Smoking may be an activity with certain social implications. For example, social factors may influence the decision to start smoking or may be one reason for smoking in groups (from couples to people who go out to smoke together, to parties etc.). The social benefits of smoking without certain of the downsides may be achieved with an electronic cigarette (“e-cigarette” or “e-Cig”). An e-Cig is a device that emulates tobacco cigarette smoking, by producing smoke replacement that may be similar in its physical sensation, general appearance, and sometimes flavor (i.e., with tobacco fragrance, menthol taste, added nicotine etc.). The device may use heat, ultrasonic energy, or other means to atomize/vaporize a liquid (for example based on propylene glycol, or glycerin, for example including taste and fragrance ingredients) solution into an aerosol mist. The atomization may be similar to nebulizer or humidifier vaporizing solutions for inhalation. The generated mist may be sensed similar to cigarette smoke. Because it is electronic, an e-Cig may provide opportunities for increased options, communication, and control.
The system and method may be better understood with reference to the following drawings and description. Non-limiting and non-exhaustive embodiments are described with reference to the following drawings. The components in the drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. In the drawings, like referenced numerals designate corresponding parts throughout the different views.
Subject matter will now be described more fully hereinafter with reference to the accompanying drawings, which form a part hereof, and which show, by way of illustration, specific example embodiments. Subject matter may, however, be embodied in a variety of different forms and, therefore, covered or claimed subject matter is intended to be construed as not being limited to any example embodiments set forth herein; example embodiments are provided merely to be illustrative. Likewise, a reasonably broad scope for claimed or covered subject matter is intended. Among other things, for example, subject matter may be embodied as methods, devices, components, or systems. Accordingly, embodiments may, for example, take the form of hardware, software, firmware or any combination thereof (other than software per se). The following detailed description is, therefore, not intended to be taken in a limiting sense.
Throughout the specification and claims, terms may have nuanced meanings suggested or implied in context beyond an explicitly stated meaning. Likewise, the phrase “in one embodiment” as used herein does not necessarily refer to the same embodiment and the phrase “in another embodiment” as used herein does not necessarily refer to a different embodiment. It is intended, for example, that claimed subject matter include combinations of example embodiments in whole or in part.
In general, terminology may be understood at least in part from usage in context. For example, terms, such as “and”, “or”, or “and/or,” as used herein may include a variety of meanings that may depend at least in part upon the context in which such terms are used. Typically, “or” if used to associate a list, such as A, B or C, is intended to mean A, B, and C, here used in the inclusive sense, as well as A, B or C, here used in the exclusive sense. In addition, the term “one or more” as used herein, depending at least in part upon context, may be used to describe any feature, structure, or characteristic in a singular sense or may be used to describe combinations of features, structures or characteristics in a plural sense. Similarly, terms, such as “a,” “an,” or “the,” again, may be understood to convey a singular usage or to convey a plural usage, depending at least in part upon context. In addition, the term “based on” may be understood as not necessarily intended to convey an exclusive set of factors and may, instead, allow for existence of additional factors not necessarily expressly described, again, depending at least in part on context.
By way of introduction, an electronic cigarette (“e-Cig”) may include a controller for providing various operations within an e-Cig. Enhancements for the controller may provide for improved operations and control for the e-Cig. In one embodiment, there may be a communications capability which may be separate from or part of the controller. The communications may allow for the e-Cig to communicate with a consumer device, such as a computer, smartphone or tablet. The consumer may then control smoke properties, monitor operations, adjust settings, and/or receive product notifications or offers through the consumer device's communication with the e-Cig. Control may also be enabled for automatic services, such as messaging from commercial parties, by servers, by local area network (“LAN”)-located entities, such as a smart phone application, and/or by other persons (e.g. friends, supporters or social networks) that may be located locally or over a wide area network (“WAN”) such as the Internet. Other possible applications may include smoking cessation support, by professionals or peers (also my involve and incorporate other Nicotine Replacement Therapies (NRT), such as nicotine patches; competitions and challenges, for example of knowledge or taste recognition; related products marketing and sales, for example coffee or candy. The communications may enable connections to various websites on the Internet for usage tracking or social networking. Although commonly referred to as a smoker throughout, a user of an e-Cig may also be referred to as a vapor and the act of “smoking” may be referred to as vaping. Likewise, a non-electronic cigarette may be referred to as a “regular” or “standard” cigarette, but should be understood to include non-electronic cigarettes. Although mist generation (or atomization) may be described interchangeably with vaporization, the concepts are distinct. The use of the term vaporization, vapor, or vaping should be understood to include the mist generation or atomization process.
