Application-based signal processing parameters in radar-based detection

Information

  • Patent Grant
  • 11385721
  • Patent Number
    11,385,721
  • Date Filed
    Friday, May 15, 2020
    4 years ago
  • Date Issued
    Tuesday, July 12, 2022
    a year ago
Abstract
Various embodiments utilize application-based processing parameters to dynamically configure a radar-based detection system based upon an operating context of an associated device. A first application with execution priority on a device dynamically configures the radar-based detection system to emit a radar field suitable for a first operating context associated with the first application. The first application can also dynamically configure processing parameters of the radar-based detection system, such as digital signal processing parameters and machine-learning parameters. In some cases, a second application assumes execution priority over the first application, and dynamically reconfigures the radar-based detection system to emit a radar field suitable to a second operating context associated with the second application. Alternately or additionally, the second application can dynamically reconfigure the processing parameters of the radar-based detection system based upon the second operating context of the second application.
Description
BACKGROUND

This background description is provided for the purpose of generally presenting the context of the disclosure. Unless otherwise indicated herein, material described in this section is neither expressly nor impliedly admitted to be prior art to the present disclosure or the appended claims.


Many radar systems use fixed designs that are specialized for a particular purpose. Accordingly, these fixed systems apply design trade-offs optimized towards the particular purpose. While this makes the radar system operate as intended for the particular purpose, it also makes the radar system unsuitable for other applications. Thus, these fixed designs limit how and where a radar system can be utilized.


SUMMARY

This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter.


Various embodiments enable dynamic reconfiguration of a radar-based detection system based upon an operating context of an associated device. A first application with execution priority on a device dynamically configures the radar-based detection system to emit a radar field suitable for a first operating context associated with the first application. When a second application assumes execution priority, it dynamically reconfigures the radar-based detection suitable for a second operating context associated with the second application, such as by reconfiguring the radar field emitted and/or processing parameters used.





BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects of application-based signal processing parameters are described with reference to the following drawings. The same numbers are used throughout the drawings to reference like features and components:



FIG. 1 illustrates example environments that employ application-based signal processing parameters in accordance with one or more embodiments;



FIG. 2 illustrates an example implementation of a computing device of FIG. 1 in greater detail in accordance with one or more embodiments;



FIG. 3 illustrates an example of general signal properties;



FIG. 4 illustrates another example of general signal properties;



FIG. 5 illustrates an example environment that employs application-based signal processing parameters for radar-based detection in accordance with one or more embodiments;



FIG. 6 illustrates an example environment that employs application-based signal processing parameters for radar-based detection in accordance with one or more embodiments;



FIG. 7 illustrates an example device configured to dynamically configure a radar-based detection system in accordance with one or more embodiments;



FIG. 8 illustrates an example flow diagram in accordance with one or more embodiments;



FIG. 9 illustrates an example flow diagram in accordance with one or more embodiments;



FIG. 10 illustrates an example device in which application-based signal processing parameters can be employed in accordance with one or more embodiments.





DETAILED DESCRIPTION

Overview


Various embodiments utilize application-based processing parameters to dynamically configure a radar-based detection system based upon an operating context of an associated device. A first application with execution priority on a device dynamically configures the radar-based detection system to emit a radar field suitable for a first operating context associated with the first application. The first application can also dynamically configure processing parameters of the radar-based detection system, such as digital signal processing parameters and machine-learning parameters. In some cases, a second application on the device assumes execution priority over the first application. When the second application assumes execution priority, it dynamically reconfigures the radar-based detection system to emit a radar field suitable to a second operating context associated with the second application. Alternately or additionally, the second application dynamically reconfigures processing parameters used of the radar-based detection system based upon the second operating context of the second application.


In the following discussion, an example environment is first described in which various embodiments can be employed. Following this is a discussion of example RF signal propagation properties and how they can be employed in accordance with one or more embodiments. After this, dynamic reconfiguration of a radar-based detection system based upon an operating context is described. Finally, an example device is described in which various embodiments of application-based configuration of processing parameters associated with a radar-based detection system can be employed.


Example Environment



FIG. 1 illustrates example environment 100-1 and environment 100-2 in which dynamic reconfiguration of a radar-based detection system can be employed. Example environment 100-1 and environment 100-2 represent the same environment at different points in time. Accordingly, each environment shares the same elements. Here, environment 100-1 and environment 100-2 each include computing device 102 having a radar-based detection component 104 capable of wirelessly sensing, detecting, and recognizing gestures.


Radar-based detection component 104 represents functionality that wirelessly captures characteristics of a target object, and is illustrated as a hardware component of computing device 102. In some cases, radar-based detection component 104 not only captures characteristics about a target object, but additionally identifies a specific gesture from other gestures. Other times, radar-based detection component 104 can generate context information associated with an environment, such as room characteristics. Any suitable type of characteristic or gesture can be captured or identified, such as a size of a hand, objects included in a room, directional movement of a hand, a micro-gesture performed by all or a portion of a hand (e.g., a single-tap gesture, a double-tap gesture, a left-swipe, a forward-swipe, a right-swipe, a finger making a shape, and so forth), locating a head of a person, performing facial identification of a person, an eye movement, tongue movement, and so forth. The term micro-gesture is used to signify a gesture that can be identified from other gestures based on differences in movement using a scale on the order of millimeters to sub-millimeters. Alternately or additionally, radar-based detection component 104 can be configured to identify gestures on a larger scale than a micro-gesture (e.g., a macro-gesture that is identified by differences with a coarser resolution than a micro-gesture, such as differences measured in centimeters or meters), the presence of multiple persons in a room, and so forth.


Computing device 102 also includes application 106 and application 108. Here, each application is illustrated as being a software application that, when executing, generates a respective operating context of computing device 102. In additional to generating respective operating contexts of computing device 102, each application can have multiple operating contexts within themselves. In environment 100-1, computing device 102 operates with application 106 having execution priority over application 108, thus giving computing device 102 an operating context of application 106 being active. Similarly, in environment 100-2, application 108 has execution priority over application 106. When an application has execution priority over another, the application with execution priority has priority to the processor compared to other applications. In the context of radar-based detection systems, this additionally indicates the application with execution priority also has control over how the radar-based detection system is configured by altering various parameters, as further described herein.


Environment 100-1 includes hand 110 and signals 112. When application 106 has execution priority over application 108, such as the case of environment 100-1, application 106 configures radar-based detection component 104 based upon the context of application 106. Alternately or additionally, application 106 can configure radar-based detection component 104 based upon a context of environment 100-1, such as an environment which includes a known hand, an environment identified as a kitchen, and so forth. Thus, in environment 100-1, application 106 configures the radar field emitted by radar-based detection component 104 (illustrated here as signals 112). While not illustrated, application 106 can also configure processing algorithms, data extraction and/or classification, and other actions performed by radar-based detection component 104, as further described below.


Hand 110 represents target object that radar-based detection component 104 is in process of detecting. Here, hand 110 resides in free-space and has no physical devices attached to it that couple to, or communicate with, computing device 102 and/or radar-based detection component 104.


Signals 112 generally represent one or more RF signals transmitted and received by radar-based detection component 104. In some embodiments, radar-based detection component 104 emits a radar field or signal using a single antenna that is directed towards hand 110. In other embodiments, multiple radar signals are transmitted, each on a respective antenna. As a transmitted signal reaches hand 110, at least a portion reflects back to radar-based detection component 104 and is processed, as further described below. Signals 112 can have any suitable combination of energy level, carrier frequency, burst periodicity, pulse width, modulation type, waveform, phase relationship, and so forth. In some cases, some or all of the respective signals transmitted in signals 112 differ from one another to create a specific diversity scheme, such as a time diversity scheme that transmits multiple versions of a same signal at different points in time, a frequency diversity scheme that transmits signals using several different frequency channels, a space diversity scheme that transmits signals over different propagation paths, etc. Thus, the configuration of signals 112, as well as how reflected signals are processed by radar-based detection component 104, can be dynamically configured, controlled, or influenced by application 106.


Environment 100-2 represents environment 100-1 at a different point in time. Here, execution priority has switched from application 106 to application 108. Accordingly, application 108 has control over the configuration of radar-based detection component 104 and/or how the detection component operates. Environment 100-2 includes user 114, to whom hand 110 of environment 100-1 belongs. Instead of hand 110 being the desired target object of application 108, application 108 has an operating context that uses an identity associated with user 114 for security and/or log-in purposes. Since application 108 operates in a different context than application 106, the configuration of radar-based detection component 104 used by application 106 may not be adequate for application 108, or provide enough resolution to detect an identity of user 114. Thus, application 108 dynamically reconfigures various operating parameters of radar-based detection component 104 that are suitable to the operating context of application 108. Here, signals 116 are illustrated as being visually distinct from signals 112 to represent that radar-based detection component has a different configuration in environment 100-2 than environment 100-1, and is emitting a different radar field. As in the case of application 106, application 108 can alternately or additionally reconfigure processing parameters of radar-based detection component 104, as further described herein. When an application utilizes certain data, such as application 108 using a user's identity, the data may be treated in one or more ways before it is stored or used, so that personally identifiable information is removed. Thus, data such as a user's identity or facial recognition may be treated so that no personally identifiable information can be determined for the user, or a user's geographic location may be generalized where location information is obtained (such as to a city, postal code, or state level), so that a particular location of a user cannot be determined. Accordingly, the user may have control over what information is collected about the user, how that information is used, and what information is provided to the user.


Having generally described an environment in which dynamic reconfiguration of a radar-based detection system based on an operating context may be implemented, now consider FIG. 2, which illustrates an example implementation of computing device 102 of FIG. 1 in greater detail. Computing device 102 represents any suitable type of computing device in which various embodiments can be implemented. In this example, various devices include, by way of example and not limitation: smart glasses 102-1, smart watch 102-2, mobile phone 102-3, tablet 102-4, laptop 102-5, and display monitor 102-6. It is to be appreciated that these are merely examples for illustrative purposes, and that any other suitable type of computing device can be utilized without departing from the scope of the claimed subject matter, such as a gaming console, a lighting system, an audio system, a refrigerator, a microwave, etc.


Computing device 102 includes processor(s) 202 and computer-readable storage media 204. Applications 206 and/or an operating system (not shown) embodied as computer-readable instructions on the computer-readable storage media 204 can be executed by the processor(s) 202 to invoke or interface with some or all of the functionalities described herein, such as through gesture sensor Application Programming Interfaces (APIs) 208.


Applications 206 represent software applications with separate operating contexts. Accordingly, some or all of the applications can have different forms of input, such as a first application requesting a micro-gesture input, a second application requesting presence detection input, a third application requesting facial recognition and/or user identity input, a forth application requesting navigation input and/or location input, and so forth. Thus, an operating context of an application can pertain to what sort of input or information the application is trying to detect or receive, such a person entering a room, identifying a user, etc. Alternately or additionally, different applications can be invoked based upon a determined operating environment of computing device 102. In some embodiments, when an application has execution priority, it has priority or control over how radar-based detection component emits a radar field, transforms capture data, extracts information from the captured data, applies a machine-learning algorithm model, and so forth. At times, an application can have multiple contexts in which it runs such that it reconfigures radar-based detection component for various iterations or information gathering stages within the application, as further described below. To configure these various parameters of a radar-based detection component, an application can utilize a programmatic interface into the component and/or utilize gesture sensor APIs 208 to send commands and receive back information.


Gesture sensor APIs 208 provide programming access into various routines and functionality incorporated into radar-based detection component 104. For instance, radar-based detection component 104 can have a programmatic interface (socket connection, shared memory, read/write registers, hardware interrupts, and so forth) that can be used in concert with gesture sensor APIs 208 to allow applications 206 to communicate with and/or configure radar-based detection component 104. In some embodiments, gesture sensor APIs 208 provide high-level access into radar-based detection component 104 in order to abstract implementation details and/or hardware access from a calling program, request notifications related to identified events, query for results, and so forth. Gesture sensor APIs 208 can also provide low-level access to radar-based detection component 104, where a calling program can control direct or partial hardware configuration of radar-based detection component 104.


High-level programming access implies programming access that requests high-level functionality without the calling application selecting or setting specific parameters, such as a call to “transmit a radar field to detect a micro-gesture” without any knowledge of hardware or algorithm configurations. Conversely, low-level programming access implies programming access that exposes how the functionality is achieved, such as by sending hardware parameters from within the calling application (e.g., “Send value ‘123’ to register ‘XYZ’”). These APIs enable programs, such as applications 206, to access radar-based detection component 104. For instance, gesture sensor APIs 208 can be used to register for, or request, an event notification when a particular micro-gesture has been detected, enable or disable target recognition in computing device 102, and so forth. Alternately or additionally, gesture sensor APIs 208 can be used to access various algorithms that reside on radar-based detection component 104 to configure algorithms, extract additional information (such as 3D tracking information, angular extent, reflectivity profiles from different aspects, correlations between transforms/features from different channels, and so forth), transition radar-based detection component 104 into a gesture-learning mode, and so forth.


Radar-based detection component 104 represents functionality that wirelessly detects target objects, such as gestures performed by a hand, presence of a user, objects included in a room, etc. Radar-based detection component 104 can be implemented as a chip embedded within computing device 102, such as a System-on-Chip (SoC). However, a radar-based detection component can be implemented in any other suitable manner, such as one or more Integrated Circuits (ICs), as a processor with embedded processor instructions or configured to access processor instructions stored in memory, as hardware with embedded firmware, a printed circuit board with various hardware components, or any combination thereof. Here, radar-based detection component 104 includes radar-emitting element 210, antenna(s) 212, digital signal processing component 214, and machine-learning component 216 which can be used in concert to wirelessly detect target objects using radar techniques.


Generally, radar-emitting element 210 is configured to provide a radar field. In some cases, the radar field is configured to at least partially reflect off a target object. The radar field can also be configured to penetrate fabric or other obstructions and reflect from human tissue. These fabrics or obstructions can include wood, glass, plastic, cotton, wool, nylon and similar fibers, and so forth, while reflecting from human tissues, such as a person's hand.


A radar field can be a small size, such as 0 or 1 millimeters to 1.5 meters, or an intermediate size, such as 1 to 30 meters. These sizes are merely for discussion purposes, and that any other suitable range can be used. When the radar field has an intermediate size, radar-based detection component 104 can be configured to receive and process reflections of the radar field to provide large-body gestures based on reflections from human tissue caused by body, arm, or leg movements, although other movements can also be recognized as well. In other cases, the radar field can be configured to enable radar-based detection component 104 to detect smaller and more-precise gestures, such as micro-gestures. Example intermediate-sized radar fields include those in which a user makes gestures to control a television from a couch, change a song or volume from a stereo across a room, turn off an oven or oven timer (a near field would also be useful here), turn lights on or off in a room, and so forth. Radar-emitting element 210 can be configured to emit continuously modulated radiation, ultra-wideband radiation, or sub-millimeter-frequency radiation.


Antennas 212 transmit and receive RF signals. In some cases, radar-emitting element 210 couples with antennas 212 to transmit a radar field. As one skilled in the art will appreciate, this is achieved by converting electrical signals into electromagnetic waves for transmission, and vice versa for reception. Radar-based detection component 104 can include any suitable number of antennas in any suitable configuration. For instance, any of the antennas can be configured as a dipole antenna, a parabolic antenna, a helical antenna, a monopole antenna, and so forth. In some embodiments, antennas 212 are constructed on-chip (e.g., as part of an SoC), while in other embodiments, antennas 212 are separate components, metal, hardware, etc. that attach to, or are included within, radar-based detection component 104. An antenna can be single-purpose (e.g., a first antenna directed towards transmitting signals, a second antenna directed towards receiving signals, and so forth), or multi-purpose (e.g., an antenna is directed towards transmitting and receiving signals). Thus, some embodiments utilize varying combinations of antennas, such as an embodiment that utilizes two single-purpose antennas directed towards transmission in combination with four single-purpose antennas directed towards reception.


The placement, size, and/or shape of antennas 212 can be chosen to enhance a specific transmission pattern or diversity scheme, such as a pattern or scheme designed to capture information about a micro-gesture performed by the hand. In some cases, the antennas can be physically separated from one another by a distance that allows radar-based detection component 104 to collectively transmit and receive signals directed to a target object over different channels, different radio frequencies, and different distances. In some cases, antennas 212 are spatially distributed to support triangulation techniques, while in others the antennas are collocated to support beamforming techniques. While not illustrated, each antenna can correspond to a respective transceiver path that physically routes and manages the outgoing signals for transmission and the incoming signals for capture and analysis.


Digital signal processing component 214 generally represents digitally capturing and processing a signal. For instance, digital signal processing component 214 samples analog RF signals received by antennas 212 to generate digital samples that represents the RF signals, and then processes these samples to extract information about the target object. Alternately or additionally, digital signal processing component 214 controls the configuration of signals generated and transmitted by radar-emitting element 210 and/or antennas 212, such as configuring a plurality of signals to form a specific diversity scheme like a beamforming diversity scheme. In some cases, digital signal processing component 214 receives input configuration parameters that control an RF signal's transmission parameters (e.g., frequency channel, power level, and so forth), such as through gesture sensor APIs 208. In turn, digital signal processing component 214 modifies the RF signal based upon the input configuration parameter. At times, the signal processing functions of digital signal processing component 214 are included in a library of signal processing functions or algorithms that are also accessible and/or configurable via gesture sensor APIs 208. Thus, digital signal processing component 214 can be programmed or configured via gesture sensor APIs 208 (and a corresponding programmatic interface of radar-based detection component 104) to dynamically select algorithms and/or dynamically reconfigure. Digital signal processing component 214 can be implemented in hardware, software, firmware, or any combination thereof.


Among other things, machine-learning component 216 receives information processed or extracted by digital signal processing component 214, and uses that information to classify or recognize various aspects of the target object, such as position, location, shape, presence, etc. In some cases, machine-learning component 216 applies one or more algorithms to probabilistically determine which gesture has occurred given an input signal and previously learned gesture features. As in the case of digital signal processing component 214, machine-learning component 216 can include a library of multiple machine-learning algorithms, such as a Random Forest algorithm, deep learning algorithms (e.g., artificial neural network algorithms, convolutional neural net algorithms, and so forth), clustering algorithms, Bayesian algorithms, and so forth. In turn, machine-learning component 216 uses the input data to learn what features can be attributed to a specific gesture. These features are then used to identify when the specific gesture occurs. In some embodiments, gesture sensor APIs 208 can be used to configure machine-learning component 216 and/or its corresponding algorithms. Thus, machine-learning component 216 can be configured via gesture sensor APIs 208 (and a corresponding programmatic interface of radar-based detection component 104) to dynamically select algorithms.


Having described computing device 102 in accordance with one or more embodiments, now consider a discussion of RF signal propagation in radar-based detection devices in accordance with one or more embodiments.


RF Signal Propagation in Radar-Based Detection Devices


As technology advances, users have an expectation that new devices will provide additional freedoms and flexibility over past devices. One such example is the inclusion of wireless capabilities in a device. Consider the case of a wireless mouse input device. A wireless mouse input device receives input from a user in the format of button clicks and movement in position, and wirelessly transmits this information to a corresponding computing device. The wireless nature obviates the need to have a wired connection between the wireless mouse input device and the computing device, which gives more freedom to the user with the mobility and placement of the mouse. However, the user still physically interacts with the wireless mouse input device as a way to enter input into the computing device. Accordingly, if the wireless mouse input device gets lost or is misplaced, the user is unable to enter input with that mechanism. Thus, removing the need for a peripheral device as an input mechanism gives additional freedom to the user. One such example is performing input to a computing device via a hand gesture.


