com/merchant/en_US/cardrefresher, 2 pages.
Author Unknown, “Add Account Updater to your recurring payment tool”, [online] 2018-19 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.authorize.net/our-features/account-updater/, 5 pages.
Author Unknown, “Visa® Account Updater for Merchants”, [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://usa.visa.com/dam/VCOM/download/merchants/visa-account-updater-product-information-fact-sheet-for-merchants.pdf, 2 pages.
Author Unknown, “Manage the cards that you use with Apple Pay”, Apple Support [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://support.apple.com/en-us/HT205583, 5 pages.
Author Unknown, “Contactless Specifications for Payment Systems”, EMV Book B—Entry Point Specification [online] 2016 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.emvco.com/wp-content/uploads/2017/05/BookB_Entry_Point_Specification_v2_6_20160809023257319.pdf, 52 pages.
Author Unknown, “EMV Integrated Circuit Card Specifcations for Payment Systems, Book 2, Security and Key Management,” Version 3.4, [online] 2011 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.emvco.com/wp-content/uploads/2017/05/EMV_v4.3_Book_2_Security_and_Key_Management_20120607061923900.pdf, 174 pages.
Author Unknown, “NEC Guide: All You Need to Know About Near Field Communication”, Square Guide [online] 2018 [retrieved on Nov. 13, 2018]. Retrieved from Internet URL: https://squareup.com/guides/nfc, 8 pages.
Profis, S., “Everything you need to know about NFC and mobile payments” CNET Directory [online], 2014 [retrieved on Mar. 25, 2019]. Retrieved from the Internet URL: https://www.cnet.com/how-to/how-nfc-works-and-mobile-payments/, 6 pages.
Cozma, N., “Copy data from other devices in Android 5.0 Lollipop setup”, CNET Directory [online] 2014 [retrieved on Mar. 25, 2019]. Retrieved from the Internet URL: https://www.cnet.com/how-to/copy-data-from-other-devices-in-android-5-0-lollipop-setup/, 5 pages.
Kevin, Android Enthusiast, “How to copy text string from nfc tag”, StackExchange [online] 2013 [retrieved on Mar. 25, 2019]. Retrieved from the Internet URL: https://android.stackexchange.com/questions/55689/how-to-copy-text-string-from-nfc-tag, 11 pages.
Author Unknown, “Tap & Go Device Setup”, Samsung [online] date unknown [retrieved on Mar. 25, 2019]. Retrieved from the Internet URL: https://www.samsung.com/us/switch-me/switch-to-the-galaxy-s-5/app/partial/setup-device/tap-go.html, 1 page.
Author Unknown, “Multiple encryption”, Wikipedia [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://en.wikipedia.org/wiki/Multiple_encryption, 4 pages.
Krawczyk, et al., “HMAC: Keyed-Hashing for Message Authentication”, Network Working Group RFC:2104 memo [online] 1997 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://tools.ietf.org/html/rfc2104, 12 pages.
Song, et al., “AES-CMAC Algorithm”, Network Working Group RFC: 4493 memo [online] 2006 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://tools.ietf.org/html/rfc4493, 21 pages.
Katz, J. and Lindell, Y., “Aggregate Message Authentication Codes”, Topics in Cryptology [online] 2008 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.cs.umd.edu/˜jkatz/papers/aggregateMAC.pdf, 11 pages.
Adams, D., and Maier, A-K., “Goldbug Big Seven open source crypto-messengers to be compared - or: Comprehensive Confidentiality Review & Audit of GoldBug Encrypting E-Mail-Client & Secure Instant Messenger”, Big Seven Study 2016 [online] [retrieved on Mar. 25, 2018]. Retrieved from Internet URL: https://sf.net/projects/goldbug/files/bigseven-crypto-audit.pdf, 309 pages.
Author Unknown, “Triple DES”, Wikipedia [online] 2018 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://simple.wikipedia.org/wiki/Triple_DES, 2 pages.
Song F., and Yun, A.I., “Quantum Security of NMAC and Related Constructions—PRF domain extension against quantum attacks”, IACR Cryptology ePrint Archive [online] 2017 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://eprint.iacr.org/2017/509.pdf, 41 pages.