Other systems, methods, features and advantages will be, or will become, apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description, be within the scope of the invention, and be protected by the following claims. Nothing in this section should be taken as a limitation on those claims. Further aspects and advantages are discussed below.
The controller 102 may be activated due to air flow 108 (from the inhaled air) passing a flow sensor 104. The sensor 104 may be activated by the pressure drop across the sensor and may directly switch the battery 106 power on, or be used as an input for the controller 102 that then switches the battery 106 current on. Although illustrated as separate from the e-Cig, the controller 102 may be a part of the e-Cig (e.g. along with the battery 106). The enhancements to the controller 102 are further described below with respect to
In one alternative embodiment, the battery 106 may be a separate/removable assembly. The battery 106 may include one or more electronic chips controlling and communicating from it. It may receive cartomizers. Conversely, a disposable e-Cig may include the battery 106 as a single unit. In another alternative embodiment, the battery 106 keeps a trickle current on. The trickle current may keep the communication link alive, while main current for the heating element 111 is only activated by the flow sensor 104.
The atomization may be the process that makes an aerosol. When a gas is injected under pressure difference through a tube with a narrowing cross-section, it speeds up, generating a pressure drop at the narrowest point due to Bernoulli's principle and creates Venturi's effect. The narrowing cross-section may enable pressure reduction in that the narrowing results in a velocity increase and pressure drop. The reduced pressure, due to the pressure difference between the two points, sucks up a liquid from a reservoir through a narrow tube or tubes into the moving gas flow, and projects it forward as a fine spray of droplets. When liquid is moved through wick capillaries a pressure difference may be effective in creating shear forces. The generated microscopic droplets are then sucked in to the mouth and upper respiratory tract. Droplet size can be influenced by the internal structure of the e-Cig, and its working conditions, including liquid properties, liquid temperature while atomized, heating energy, flow local macro and micro structure, inhalation force, etc. The e-Liquid 110 may be purchased and interchangeable within the e-Cig for adding flavor to the smoke 210.
The e-Liquids may be sensed by constant resistance measurement of the heating element when the cartomizer is removed or disconnection occurs. Likewise, when another cartomizer is assembled it may be sensed and restricted until it is confirmed with the controller (e.g. by a smartphone as discussed below).
In parallel the controller 602 may power up a light emitting diode (“LED”) 612 light source at the e-Cig tip. The LED 602 light may imitate the cigarette light. In one embodiment, the light color may be changed to distinguish it from regular (non-electronic) cigarettes. For example, the LED may be green. The light may mimic the brightness of the fire/burn of a non-electronic cigarette. In other words, the lighting is different, for example turned on, for while receiving inhaled air. Accordingly, there may be an analog or digital electrical circuit that enables the light to increase and/or cease gradually. This setup may be translated to electrical circuits in more than a single way (for example the pressure switch can switch the power to the controller or only enable a signal to be transmitted to the controller). The e-Cig LED or light at its tip may be changed according to ambient illumination. For example, the light power may be reduced when driving at night or may be modified based on location. For example, the color may change when smoking indoors or in a restaurant. The change may be controlled by the smartphone, utilizing its various sensors.
The e-Cig 701 may be similar to or the same as the e-Cigs illustrated in
The smartphone 702 may also be referred to as a client device and may include a computing device capable of sending or receiving signals, such as via a wired or a wireless network (e.g. the network 704, which may be the Internet). The smartphone 702 communicates directly with the e-Cig 701 through local communication mechanisms, such as those illustrated in
The smartphone 702 may include or may execute a variety of operating systems, including a personal computer operating system, such as a Windows, iOS or Linux, or a mobile operating system, such as iOS, Android, or Windows Mobile, or the like. The smartphone 702 may include or may execute a variety of possible applications, such as a client software application enabling communication with other devices, such as communicating one or more messages, such as via email, short message service (SMS), or multimedia message service (MMS), including via a network, such as a social network, including, for example, Facebook, LinkedIn, Twitter, Flickr, WhatsApp, or Google+, to provide only a few possible examples. The smartphone 702 may also include or execute an application to communicate content, such as, for example, textual content, multimedia content, binary files, numerical data, or the like. The smartphone 702 may also include or execute an application to perform a variety of possible tasks, such as browsing, searching, playing various forms of content, including locally stored or streamed video, or games (such as fantasy sports leagues, or competitions such as e-Cig smokers competing on location-based assignments or any other games/activities involving community use). The foregoing is provided to illustrate that claimed subject matter is intended to include a wide range of possible features or capabilities. As described below, the smartphone 702 communicates with the e-Cig 701 and communicates over the network 704. Although not illustrated, the e-Cig 701 may communicate with other e-Cigs or multiple smartphones. In one embodiment, a couple may each have e-Cigs that can communicate with one another and that can communicate with each other's smartphones. This communication by the e-Cig may be through the network 704 in one embodiment. As further discussed below, the smartphone 702 may augments -Cig data with data from its own sensors, such as GPS, accelerometers, clocks, environmental parameters, microphone, and camera.