Hand gestures provide a user with a simple and readily available mechanism to input commands to a computing device. However, detecting hand gestures can pose certain problems. For example, attaching a movement sensing device to a hand does not remove a user's dependency upon a peripheral device. Instead, it is a solution that trades one input peripheral for another. As an alternative, cameras can capture images, which can then be compared and analyzed to identify the hand gestures. However, this option may not yield a fine enough resolution to detect micro-gestures. An alternate solution involves usage of radar systems to transmit a radar field to a target object, and determine information about that target based upon an analysis of the reflected signal.


Consider FIG. 3 which illustrates a simple example of RF wave propagation, and a corresponding reflected wave propagation. It is to be appreciated that the following discussion has been simplified, and is not intended to describe all technical aspects of RF wave propagation, reflected wave propagation, or detection techniques.


Environment 300-1 includes source device 302 and object 304. Source device 302 includes antenna 306, which generally represents functionality configured to transmit and receive electromagnetic waves in the form of an RF signal. It is to be appreciated that antenna 306 can be coupled to a feed source, such as a radar-emitting element, to achieve transmission of a signal. In this example, source device 302 transmits a series of RF pulses, illustrated here as RF pulse 308-1, RF pulse 308-2, and RF pulse 308-3. As indicated by their ordering and distance from source device 302, RF pulse 308-1 is transmitted first in time, followed by RF pulse 308-2, and then RF pulse 308-3. For discussion purposes, these RF pulses have the same pulse width, power level, and transmission periodicity between pulses, but any other suitable type of signal with alternate configurations can be transmitted without departing from the scope of the claimed subject matter.


Generally speaking, electromagnetic waves can be characterized by the frequency or wavelength of their corresponding oscillations. Being a form of electromagnetic radiation, RF signals adhere to various wave and particle properties, such as reflection. When an RF signal reaches an object, it will undergo some form of transition. Specifically, there will be some reflection off the object. Environment 300-2 illustrates the reflection of RF pulse 308-1, RF pulse 308-2, and RF pulse 308-3 reflecting off of object 304, where RF pulse 310-1 corresponds to a reflection originating from RF pulse 308-1 reflecting off of object 304, RF pulse 310-2 corresponds to a reflection originating from RF pulse 308-2, and so forth. In this simple case, source device 302 and object 304 are stationary, and RF pulse 308-1, RF pulse 308-2, and RF pulse 308-3 are transmitted via a single antenna (antenna 306) over a same RF channel, and are transmitted directly towards object 304 with a perpendicular impact angle. Similarly, RF pulse 310-1, RF pulse 310-2, and RF pulse 310-3 are shown as reflecting directly back to source device 302, rather than with some angular deviation. However, as one skilled in the art will appreciate, these signals can alternately be transmitted or reflected with variations in their transmission and reflection directions based upon the configuration of source device 302, object 304, transmission parameters, variations in real-world factors, and so forth. Upon receiving and capturing, RF pulse 310-1, RF pulse 310-2, and RF pulse 310-3, source device 302 can then analyze the pulses, either individually or in combination, to identify characteristics related to object 304. For example, source device 302 can analyze all of the received RF pulses to obtain temporal information and/or spatial information about object 304. Accordingly, source device 302 can use knowledge about a transmission signal's configuration (such as pulse widths, spacing between pulses, pulse power levels, phase relationships, and so forth), and further analyze a reflected RF pulse to identify various characteristics about object 304, such as size, shape, movement speed, movement direction, surface smoothness, material composition, and so forth.


Now consider FIG. 4, which builds upon the discussion of FIG. 3. FIG. 4 illustrates example environment 400 in which multiple antenna are used to ascertain information about a target object. Environment 400 includes source device 402 and a target object, shown here as hand 404. Generally speaking, source device 402 includes antenna 406-1, antenna 406-2, antenna 406-3, and antenna 406-4 to transmit and receive multiple RF signals. In some embodiments, source device 402 includes radar-based detection component 104 of FIG. 1 and FIG. 2, and antennas 406-1-406-4 correspond to antennas 212. While source device 402 in this example includes four antennas, it is to be appreciated that any suitable number of antennas can be used. Each antenna of antennas 406-1-406-4 is used by source device 402 to transmit a respective RF signal (e.g., antenna 406-1 transmits RF signal 408-1, antenna 406-2 transmits RF signal 408-2, and so forth). Further, these RF signals can be configured to form a specific transmission pattern or diversity scheme when transmitted together. For example, the configuration of RF signal 408-1, RF signal 408-2, RF signal 408-3, and RF signal 408-4, as well as the placement of antennas 406-1, antenna 406-2, antenna 406-3, and antenna 406-4 relative to a target object, can be based upon beamforming techniques to produce constructive interference or destructive interference patterns, or alternately configured to support triangulation techniques. At times, source device 402 configures RF signals 408-1-408-4 based upon an expected information extraction algorithm.


When RF signals 408-1-408-4 reach hand 404, they generate reflected RF signal 410-1, RF signal 410-2, RF signal 410-3, and RF signal 410-4. Similar to the discussion of FIG. 3, source device 402 captures these reflected RF signals, and then analyzes them to identify various properties or characteristics of hand 404, such as a micro-gesture. For instance, in this example, RF signals 408a-408d are illustrated with the bursts of the respective signals being transmitted synchronously in time. In turn, and based upon the shape and positioning of hand 404, reflected signals 410-1-410-4 return to source device 402 at different points in time (e.g., reflected signal 410-2 is received first, followed by reflected signal 410-3, then reflected signal 410-1, and then reflected signal 410-4). Reflected signals 410-1-410-4 can be received by source device 402 in any suitable manner. For example, antennas 406-1-406-4 can each receive all of reflected signals 410-1-410-4, or receive varying subset combinations of reflected signals 410-1-410-4 (e.g., antenna 406-1 receives reflected signal 410-1 and reflected signal 410-4, antenna 406-2 receives reflected signal 410-1, reflected signal 410-2, and reflected signal 410-3, and so forth). Thus, each antenna can receive reflected signals generated by transmissions from another antenna. By analyzing the various return times of each reflected signal, source device 402 can determine shape and corresponding distance information associated with hand 404. When reflected pulses are analyzed over time, source device 402 can additionally discern movement. Thus, by analyzing various properties of the reflected signals, as well as the transmitted signals, various information about hand 404 can be extracted, as further described below. It is to be appreciated that the discussion of this example with respect to radar detection has been simplified, and is not intended to be limiting.


As in the case of FIG. 3, FIG. 4 illustrates RF signals 408-1-408-4 as propagating at a 90° angle from source device 402 and in phase with one another. Similarly, reflected signals 410-1-410-4 each propagate back at a 90° angle from hand 404 and, as in the case of RF signals 408-1-408-4, are in phase with one another. However, as one skilled in the art will appreciate, more complex transmission signal configurations, and signal analysis on the reflected signals, can be utilized, examples of which are provided herein. In some embodiments, RF signals 408-1-408-4 can each be configured with different directional transmission angles, signal phases, power levels, modulation schemes, RF transmission channels, and so forth. These differences result in variations between reflected signals 410-1-410-4. In turn, these variations each provide different perspectives of the target object which can be combined using data fusion techniques to yield a better estimate of hand 404, how it is moving, its 3-dimensional (3D) spatial profile, a corresponding micro-gesture, etc.


Now consider FIG. 5, which illustrates example environment 500 in which techniques using, and an apparatus including, a radar-based gesture recognition system may be embodied, such as radar-based detection component 104 of FIG. 1. Environment 500 includes two example devices using a radar-based detection system. In the first, radar-based detection system 502 provides a near radar field to interact with desktop computer 506, and in the second, radar-based detection system 504 provides an intermediate radar field (e.g., a room size) to interact with television 508. Radar-based detection system 502 and radar-based detection system 504 provide radar field 512 and intermediate radar field 512, respectively, and are described below.


Desktop computer 506 includes, or is associated with, radar-based detection system 502. These devices work together to improve user interaction with desktop computer 506. Assume, for example, that desktop computer 506 includes a touch screen 514 through which display and user interaction can be performed. This touch screen 514 can present some challenges to users, such as needing a person to sit in a particular orientation, such as upright and forward, to be able to touch the screen. Further, the size for selecting controls through touch screen 514 can make interaction difficult and time-consuming for some users. Consider, however, radar-based detection system 502, which provides near radar field 510 enabling a user's hands to interact with desktop computer 506, such as with small or large, simple or complex gestures, including those with one or two hands, and in three dimensions. As is readily apparent, a large volume through which a user may make selections can be substantially easier and provide a better experience over a flat surface, such as that of touch screen 514.


Similarly, consider radar-based detection system 504, which provides intermediate radar field 512. Providing a radar-field enables a user to interact with television 508 from a distance and through various gestures, ranging from hand gestures, to arm gestures, to full-body gestures. By so doing, user selections can be made simpler and easier than a flat surface (e.g., touch screen 514), a remote control (e.g., a gaming or television remote), and other conventional control mechanisms.


Radar-based gesture recognition systems can interact with applications or an operating system of computing devices, or remotely through a communication network by transmitting input responsive to recognizing gestures. Gestures can be mapped to various applications and devices, thereby enabling control of many devices and applications. Many complex and unique gestures can be recognized by radar-based gesture recognition systems, thereby permitting precise and/or single-gesture control, even for multiple applications. Radar-based gesture recognition systems, whether integrated with a computing device, having computing capabilities, or having few computing abilities, can each be used to interact with various devices and applications.


The radar field can also include a surface applied to human tissue. This is illustrated at FIG. 6, which shows hand 602 having a surface radar field 604 provided by radar-based detection component 104 (of FIGS. 1 and 2) that is include in laptop 606. Radar-emitting element 210 (not shown) provides surface radar field 604 penetrating chair 608 and applied to hand 602. In this case, antennas 212 (not shown) is configured to receive a reflection caused by an interaction on the surface of hand 602 that penetrates (e.g., reflects back through) chair 608. Similarly, digital signal processing component 214 and/or machine-learning component 216 are configured to process the received reflection on the surface sufficient to provide gesture data usable to determine a gesture. Note that with surface radar field 604, another hand may interact to perform gestures, such as to tap on the surface on hand 602, thereby interacting with surface radar field 604. Example gestures include single and multi-finger swipe, spread, squeeze, non-linear movements, and so forth. Hand 602 may move or change shape to cause reflections, thereby also performing an occluded gesture.


With respect to human-tissue reflection, reflecting radar fields can process these fields to determine identifying indicia based on the human-tissue reflection, and confirm that the identifying indicia matches recorded identifying indicia for a person, such as authentication for a person permitted to control a corresponding computing device. These identifying indicia can include various biometric identifiers, such as a size, shape, ratio of sizes, cartilage structure, and bone structure for the person or a portion of the person, such as the person's hand. These identify indicia may also be associated with a device worn by the person permitted to control the mobile computing device, such as device having a unique or difficult-to-copy reflection (e.g., a wedding ring of 14 carat gold and three diamonds, which reflects radar in a particular manner). In addition, radar-based detection systems can be configured so that personally identifiable information is removed. For example, a user's identity may be treated so that no personally identifiable information can be determined for the user, or a user's geographic location may be generalized where location information is obtained (such as to a city, postal code, or state level), so that a particular location of a user cannot be determined. Thus, the user may have control over what information is collected about the user, how that information is used, and what information is provided to the user.


Having described general principles of RF signals which can be used in radar-based detection devices, now consider a discussion of application-based processing parameters for a radar-based detection system that can be employed in accordance with one or more embodiments.


Application-Based Processing Parameters


A radar-based detection system provides a user with a way to interact with a computing device without physically touching the computing device, or touching an input mechanism coupled to the computing device. As the user performs an in-the-air gesture, the radar-based detection system uses reflected signals to extract characteristics that are then used to identify and recognize the gesture. Similarly, the radar-based detection system can use reflected signals to characterize an environment in which a corresponding device resides. However, different applications sometimes have different needs. Further, a single application may have dynamic needs that change from one point in time to the next. Thus, a fixed radar-based detection system may have difficulty supporting these changing needs at a resolution desired by each respective application.


Various embodiments utilize application-based processing parameters to dynamically configure a radar-based detection system based upon an operating context of an associated device. A first application with execution priority on a device dynamically configures the radar-based detection system to emit a radar field suitable for a first operating context associated with the first application. The first application can also dynamically configure processing parameters of the radar-based detection system, such as digital signal processing parameters and machine-learning parameters. In some cases, a second application on the device assumes execution priority over the first application. When the second application assumes execution priority, it dynamically reconfigures the radar-based detection system to emit a radar field suitable to a second operating context associated with the second application. Alternately or additionally, the second application dynamically reconfigures the processing parameters of the radar-based detection system based upon the second operating context of the second application.



FIG. 7 illustrates a detailed example of computing device 102 from FIG. 1. Here, computing device 102 has been generally partitioned into two sections: software partition 702 and hardware partition 704, each of which is outlined in a respective rectangle. For discussion purposes, components residing within software partition 702 can generally be considered software implementations, while components residing within hardware partition 704 can generally be considered hardware components. However, as one skilled in the art will appreciated, a software implementation may additionally include, or be embodied on, hardware, such as computer-readable storage media, to store processor-executable instructions and/or a processor which executes the processor executable instructions. Similarly, a hardware implementation may additionally include firmware. Thus, while components are described here in the context of being a software module or a hardware component, other embodiments implement these modules and/or components in varying combinations of hardware, software, firmware, and so forth. In this example, software partition 702 includes application 706 and application 708, as well as gesture sensor APIs 208 from FIG. 2. Conversely, hardware partition 704 includes radar-based detection component 104 from FIG. 1.


Application 706 and application 708 represent respective software functionality on computing device 102, such as, by way of example and not of limitation, an operating system, an email client, a home security or monitoring application, a web browser, a television remote control application, an image capture application, an audio playback application, an instant messaging application, a Voice-over-Internet Protocol (VoIP) application, a gaming application, a virtual-reality application, and so forth. At times, a user can directly interface with these applications by entering direct input, such as by performing an in-the-air gesture that is detected by radar-based detection component 104. Other times, the user indirectly interfaces with these applications. For example, radar-based detection component 104 may detect the presence of a user walking into a room, and forward this input to application 706 or application 708 as a way to wake or activate the application. Thus, the user can directly or indirectly enter input to an application. In order to send information to radar-based detection component 104, application 706, and application 708 each have a bidirectional communication path with gesture sensor APIs 208, indicated here as communication path 710 and communication path 712 respectively.


Communication path 710 and communication path 712 generally represent a data exchange path, and/or an ability for an application to communicate with, or invoke, a gesture sensor API. In some cases, an application can exchange data or invoke an API by including header files, linking to an associated library, and so forth, in order to establish a data exchange path and/or communication path with the API. Other times, an application utilizes a hardware interface, such as an Input/Output (TO) port, shared memory, hardware interrupt lines, and so forth, to establish a communication path. Here, communication path 710 and communication path 712 are bidirectional communication paths with gesture sensor APIs 208. Accordingly, an application can either send data to, or receive data from, these APIs. When application 706 has execution priority over application 708, application 706 calls or invokes gesture sensor APIs 208 (via communication path 710) in order to configure processing parameters and/or a radar field configuration of radar-based detection component 104. Since communication path 710 is bidirectional, application 706 can also receive feedback from radar-based detection component 104 (via gesture sensor APIs 208). Similarly, application 708 uses communication path 712 to send data to, or receive data from, radar-based detection component 104 via the corresponding APIs.


Communication path 714 represents a bidirectional communication path between gesture sensor APIs 208 and radar-based detection component 104 that enables two-way data exchange. This communication path can be a suitable combination of programmatic interfaces, such as a hardware register with an address, shared memory, data I/O port, a Transmission Control Protocol over Internet Protocol (TCP-IP) communication path, etc. Thus, communication path 714 enables gesture sensor APIs 208 to exchange data with radar-based detection component 104. When positioned in combination with communication path 710 and/or communication path 712, application 706 and application 708 can dynamically modify a radar detection system.


To further illustrate, consider a pipeline implementation in which each stage of the pipeline receives an input, analyzes or processes the input, subsequently generates new information, and then passes the newly generated information to a next stage in the pipeline. Some embodiments enable an application to dynamically configure or modify states of a pipeline. For example, consider a case where radar-based detection component 104 use a pipeline that includes, among other things, a digital signal processing stage and a machine-learning stage (implemented, at least in part, by digital signal processing component 214 and machine-learning component 216 of FIG. 2, respectively). Applications can use the aforementioned communication paths and APIs to configure each of these stages either together in concert, or individually.


As previously discussed, gesture sensor APIs 208 can provide access to high-level commands that obscure hardware configuration information at an application level, to low-level commands that expose hardware level access and configurations at an application level. Thus, some embodiments provide a high-level command, such as a high-level “Default Configuration” command, that can be invoked by an application to configure radar-based detection component 104 with a default level configuration. Similarly, gesture sensor APIs 208 can include multiple high-level preset configuration APIs that can be used by an application to preset the radar-based detection component to a preset configuration without needing to send parameters (e.g., “Preset to Micro-Gesture detection”, “Preset to Room-sized detection”, “Preset to Near-Field Detection”, “Preset to Facial Identification Detection”, and so forth). Here, each preset configuration API automatically configures the radar-based detection component into a predetermined configuration for particular detection preferences (e.g., a predetermined radar field, a predetermined processing algorithm, and so forth). In some cases, the preset configuration API sends a single command to the radar-based detection component to invoke predetermined parameters known internally to the radar-based detection component. In other cases, a preset configuration API sends multiple commands and/or parameters. Thus, preset configuration APIs can dynamically configure and send parameters to the radar-based detection component, or can simply send a command to use internal and/or predetermined settings. Any suitable configuration parameters can be dynamically set, such as a frame rate parameter, a Doppler coherent processing interval parameter, a pre-Doppler coherent processing interval parameter, a ramp slope parameter, a transmission power parameter, and so forth.


Mid-to-low-level access provided by gesture sensor APIs 208 enables an application to individually configure each stage of the pipeline with an algorithm or set individual hardware parameters. Accordingly, gesture sensor APIs 208 can provide programmatic access to input configuration parameters that configure transmit signals (e.g., signals 112 and/or signals 116 of FIG. 1) and/or select target object recognition algorithms, examples of which are provided herein. This can be an iterative process, where an application changes parameters for each respective iteration of a multi-iteration process, or change parameters based upon feedback received from the radar-bases gesture detection component.


As one example, consider a case where application 706 has execution priority, and is in control of the configuration of radar-based detection component 104. In some embodiments, application 706 configures the radar-based detection component to transmit a first frequency suitable to sense when a person walks into a room and/or sense presence. At a later point in time, application 706 receives feedback from radar-based gesture component indicating that a presence has been detected (e.g., a user has entered a room). In response to this, application 706 changes the frequency emitted by radar-based detection component 104 to a higher frequency relative to the first configuration suitable to obtaining more resolution and information about the presence, such as heart beat detection, facial recognition and/or user identity, a micro-gesture, and so forth. In this instance, application 706 configures the radar detection system with a starting or default frequency for beginning a detection process, then dynamically changes the frequency parameter at a later point in time upon receiving feedback from the radar detection system. Thus, depending upon an operating context or the desired information, an application can dynamically adjust a transmitted frequency to detect and distinguish between smaller objects close together by using a higher frequency transmission, and additionally adjust the transmitted frequency to detect larger objects by dynamically adjusting the transmitted frequency to a lower frequency.