Saxena, N., “Lecture 10: NMAC, HMAC and Number Theory”, CS 6903 Modern Cryptography [online] 2008 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: http://isis.poly.edu/courses/cs6903/Lectures/lecture10.pdf, 8 pages.
Berg, G., “Fundamentals of EMV”, Smart Card Alliance [online] date unknown [retrieved on Mar. 27, 2019]. Retrieveed from Internet URL: https://www.securetechalliance.org/resources/media/scap13_preconference/02.pdf, 37 pages.
Pierce, K., “Is the amazon echo nfc compatible?”, Amazon.com Customer Q&A [online] 2016 [retrieved on Mar. 26, 2019]. Retrieved from Internet URL: https://www.amazon.com/ask/questions/Tx1RJXYSPE6XLJD?_encodi . . . , 2 pages.
Author Unknown, “Multi-Factor Authentication”, idaptive [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.centrify.com/products/application-services/adaptive-multi-factor-authentication/risk-based-mfa/, 10 pages.
Author Unknown, “Adaptive Authentication”, SecureAuth [online] 2019 [retrieved on Mar. 25, 2019}. Retrieved from Internet URL: https://www.secureauth.com/products/access-management/adaptive-authentication, 7 pages.
Van den Breekel, J., et al., “EMV in a nutshell”, Technical Report, 2016 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.cs.ru.nl/E.Poll/papers/EMVtechreport.pdf, 37 pages.
Author Unknown, “Autofill”, Computer Hope [online] 2018 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.computerhope.com/jargon/a/autofill.htm, 2 pages.
Author Unknown, “Fill out forms automatically”, Google Chrome Help [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://support.google.com/chrome/answer/142893?co=GENIE.Platform%3DDesktop&hl=en, 3 pages.
Author Unknown, “Autofill credit cards, contacts, and passwords in Safari on Mac”, Apple Safari User Guide [online] 2019 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://support.apple.com/guide/safari/use-autofill-ibrw1103/mac, 3 pages.
Menghin, M.J., “Power Optimization Techniques for Near Field Communication Systems”, 2014 Dissertation at Technical University of Graz [online]. Retrieved from Internet URL: https://diglib.tugraz.at/download.php?id=576a7b910d2d6&location=browse, 135 pages.
Mareli, M., et al., “Experimental evaluation of NFC reliability between an RFID tag and a smartphone”, Conference paper (2013) IEEE AFRICON at Mauritius [online] [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://core.ac.uk/download/pdf/54204839.pdf, 5 pages.
Davison, A., et al., “MonoSLAM: Real-Time Single Camera Slam”, IEEE Transactions on Pattern Analysis and Machine Intelligence 29(6): 1052-1067 (2007).
Barba, R., “Sharing your location with your bank sounds creepy, but it's also useful”, Bankrate, LLC [online] 2017 [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.bankrate.com/banking/banking-app-location-sharing/, 6 pages.
Author Unknown: “onetappayment™”, [online] Jan. 24, 2019, [retrieved on Mar. 25, 2019]. Retrieved from Internet URL: https://www.payubiz.in/onetap, 4 pages.
Vu, et al., “Distinguishing users with capacitive touch communication”, Proceedings of the Annual International Conference on Mobile Computing and Networking, 2012, MOBICOM. 10.1145/2348543.2348569.
Pourghomi, P., et al., “A Proposed NFC Payment Application,” International Journal of Advanced Computer Science and Applications, 4(8):173-181 (2013).
Author unknown, “EMV Card Personalization Specification”, EMVCo., LLC., specification version 1.0, (2003) 81 pages.
Ullmann et al., “On-Card” User Authentication for Contactless Smart Cards based on Gesture Recognition, paper presentation LNI proceedings, (2012) 12 pages.
Faraj, S.T., et al., “Investigation of Java Smart Card Technology for Multi-Task Applications”, J of Al-Anbar University for Pure Science, 2(1):23 pages (2008).
Dhamdhere, P., “Key Benefits of a Unified Platform for Loyalty, Referral Marketing, and UGC” Annex Cloud [online]. May 19, 2017 [retrieved on Jul. 3, 2019]. Retrieved from Internet URL: https://www.annexcloude.com/blog/benefits-unified-platform/, 13 pages.