In one embodiment, the e-Cig 701 may include a controller 720, memory 718, software 716, and/or a communications interface 714. In alternative embodiments, the memory 718, software 716, and/or a communications interface 714 may be considered to be part of the controller 720. Alternatively, the memory 718 and/or software 716 may not be part of the e-Cig 701, rather the smartphone 702 will utilize its memory 718 (e.g. internal memory or external memory such as memory cards) and/or software 716 for the functions described below. In other words, functions performed by the smartphone 702 may be performed by the e-Cig 701 in certain circumstances, and functions performed by the e-Cig 701 may be performed by the smartphone 702 in other circumstances.
The communications interface 714 may communicate with the smartphone 702. In one embodiment, the communications interface 714 includes a communication chip as illustrated in
The controller 720 in the e-Cig 701 may include a central processing unit (CPU), a digital signal processor (DSP) or other type of processing device. The controller 720 may be one or more general processors, digital signal processors, application specific integrated circuits, field programmable gate arrays, servers, networks, digital circuits, analog circuits, combinations thereof, or other now known or later developed devices for analyzing and processing data. The controller 720 may operate in conjunction with software or firmware (e.g. software 716), such as code generated manually (i.e., programmed). The controller 720 may be coupled with a memory 718, or the memory 718 may be a separate component or embedded within the controller 720. The software 716 may be stored in the memory 718. The memory 718 may include, but is not limited to, computer readable storage media such as various types of volatile and non-volatile storage media, including random access memory, read-only memory, programmable read-only memory, electrically programmable read-only memory, electrically erasable read-only memory, flash memory, magnetic tape or disk, optical media and the like. The memory 718 may include a random access memory for the controller 720. Alternatively, the memory 718 may be separate from the controller 720, such as a cache memory of a processor, the system memory, or other memory. The memory 718 may be an external storage device or database for storing recorded ad or user data. The memory 718 is operable to store instructions executable by the controller 720.
The functions, acts or tasks illustrated in the figures or described herein may be performed by the programmed processor executing the instructions stored in the memory 718. The functions, acts or tasks are independent of the particular type of instruction set, storage media, processor or processing strategy and may be performed by software, hardware, integrated circuits, firm-ware, micro-code and the like, operating alone or in combination. Likewise, processing strategies may include multiprocessing, multitasking, parallel processing and the like. The controller 720 is configured to execute the software 716. The software 716 may include instructions for analyzing, monitoring, and tracking e-Cig 701 data and communicating with the smartphone 702. The present disclosure contemplates a computer-readable medium that includes instructions or receives and executes instructions responsive to a propagated signal, so that a device connected to a network can communicate voice, video, audio, images, location, GPS information, accelerometer data, environmental sensors or any other data over a network.
The network (e.g. the network 704) may couple devices so that communications may be exchanged, such as between a server and a client device or other types of devices, including between wireless devices coupled via a wireless network, for example. A network may also include mass storage, such as network attached storage (NAS), a storage area network (SAN), or other forms of computer or machine readable media, for example. A network may include the Internet, one or more local area networks (LANs), one or more wide area networks (WANs), wire-line type connections, wireless type connections, or any combination thereof. Likewise, sub-networks, such as may employ differing architectures or may be compliant or compatible with differing protocols, may interoperate within a larger network. Various types of devices may, for example, be made available to provide an interoperable capability for differing architectures or protocols. As one illustrative example, a router may provide a link between otherwise separate and independent LANs. A communication link or channel may include, for example, analog telephone lines, such as a twisted wire pair, a coaxial cable, full or fractional digital lines including T1, T2, T3, or T4 type lines, Integrated Services Digital Networks (ISDNs), Digital Subscriber Lines (DSLs), wireless links including satellite links, or other communication links or channels, such as may be known to those skilled in the art. Furthermore, a computing device or other related electronic devices may be remotely coupled to a network, such as via a telephone line or link, for example.