As another example, consider dynamic adjustment of a frame rate. At times, the frame rate determines a maximum velocity that can be sensed by the radar-based detection system. A proportional relationship exists between increasing a frame rate and the maximum velocity detection, in that increasing the frame rate of a signal yields a higher velocity detection resolution for detecting the velocity of an object. However, adjusting the frame rate also impacts a signal-to-noise (SNR) ratio over the duration of a data capture and/or “sensing time interval” (e.g., a window in time over which target object detection occurs), such that there is an inverse relationship. In other words, an increased frame yields a lower SNR which, in turn, can adversely impact the accuracy of a detection process. Thus, there may be times when an application initially configures a radar detection system with a high SNR and low velocity detection resolution for an initial object detection process, but then alters the frame rate dynamically to have a higher velocity detection resolution than previously used with the initial detection in order to discern faster sub-movements, such as finger movement associated with a micro-gesture. In other cases, the frame rate can be adjusted to an expected velocity range, such as a frame rate that can discern the difference between a human gait (slower) versus an animal gait (faster). By tailoring or configuring the frame rate for a specific velocity range, the radar-based detection system can identify when a person enters a room, and ignore when a dog enters the room based upon differences in respective gaits. Accordingly, some embodiment enable dynamic modification of a frame rate associated with a radar-based detection system.


Other dynamic adjustments can be applied to configure various features of the radar system, such as range resolution. Range resolution impacts how well the radar system can distinguish between multiple targets that have a same bearing but located at different ranges. Some embodiments dynamically adjust parameters, such as beginning and ending transmission frequencies, ramp slope, and so forth, to affect a corresponding bandwidth which, in turn affects the range resolution of a radar-based detection system. Larger bandwidths enable detection of smaller objects (such as a micro-gesture), while smaller bandwidths are more suitable for larger object detection (such as a person entering a room). Thus, for an iterative process with feedback, an application may pick an intermediate bandwidth (through ramp slope adjustments) for initial object detection and, upon receiving feedback from the radar system, adjust the radar-based detection system to detect small or large objects based upon its operating context. Phase placement can also be dynamically adjusted by an application that desires to make radar detection more tailored or specific to a particular (expected) target.


With regards to velocity, a Doppler coherent processing interval determines or influences a velocity detection resolution. For instance, a Doppler coherent processing interval can be used to determine a number of transmissions and/or data acquisitions that are combined coherently to determine a velocity associated with a target object. In turn, the Doppler coherent processing interval can affect how well a radar detection system can discern between multiple objects that are moving in speed relative to another, and whether a radar detection system is able to identify each object separately, or instead views the multiple objects as one. Accordingly, some embodiments enable an application to dynamically reconfigure a velocity detection resolution of a radar-based detection system by allowing dynamic modifications to a Doppler coherent processing interval parameter.



FIG. 8 is a flow diagram that describes steps in a method for application-based signal processing adjustment of a radar-based detection system in accordance with one or more embodiments. The method can be implemented in connection with any suitable hardware, software, firmware, or combination thereof. In at least some embodiments, the method can be implemented by a suitably-configured system, such radar-based detection component 104, applications 206, and/or gesture sensor APIs 208 of FIGS. 1 and 2.


Step 802 configures a radar-based detection system based upon an operating context of a device. For example, a device that includes multiple applications can have different operating contexts depending upon which application is active and/or has control over the radar-based detection system. In some embodiments, an application running on the device dynamically configures the radar-based detection system using a software interface that is coupled to a hardware programmatic interface, such as gesture sensor APIs 208 of FIG. 2. The configuration can be selected in any suitable manner. For example, an application sometimes configures the radar-based detection system using a default configuration, or a preset configuration associated with what type of input the application expects. Other times, an application queries the system to determine whether a current configuration of the radar-based detection system is currently in a state suitable for the needs of the application. As another example, an application can configure the radar-based detection system to detect a target object, action, or gesture specific to the application.


Upon configuring the radar-based detection system, the application receives information in step 804. In some embodiments, the application receives notification of an event, such as the detection of a gesture, the presence of a user, the occurrence of a timeout, etc. Other times, the application receives more detailed information, such as size and/or shape information associated with a target object, a type of gesture detected, velocity information associated with a target object, user identifying information, and so forth.


Step 806 determines whether more information is needed. As one example, some embodiments include an application that uses multiple iterations to obtain additional detail on a target object at each iteration. If all iterations have been performed, or the information has been captured adequately, step 806 may determine that no more information is needed. If no information is needed, and/or the predetermined number of iterations has completed, the process transitions to completion, illustrated here as “Exit”. However, if the information capture process has failed, not all of the iterations have been performed, or a different context needs different information, step 806 determines that more information gathering or data capture is needed, and the process proceeds to step 808.


Step 808 determines whether to reconfigure the radar-based detection system. In some cases, the application or device queries the radar-based detection system to obtain a current state, and then compares the current state to a state that represents the needs of the application. If the current state suffices, step 808 determines that no reconfiguration is needed and proceeds to step 812 to acquire information. If the current state does not suffice, and/or lacks the resolution to extract the desired information, step 808 determines to reconfigure the radar-based detection system, and proceeds to step 810.


Step 810 reconfigures the radar-based detection system. This can include reconfiguring the radar field that is emitted by the radar-based detection system, reconfiguring a digital signal processing stage and/or algorithms, reconfiguring a machine-learning stage and/or algorithms, a type of information extracted, a resolution on detecting a target object, and so forth. As described with respect to step 802, some embodiments utilize a software interface that is coupled to a hardware (programmatic) interface (e.g., gesture sensor APIs 208 of FIG. 2).


Step 812 acquires additional information. The additional information can be based upon a reconfigured radar-based detection system, such as that performed in step 810, or can be based upon a previously used configuration. The additional information can be a same type of information as that received in step 804, or can be alternate information. As one example, step 804 can be used to obtain location information about a person's face, while step 812 can be used to obtain information about a person's identify from a more detailed analysis of the face. Other times, information generated or received in step 804 can be averaged or combined together with information generated or received in step 812. Alternately or additionally, the additional information can be feedback information from the radar-based detection system.


Step 814 determines whether all information has been acquired, and/or whether the process is done. If step 814 determines that all information has been acquired, the process proceeds to “Exit”, as in the case of step 806. However, if more information is needed, the process returns to step 808 to determine whether to reconfigure the radar-based detection system, at which point step 810, step 812, and step 814 repeat as needed (e.g., information has been gathered to completion, iterations have been completed, a failure mode has been detected, and so forth).



FIG. 8 describes an iterative process in which an application dynamically modifies the radar-based detection system based upon a changing operating context of an application. In other embodiments, the dynamic modifications can occur between applications. Consider now FIG. 9, which illustrates a flow diagram that describes steps in a method for application-based signal processing adjustment of a radar-based detection system in accordance with one or more embodiments. The method can be implemented in connection with any suitable hardware, software, firmware, or combination thereof. In at least some embodiments, the method can be implemented by a suitably-configured system, such as radar-based detection component 104, applications 206, and/or gesture sensor APIs 208 of FIGS. 1 and 2.


Step 902 acquires control of a radar-based detection system using a first application. The application may obtain a semaphore lock in software to acquire and retain control of the radar-based detection system, but other techniques can be used, such as mutex protection, spinlocks, atomic instructions, and so forth. Here, the term “control” is used to indicate that the first application has the rights or priority to modify the radar-based detection system over other applications. In other cases, control is managed internal to other software, such as gesture sensor API's 208. For example, gesture sensor API's 208 can maintain a queue of configuration requests, and implement a handshaking protocol to manage when the radar-based detection system can be reconfigured.


Step 904 configures the radar-based detection system based upon a first operating context associated with the first application. Responsive to configuring the radar-based detection system, step 906 receives a first set of information via the radar-based detection system. In some embodiments, step 904 and step 906 can be implemented as an iterative loop that incorporates feedback from the radar-based detection component, such as the iterative loop described with respect to FIG. 8. Other embodiments use a single pass, rather than an iterative loop.


At a later and arbitrary point in time, step 908 acquires control of the radar-based detection system using a second application. Similar to that described with the first application, control of the radar-based detection system can be acquired directly by the second application, indirectly through APIs, and so forth. Upon acquiring control of the radar-based detection system using the second application, step 910 reconfigures the radar-based detection system based upon an operating context associated with the second application, such as by reconfiguring an emitted radar field, digital signal processing algorithms, and so forth. Upon reconfiguring the radar-based detection system, step 912 acquires a second set of information using the radar-based detection system. As in the case of step 904 and step 906, step 910 and step 912 can be implemented as an iterative loop that incorporates feedback from the radar-based detection component, or use a single pass.


Adaptive and dynamic reconfiguration of a radar-based detection system allows a system to iteratively refine the detecting process, as well as tailor a radar-based detection system to different applications and uses. In turn, this allows different applications on a same device to use the radar-based detection system in different ways. Thus, a same radar-based detection system can be first configured to optimally detect large movements, such arm waves or a walking gait, then reconfigured to next optimally detect a micro-gesture performed by a hand, tongue, eye (blinking), or an eyebrow (raising and lowering), As one skilled in the art will appreciated, the detection of these different types of gestures (e.g., large gestures versus small gestures) may use varying algorithms, radar fields, and so forth to optimally detect or extract the desired information. Consider the example of a fixed system that is optimally configured to detect a micro-gesture. Such a fixed system may miss or have faulty detection for large gestures. Dynamic reconfiguration of a radar system allows an application to optimally configure the detection process based upon its operating context or needs, and allows for multiple applications with differing needs to reuse a same set of hardware.


Having considered various embodiments, consider now an example system and device that can be utilized to implement the embodiments described herein.


Example Electronic Device



FIG. 10 illustrates various components of an example system 1000 that incorporates dynamically modifying a radar-based detection system as described with reference to FIGS. 1-9. System 1000 may be implemented as any type of a fixed or mobile device, in any form of a consumer, computer, portable, user, communication, phone, navigation, gaming, audio, camera, messaging, media playback, and/or other type of electronic device, such as computing device 102 described with reference to FIGS. 1 and 2. In some cases, system 1000 can alternately be implemented as a printed circuit board (PCB), a chip-on-chip system, and so forth. In light of this, it is to be appreciated that various alternate embodiments can include additional components that are not described, or exclude components that are described, with respect to system 1000.


System 1000 includes communication devices 1002 that enable wired and/or wireless communication of device data 1004 (e.g., received data, data that is being received, data scheduled for broadcast, data packets of the data, and so forth). The device data 1004 or other device content can include configuration settings of the device and/or information associated with a user of the device.


System 1000 also includes communication interfaces 1006 that can be implemented as any one or more of a serial and/or parallel interface, a wireless interface, any type of network interface, a modem, and as any other type of communication interface. The communication interfaces 1006 provide a connection and/or communication links between system 1000 and a communication network by which other electronic, computing, and communication devices communicate data with system 1000.


System 1000 includes one or more processors 1008 (e.g., any of microprocessors, controllers, and the like) which process various computer-executable instructions to control the operation of system 1000 and to implement embodiments of the techniques described herein. Alternately or in addition, system 1000 can be implemented with any one or combination of hardware, firmware, or fixed logic circuitry that is implemented in connection with processing and control circuits which are generally identified at 1010. Although not shown, system 1000 can include a system bus or data transfer system that couples the various components within the device. A system bus can include any one or combination of different bus structures, such as a memory bus or memory controller, a peripheral bus, a universal serial bus, and/or a processor or local bus that utilizes any of a variety of bus architectures.


System 1000 also includes computer-readable storage media 1012, such as one or more memory components, examples of which include random access memory (RAM), non-volatile memory (e.g., any one or more of a read-only memory (ROM), flash memory, EPROM, EEPROM, and so forth), and a disk storage device. A disk storage device may be implemented as any type of magnetic or optical storage device, such as a hard disk drive, a recordable and/or rewriteable compact disc (CD), any type of a digital versatile disc (DVD), and the like.


Computer-readable storage media 1012 provides data storage mechanisms to store and maintain the device data 1004, as well as storing and maintaining various applications, and any other types of information and/or data related to operational aspects of system 1000. Here, computer-readable storage media 1012 includes applications 1014, which generally represent applications with an ability to configure a radar-based gesture sensor component. Other applications can include a device manager (e.g., a control application, software application, signal processing and control module, code that is native to a particular device, a hardware abstraction layer for a particular device, and so forth). Computer-readable storage media 1012 also includes gesture sensor APIs 1016.


Gesture sensor APIs 1016 provide programmatic access to a gesture sensor component. The programmatic access can range from high-level programming access that obscures underlying hardware implementation details and/or how a function is implemented (e.g., no hardware configuration parameters or algorithmic parameters), to low-level programmatic access that enables an application to send low-level input configuration parameters associated with modifying how signals are transmitted, received, and/or processed by a gesture sensor component.


System 1000 also includes audio and/or video processing system 1018 that processes audio data and/or passes through the audio and video data to audio system 1020 and/or to display system 1022 (e.g., a screen of a smart phone or camera). Audio system 1020 and/or display system 1022 may include any devices that process, display, and/or otherwise render audio, video, display, and/or image data. Display data and audio signals can be communicated to an audio component and/or to a display component via an RF link, S-video link, HDMI, composite video link, component video link, DVI, analog audio connection, or other similar communication link, such as media data port 1024. In some implementations, audio system 1020 and/or display system 1022 are external components to system 1000. Alternately, or additionally, display system 1022 can be an integrated component of the example electronic device, such as part of an integrated touch interface.


System 1000 also includes radar-based detection component 1026 that wirelessly identifies one or more features of a target object, such as a micro-gesture performed by a hand, presence detection, facial recognition, etc. Radar-based detection component 1026 can be implemented as any suitable combination of hardware, software, firmware, and so forth. In some embodiments, radar-based detection component 1026 is implemented as an SoC. Among other things, radar-based detection component 1026 includes radar-emitting element 1028, antennas 1030, digital signal processing component 1032, and machine-learning component 1034.


Radar-emitting element 1028 is configured to provide a radar field. In some cases, the radar field is configured to at least partially reflect off a target object. The radar field can also be configured to penetrate fabric or other obstructions and reflect from human tissue. These fabrics or obstructions can include wood, glass, plastic, cotton, wool, nylon and similar fibers, and so forth, while reflecting from human tissues, such as a person's hand. Radar-emitting element 1028 works in concert with antennas 1030 to provide the radar field.


Antennas 1030 transmit and receive RF signals under the control of radar-based detection component 1026. Each respective antenna of antennas 1030 can correspond to a respective transceiver path internal to Radar-based detection component 1026 that physically routes and manages outgoing signals for transmission and the incoming signals for capture and analysis.


Digital signal processing component 1032 digitally processes RF signals received via antennas 1030 to extract information about the target object. In some embodiments, digital signal processing component 1032 additionally configures outgoing RF signals for transmission on antennas 1030. Some of the information extracted by digital signal processing component 1032 is used by machine-learning component 1034. Digital signal processing component 1032 at times includes multiple digital signal processing algorithms that can be selected or deselected for an analysis, examples of which are provided herein. Thus, digital signal processing component 1032 can generate key information from RF signals that can be used to determine what gesture might be occurring at any given moment. At times, an application, such as applications 1014, can configure the operating behavior of digital signal processing component 1032 via gesture Sensor APIs 1016.


Machine-learning component 1034 receives input data, such as a transformed raw signal or high-level information about a target object, and analyzes the input date to identify or classify various features extractable from the data, such as position data, shape data, location data, presence data, and so forth. As in the case of digital signal processing component 1032, machine-learning component 1034 can include multiple machine-learning algorithms that can be selected or deselected for an analysis. Among other things, machine-learning component 1034 can use the key information generated by digital signal processing component 1032 to detect relationships and/or correlations between the generated key information and previously learned gestures to probabilistically decide which gesture is being performed. At times, an application, such as applications 1014, can configure the operating behavior of machine-learning component 1034 via gesture Sensor APIs 1016.


CONCLUSION

Various embodiments utilize application-based processing parameters to dynamically configure a radar-based detection system based upon an operating context of an associated device. A first application with execution priority on a device dynamically configures the radar-based detection system to emit a radar field suitable for a first operating context associated with the first application. The first application can also dynamically configure processing parameters of the radar-based detection system, such as digital signal processing parameters and machine-learning parameters. In some cases, a second application on the device assumes execution priority over the first application. When the second application assumes execution priority, it can dynamically reconfigure the radar-based detection system to emit a radar field suitable to a second operating context associated with the second application. Alternately or additionally, the second application can dynamically reconfigure the processing parameters of the radar-based detection system based upon the second operating context of the second application.


Although the embodiments have been described in language specific to structural features and/or methodological acts, it is to be understood that the various embodiments defined in the appended claims are not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as example forms of implementing the various embodiments.