A wireless network may couple client devices (e.g. the smartphone 702 or user device 703) with a network. A wireless network may employ stand-alone ad-hoc networks, mesh networks, Wireless LAN (WLAN) networks, cellular networks, or the like. A wireless network may further include a system of terminals, gateways, routers, or the like coupled by wireless radio links, or the like, which may move freely, randomly or organize themselves arbitrarily, such that network topology may change, at times even rapidly. A wireless network may further employ a plurality of network access technologies, including Long Term Evolution (LTE), WLAN, Wireless Router (WR) mesh, or 2nd, 3rd, or 4th generation (2G, 3G, or 4G) cellular technology, or the like. Network access technologies may enable wide area coverage for devices, such as client devices with varying degrees of mobility, for example. For example, a network may enable RF or wireless type communication via one or more network access technologies, such as Global System for Mobile communication (GSM), Universal Mobile Telecommunications System (UMTS), General Packet Radio Services (GPRS), Enhanced Data GSM Environment (EDGE), 3GPP Long Term Evolution (LTE), LTE Advanced, Wideband Code Division Multiple Access (WCDMA), Bluetooth, 802.11b/g/n, or the like. A wireless network may include virtually any type of wireless communication mechanism by which signals may be communicated between devices, such as a client device or a computing device, between or within a network, or the like.
Signal packets communicated via a network, such as a network of participating digital communication networks, may be compatible with or compliant with one or more protocols. Signaling formats or protocols employed may include, for example, TCP/IP, UDP, DECnet, NetBEUI, IPX, Appletalk, or the like. Versions of the Internet Protocol (IP) may include IPv4 or IPv6. The Internet refers to a decentralized global network of networks. The Internet includes local area networks (LANs), wide area networks (WANs), wireless networks, or long haul public networks that, for example, allow signal packets to be communicated between LANs. Signal packets may be communicated between nodes of a network, such as, for example, to one or more sites employing a local network address. A signal packet may, for example, be communicated over the Internet from a user site via an access node coupled to the Internet. Likewise, a signal packet may be forwarded via network nodes to a target site coupled to the network via a network access node, for example. A signal packet communicated via the Internet may, for example, be routed via a path of gateways, servers, etc. that may route the signal packet in accordance with a target address and availability of a network path to the target address.
In one embodiment, the connection between the smartphone 702 and the e-Cig 701 is a direct/local connection (not through an external network such as the Internet), but alternative embodiments may allow for other connections between the smartphone 702 and the e-Cig 701. For example, the e-Cig 701 may communicate through the network 704 with or without the smartphone 702. Likewise, the e-Cig 701 may allow connections with more than one device (e.g. smartphone 702 and user device 703) that may be direct/local connections or connections through the network 704. Although not illustrated in
In an alternative embodiment, there may be a wireless or wired charger or charging device that connects the e-Cig 701 and provides power for charging the battery. The smartphone 702 may act as a charger for the e-Cig 701 in one embodiment. Alternatively, the charger for the e-Cig 701 may be a separate device from the smartphone 702. For example, the charging device may be another computer (e.g. universal serial bus (USB)) that communicates with the e-Cig 701. There may be mutual charging between the smartphone and the e-Cig. In particular, the smartphone may provide a charge for the e-Cig and/or the e-Cig may provide a charge to the smartphone. An external charging device may charge both the smartphone and e-Cig, simultaneously or separately. The charging may be wired or wireless.
The e-Cig server 706 may be a server (e.g. web server) that provides the smartphone 702 with pages or information (e.g. through an app) that are requested over the network 704, such as by a user of the smartphone 702. In particular, the operator 710 may provide or collect information through the e-Cig server 706 when requested for or by the smartphone 702. The e-Cig server 706 may be operated by an operator 710 that maintains and oversees the operation of the e-Cig server 706. The e-Cig server 706 may be able to track information and provide offers stored in its database 708. The e-Cig database 708 may be coupled with the e-Cig server 706 and may store the information/data that is provided by the e-Cig server 706 to the e-Cig 701. Alternatively, tracking metrics and other properties/parameters of the e-Cig 701 may be communicated through the e-Cig server 706 for storage in the e-Cig database 708. The e-Cig server 706 may allow for individual or group communication with e-Cig users. For example, the e-Cig server 706 may communicate with a subset of users (e.g. to notify of an event, such as a group smoking party) or may be used for remote deactivations (e.g. if a defective batch is found).