Claims
  • 1. A method for interfacing with a radar-based detection component, the method performed by a device and comprising: receiving, via an Application Programming Interface (API), an API call from an application, the API call comprising a high-level request to configure the radar-based detection component, the high-level request not setting specific parameters of a digital signal processing stage of the radar-based detection component, a machine-learning stage of the radar-based detection component, or a radar field produced by the radar-based detection component;determining, based on the API call, configuration parameters for at least one of the digital signal processing stage of the radar-based detection component, the machine-learning stage of the radar-based detection component, or the radar field produced by the radar-based detection component;configuring, by the API and using the determined configuration parameters, the radar-based detection component, the configuring comprising configuring at least one of the digital signal processing stage of the radar-based detection component, the machine-learning stage of the radar-based detection component, or the radar field produced by the radar-based detection component; andsending, via the API and to the application, information about one or more objects detected by the configured radar-based detection component.
  • 2. The method of claim 1, wherein the information is based on the high-level request.
  • 3. The method of claim 1, further comprising: receiving an event notification request from the application; andsending an event notification to the application responsive to the event notification request being fulfilled.
  • 4. The method of claim 1, wherein the API call requests one of a plurality of preset configurations of the radar-based detection component.
  • 5. The method of claim 4, wherein the one of the preset configurations comprises a large-object configuration adapted for large objects or features or a small-object configuration adapted for small objects or features.
  • 6. The method of claim 4, wherein the one of the preset configurations comprises a large-gesture configuration adapted for large gestures or a small-gesture configuration adapted for small or micro-gestures.
  • 7. A device comprising: a processing system;a radar-based detection component implemented at least partially in hardware, the radar-based detection component comprising: at least one radar-emitting element for transmitting a radar field;at least one antenna for receiving an incoming RF signal generated by the radar field reflecting off one or more objects;a digital signal processing stage; anda machine-learning stage;one or more applications maintained in computer-readable storage media and executable by the processing system to perform a plurality of operations; andat least one Application Programming Interface (API) maintained in the computer-readable storage media and configured to provide a programmatic interface between the applications and the radar-based detection component, the at least one API configured to: receive API calls from the applications, the API calls comprising high-level requests to configure the radar-based detection component, the high-level requests not setting specific parameters of the digital signal processing stage, the machine-learning stage, or the radar field;determine, based on the API calls, configuration parameters for at least one of the digital signal processing stage, the machine-learning stage, or the radar field;configure, using the respective configuration parameters, at least one of the digital signal processing stage, the machine-learning stage, or the radar field; andpass information about the objects to the applications.
  • 8. The device of claim 7, wherein the at least one API is further configured to configure the radar-based detection component to a default configuration responsive to receiving a request from one of the applications for the default configuration.
  • 9. The device of claim 7, wherein the at least one API is further configured to configure the radar-based detection component to a far-object configuration adapted for objects that are farther from the device or a close-object configuration adapted for objects that are closer to the device responsive to receiving a request from one of the applications for the far-object configuration or the close-object configuration, respectively.
  • 10. The device of claim 7, wherein the at least one API is further configured to configure the radar-based detection component to a material-reflection configuration adapted for radar non-penetration or a material-penetration configuration adapted for radar penetration responsive to receiving a request from one of the applications for the material-reflection configuration or the material-penetration configuration, respectively.
  • 11. The device of claim 7, wherein the at least one API is further configured to configure the radar-based detection component to a mapping configuration adapted to detecting an environment of the device responsive to receiving a request from one of the applications for the mapping configuration.
  • 12. The device of claim 7, wherein the at least one API is further configured to configure the radar-based detection component to a large-object configuration adapted for large objects or features or a small-object configuration adapted for small objects or features responsive to receiving a request from one of the applications for the large-object configuration or the small-object configuration, respectively.
  • 13. The device of claim 7, wherein the at least one API is further configured to configure the radar-based detection component to a large-gesture configuration adapted for large gestures or a small-gesture configuration adapted for small or micro-gestures responsive to receiving a request from one of the applications for the large gesture configuration or the small gesture configuration, respectively.
  • 14. The device of claim 7, wherein the at least one API is further configured to configure the radar-based detection component to a slow-motion configuration adapted for slow moving objects or a fast-motion configuration adapted for fast moving objects responsive to receiving a request from one of the applications for the slow-motion configuration or the fast-motion configuration, respectively.
  • 15. The device of claim 14, wherein the slow-motion configuration or the fast-motion configuration sets a frame rate of the radar-based detection component.
  • 16. One or more non-transitory computer-readable storage media comprising instructions that are executable by a processing system to implement at least one Application Programming Interface (API) configured to provide a programmatic interface between applications and a radar-based detection component, the at least one API configured to: receive API calls from the applications, the API calls comprising high-level requests to configure the radar-based detection component, the high-level requests not setting specific parameters of a digital signal processing stage of the radar-based detection component, a machine-learning stage of the radar-based detection component, or a radar field of the radar-based detection component;determine, based on the API calls, configuration parameters for at least one of the digital signal processing stage, the machine-learning stage, or the radar field;configure, using the respective configuration parameters, at least one of the digital signal processing stage, the machine-learning stage, or the radar field; andpass information about the objects to the applications.
  • 17. The one or more non-transitory computer-readable storage media of claim 16, wherein the digital signal processing stage and the machine-learning stage are components of a pipeline of the radar-based detection component.
  • 18. The one or more non-transitory computer-readable storage media of claim 16, wherein the API calls comprise respective requests for one of a plurality of preset configurations of the radar-based detection component.
  • 19. The method of claim 1, wherein the configuration parameters are comprised by a routine corresponding to the API call.
  • 20. The device of claim 7, wherein the API calls have respective corresponding routines comprising the respective configuration parameters.
PRIORITY

This application is a continuation application of U.S. patent application Ser. No. 15/287,394 filed on Oct. 6, 2016, which, in turn, claims priority to U.S. Provisional Patent Application Ser. No. 62/237,975 filed on Oct. 6, 2015, the disclosures of which are incorporated by reference herein in their entirety.

US Referenced Citations (694)
Number Name Date Kind
3610874 Gagliano Oct 1971 A
3752017 Lloyd et al. Aug 1973 A
3953706 Harris et al. Apr 1976 A
4104012 Ferrante Aug 1978 A
4654967 Thenner Apr 1987 A
4700044 Hokanson et al. Oct 1987 A
4795998 Dunbar et al. Jan 1989 A
4838797 Dodier Jun 1989 A
5016500 Conrad et al. May 1991 A
5121124 Spivey et al. Jun 1992 A
5298715 Chalco et al. Mar 1994 A
5341979 Gupta Aug 1994 A
5410471 Alyfuku et al. Apr 1995 A
5468917 Brodsky et al. Nov 1995 A
5564571 Zanotti Oct 1996 A
5656798 Kubo et al. Aug 1997 A
5724707 Kirk et al. Mar 1998 A
5798798 Rector et al. Aug 1998 A
6032450 Blum Mar 2000 A
6037893 Lipman Mar 2000 A
6080690 Lebby et al. Jun 2000 A
6101431 Niwa et al. Aug 2000 A
6210771 Post et al. Apr 2001 B1
6254544 Hayashi Jul 2001 B1
6303924 Adan et al. Oct 2001 B1
6313825 Gilbert Nov 2001 B1
6340979 Beaton et al. Jan 2002 B1
6380882 Hegnauer Apr 2002 B1
6386757 Konno May 2002 B1
6440593 Ellison et al. Aug 2002 B2
6492980 Sandbach Dec 2002 B2
6493933 Post et al. Dec 2002 B1
6513833 Breed et al. Feb 2003 B2
6513970 Tabata et al. Feb 2003 B1
6524239 Reed et al. Feb 2003 B1
6543668 Fujii et al. Apr 2003 B1
6616613 Goodman Sep 2003 B1
6711354 Kameyama Mar 2004 B2
6717065 Hosaka et al. Apr 2004 B2
6802720 Weiss et al. Oct 2004 B2
6833807 Flacke Dec 2004 B2
6835898 Eldridge et al. Dec 2004 B2
6854985 Weiss Feb 2005 B1
6929484 Weiss et al. Aug 2005 B2
6970128 Dwelly et al. Nov 2005 B1
6997882 Parker et al. Feb 2006 B1
7019682 Louberg et al. Mar 2006 B1
7134879 Sugimoto et al. Nov 2006 B2
7158076 Fiore et al. Jan 2007 B2
7164820 Eves et al. Jan 2007 B2
7194371 McBride et al. Mar 2007 B1
7205932 Fiore Apr 2007 B2
7223105 Weiss et al. May 2007 B2
7230610 Jung et al. Jun 2007 B2
7249954 Weiss Jul 2007 B2
7266532 Sutton Sep 2007 B2
7299964 Jayaraman et al. Nov 2007 B2
7310236 Takahashi et al. Dec 2007 B2
7317416 Flom et al. Jan 2008 B2
7348285 Dhawan et al. Mar 2008 B2
7365031 Swallow et al. Apr 2008 B2
7421061 Boese et al. Sep 2008 B2
7462035 Lee et al. Dec 2008 B2
7528082 Krans et al. May 2009 B2
7544627 Tao et al. Jun 2009 B2
7578195 DeAngelis et al. Aug 2009 B2
7644488 Aisenbrey Jan 2010 B2
7647093 Bojovic et al. Jan 2010 B2
7670144 Ito et al. Mar 2010 B2
7677729 Vilser et al. Mar 2010 B2
7691067 Westbrook et al. Apr 2010 B2
7698154 Marchosky Apr 2010 B2
7750841 Oswald Jul 2010 B2
7791700 Bellamy Sep 2010 B2
7834276 Chou et al. Nov 2010 B2
7845023 Swatee Dec 2010 B2
7941676 Glaser May 2011 B2
7952512 Delker et al. May 2011 B1
7999722 Beeri et al. Aug 2011 B2
8062220 Kurtz et al. Nov 2011 B2
8063815 Valo et al. Nov 2011 B2
8169404 Boillot May 2012 B1
8179604 Prada Gomez et al. May 2012 B1
8193929 Siu et al. Jun 2012 B1
8199104 Park et al. Jun 2012 B2
8282232 Hsu et al. Oct 2012 B2
8289185 Alonso Oct 2012 B2
8301232 Albert et al. Oct 2012 B2
8314732 Oswald Nov 2012 B2
8326313 McHenry Dec 2012 B2
8334226 Nhan et al. Dec 2012 B2
8341762 Balzano Jan 2013 B2
8344949 Moshfeghi Jan 2013 B2
8367942 Howell et al. Feb 2013 B2
8475367 Yuen et al. Jul 2013 B1
8505474 Kang et al. Aug 2013 B2
8509882 Albert et al. Aug 2013 B2
8514221 King et al. Aug 2013 B2
8527146 Jackson et al. Sep 2013 B1
8549829 Song et al. Oct 2013 B2
8560972 Wilson Oct 2013 B2
8562526 Heneghan et al. Oct 2013 B2
8569189 Bhattacharya et al. Oct 2013 B2
8614689 Nishikawa et al. Dec 2013 B2
8655004 Prest et al. Feb 2014 B2
8700137 Albert Apr 2014 B2
8758020 Burdea et al. Jun 2014 B2
8759713 Sheats Jun 2014 B2
8764651 Tran Jul 2014 B2
8785778 Streeter et al. Jul 2014 B2
8790257 Libbus et al. Jul 2014 B2
8814574 Selby et al. Aug 2014 B2
8819812 Weber et al. Aug 2014 B1
8854433 Rafii Oct 2014 B1
8860602 Nohara Oct 2014 B2
8921473 Hyman Dec 2014 B1
8948839 Longinotti-Buitoni et al. Feb 2015 B1
9055879 Selby et al. Jun 2015 B2
9075429 Karakotsios et al. Jul 2015 B1
9093289 Vicard et al. Jul 2015 B2
9125456 Chow Sep 2015 B2
9141194 Keyes et al. Sep 2015 B1
9148949 Zhou et al. Sep 2015 B2
9223494 DeSalvo et al. Dec 2015 B1
9229102 Wright Jan 2016 B1
9230160 Kanter Jan 2016 B1
9235241 Newham et al. Jan 2016 B2
9316727 Sentelle Apr 2016 B2
9331422 Nazzaro et al. May 2016 B2
9335825 Rautiainen et al. May 2016 B2
9346167 O'Connor May 2016 B2
9354709 Heller et al. May 2016 B1
9412273 Ricci Aug 2016 B2
9508141 Khachaturian et al. Nov 2016 B2
9511877 Masson Dec 2016 B2
9524597 Ricci Dec 2016 B2
9569001 Mistry et al. Feb 2017 B2
9575560 Poupyrev et al. Feb 2017 B2
9582933 Mosterman et al. Feb 2017 B1
9588625 Poupyrev Mar 2017 B2
9594443 VanBlon et al. Mar 2017 B2
9600080 Poupyrev Mar 2017 B2
9693592 Robinson et al. Jul 2017 B2
9699663 Jovancevic Jul 2017 B1
9746551 Scholten Aug 2017 B2
9766742 Papakostas Sep 2017 B2
9778749 Poupyrev Oct 2017 B2
9807619 Tsai Oct 2017 B2
9811164 Poupyrev Nov 2017 B2
9817109 Saboo et al. Nov 2017 B2
9837760 Karagozler et al. Dec 2017 B2
9848780 DeBusschere et al. Dec 2017 B1
9870056 Yao Jan 2018 B1
9921660 Poupyrev Mar 2018 B2
9933908 Poupyrev Apr 2018 B2
9947080 Nguyen Apr 2018 B2
9958541 Kishigami May 2018 B2
9971414 Gollakota et al. May 2018 B2
9971415 Poupyrev et al. May 2018 B2
9983747 Poupyrev May 2018 B2
9994233 Diaz-Jimenez et al. Jun 2018 B2
10016162 Rogers et al. Jul 2018 B1
10027923 Chang Jul 2018 B1
10034630 Lee et al. Jul 2018 B2
10063427 Brown Aug 2018 B1
10064582 Rogers Sep 2018 B2
10073590 Dascola Sep 2018 B2
10080528 DeBusschere et al. Sep 2018 B2
10082950 Lapp Sep 2018 B2
10088908 Poupyrev et al. Oct 2018 B1
10139916 Poupyrev Nov 2018 B2
10155274 Robinson et al. Dec 2018 B2
10175781 Karagozler et al. Jan 2019 B2
10203405 Mazzaro Feb 2019 B2
10203763 Poupyrev et al. Feb 2019 B1
10222469 Gillian et al. Mar 2019 B1
10241581 Lien et al. Mar 2019 B2
10268321 Poupyrev Apr 2019 B2
10285456 Poupyrev et al. May 2019 B2
10300370 Amihood et al. May 2019 B1
10310620 Lien et al. Jun 2019 B2
10310621 Lien et al. Jun 2019 B1
10376195 Reid et al. Aug 2019 B1
10379621 Schwesig et al. Aug 2019 B2
10401490 Gillian et al. Sep 2019 B2
10409385 Poupyrev Sep 2019 B2
10459080 Schwesig et al. Oct 2019 B1
10492302 Karagozler et al. Nov 2019 B2
10496182 Lien et al. Dec 2019 B2
10503883 Gillian et al. Dec 2019 B1
10509478 Poupyrev et al. Dec 2019 B2
10540001 Poupyrev et al. Jan 2020 B1
10572027 Poupyrev et al. Feb 2020 B2
10579150 Gu et al. Mar 2020 B2
10642367 Poupyrev May 2020 B2
10660379 Poupyrev et al. May 2020 B2
10664059 Poupyrev May 2020 B2
10664061 Poupyrev May 2020 B2
10705185 Lien et al. Jul 2020 B1
10768712 Schwesig et al. Sep 2020 B2
10817065 Lien et al. Oct 2020 B1
10817070 Lien et al. Oct 2020 B2
10823841 Lien et al. Nov 2020 B1
10908696 Amihood et al. Feb 2021 B2
10931934 Richards Feb 2021 B2
10936081 Poupyrev Mar 2021 B2
10936085 Poupyrev et al. Mar 2021 B2
10948996 Poupyrev et al. Mar 2021 B2
11080556 Gillian et al. Aug 2021 B1
11103015 Poupyrev et al. Aug 2021 B2
11132065 Gillian et al. Sep 2021 B2
11140787 Karagozler et al. Oct 2021 B2
11169988 Poupyrev et al. Nov 2021 B2
11175743 Lien et al. Nov 2021 B2
11221682 Poupyrev Jan 2022 B2
11256335 Poupyrev et al. Feb 2022 B2
20010030624 Schwoegler Oct 2001 A1
20010035836 Miceli et al. Nov 2001 A1
20020009972 Amento et al. Jan 2002 A1
20020080156 Abbott et al. Jun 2002 A1
20020170897 Hall Nov 2002 A1
20030005030 Sutton Jan 2003 A1
20030071750 Benitz Apr 2003 A1
20030093000 Nishio et al. May 2003 A1
20030100228 Bungo et al. May 2003 A1
20030119391 Swallow et al. Jun 2003 A1
20030122677 Kail Jul 2003 A1
20040008137 Hassebrock Jan 2004 A1
20040009729 Hill et al. Jan 2004 A1
20040046736 Pryor et al. Mar 2004 A1
20040102693 Jenkins May 2004 A1
20040157662 Tsuchiya Aug 2004 A1
20040249250 McGee et al. Dec 2004 A1
20040259391 Jung et al. Dec 2004 A1
20050069695 Jung et al. Mar 2005 A1
20050128124 Greneker et al. Jun 2005 A1
20050148876 Endoh et al. Jul 2005 A1
20050231419 Mitchell Oct 2005 A1
20050267366 Murashita et al. Dec 2005 A1
20060035554 Glaser et al. Feb 2006 A1
20060040739 Wells Feb 2006 A1
20060047386 Kanevsky et al. Mar 2006 A1
20060061504 Leach et al. Mar 2006 A1
20060125803 Westerman et al. Jun 2006 A1
20060136997 Telek et al. Jun 2006 A1
20060139162 Flynn Jun 2006 A1
20060139314 Bell Jun 2006 A1
20060148351 Tao et al. Jul 2006 A1
20060157734 Onodero et al. Jul 2006 A1
20060166620 Sorensen Jul 2006 A1
20060170584 Romero et al. Aug 2006 A1
20060209021 Yoo et al. Sep 2006 A1
20060244654 Cheng Nov 2006 A1
20060258205 Locher et al. Nov 2006 A1
20060284757 Zemany Dec 2006 A1
20070024488 Zemany et al. Feb 2007 A1
20070024946 Panasyuk et al. Feb 2007 A1
20070026695 Lee et al. Feb 2007 A1
20070027369 Pagnacco et al. Feb 2007 A1
20070030195 Steinway Feb 2007 A1
20070118043 Oliver et al. May 2007 A1
20070161921 Rausch Jul 2007 A1
20070164896 Suzuki et al. Jul 2007 A1
20070176821 Flom et al. Aug 2007 A1
20070192647 Glaser Aug 2007 A1
20070197115 Eves et al. Aug 2007 A1
20070197878 Shklarski Aug 2007 A1
20070210074 Maurer et al. Sep 2007 A1
20070237423 Tico et al. Oct 2007 A1
20080001735 Tran Jan 2008 A1
20080002027 Kondo et al. Jan 2008 A1
20080015422 Wessel Jan 2008 A1
20080024438 Collins et al. Jan 2008 A1
20080039731 McCombie et al. Feb 2008 A1
20080059578 Albertson et al. Mar 2008 A1
20080065291 Breed Mar 2008 A1
20080074307 Boric-Lubecke Mar 2008 A1
20080134102 Movold et al. Jun 2008 A1
20080136775 Conant Jun 2008 A1
20080168396 Matas et al. Jul 2008 A1
20080194204 Duet et al. Aug 2008 A1
20080194975 MacQuarrie et al. Aug 2008 A1
20080211766 Westerman et al. Sep 2008 A1
20080233822 Swallow et al. Sep 2008 A1
20080278450 Lashina Nov 2008 A1
20080282665 Speleers Nov 2008 A1
20080291158 Park et al. Nov 2008 A1
20080303800 Elwell Dec 2008 A1
20080316085 Rofougaran et al. Dec 2008 A1
20080320419 Matas et al. Dec 2008 A1
20090002220 Lovberg Jan 2009 A1
20090018408 Ouchi et al. Jan 2009 A1
20090018428 Dias et al. Jan 2009 A1
20090033585 Lang Feb 2009 A1
20090053950 Surve Feb 2009 A1
20090056300 Chung et al. Mar 2009 A1
20090058820 Hinckley Mar 2009 A1
20090113298 Jung et al. Apr 2009 A1
20090115617 Sano et al. May 2009 A1
20090118648 Kandori et al. May 2009 A1
20090149036 Lee et al. Jun 2009 A1
20090177068 Stivoric et al. Jul 2009 A1
20090203244 Toonder Aug 2009 A1
20090226043 Angell Sep 2009 A1
20090253585 Diatchenko et al. Oct 2009 A1
20090270690 Roos et al. Oct 2009 A1
20090278915 Kramer et al. Nov 2009 A1
20090288762 Wolfel Nov 2009 A1
20090292468 Wu et al. Nov 2009 A1
20090295712 Ritzau Dec 2009 A1
20090303100 Zemany Dec 2009 A1
20090319181 Khosravy et al. Dec 2009 A1
20100013676 Do et al. Jan 2010 A1
20100045513 Pett et al. Feb 2010 A1
20100050133 Nishihara et al. Feb 2010 A1
20100053151 Marti et al. Mar 2010 A1
20100060570 Underkoffler et al. Mar 2010 A1
20100065320 Urano Mar 2010 A1
20100069730 Bergstrom et al. Mar 2010 A1
20100071205 Graumann et al. Mar 2010 A1
20100094141 Puswella Apr 2010 A1
20100109938 Oswald May 2010 A1
20100152600 Droitcour Jun 2010 A1
20100179820 Harrison et al. Jul 2010 A1
20100198067 Mahfouz et al. Aug 2010 A1
20100201586 Michalk Aug 2010 A1
20100204550 Heneghan et al. Aug 2010 A1
20100205667 Anderson et al. Aug 2010 A1
20100208035 Pinault et al. Aug 2010 A1
20100225562 Smith Sep 2010 A1
20100234094 Gagner et al. Sep 2010 A1
20100241009 Petkie Sep 2010 A1
20100002912 Solinsky Oct 2010 A1
20100281438 Latta et al. Nov 2010 A1
20100292549 Schuler Nov 2010 A1
20100306713 Geisner et al. Dec 2010 A1
20100313414 Sheats Dec 2010 A1
20100324384 Moon et al. Dec 2010 A1
20100325770 Chung et al. Dec 2010 A1
20110003664 Richard Jan 2011 A1
20110010014 Oexman et al. Jan 2011 A1
20110018795 Jang Jan 2011 A1
20110029038 Hyde et al. Feb 2011 A1
20110073353 Lee et al. Mar 2011 A1
20110083111 Forutanpour Apr 2011 A1
20110093820 Zhang et al. Apr 2011 A1
20110118564 Sankai May 2011 A1
20110119640 Berkes et al. May 2011 A1
20110166940 Bangera et al. Jul 2011 A1
20110181509 Rautiainen et al. Jul 2011 A1
20110181510 Hakala et al. Jul 2011 A1
20110193939 Vassigh et al. Aug 2011 A1
20110197263 Stinson, III Aug 2011 A1
20110202404 van der Riet Aug 2011 A1
20110213218 Weiner et al. Sep 2011 A1
20110221666 Newton et al. Sep 2011 A1
20110234492 Ajmera et al. Sep 2011 A1
20110239118 Yamaoka et al. Sep 2011 A1
20110245688 Arora et al. Oct 2011 A1
20110279303 Smith Nov 2011 A1
20110286585 Hodge Nov 2011 A1
20110303341 Meiss et al. Dec 2011 A1
20110307842 Chiang et al. Dec 2011 A1
20110316888 Sachs Dec 2011 A1
20110318985 McDermid Dec 2011 A1
20120001875 Li et al. Jan 2012 A1
20120013571 Yeh et al. Jan 2012 A1
20120019168 Noda et al. Jan 2012 A1
20120029369 Icove et al. Feb 2012 A1
20120047468 Santos et al. Feb 2012 A1
20120068876 Bangera et al. Mar 2012 A1
20120075958 Hintz Mar 2012 A1
20120092284 Rofougaran et al. Apr 2012 A1
20120105358 Momeyer et al. May 2012 A1
20120123232 Najarian et al. May 2012 A1
20120127082 Kushler et al. May 2012 A1
20120144934 Russell et al. Jun 2012 A1
20120146950 Park et al. Jun 2012 A1
20120150493 Casey Jun 2012 A1
20120154313 Au et al. Jun 2012 A1
20120156926 Kato et al. Jun 2012 A1
20120174299 Balzano Jul 2012 A1
20120174736 Wang et al. Jul 2012 A1
20120182222 Moloney Jul 2012 A1
20120191223 Dharwada et al. Jul 2012 A1
20120193801 Gross et al. Aug 2012 A1
20120200600 Demaine Aug 2012 A1
20120220835 Chung Aug 2012 A1
20120243374 Dahl et al. Sep 2012 A1
20120248093 Ulrich et al. Oct 2012 A1
20120254810 Heck et al. Oct 2012 A1
20120268310 Kim Oct 2012 A1
20120268416 Pirogov et al. Oct 2012 A1
20120270564 Gum et al. Oct 2012 A1
20120276849 Hyde et al. Nov 2012 A1
20120280900 Wang et al. Nov 2012 A1
20120298748 Factor et al. Nov 2012 A1
20120310665 Xu et al. Dec 2012 A1
20130016070 Starner et al. Jan 2013 A1
20130027218 Schwarz et al. Jan 2013 A1
20130035563 Angellides Feb 2013 A1
20130046544 Kay et al. Feb 2013 A1
20130053653 Cuddihy et al. Feb 2013 A1
20130076649 Myers et al. Mar 2013 A1
20130076788 Ben Zvi Mar 2013 A1
20130078624 Holmes et al. Mar 2013 A1
20130079649 Mestha et al. Mar 2013 A1
20130082922 Miller Apr 2013 A1
20130083173 Geisner Apr 2013 A1
20130086533 Stienstra Apr 2013 A1
20130096439 Lee et al. Apr 2013 A1
20130102217 Jeon Apr 2013 A1
20130104084 Mlyniec et al. Apr 2013 A1
20130106710 Ashbrook May 2013 A1
20130113647 Sentelle May 2013 A1
20130113830 Suzuki May 2013 A1
20130117377 Miller May 2013 A1
20130132931 Bruns et al. May 2013 A1
20130147833 Aubauer et al. Jun 2013 A1
20130150735 Cheng Jun 2013 A1
20130154919 An et al. Jun 2013 A1
20130161078 Li Jun 2013 A1
20130169471 Lynch Jul 2013 A1
20130176161 Derham et al. Jul 2013 A1
20130176258 Dahl et al. Jul 2013 A1
20130194173 Zhu et al. Aug 2013 A1
20130195330 Kim et al. Aug 2013 A1
20130196716 Muhammad Aug 2013 A1
20130207962 Oberdorfer et al. Aug 2013 A1
20130222232 Kong et al. Aug 2013 A1
20130229508 Li et al. Sep 2013 A1
20130241765 Kozma Sep 2013 A1
20130245986 Grokop Sep 2013 A1
20130249793 Zhu et al. Sep 2013 A1
20130253029 Jain et al. Sep 2013 A1
20130260630 Ito et al. Oct 2013 A1
20130263029 Rossi et al. Oct 2013 A1
20130278499 Anderson Oct 2013 A1
20130278501 Bulzacki Oct 2013 A1
20130281024 Rofougaran et al. Oct 2013 A1
20130283203 Batraski et al. Oct 2013 A1
20130322729 Mestha et al. Dec 2013 A1
20130332438 Li et al. Dec 2013 A1
20130345569 Mestha et al. Dec 2013 A1
20140005809 Frei et al. Jan 2014 A1
20140022108 Alberth, Jr Jan 2014 A1
20140028539 Newham et al. Jan 2014 A1
20140035737 Rashid et al. Feb 2014 A1
20140049487 Konertz Feb 2014 A1
20140050354 Heim et al. Feb 2014 A1
20140051941 Messerschmidt Feb 2014 A1
20140070957 Longinotti-Buitoni et al. Mar 2014 A1
20140072190 Wu et al. Mar 2014 A1
20140073486 Ahmed et al. Mar 2014 A1
20140073969 Zou et al. Mar 2014 A1
20140081100 Muhsin et al. Mar 2014 A1
20140095480 Marantz et al. Apr 2014 A1
20140097979 Nohara Apr 2014 A1
20140121540 Raskin May 2014 A1
20140135631 Brumback et al. May 2014 A1
20140139422 Mistry May 2014 A1
20140139430 Leung May 2014 A1
20140139616 Pinter et al. May 2014 A1
20140143678 Mistry May 2014 A1
20140145955 Gomez et al. May 2014 A1
20140149859 Van Dyken et al. May 2014 A1
20140181509 Liu Jun 2014 A1
20140184496 Gribetz et al. Jul 2014 A1
20140184499 Kim Jul 2014 A1
20140188989 Stekkelpak et al. Jul 2014 A1
20140191939 Penn et al. Jul 2014 A1
20140200416 Kashef et al. Jul 2014 A1
20140201690 Holz Jul 2014 A1
20140203080 Hintz Jul 2014 A1
20140208275 Mongia et al. Jul 2014 A1
20140215389 Walsh et al. Jul 2014 A1
20140239065 Zhou et al. Aug 2014 A1
20140244277 Krishna Rao et al. Aug 2014 A1
20140246415 Wittkowski Sep 2014 A1
20140247212 Kim et al. Sep 2014 A1
20140250515 Jakobsson Sep 2014 A1
20140253431 Gossweiler et al. Sep 2014 A1
20140253709 Bresch et al. Sep 2014 A1
20140262478 Harris et al. Sep 2014 A1
20140275854 Venkatraman et al. Sep 2014 A1
20140280295 Kurochkin et al. Sep 2014 A1
20140281975 Anderson Sep 2014 A1
20140282877 Mahaffey et al. Sep 2014 A1
20140297006 Sadhu Oct 2014 A1
20140298266 Lapp Oct 2014 A1
20140300506 Alton et al. Oct 2014 A1
20140306936 Dahl et al. Oct 2014 A1
20140309855 Tran Oct 2014 A1
20140316261 Lux et al. Oct 2014 A1
20140318699 Longinotti-Buitoni et al. Oct 2014 A1
20140324888 Xie et al. Oct 2014 A1
20140329567 Chan et al. Nov 2014 A1
20140333467 Inomata Nov 2014 A1
20140343392 Yang Nov 2014 A1
20140347295 Kim et al. Nov 2014 A1
20140357369 Callens et al. Dec 2014 A1
20140368378 Crain et al. Dec 2014 A1
20140368441 Touloumtzis Dec 2014 A1
20140376788 Xu et al. Dec 2014 A1
20150002391 Chen Jan 2015 A1
20150009096 Lee et al. Jan 2015 A1
20150026815 Barrett Jan 2015 A1
20150029050 Driscoll et al. Jan 2015 A1
20150030256 Brady et al. Jan 2015 A1
20150040040 Balan et al. Feb 2015 A1
20150046183 Cireddu Feb 2015 A1
20150062033 Ishihara Mar 2015 A1
20150068069 Tran et al. Mar 2015 A1
20150077282 Mohamadi Mar 2015 A1
20150084855 Song et al. Mar 2015 A1
20150085060 Fish et al. Mar 2015 A1
20150091820 Rosenberg et al. Apr 2015 A1
20150091858 Rosenberg et al. Apr 2015 A1
20150091859 Rosenberg et al. Apr 2015 A1
20150091903 Costello et al. Apr 2015 A1
20150095987 Potash et al. Apr 2015 A1
20150099941 Tran Apr 2015 A1
20150100328 Kress et al. Apr 2015 A1
20150106770 Shah et al. Apr 2015 A1
20150109164 Takaki Apr 2015 A1
20150112606 He et al. Apr 2015 A1
20150133017 Liao et al. May 2015 A1
20150143601 Longinotti-Buitoni et al. May 2015 A1
20150145805 Liu May 2015 A1
20150162729 Reversat et al. Jun 2015 A1
20150177374 Driscoll et al. Jun 2015 A1
20150177866 Hwang et al. Jun 2015 A1
20150185314 Corcos et al. Jul 2015 A1
20150199045 Robucci et al. Jul 2015 A1
20150204973 Nohara Jul 2015 A1
20150205358 Lyren Jul 2015 A1
20150223733 Al-Alusi Aug 2015 A1
20150226004 Thompson Aug 2015 A1
20150229885 Offenhaeuser Aug 2015 A1
20150256763 Niemi Sep 2015 A1
20150261320 Leto Sep 2015 A1
20150268027 Gerdes Sep 2015 A1
20150268799 Starner et al. Sep 2015 A1
20150276925 Scholten Oct 2015 A1
20150277569 Sprenger Oct 2015 A1
20150280102 Tajitsu et al. Oct 2015 A1
20150285906 Hooper et al. Oct 2015 A1
20150287187 Redtel Oct 2015 A1
20150301167 Sentelle et al. Oct 2015 A1
20150312041 Choi Oct 2015 A1
20150314780 Stenneth et al. Nov 2015 A1
20150317518 Fujimaki et al. Nov 2015 A1
20150323993 Levesque et al. Nov 2015 A1
20150332075 Burch Nov 2015 A1
20150341550 Lay Nov 2015 A1
20150346701 Gordon et al. Dec 2015 A1
20150346820 Poupyrev et al. Dec 2015 A1
20150350902 Baxley et al. Dec 2015 A1
20150351703 Phillips et al. Dec 2015 A1
20150370250 Bachrach et al. Dec 2015 A1
20150375339 Sterling et al. Dec 2015 A1
20160011668 Gilad-Bachrach et al. Jan 2016 A1
20160018948 Parvarandeh et al. Jan 2016 A1
20160026253 Bradski Jan 2016 A1
20160038083 Ding et al. Feb 2016 A1
20160041617 Poupyrev Feb 2016 A1
20160041618 Poupyrev Feb 2016 A1
20160042169 Polehn Feb 2016 A1
20160048235 Poupyrev Feb 2016 A1
20160048236 Poupyrev Feb 2016 A1
20160048672 Lux et al. Feb 2016 A1
20160054792 Poupyrev Feb 2016 A1
20160054803 Poupyrev Feb 2016 A1
20160054804 Gollakata et al. Feb 2016 A1
20160055201 Poupyrev et al. Feb 2016 A1
20160075015 Izhikevich Mar 2016 A1
20160075016 Laurent Mar 2016 A1
20160077202 Hirvonen et al. Mar 2016 A1
20160085296 Mo et al. Mar 2016 A1
20160090839 Stolarcyzk Mar 2016 A1
20160096270 Ibarz Gabardos Apr 2016 A1
20160098089 Poupyrev Apr 2016 A1
20160100166 Dragne et al. Apr 2016 A1
20160103500 Hussey et al. Apr 2016 A1
20160106328 Mestha et al. Apr 2016 A1
20160124579 Tokutake May 2016 A1
20160131741 Park May 2016 A1
20160140872 Palmer et al. May 2016 A1
20160145776 Roh May 2016 A1
20160146931 Rao et al. May 2016 A1
20160170491 Jung Jun 2016 A1
20160171293 Li et al. Jun 2016 A1
20160186366 McMaster Jun 2016 A1
20160206244 Rogers Jul 2016 A1
20160213331 Gil et al. Jul 2016 A1
20160216825 Forutanpour Jul 2016 A1
20160220152 Meriheina et al. Aug 2016 A1
20160234365 Alameh et al. Aug 2016 A1
20160238696 Hintz Aug 2016 A1
20160249698 Berzowska et al. Sep 2016 A1
20160252607 Saboo et al. Sep 2016 A1
20160252965 Mandella et al. Sep 2016 A1
20160253044 Katz Sep 2016 A1
20160259037 Molchanov et al. Sep 2016 A1
20160262685 Wagner et al. Sep 2016 A1
20160282988 Poupyrev Sep 2016 A1
20160283101 Schwesig et al. Sep 2016 A1
20160284436 Fukuhara et al. Sep 2016 A1
20160287172 Morris et al. Oct 2016 A1
20160291143 Cao et al. Oct 2016 A1
20160299526 Inagaki et al. Oct 2016 A1
20160320852 Poupyrev Nov 2016 A1
20160320853 Lien et al. Nov 2016 A1
20160320854 Lien et al. Nov 2016 A1
20160321428 Rogers Nov 2016 A1
20160338599 DeBusschere et al. Nov 2016 A1
20160345638 Robinson et al. Dec 2016 A1
20160349790 Connor Dec 2016 A1
20160349845 Poupyrev et al. Dec 2016 A1
20160377712 Wu et al. Dec 2016 A1
20170029985 Tajitsu et al. Feb 2017 A1
20170052618 Lee et al. Feb 2017 A1
20170060254 Molchanov et al. Mar 2017 A1
20170060298 Hwang et al. Mar 2017 A1
20170075481 Chou et al. Mar 2017 A1
20170075496 Rosenberg et al. Mar 2017 A1
20170097413 Gillian et al. Apr 2017 A1
20170097684 Lien Apr 2017 A1
20170115777 Poupyrev Apr 2017 A1
20170124407 Micks et al. May 2017 A1
20170125940 Karagozler et al. May 2017 A1
20170131395 Reynolds et al. May 2017 A1
20170168630 Khoshkava et al. Jun 2017 A1
20170192523 Poupyrev Jul 2017 A1
20170192629 Takada et al. Jul 2017 A1
20170196513 Longinotti-Buitoni et al. Jul 2017 A1
20170224280 Bozkurt et al. Aug 2017 A1
20170231089 Van Keymeulen Aug 2017 A1
20170232538 Robinson et al. Aug 2017 A1
20170233903 Jeon Aug 2017 A1
20170249033 Podhajny et al. Aug 2017 A1
20170258366 Tupin, Jr Sep 2017 A1
20170291301 Ibarz Gabardos Oct 2017 A1
20170322633 Shen et al. Nov 2017 A1
20170325337 Karagozler et al. Nov 2017 A1
20170325518 Poupyrev et al. Nov 2017 A1
20170329412 Schwesig et al. Nov 2017 A1
20170329425 Karagozler et al. Nov 2017 A1
20170356992 Scholten Dec 2017 A1
20180000354 DeBusschere et al. Jan 2018 A1
20180000355 DeBusschere et al. Jan 2018 A1
20180004301 Poupyrev Jan 2018 A1
20180005766 Fairbanks et al. Jan 2018 A1
20180046258 Poupyrev Feb 2018 A1
20180095541 Gribetz et al. Apr 2018 A1
20180106897 Shouldice et al. Apr 2018 A1
20180113032 Dickey et al. Apr 2018 A1
20180157330 Gu et al. Jun 2018 A1
20180160943 Fyfe et al. Jun 2018 A1
20180177464 DeBusschere et al. Jun 2018 A1
20180196527 Poupyrev et al. Jul 2018 A1
20180256106 Rogers et al. Sep 2018 A1
20180296163 DeBusschere et al. Oct 2018 A1
20180321841 Lapp Nov 2018 A1
20190030713 Gabardos Jan 2019 A1
20190033981 Poupyrev Jan 2019 A1
20190138109 Poupyrev et al. May 2019 A1
20190155396 Lien et al. May 2019 A1
20190208837 Poupyrev et al. Jul 2019 A1
20190232156 Amihood et al. Aug 2019 A1
20190243464 Lien et al. Aug 2019 A1
20190257939 Schwesig et al. Aug 2019 A1
20190278379 Gribetz et al. Sep 2019 A1
20190321719 Gillian et al. Oct 2019 A1
20190391667 Poupyrev Dec 2019 A1
20190394884 Karagozler et al. Dec 2019 A1
20200064471 Gatland Feb 2020 A1
20200064924 Poupyrev et al. Feb 2020 A1
20200089314 Poupyrev et al. Mar 2020 A1
20200150776 Poupyrev et al. May 2020 A1
20200218361 Poupyrev Jul 2020 A1
20200229515 Poupyrev et al. Jul 2020 A1
20200326708 Wang et al. Oct 2020 A1
20200393912 Lien et al. Dec 2020 A1
20200409472 Lien et al. Dec 2020 A1
20210096653 Amihood et al. Apr 2021 A1
20210132702 Poupyrev May 2021 A1
20210326642 Gillian et al. Oct 2021 A1
20210365124 Gillian et al. Nov 2021 A1
20220019291 Lien et al. Jan 2022 A1
20220043519 Poupyrev et al. Feb 2022 A1
20220058188 Poupyrev et al. Feb 2022 A1
20220066567 Lien et al. Mar 2022 A1
20220066568 Lien et al. Mar 2022 A1
Foreign Referenced Citations (141)
Number Date Country
1299501 Jun 2001 CN
1462382 Dec 2003 CN
1862601 Nov 2006 CN
101349943 Jan 2009 CN
101636711 Jan 2010 CN
101751126 Jun 2010 CN
101910781 Dec 2010 CN
102031615 Apr 2011 CN
102160471 Aug 2011 CN
102184020 Sep 2011 CN
102414641 Apr 2012 CN
102473032 May 2012 CN
102782612 Nov 2012 CN
102819315 Dec 2012 CN
102893327 Jan 2013 CN
106342197 Feb 2013 CN
202887794 Apr 2013 CN
103076911 May 2013 CN
103091667 May 2013 CN
103502911 Jan 2014 CN
103534664 Jan 2014 CN
102660988 Mar 2014 CN
103675868 Mar 2014 CN
103907405 Jul 2014 CN
104035552 Sep 2014 CN
104094194 Oct 2014 CN
104115118 Oct 2014 CN
104838336 Aug 2015 CN
103355860 Jan 2016 CN
106154270 Nov 2016 CN
102011075725 Nov 2012 DE
102013201359 Jul 2014 DE
0161895 Nov 1985 EP
1785744 May 2007 EP
1815788 Aug 2007 EP
2417908 Feb 2012 EP
2637081 Sep 2013 EP
2770408 Aug 2014 EP
2014165476 Oct 2014 EP
2953007 Dec 2015 EP
2923642 Mar 2017 EP
3201726 Aug 2017 EP
3017722 Aug 2015 FR
2070469 Sep 1981 GB
2443208 Apr 2008 GB
113860 Apr 1999 JP
11168268 Jun 1999 JP
H11168268 Jun 1999 JP
2003500759 Jan 2003 JP
2003280049 Oct 2003 JP
2006163886 Jun 2006 JP
2006234716 Sep 2006 JP
2007011873 Jan 2007 JP
2007132768 May 2007 JP
2007266772 Oct 2007 JP
2007333385 Dec 2007 JP
2008287714 Nov 2008 JP
2008293501 Dec 2008 JP
2009037434 Feb 2009 JP
2010048583 Mar 2010 JP
2010049583 Mar 2010 JP
2011003202 Jan 2011 JP
2011086114 Apr 2011 JP
2011102457 May 2011 JP
2012068854 Apr 2012 JP
201218583. Sep 2012 JP
2012185833 Sep 2012 JP
2012198916 Oct 2012 JP
2012208714 Oct 2012 JP
2013016060 Jan 2013 JP
2013037674 Feb 2013 JP
2013196047 Sep 2013 JP
2013251913 Dec 2013 JP
2014503873 Feb 2014 JP
2014532332 Dec 2014 JP
2015507263 Mar 2015 JP
2015509634 Mar 2015 JP
1020080102516 Nov 2008 KR
100987650 Oct 2010 KR
1020130137005 Dec 2013 KR
20140027837 Mar 2014 KR
1020140055985 May 2014 KR
101999712 Jan 2017 KR
101914850 Oct 2018 KR
201425974 Jul 2014 TW
9001895 Mar 1990 WO
0130123 Apr 2001 WO
2001027855 Apr 2001 WO
0175778 Oct 2001 WO
2002082999 Oct 2002 WO
2004004557 Jan 2004 WO
2004053601 Jun 2004 WO
WO-2004053601 Jun 2004 WO
2005033387 Apr 2005 WO
2005103863 Nov 2005 WO
2007125298 Nov 2007 WO
2008061385 May 2008 WO
2009032073 Mar 2009 WO
2009083467 Jul 2009 WO
2009148064 Dec 2009 WO
2010032173 Mar 2010 WO
2010101697 Sep 2010 WO
2012026013 Mar 2012 WO
2012064847 May 2012 WO
2012152476 Nov 2012 WO
2013082806 Jun 2013 WO
2013084108 Jun 2013 WO
2013154864 Oct 2013 WO
2013186696 Dec 2013 WO
2013191657 Dec 2013 WO
2013192166 Dec 2013 WO
2014019085 Feb 2014 WO
2014032984 Mar 2014 WO
2014085369 Jun 2014 WO
2014116968 Jul 2014 WO
2014124520 Aug 2014 WO
2014136027 Sep 2014 WO
2014138280 Sep 2014 WO
2014160893 Oct 2014 WO
2014165476 Oct 2014 WO
2014204323 Dec 2014 WO
2015017931 Feb 2015 WO
2015018675 Feb 2015 WO
2015022671 Feb 2015 WO
2015149049 Oct 2015 WO
WO-2015149049 Oct 2015 WO
2016053624 Apr 2016 WO
2016118534 Jul 2016 WO
2016154560 Sep 2016 WO
2016154568 Sep 2016 WO
2016176471 Nov 2016 WO
2016176600 Nov 2016 WO
2016176606 Nov 2016 WO
2016178797 Nov 2016 WO
2017019299 Feb 2017 WO
2017062566 Apr 2017 WO
2017079484 May 2017 WO
2017200570 Nov 2017 WO
2017200571 Nov 2017 WO
20170200949 Nov 2017 WO
2018106306 Jun 2018 WO
Non-Patent Literature Citations (439)
Entry
“Corrected Notice of Allowance”, U.S. Appl. No. 16/252,477, filed Sep. 30, 2020, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 16/380,245, filed Jan. 15, 2020, 2 pages.
“Foreign Office Action”, JP Application No. 2020027181, dated Nov. 17, 2020, 16 pages.
“Foreign Office Action”, EP Application No. 16784352.3, dated Dec. 9, 2020, 5 pages.
“Foreign Office Action”, KR Application No. 1020187004283, dated Sep. 11, 2020, 5 pages.
“Foreign Office Action”, DE Application No. 102016014611.7, dated Sep. 28, 2020, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 16/689,519, dated Oct. 20, 2020, 22 pages.
“Non-Final Office Action”, U.S. Appl. No. 15/287,359, dated Oct. 28, 2020, 19 pages.
“Notice of Allowability”, U.S. Appl. No. 16/560,085, dated Nov. 12, 2020, 2 pages.
“Notice of Allowance”, U.S. Appl. No. 16/560,085, dated Oct. 19, 2020, 8 pages.
Guerra, et al., “Millimeter-Wave Personal Radars for 3D Environment Mapping”, 48th Asilomar Conference on Signals, Systems and Computer, Nov. 2014, pp. 701-705.
“Foreign Notice of Allowance”, KR Application No. 10-2021-7011901, dated Oct. 12, 2021, 3 pages.
“Notice of Allowance”, U.S. Appl. No. 16/689,519, dated Sep. 30, 2021, 9 pages.
“Notice of Allowance”, U.S. Appl. No. 17/148,374, dated Oct. 14, 2021, 8 pages.
“Advisory Action”, U.S. Appl. No. 16/689,519, dated Jun. 30, 2021, 2 pages.
“Notice of Allowance”, U.S. Appl. No. 16/843,813, dated Jun. 30, 2021, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 16/563,124, dated Jul. 8, 2021, 9 pages.
“Notice of Allowance”, U.S. Appl. No. 17/005,207, dated Jul. 14, 2021, 5 pages.
“Notice of Allowance”, U.S. Appl. No. 16/822,601, dated Aug. 5, 2021, 9 pages.
“Foreign Office Action”, Chinese Application No. 201680038897.4, dated Jun. 29, 2020, 28 pages.
“Foreign Office Action”, Chinese Application No. 201710922856.8, dated Jun. 19, 2020, 11 pages.
“Foreign Office Action”, Chinese Application No. 201611159602.7, dated Jul. 23, 2020, 5 pages.
“Non-Final Office Action”, U.S. Appl. No. 15/287,359, dated Jun. 26, 2020, 19 Pages.
“Non-Final Office Action”, U.S. Appl. No. 16/503,234, dated Aug. 5, 2020, 18 Pages.
“Notice of Allowance”, U.S. Appl. No. 16/401,611, dated Jun. 10, 2020, 17 Pages.
“Notice of Allowance”, U.S. Appl. No. 16/252,477, dated Jun. 24, 2020, 8 Pages.
“Notice of Allowance”, U.S. Appl. No. 15/093,533, dated Jul. 16, 2020, 5 Pages.
“Notice of Allowance”, U.S. Appl. No. 15/142,471, dated Aug. 6, 2020, 7 Pages.
“Pre-Interview Communication”, U.S. Appl. No. 16/380,245, dated Jun. 15, 2020, 3 Pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 16/380,245, dated Jan. 6, 2021, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 16/560,085, dated Jan. 28, 2021, 2 pages.
“Final Office Action”, U.S. Appl. No. 16/689,519, dated Apr. 29, 2021, 13 pages.
“Foreign Office Action”, KR Application No. 1020217011901, dated Jun. 4, 2021, 5 pages.
“Non-Final Office Action”, U.S. Appl. No. 16/843,813, dated Mar. 18, 2021, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 16/503,234, dated Mar. 18, 2021, 17 pages.
“Non-Final Office Action”, U.S. Appl. No. 17/005,207, dated Apr. 1, 2021, 23 pages.
“Notice of Allowance”, U.S. Appl. No. 15/287,359, dated Apr. 14, 2021, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 14/504,121, dated Jun. 1, 2021, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 16/503,234, dated Jun. 11, 2021, 8 pages.
“Patent Board Decision”, U.S. Appl. No. 14/504,121, dated May 20, 2021, 9 pages.
“Restriction Requirement”, U.S. Appl. No. 16/563,124, dated Apr. 5, 2021, 7 pages.
“Advisory Action”, U.S. Appl. No. 14/504,139, dated Aug. 28, 2017, 3 pages.
“Apple Watch Used Four Sensors to Detect your Pulse”, retrieved from http://www.theverge.eom/2014/9/9/6126991 / apple-watch-four-back-sensors-detect-activity on Sep. 23, 2017 as cited in PCT search report for PCT Application No. PCT/US2016/026756 dated Nov. 10, 2017; The Verge, paragraph 1, Sep. 9, 2014, 4 pages.
“Cardiio”, Retrieved From: <http://www.cardiio.com/> Apr. 15, 2015 App Information Retrieved From: <https://itunes.apple.com/us/app/cardiio-touchless-camera-pulse/id542891434?ls=1&mt=8> Apr. 15, 2015, Feb. 24, 2015, 6 pages.
“Clever Toilet Checks on Your Health”, CNN.Com; Technology, Jun. 28, 2005, 2 pages.
“Combined Search and Examination Report”, GB Application No. 1620892.8, dated Apr. 6, 2017, 5 pages.
“Combined Search and Examination Report”, GB Application No. 1620891.0, dated May 31, 2017, 9 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 15/362,359, dated Sep. 17, 2018, 10 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/582,896, dated Dec. 19, 2016, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/504,061, dated Dec. 27, 2016, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/582,896, dated Feb. 6, 2017, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/582,896, dated Feb. 23, 2017, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/930,220, dated Mar. 20, 2017, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/930,220, dated May 11, 2017, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/312,486, dated Oct. 28, 2016, 4 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/312,486, dated Jan. 23, 2017, 4 pages.
“EP Appeal Decision”, European Application No. 10194359.5, dated May 28, 2019, 20 pages.
“European Search Report”, European Application No. 16789735.4, dated Nov. 14, 2018, 4 pages.
“Extended European Search Report”, European Application No. 19164113.3, dated Jun. 13, 2019, 11 pages.
“Extended European Search Report”, EP Application No. 15170577.9, dated Nov. 5, 2015, 12 pages.
“Extended European Search Report”, European Application No. 19158625.4, dated May 8, 2019, 16 pages.
“Final Office Action”, U.S. Appl. No. 15/462,957, dated Nov. 8, 2019, 10 Pages.
“Final Office Action”, U.S. Appl. No. 14/504,061, dated Mar. 9, 2016, 10 pages.
“Final Office Action”, U.S. Appl. No. 14/681,625, dated Dec. 7, 2016, 10 pages.
“Final Office Action”, U.S. Appl. No. 15/287,253, dated Apr. 2, 2019, 10 pages.
“Final Office Action”, U.S. Appl. No. 15/398,147, dated Jun. 30, 2017, 11 pages.
“Final Office Action”, U.S. Appl. No. 15/287,155, dated Apr. 10, 2019, 11 pages.
“Final Office Action”, U.S. Appl. No. 14/959,799, dated Jul. 19, 2017, 12 pages.
“Final Office Action”, U.S. Appl. No. 14/731,195, dated Oct. 11, 2018, 12 pages.
“Final Office Action”, U.S. Appl. No. 15/595,649, dated May 23, 2018, 13 pages.
“Final Office Action”, U.S. Appl. No. 14/715,454, dated Sep. 7, 2017, 14 pages.
“Final Office Action”, U.S. Appl. No. 14/504,139, dated May 1, 2018, 14 pages.
“Final Office Action”, U.S. Appl. No. 15/286,512, dated Dec. 26, 2018, 15 pages.
“Final Office Action”, U.S. Appl. No. 15/142,619, dated Feb. 8, 2018, 15 pages.
“Final Office Action”, U.S. Appl. No. 16/238,464, dated Jul. 25, 2019, 15 pages.
“Final Office Action”, U.S. Appl. No. 15/287,359, dated Feb. 19, 2020, 16 Pages.
“Final Office Action”, U.S. Appl. No. 14/504,121, dated Aug. 8, 2017, 16 pages.
“Final Office Action”, U.S. Appl. No. 14/959,730, dated Nov. 22, 2017, 16 pages.
“Final Office Action”, U.S. Appl. No. 15/142,689, dated Jun. 1, 2018, 16 pages.
“Final Office Action”, U.S. Appl. No. 14/959,799, dated Jan. 4, 2018, 17 pages.
“Final Office Action”, U.S. Appl. No. 14/720,632, dated Jan. 9, 2018, 18 pages.
“Final Office Action”, U.S. Appl. No. 14/518,863, dated May 15, 2017, 18 pages.
“Final Office Action”, U.S. Appl. No. 14/959,901, dated May 30, 2019, 18 pages.
“Final Office Action”, U.S. Appl. No. 14/959,901, dated Aug. 25, 2017, 19 pages.
“Final Office Action”, U.S. Appl. No. 15/093,533, dated Mar. 21, 2018, 19 pages.
“Final Office Action”, U.S. Appl. No. 14/715,454, dated Apr. 17, 2018, 19 pages.
“Final Office Action”, U.S. Appl. No. 15/286,537, dated Apr. 19, 2019, 21 pages.
“Final Office Action”, U.S. Appl. No. 14/518,863, dated Apr. 5, 2018, 21 pages.
“Final Office Action”, U.S. Appl. No. 15/596,702, dated Jun. 13, 2019, 21 pages.
“Final Office Action”, U.S. Appl. No. 14/959,901, dated Jun. 15, 2018, 21 pages.
“Final Office Action”, U.S. Appl. No. 15/287,308, dated Feb. 8, 2019, 23 pages.
“Final Office Action”, U.S. Appl. No. 14/599,954, dated Aug. 10, 2016, 23 pages.
“Final Office Action”, U.S. Appl. No. 14/504,038, dated Sep. 27, 2016, 23 pages.
“Final Office Action”, U.S. Appl. No. 14/504,121, dated Jul. 9, 2018, 23 pages.
“Final Office Action”, U.S. Appl. No. 15/286,152, dated Jun. 26, 2018, 25 pages.
“Final Office Action”, U.S. Appl. No. 15/142,471, dated Jun. 20, 2019, 26 pages.
“Final Office Action”, U.S. Appl. No. 15/596,702, 27 Pages.
“Final Office Action”, U.S. Appl. No. 15/403,066, dated Oct. 5, 2017, 31 pages.
“Final Office Action”, U.S. Appl. No. 15/267,181, dated Jun. 7, 2018, 31 pages.
“Final Office Action”, U.S. Appl. No. 14/312,486, dated Jun. 3, 2016, 32 pages.
“Final Office Action”, U.S. Appl. No. 15/166,198, dated Sep. 27, 2018, 33 pages.
“Final Office Action”, U.S. Appl. No. 15/287,394, dated Sep. 30, 2019, 38 Pages.
“Final Office Action”, U.S. Appl. No. 14/699,181, dated May 4, 2018, 41 pages.
“Final Office Action”, U.S. Appl. No. 14/715,793, dated Sep. 12, 2017, 7 pages.
“Final Office Action”, U.S. Appl. No. 14/809,901, dated Dec. 13, 2018, 7 pages.
“Final Office Action”, Korean Application No. 10-2016-7036023, dated Feb. 19, 2018, 8 pages.
“Final Office Action”, U.S. Appl. No. 14/874,955, dated Jun. 30, 2017, 9 pages.
“Final Office Action”, U.S. Appl. No. 14/874,955, dated Jun. 11, 2018, 9 pages.
“First Action Interview OA”, U.S. Appl. No. 14/715,793, dated Jun. 21, 2017, 3 pages.
“First Action Interview Office Action”, U.S. Appl. No. 15/142,471, dated Feb. 5, 2019, 29 pages.
“First Action Interview Office Action”, U.S. Appl. No. 14/959,901, dated Apr. 14, 2017, 3 pages.
“First Action Interview Office Action”, U.S. Appl. No. 14/731,195, dated Jun. 21, 2018, 4 pages.
“First Action Interview Office Action”, U.S. Appl. No. 15/286,152, dated Mar. 1, 2018, 5 pages.
“First Action Interview Office Action”, U.S. Appl. No. 15/917,238, dated Jun. 6, 2019, 6 pages.
“First Action Interview Office Action”, U.S. Appl. No. 15/166,198, dated Apr. 25, 2018, 8 pages.
“First Action Interview Pilot Program Pre-Interview Communication”, U.S. Appl. No. 14/731,195, dated Aug. 1, 2017, 3 pages.
“First Exam Report”, EP Application No. 15754352.1, dated Mar. 5, 2018, 7 pages.
“First Examination Report”, GB Application No. 1621332.4, dated May 16, 2017, 7 pages.
“Foreign Office Action”, Chinese Application No. 201580034536.8, dated Oct. 9, 2018.
“Foreign Office Action”, Korean Application No. 1020187029464, dated Oct. 30, 2018, 1 page.
“Foreign Office Action”, KR Application No. 10-2016-7036023, dated Aug. 11, 2017, 10 pages.
“Foreign Office Action”, CN Application No. 201680020123.9, dated Nov. 29, 2019, 10 pages.
“Foreign Office Action”, Chinese Application No. 201580034908.7, dated Feb. 19, 2019, 10 pages.
“Foreign Office Action”, Chinese Application No. 201611191179.9, dated Aug. 28, 2019, 10 pages.
“Foreign Office Action”, Japanese Application No. 2018-501256, dated Jul. 24, 2018, 11 pages.
“Foreign Office Action”, Chinese Application No. 201580036075.8, dated Jul. 4, 2018, 14 page.
“Foreign Office Action”, European Application No. 16725269.1, dated Nov. 26, 2018, 14 pages.
“Foreign Office Action”, Chinese Application No. 201680021212.5, dated Sep. 3, 2019, 14 pages.
“Foreign Office Action”, JP Application No. 2016-563979, dated Sep. 21, 2017, 15 pages.
“Foreign Office Action”, Japanese Application No. 1020187027694, dated Nov. 23, 2018, 15 pages.
“Foreign Office Action”, Chinese Application No. 201611159870.9, dated Dec. 17, 2019, 15 pages.
“Foreign Office Action”, CN Application No. 201580034908.7, dated Jul. 3, 2018, 17 pages.
“Foreign Office Action”, Chinese Application No. 201510300495.4, dated Jun. 21, 2018, 18 pages.
“Foreign Office Action”, Chinese Application No. 201680020567.2, dated Sep. 26, 2019, 19 pages.
“Foreign Office Action”, Korean Application No. 1020197004803, dated Oct. 14, 2019, 2 pages.
“Foreign Office Action”, Korean Application No. 1020197004803, dated Dec. 6, 2019, 2 pages.
“Foreign Office Action”, Chinese Application No. 201721290290.3, dated Mar. 9, 2018, 2 pages.
“Foreign Office Action”, Chinese Application No. 201611159602.7, dated Oct. 11, 2019, 20 pages.
“Foreign Office Action”, Chinese Application No. 201580035246.5, dated Jan. 31, 2019, 22 pages.
“Foreign Office Action”, Japanese Application No. 2018156138, dated May 22, 2019, 3 pages.
“Foreign Office Action”, JP App. No. 2016-567813, dated Jan. 16, 2018, 3 pages.
“Foreign Office Action”, Korean Application No. 10-2016-7036015, dated Oct. 15, 2018, 3 pages.
“Foreign Office Action”, British Application No. 1621332.4, dated Nov. 6, 2019, 3 pages.
“Foreign Office Action”, Japanese Application No. 2018501256, dated Feb. 26, 2019, 3 pages.
“Foreign Office Action”, Japanese Application No. 2016-567839, dated Apr. 3, 2018, 3 pages.
“Foreign Office Action”, Japanese Application No. 2018-021296, dated Apr. 9, 2019, 3 pages.
“Foreign Office Action”, European Application No. 16784352.3, dated May 16, 2018, 3 pages.
“Foreign Office Action”, Japanese Application No. 2016-563979, dated May 21, 2018, 3 pages.
“Foreign Office Action”, Chinese Application No. 201721290290.3, dated Jun. 6, 2018, 3 pages.
“Foreign Office Action”, Japanese Application No. 2018156138, dated Sep. 30, 2019, 3 pages.
“Foreign Office Action”, European Application No. 15170577.9, dated Dec. 21, 2018, 31 pages.
“Foreign Office Action”, Japanese Application No. 2016-575564, dated Jan. 10, 2019, 4 pages.
“Foreign Office Action”, Korean Application No. 10-2016-7036023, dated Apr. 12, 2018, 4 pages.
“Foreign Office Action”, Japanese Application No. 2016-575564, dated Jul. 10, 2018, 4 pages.
“Foreign Office Action”, KR Application No. 10-2016-7035397, dated Sep. 20, 2017, 5 pages.
“Foreign Office Action”, Japanese Application No. 2018169008, dated Jan. 14, 2020, 5 pages.
“Foreign Office Action”, Japanese Application No. 2018501256, dated Oct. 23, 2019, 5 pages.
“Foreign Office Action”, Korean Application No. 10-2017-7027877, dated Nov. 23, 2018, 5 pages.
“Foreign Office Action”, Japanese Application No. 2017-541972, dated Nov. 27, 2018, 5 pages.
“Foreign Office Action”, European Application No. 15754352.1, dated Nov. 7, 2018, 5 pages.
“Foreign Office Action”, European Application No. 16789735.4, dated Dec. 12, 2018, 5 pages.
“Foreign Office Action”, Japanese Application No. 2016-575564, dated Dec. 5, 2017, 5 pages.
“Foreign Office Action”, UK Application No. 1620891.0, dated Dec. 6, 2018, 5 pages.
“Foreign Office Action”, Chinese Application No. 201580036075.8, dated Feb. 19, 2019, 5 pages.
“Foreign Office Action”, Japanese Application No. 2016-563979, dated Feb. 7, 2018, 5 pages.
“Foreign Office Action”, British Application No. 1912334.8, dated Sep. 23, 2019, 5 pages.
“Foreign Office Action”, Korean Application No. 1020197019768, dated Sep. 30, 2019, 6 pages.
“Foreign Office Action”, Korean Application No. 10-2017-7027871, dated Nov. 23, 2018, 6 pages.
“Foreign Office Action”, Chinese Application No. 201510300495.4, dated Apr. 10, 2019, 6 pages.
“Foreign Office Action”, Korean Application No. 1020197004803, dated Apr. 26, 2019, 6 pages.
“Foreign Office Action”, Korean Application No. 1020187012629, dated May 24, 2018, 6 pages.
“Foreign Office Action”, EP Application No. 15170577.9, dated May 30, 2017, 7 pages.
“Foreign Office Action”, Korean Application No. 10-2016-7036396, dated Jan. 3, 2018, 7 pages.
“Foreign Office Action”, European Application No. 16716351.8, dated Mar. 15, 2019, 7 pages.
“Foreign Office Action”, JP Application No. 2016567813, dated Sep. 22, 2017, 8 pages.
“Foreign Office Action”, Korean Application No. 1020187004283, dated Jan. 3, 2020, 8 pages.
“Foreign Office Action”, Japanese Application No. 2018021296, dated Dec. 25, 2018, 8 pages.
“Foreign Office Action”, EP Application No. 15754323.2, dated Mar. 9, 2018, 8 pages.
“Foreign Office Action”, European Application No. 16724775.8, datedNov. 23, 2018, 9 pages.
“Foreign Office Action”, KR Application No. 10-2016-7032967, English Translation, dated Sep. 14, 2017, 4 pages.
“Frogpad Introduces Wearable Fabric Keyboard with Bluetooth Technology”, Retrieved From: <http://www.geekzone.co.nz/content.asp?contentid=3898> Mar. 16, 2015, Jan. 7, 2005, 2 pages.
“Galaxy S4 Air Gesture”, Galaxy S4 Guides, retrieved from: https://allaboutgalaxys4.com/galaxy-s4-features-explained/air-gesture/ on Sep. 3, 2019, 4 pages.
“International Preliminary Report on Patentability”, PCT Application No. PCT/US2017/051663, dated Jun. 20, 2019, 10 pages.
“International Preliminary Report on Patentability”, PCT Application No. PCT/US2016/063874, dated Nov. 29, 2018, 12 pages.
“International Preliminary Report on Patentability”, Application No. PCT/US2015/030388, dated Dec. 15, 2016, 12 pages.
“International Preliminary Report on Patentability”, Application No. PCT/US2015/043963, dated Feb. 16, 2017, 12 pages.
“International Preliminary Report on Patentability”, Application No. PCT/US2015/050903, dated Apr. 13, 2017, 12 pages.
“International Preliminary Report on Patentability”, Application No. PCT/US2015/043949, dated Feb. 16, 2017, 13 pages.
“International Preliminary Report on Patentability”, PCT Application No. PCT/US2017/032733, dated Nov. 29, 2018, 7 pages.
“International Preliminary Report on Patentability”, PCT Application No. PCT/US2016/026756, dated Oct. 19, 2017, 8 pages.
“International Preliminary Report on Patentability”, Application No. PCT/US2015/044774, dated Mar. 2, 2017, 8 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2016/060399, dated Jan. 30, 2017, 11 pages.
“International Search Report and Written Opinion”, PCT Application No. PCT/US2016/065295, dated Mar. 14, 2017, 12 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2015/044774, dated Nov. 3, 2015, 12 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2016/042013, dated Oct. 26, 2016, 12 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2016/062082, dated Feb. 23, 2017, 12 pages.
“International Search Report and Written Opinion”, PCT/US2017/047691, dated Nov. 16, 2017, 13 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2016/024267, dated Jun. 20, 2016, 13 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2016/024273, dated Jun. 20, 2016, 13 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2016/032307, dated Aug. 25, 2016, 13 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2016/034366, dated Nov. 17, 2016, 13 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2016/029820, dated Jul. 15, 2016, 14 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2016/055671, dated Dec. 1, 2016, 14 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2016/030177, dated Aug. 2, 2016, 15 pages.
“International Search Report and Written Opinion”, PCT Application No. PCT/US2017/051663, dated Nov. 29, 2017, 16 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2015/043963, dated Nov. 24, 2015, 16 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2016/024289, dated Aug. 25, 2016, 17 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2015/043949, dated Dec. 1, 2015, 18 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2015/050903, dated Feb. 19, 2016, 18 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2016/030115, dated Aug. 8, 2016, 18 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2016/063874, dated May 11, 2017, 19 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2016/033342, dated Oct. 27, 2016, 20 pages.
“Life:X Lifestyle eXplorer”, Retrieved from <https://web.archive.org/web/20150318093841/http://research.microsoft.com/en-us/projects/lifex >, Feb. 3, 2017, 2 pages.
“Non-Final Office Action”, U.S. Appl. No. 15/596,702, dated Jan. 4, 2019, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 16/153,395, dated Oct. 22, 2019, 10 Pages.
“Non-Final Office Action”, U.S. Appl. No. 15/286,837, dated Oct. 26, 2018, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/504,139, dated Jan. 27, 2017, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/959,799, dated Jan. 27, 2017, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 15/398,147, dated Mar. 9, 2017, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/504,139, dated Oct. 18, 2017, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 15/287,155, dated Dec. 10, 2018, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/666,155, dated Feb. 3, 2017, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 15/424,263, dated May 23, 2019, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 16/252,477, dated Jan. 10, 2020, 13 Pages.
“Non-Final Office Action”, U.S. Appl. No. 14/504,121, dated Jan. 9, 2017, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/809,901, dated May 24, 2018, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/959,730, dated Jun. 23, 2017, 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 15/462,957, dated May 24, 2019, 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/862,409, dated Jun. 22, 2017, 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/930,220, dated Sep. 14, 2016, 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 16/238,464, dated Mar. 7, 2019, 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 15/286,512, dated Jul. 19, 2018, 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 15/142,829, dated Aug. 16, 2018, 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/720,632, dated Jun. 14, 2017, 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 15/142,619, dated Aug. 25, 2017, 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/959,799, dated Sep. 8, 2017, 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/715,454, dated Jan. 11, 2018, 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 15/595,649, dated Oct. 31, 2017, 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/504,139, dated Oct. 5, 2018, 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/518,863, dated Oct. 14, 2016, 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/599,954, dated Jan. 26, 2017, 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/862,409, dated Dec. 14, 2017, 17 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/599,954, dated Feb. 2, 2016, 17 pages.
“Non-Final Office Action”, U.S. Appl. No. 15/287,253, dated Apr. 5, 2018, 17 pages.
“Non-Final Office Action”, U.S. Appl. No. 15/093,533, dated Aug. 24, 2017, 18 pages.
“Non-Final Office Action”, U.S. Appl. No. 15/142,689, dated Oct. 4, 2017, 18 pages.
“Non-Final Office Action”, U.S. Appl. No. 15/287,308, dated Oct. 15, 2018, 18 pages.
“Non-Final Office Action”, U.S. Appl. No. 15/286,537, dated Nov. 19, 2018, 18 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/504,121, dated Jan. 2, 2018, 19 pages.
“Non-Final Office Action”, U.S. Appl. No. 15/287,253, dated Sep. 7, 2018, 20 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/518,863, dated Sep. 29, 2017, 20 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/720,632, dated May 18, 2018, 20 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/959,901, dated Jan. 8, 2018, 21 pages.
“Non-Final Office Action”, U.S. Appl. No. 15/596,702, dated Oct. 21, 2019, 21 Pages.
“Non-Final Office Action”, U.S. Appl. No. 15/791,044, dated Sep. 30, 2019, 22 Pages.
“Non-Final Office Action”, U.S. Appl. No. 14/959,901, dated Oct. 11, 2018, 22 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/504,038, dated Feb. 26, 2016, 22 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/312,486, dated Oct. 23, 2015, 25 pages.
“Non-Final Office Action”, U.S. Appl. No. 15/286,152, dated Oct. 19, 2018, 27 pages.
“Non-Final Office Action”, U.S. Appl. No. 15/286,537, dated Sep. 3, 2019, 28 Pages.
“Non-Final Office Action”, U.S. Appl. No. 15/267,181, dated Feb. 8, 2018, 29 pages.
“Non-Final Office Action”, U.S. Appl. No. 15/403,066, dated May 4, 2017, 31 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/699,181, dated Oct. 18, 2017, 33 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/504,038, dated Mar. 22, 2017, 33 pages.
“Non-Final Office Action”, U.S. Appl. No. 15/287,394, dated Mar. 22, 2019, 39 pages.
“Non-Final Office Action”, U.S. Appl. No. 15/166,198, dated Feb. 21, 2019, 48 pages.
“Non-Final Office Action”, U.S. Appl. No. 15/398,147, dated Sep. 8, 2017, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/874,955, dated Feb. 8, 2018, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/681,625, dated Mar. 6, 2017, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 15/586,174, dated Jun. 18, 2018, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/504,061, dated Nov. 4, 2015, 8 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/874,955, dated Feb. 27, 2017, 8 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/582,896, dated Jun. 29, 2016, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/681,625, dated Aug. 12, 2016, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/666,155, dated Aug. 24, 2016, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/513,875, dated Feb. 21, 2017, 9 pages.
“Non-Invasive Quantification of Peripheral Arterial Volume Distensibilitiy and its Non-Lineaer Relationship with Arterial Pressure”, Journal of Biomechanics, Pergamon Press, vol. 42, No. 8; as cited in the search report for PCT/US2016/013968 citing the whole document, but in particular the abstract, May 29, 2009, 2 pages.
“Notice of Allowance”, U.S. Appl. No. 16/238,464, dated Nov. 4, 2019, 10 Pages.
“Notice of Allowance”, U.S. Appl. No. 15/424,263, dated Nov. 14, 2019, 10 Pages.
“Notice of Allowance”, U.S. Appl. No. 15/287,394, dated Mar. 4, 2020, 11 Pages.
“Notice of Allowance”, U.S. Appl. No. 14/599,954, dated May 24, 2017, 11 pages.
“Notice of Allowance”, U.S. Appl. No. 16/153,395, dated Feb. 20, 2020, 13 Pages.
“Notice of Allowance”, U.S. Appl. No. 15/917,238, dated Aug. 21, 2019, 13 pages.
“Notice of Allowance”, U.S. Appl. No. 15/287,253, dated Aug. 26, 2019, 13 Pages.
“Notice of Allowance”, U.S. Appl. No. 15/286,512, dated Apr. 9, 2019, 14 pages.
“Notice of Allowance”, U.S. Appl. No. 14/312,486, dated Oct. 7, 2016, 15 pages.
“Notice of Allowance”, U.S. Appl. No. 15/287,308, dated Jul. 17, 2019, 17 Pages.
“Notice of Allowance”, U.S. Appl. No. 14/504,038, dated Aug. 7, 2017, 17 pages.
“Notice of Allowance”, U.S. Appl. No. 15/403,066, dated Jan. 8, 2018, 18 pages.
“Notice of Allowance”, U.S. Appl. No. 15/287,200, dated Nov. 6, 2018, 19 pages.
“Notice of Allowance”, U.S. Appl. No. 15/286,152, dated Mar. 5, 2019, 23 pages.
“Notice of Allowance”, U.S. Appl. No. 16/356,748, dated Feb. 11, 2020, 5 Pages.
“Notice of Allowance”, U.S. Appl. No. 14/715,793, dated Jul. 6, 2018, 5 pages.
“Notice of Allowance”, U.S. Appl. No. 15/286,495, dated Jan. 17, 2019, 5 pages.
“Notice of Allowance”, U.S. Appl. No. 15/595,649, dated Jan. 3, 2019, 5 pages.
“Notice of Allowance”, U.S. Appl. No. 14/715,793, dated Dec. 18, 2017, 5 pages.
“Notice of Allowance”, U.S. Appl. No. 14/666,155, dated Feb. 20, 2018, 5 pages.
“Notice of Allowance”, U.S. Appl. No. 14/582,896, dated Nov. 7, 2016, 5 pages.
“Notice of Allowance”, U.S. Appl. No. 15/703,511, dated Apr. 16, 2019, 5 pages.
“Notice of Allowance”, U.S. Appl. No. 15/586,174, dated Sep. 24, 2018, 5 pages.
“Notice of Allowance”, U.S. Appl. No. 14/513,875, dated Jun. 28, 2017, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 14/666,155, dated Jul. 10, 2017, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 16/389,402, dated Aug. 21, 2019, 7 Pages.
“Notice of Allowance”, U.S. Appl. No. 14/874,955, dated Oct. 20, 2017, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 14/504,061, dated Sep. 12, 2016, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 14/494,863, dated May 30, 2017, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 14/681,625, dated Jun. 7, 2017, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 15/286,837, dated Mar. 6, 2019, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 14/731,195, dated Apr. 24, 2019, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 14/862,409, dated Jun. 6, 2018, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 15/287,155, dated Jul. 25, 2019, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 15/462,957, dated Jan. 23, 2020, 8 Pages.
“Notice of Allowance”, U.S. Appl. No. 15/791,044, dated Feb. 12, 2020, 8 Pages.
“Notice of Allowance”, U.S. Appl. No. 15/362,359, dated Aug. 3, 2018, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 14/681,625, dated Oct. 23, 2017, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 14/874,955, dated Oct. 4, 2018, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 15/398,147, dated Nov. 15, 2017, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 14/959,730, dated Feb. 22, 2018, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 15/142,829, dated Feb. 6, 2019, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 14/930,220, dated Feb. 2, 2017, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 15/352,194, dated Jun. 26, 2019, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 15/595,649, dated Sep. 14, 2018, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 15/343,067, dated Jul. 27, 2017, 9 pages.
“Notice of Allowance”, U.S. Appl. No. 16/356,748, dated Oct. 17, 2019, 9 Pages.
“Notice of Allowance”, U.S. Appl. No. 15/142,689, dated Oct. 30, 2018, 9 pages.
“Notice of Allowance”, U.S. Appl. No. 14/504,137, dated Feb. 6, 2019, 9 pages.
“Notice of Allowance”, U.S. Appl. No. 14/599,954, dated Mar. 15, 2018, 9 pages.
“Notice of Allowance”, U.S. Appl. No. 15/142,619, dated Aug. 13, 2018, 9 pages.
“Philips Vital Signs Camera”, Retrieved From: <http://www.vitalsignscamera.com/> Apr. 15, 2015, Jul. 17, 2013, 2 pages.
“Pre-Interview Communication”, U.S. Appl. No. 15/287,359, dated Jul. 24, 2018, 2 pages.
“Pre-Interview Communication”, U.S. Appl. No. 15/142,471, dated Dec. 12, 2018, 3 pages.
“Pre-Interview Communication”, U.S. Appl. No. 14/513,875, dated Oct. 21, 2016, 3 pages.
“Pre-Interview Communication”, U.S. Appl. No. 14/959,901, dated Feb. 10, 2017, 3 pages.
“Pre-Interview Communication”, U.S. Appl. No. 14/959,730, dated Feb. 15, 2017, 3 pages.
“Pre-Interview Communication”, U.S. Appl. No. 14/715,793, dated Mar. 20, 2017, 3 pages.
“Pre-Interview Communication”, U.S. Appl. No. 14/715,454, dated Apr. 14, 2017, 3 pages.
“Pre-Interview Communication”, U.S. Appl. No. 15/343,067, dated Apr. 19, 2017, 3 pages.
“Pre-Interview Communication”, U.S. Appl. No. 16/401,611, dated Apr. 13, 2020, 4 Pages.
“Pre-Interview Communication”, U.S. Appl. No. 15/286,495, dated Sep. 10, 2018, 4 pages.
“Pre-Interview Communication”, U.S. Appl. No. 15/362,359, dated May 17, 2018, 4 pages.
“Pre-Interview Communication”, U.S. Appl. No. 15/703,511, dated Feb. 11, 2019, 5 pages.
“Pre-Interview Communication”, U.S. Appl. No. 14/494,863, dated Jan. 27, 2017, 5 pages.
“Pre-Interview Communication”, U.S. Appl. No. 15/917,238, dated May 1, 2019, 6 pages.
“Pre-Interview Communication”, U.S. Appl. No. 15/166,198, dated Mar. 8, 2018, 8 pages.
“Pre-Interview First Office Action”, U.S. Appl. No. 15/286,152, dated Feb. 8, 2018, 4 pages.
“Pre-Interview Office Action”, U.S. Appl. No. 14/862,409, dated Sep. 15, 2017, 16 pages.
“Pre-Interview Office Action”, U.S. Appl. No. 14/731,195, dated Dec. 20, 2017, 4 pages.
“Preliminary Report on Patentability”, PCT Application No. PCT/US2016/034366, dated Dec. 7, 2017, 10 pages.
“Preliminary Report on Patentability”, PCT Application No. PCT/US2016/030177, dated Oct. 31, 2017, 11 pages.
“Preliminary Report on Patentability”, PCT Application No. PCT/US2016/030115, dated Oct. 31, 2017, 15 pages.
“Preliminary Report on Patentability”, PCT Application No. PCT/US2016/030185, dated Nov. 9, 2017, 16 pages.
“Preliminary Report on Patentability”, PCT Application No. PCT/US2016/065295, dated Jul. 24, 2018, 18 pages.
“Preliminary Report on Patentability”, PCT Application No. PCT/US2016/042013, dated Jan. 30, 2018, 7 pages.
“Preliminary Report on Patentability”, PCT Application No. PCT/US2016/062082, dated Nov. 15, 2018, 8 pages.
“Preliminary Report on Patentability”, PCT Application No. PCT/US2016/055671, dated Apr. 10, 2018, 9 pages.
“Preliminary Report on Patentability”, PCT Application No. PCT/US2016/032307, dated Dec. 7, 2017, 9 pages.
“Pressure-Volume Loop Analysis in Cardiology”, retrieved from https://en.wikipedia.org/w/index.php?t itle=Pressure-volume loop analysis in card iology&oldid=636928657 on Sep. 23, 2017; Obtained per link provided in search report from PCT/US2016/01398 on Jul. 28, 2016, Dec. 6, 2014, 10 pages.
“Restriction Requirement”, U.S. Appl. No. 15/362,359, dated Jan. 8, 2018, 5 pages.
“Restriction Requirement”, U.S. Appl. No. 14/666,155, dated Jul. 22, 2016, 5 pages.
“Restriction Requirement”, U.S. Appl. No. 15/462,957, dated Jan. 4, 2019, 6 pages.
“Restriction Requirement”, U.S. Appl. No. 15/352,194, dated Feb. 6, 2019, 8 pages.
“Restriction Requirement”, U.S. Appl. No. 15/286,537, dated Aug. 27, 2018, 8 pages.
“Samsung Galaxy S4 Air Gestures”, Video retrieved from https://www.youtube.com/watch?v=375Hb87yGcg, May 7, 2013, 4 pages.
“Textile Wire Brochure”, Retrieved at: http://www.textile-wire.ch/en/home.html, Aug. 7, 2004, 17 pages.
“The Dash smart earbuds play back music, and monitor your workout”, Retrieved from < http://newatlas.com/bragi-dash-tracking-earbuds/30808/>, Feb. 13, 2014, 3 pages.
“The Instant Blood Pressure app estimates blood pressure with your smartphone and our algorithm”, Retrieved at: http://www.instantbloodpressure.com/—on Jun. 23, 2016, 6 pages.
“Thermofocus No. Touch Forehead Thermometer”, Technimed, Internet Archive. Dec. 24, 2014. https://web.archive.org/web/20141224070848/http://www.tecnimed.it:80/thermofocus-forehead-thermometer-H1N1-swine-flu.html, Dec. 24, 2018, 4 pages.
“Written Opinion”, PCT Application No. PCT/US2016/030185, dated Nov. 3, 2016, 15 pages.
“Written Opinion”, PCT Application No. PCT/US2017/032733, dated Jul. 24, 2017, 5 pages.
“Written Opinion”, PCT Application No. PCT/US2017/032733, dated Jul. 26, 2017, 5 pages.
“Written Opinion”, PCT Application No. PCT/US2016/042013, dated Feb. 2, 2017, 6 pages.
“Written Opinion”, PCT Application No. PCT/US2016/060399, dated May 11, 2017, 6 pages.
“Written Opinion”, PCT Application No. PCT/US2016/026756, dated Nov. 10, 2016, 7 pages.
“Written Opinion”, PCT Application No. PCT/US2016/055671, dated Apr. 13, 2017, 8 pages.
“Written Opinion”, PCT Application No. PCT/US2017/051663, dated Oct. 12, 2018, 8 pages.
“Written Opinion”, PCT Application No. PCT/US2016/065295, dated Apr. 13, 2018, 8 pages.
“Written Opinion”, PCT Application PCT/US2016/013968, dated Jul. 28, 2016, 9 pages.
“Written Opinion”, PCT Application No. PCT/US2016/030177, dated Nov. 3, 2016, 9 pages.
Amihood, Patrick M. et al., “Closed-Loop Manufacturing System Using Radar”, Technical Disclosure Commons; Retrieved from http://www.tdcommons.org/dpubs_series/464, Apr. 17, 2017, 8 pages.
Antonimuthu, “Google's Project Soli brings Gesture Control to Wearables using Radar”, YouTube[online], Available from https://www.youtube.com/watch?v=czJfcgvQcNA as accessed on May 9, 2017; See whole video, especially 6:05-6:35.
Arbabian, Amin et al., “A 94GHz mm-Wave to Baseband Pulsed-Radar for Imaging and Gesture Recognition”, 2012 IEEE, 2012 Symposium on VLSI Circuits Digest of Technical Papers, Jan. 1, 2012, 2 pages.
Azevedo, Stephen et al., “Micropower Impulse Radar”, Science & Technology Review, Feb. 29, 1996, pp. 16-29, Feb. 29, 1996, 7 pages.
Balakrishnan, Guha et al., “Detecting Pulse from Head Motions in Video”, In Proceedings: CVPR '13 Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition Available at: <http://people.csail.mit.edu/mrub/vidmag/papers/Balakrishnan_Detecting _Pulse_from_2013_CVPR_paper.pdf>, Jun. 23, 2013, 8 pages.
Bondade, Rajdeep et al., “A linear-assisted DC-DC hybrid power converter for envelope tracking RF power amplifiers”, 2014 IEEE Energy Conversion Congress and Exposition (ECCE), IEEE, Sep. 14, 2014, pp. 5769-5773, XP032680873, DOI: 10.1109/ECCE.2014.6954193, Sep. 14, 2014, 5 pages.
Cheng, Jingyuan “Smart Textiles: From Niche to Mainstream”, IEEE Pervasive Computing, pp. 81-84.
Couderc, Jean-Philippe et al., “Detection of Atrial Fibrillation using Contactless Facial Video Monitoring”, In Proceedings: Heart Rhythm Society, vol. 12, Issue 1 Available at: <http://www.heartrhythmjournal.com/article/S1547-5271(14)00924-2/pdf>, 7 pages.
Dias, T et al., “Capacitive Fibre-Meshed Transducer for Touch & Proximity Sensing Applications”, IEEE Sensors Journal, IEEE Service Center, New York, NY, US, vol. 5, No. 5, Oct. 1, 2005 (Oct. 1, 2005), pp. 989-994, XP011138559, ISSN: 1530-437X, DOI: 10.1109/JSEN.2005.844327, Oct. 1, 2005, 5 pages.
Duncan, David P. “Motion Compensation of Synthetic Aperture Radar”, Microwave Earth Remote Sensing Laboratory, Brigham Young University, Apr. 15, 2003, 5 pages.
Espina, Javier et al., “Wireless Body Sensor Network for Continuous Cuff-less Blood Pressure Monitoring”, International Summer School on Medical Devices and Biosensors, 2006, 5 pages.
Fan, Tenglong et al., “Wireless Hand Gesture Recognition Based on Continuous-Wave Doppler Radar Sensors”, IEEE Transactions on Microwave Theory and Techniques, Plenum, USA, vol. 64, No. 11, Nov. 1, 2016 (Nov. 1, 2016), pp. 4012-4012, XP011633246, ISSN: 0018-9480, DOI: 10.1109/TMTT.2016.2610427, Nov. 1, 2016, 9 pages.
Farringdon, Jonny et al., “Wearable Sensor Badge & Sensor Jacket for Context Awareness”, Third International Symposium on Wearable Computers, 7 pages.
Garmatyuk, Dmitriy S. et al., “Ultra-Wideband Continuous-Wave Random Noise Arc-SAR”, IEEE Transaction on Geoscience and Remote Sensing, vol. 40, No. 12, Dec. 2002, Dec. 2002, 10 pages.
Geisheimer, Jonathan L. et al., “A Continuous-Wave (CW) Radar for Gait Analysis”, IEEE 2001, 2001, 5 pages.
Godana, Bruhtesfa E. “Human Movement Characterization in Indoor Environment using GNU Radio Based Radar”, Retrieved at: http://repository.tudelft.nl/islandora/object/uuid:414e1868-dd00-4113-9989-4c213f1f7094?collection=education, Nov. 30, 2009, 100 pages.
GüRBüz, Sevgi Z. et al., “Detection and Identification of Human Targets in Radar Data”, Proc. SPIE 6567, Signal Processing, Sensor Fusion, and Target Recognition XVI, 656701, May 7, 2007, 12 pages.
He, David D. “A Continuous, Wearable, and Wireless Heart Monitor Using Head Ballistocardiogram (BCG) and Head Electrocardiogram (ECG) with a Nanowatt ECG Heartbeat Detection Circuit”, In Proceedings: Thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute Of Technology Available at: <http://dspace.mit.edu/handle/1721.1/79221>, 137 pages.
Holleis, Paul et al., “Evaluating Capacitive Touch Input on Clothes”, Proceedings of the 10th International Conference on Human Computer Interaction, Jan. 1, 2008, 10 pages.
Holleis, Paul et al., “Evaluating Capacitive Touch Input on Clothes”, Proceedings of the 10th International Conference on Human Computer Interaction With Mobile Devices and Services, Jan. 1, 2008 (Jan. 1, 2008), p. 81, XP055223937, New York, NY, US DOI: 10.1145/1409240.1409250 ISBN: 978-1-59593-952-4, Jan. 1, 2008, 11 pages.
Ishijima, Masa “Unobtrusive Approaches to Monitoring Vital Signs at Home”, Medical & Biological Engineering and Computing, Springer, Berlin, DE, vol. 45, No. 11 as cited in search report for PCT/US2016/013968 on Jul. 28, 2016, Sep. 26, 2007, 3 pages.
Karagozler, Mustafa E et al., “Embedding Radars in Robots to Accurately Measure Motion”, Technical Disclosure Commons; Retrieved from http://www.tdcommons.org/dpubs_series/454, Mar. 30, 2017, 8 pages.
Klabunde, Richard E. “Ventricular Pressure-Volume Loop Changes in Valve Disease”, Retrieved From <https://web.archive.org/web/20101201185256/http://cvphysiology.com/Heart%20Disease/HD009.htm>, Dec. 1, 2010, 8 pages.
Kubota, Yusuke et al., “A Gesture Recognition Approach by using Microwave Doppler Sensors”, IPSJ SIG Technical Report, 2009 (6), Information Processing Society of Japan, Apr. 15, 2010, pp. 1-8, Apr. 15, 2010, 12 pages.
Lee, Cullen E. “Computing the Apparent Centroid of Radar Targets”, Sandia National Laboratories; Presented at the Proceedings of the 1996 IEEE National Radar Conference: Held at the University of Michigan; May 13-16, 1996; retrieved from https://www.osti.gov/scitech/servlets/purl/218705on Sep. 24, 2017, 21 pages.
Lien, Jaime et al., “Embedding Radars in Robots for Safety and Obstacle Detection”, Technical Disclosure Commons; Retrieved from http://www.tdcommons.org/dpubs_series/455, Apr. 2, 2017, 10 pages.
Lien, Jaime et al., “Soli: Ubiquitous Gesture Sensing with Millimeter Wave Radar”, ACM Transactions on Graphics (TOG), ACM, Us, vol. 35, No. 4, Jul. 11, 2016 (Jul. 11, 2016), pp. 1-19, XP058275791, ISSN: 0730-0301, DOI: 10.1145/2897824.2925953, Jul. 11, 2016, 19 pages.
Martinez-Garcia, Hermino et al., “Four-quadrant linear-assisted DC/DC voltage regulator”, Analog Integrated Circuits and Signal Processing, Springer New York LLC, US, vol. 88, No. 1, Apr. 23, 2016 (Apr. 23, 2016)pp. 151-160, XP035898949, ISSN: 0925-1030, DOI: 10.1007/S10470-016-0747-8, Apr. 23, 2016, 10 pages.
Matthews, Robert J. “Venous Pulse”, Retrieved at: http://www.rjmatthewsmd.com/Definitions/venous_pulse.htm—on Nov. 30, 2016, Apr. 13, 2013, 7 pages.
Nakajima, Kazuki et al., “Development of Real-Time Image Sequence Analysis for Evaluating Posture Change and Respiratory Rate of a Subject in Bed”, In Proceedings: Physiological Measurement, vol. 22, No. 3 Retrieved From: <http://iopscience.iop.org/0967-3334/22/3/401/pdf/0967-3334_22_3_401 ,pdf> Feb. 27, 2015, 8 pages.
Narasimhan, Shar “Combining Self- & Mutual-Capacitive Sensing for Distinct User Advantages”, Retrieved from the Internet: URL:http://www.designnews.com/author.asp?section_id=1365&doc_id=271356&print=yes [retrieved on Oct. 1, 2015], Jan. 31, 2014, 5 pages.
Oiio, Chris et al., “System Architecture of a Wireless Body Area Sensor Network for Ubiquitous Health Monitoring”, Journal of Mobile Multimedia; vol. 1, No. 4, Jan. 10, 2006, 20 pages.
Palese, et al., “The Effects of Earphones and Music on the Temperature Measured by Infrared Tympanic Thermometer: Preliminary Results”, OR—head and neck nursing: official journal of the Society of Otorhinolaryngology and Head-Neck Nurses 32.2, Jan. 1, 2013, pp. 8-12.
Patel, P C. et al., “Applications of Electrically Conductive Yarns in Technical Textiles”, International Conference on Power System Technology (POWECON), Oct. 30, 2012, 6 pages.
Poh, Ming-Zher et al., “A Medical Mirror for Non-contact Health Monitoring”, In Proceedings: ACM SIGGRAPH Emerging Technologies Available at: <http://affect.media.mit.edu/pdfs/11.Poh-etal-SIGGRAPH.pdf>, Jan. 1, 2011, 1 page.
Poh, Ming-Zher et al., “Non-contact, Automated Cardiac Pulse Measurements Using Video Imaging and Blind Source Separation.”, In Proceedings: Optics Express, vol. 18, No. 10 Available at: <http://www.opticsinfobase.org/view_article.cfm?gotourl=http%3A%2F%.
2Fwww%2Eopticsinfobase%2Eorg%2FDirectPDFAccess%2F77B04D55%2DBC95%2D6937%2D5BAC49A426378C02%5F199381%2Foe%2D18%2D10%2D10762%2Ep, May 7, 2010, 13 pages.
Pu, Qifan et al., “Gesture Recognition Using Wireless Signals”, pp. 15-18.
Pu, Qifan et al., “Whole-Home Gesture Recognition Using Wireless Signals”, MobiCom'13, Sep. 30-Oct. 4, Miami, FL, USA, Sep. 2013, 12 pages.
Pu, Qifan et al., “Whole-Home Gesture Recognition Using Wireless Signals”, MobiCom'13, Sep. 30-Oct. 4, Miami, FL, USA, 2013, 12 pages.
Pu, Qifan et al., “Whole-Home Gesture Recognition Using Wireless Signals”, Proceedings of the 19th annual international conference on Mobile computing & networking (MobiCom'13), US, ACM, Sep. 30, 2013, pp. 27-38, Sep. 30, 2013, 12 pages.
Pu, Quifan et al., “Whole-Home Gesture Recognition Using Wireless Signals”, MobiCom '13 Proceedings of the 19th annual international conference on Mobile computing & networking, Aug. 27, 2013, 12 pages.
Schneegass, Stefan et al., “Towards a Garment OS: Supporting Application Development for Smart Garments”, Wearable Computers, ACM, Sep. 13, 2014, 6 pages.
Skolnik, Merrill I. “CW and Frequency-Modulated Radar”, In: “Introduction To Radar Systems”, Jan. 1, 1981 (Jan. 1, 1981), McGraw Hill, XP055047545, ISBN: 978-0-07-057909-5 pp. 68-100, p. 95-p. 97, Jan. 1, 1981, 18 pages.
Stoppa, Matteo “Wearable Electronics and Smart Textiles: A Critical Review”, In Proceedings of Sensors, vol. 14, Issue 7, Jul. 7, 2014, pp. 11957-11992.
Wang, Wenjin et al., “Exploiting Spatial Redundancy of Image Sensor for Motion Robust rPPG”, In Proceedings: IEEE Transactions on Biomedical Engineering, vol. 62, Issue 2, Jan. 19, 2015, 11 pages.
Wang, Yazhou et al., “Micro-Doppler Signatures for Intelligent Human Gait Recognition Using a UWB Impulse Radar”, 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), Jul. 3, 2011, pp. 2103-2106.
Wijesiriwardana, R et al., “Capacitive Fibre-Meshed Transducer for Touch & Proximity Sensing Applications”, IEEE Sensors Journal, IEEE Service Center, Oct. 1, 2005, 5 pages.
Zhadobov, Maxim et al., “Millimeter-Wave Interactions with the Human Body: State of Knowledge and Recent Advances”, International Journal of Microwave and Wireless Technologies, p. 1 of 11. # Cambridge University Press and the European Microwave Association, 2011 doi: 10.1017/S1759078711000122, 2011.
Zhadobov, Maxim et al., “Millimeter-wave Interactions with the Human Body: State of Knowledge and Recent Advances”, International Journal of Microwave and Wireless Technologies, Mar. 1, 2011, 11 pages.
Zhang, Ruquan et al., “Study of the Structural Design and Capacitance Characteristics of Fabric Sensor”, Advanced Materials Research (vols. 194-196), Feb. 21, 2011, 8 pages.
Zheng, Chuan et al., “Doppler Bio-Signal Detection Based Time-Domain Hand Gesture Recognition”, 2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO), IEEE.
Dec. 9, 2013 (Dec. 9, 2013), p. 3, XP032574214, DOI: 10.1109/IMWS-BIO.2013.6756200, Dec. 9, 2013, 3 Pages.
“Foreign Office Action”, JP Application No. 2019-078554, dated Jul. 21, 2020, 12 pages.
“Foreign Office Action”, IN Application No. 201747044162, dated Sep. 3, 2020, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 16/744,626, dated Sep. 23, 2020, 9 Pages.
“Non-Final Office Action”, U.S. Appl. No. 16/669,842, dated Sep. 3, 2020, 12 pages.
“Notice of Allowance”, U.S. Appl. No. 16/380,245, dated Sep. 15, 2020, 7 Pages.
“Final Office Action”, U.S. Appl. No. 17/023,122, filed Apr. 7, 2022, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 17/023,122, filed Jan. 24, 2022, 25 pages.
“Foreign Office Action”, JP Application No. 2021-85256, dated Apr. 20, 2022, 6 pages.
Related Publications (1)
Number Date Country
20200278422 A1 Sep 2020 US
Provisional Applications (1)
Number Date Country
62237975 Oct 2015 US
Continuations (1)
Number Date Country
Parent 15287394 Oct 2016 US
Child 16875427 US