The application (“app”) that is provided by the smartphone 702 for interacting with the e-Cig 701 may include a variety of interfaces. In one embodiment, the app may include a rendering of the e-Cig that may illustrate the components of the e-Cig. The status of those components may be displayed on the app interface (e.g. battery level, e-Liquid level, LED color etc.). Accordingly, the app may be used for checking on the functionality of the e-Cig. In an alternative embodiment, this may allow the user to also light the e-Cig for a simulated smoke. The simulated smoke may be achieved through augmented reality. For example, augmented reality glasses may be used for enabling creation of smoke from the e-Cig when it is held by hand or on camera of the glasses. The smartphone 702 may include a number of apps for communicating and interacting with the e-Cig 701, some of which may be developed by third party developer's using the application developer's tools described below.
The operator 710 of the e-Cig server 706 may include the manufacturer of the e-Cig or may be another third party company may monitor and facilitate the communications between the smartphone 702 and the e-Cig 701. In one embodiment, the e-Cig server 706 may provide an application (i.e. an “app”) that is run on the smartphone 702 that implements the communication features discussed herein. In particular, the smartphone app may provide a user interface for all information stored in the e-Cig 701, the smartphone 702, and the database 708. The UI of the app displays that information and allows a user to modify any parameters for the e-Cig 701. Further, through the app, the enhanced controller of the e-Cig 701 may allow for the communication and interaction between the smartphone 702 and the e-Cig 701. Additional apps may be provided from the e-Cig server 706 which may be developed byt the operator 710 or by a third party developer using application developer tools.
The e-Cig server 706 may be one or more computing devices which may be capable of sending or receiving signals over the network 704, or may be capable of processing or storing signals, such as in memory as physical memory states, and may, therefore, operate as a server. Thus, devices capable of operating as a server may include, as examples, dedicated rack-mounted servers, desktop computers, laptop computers, set top boxes, integrated devices combining various features, such as two or more features of the foregoing devices, or the like. Servers may vary widely in configuration or capabilities, but generally a server may include one or more central processing units and memory. A server may also include one or more mass storage devices, one or more power supplies, one or more wired or wireless network interfaces, one or more input/output interfaces, or one or more operating systems, such as Windows Server, Mac OS X, Unix, Linux, FreeBSD, or the like.
In addition, the e-Cig server 706 may be or may be part of a content server. A content server may include a device that includes a configuration to provide content via a network to another device (e.g. smartphone 702). A content server may, for example, host a site, such as a social networking site, examples of which may include, without limitation, Flicker, Twitter, Facebook, LinkedIn, or a personal user site (such as a blog, vlog, online dating site, etc.). A content server may also host a variety of other sites, including, but not limited to business sites, educational sites, dictionary sites, encyclopedia sites, wikis, financial sites, government sites, etc. A content server may further provide a variety of services that include, but are not limited to, web services, third-party services, audio services, video services, email services, instant messaging (IM) services, SMS services, MMS services, FTP services, voice over IP (VOIP) services, calendaring services, photo services, or the like. Examples of content may include text, images, audio, video, or the like, which may be processed in the form of physical signals, such as electrical signals, for example, or may be stored in memory, as physical states, for example. Examples of devices that may operate as a content server include desktop computers, multiprocessor systems, microprocessor-type or programmable consumer electronics, etc. As described herein, the e-Cig server 706 may host information (e.g. a website) that is used for interfacing with the smartphone 702 and the e-Cig 701. In one embodiment, the user device 703 may view a web page provided by the e-Cig server 706 to see information about the e-Cig 701 and to monitor/track/control the e-Cig 701 depending on the access settings for the e-Cig 701.
The user device 703 (other than the smartphone 702) may interact with the smartphone 702 and/or the e-Cig 701. The other user device 703 may not have a direct/local connection with the e-Cig 701 as with the smartphone 702, but it may be coupled with the smartphone 702 and/or e-Cig 701 through the network 704 in one embodiment. The examples and operation of the user device 703 may be the same as that discussed above with respect to the smartphone 702. In one example, a user may modify settings of the e-Cig 701 from a laptop computer. For example, social networking may be used for a user who wishes to limit usage and another user (e.g. user device 703 from the user's social network) may be given remote control of the amount and/or frequency that the e-Cig 701 can be used for.
The local communication 804 may be two-way communication between the smartphone 702 and the communication chip 802. The information that is transmitted is further described with respect to
The local communication 804 may include usage patterns 904 or usage restrictions 906. In one example, the smartphone can be used for tracking the usage patterns of the e-Cig. The time and duration of smoking may be recorded and tracked. The user may be able to establish self-imposed restrictions on their smoking. For example, a user may restrict usage to five times daily and no smoking allowed between certain times. In another example, the user may use different e-Liquids (e.g. by selection from
The local communication 804 may include desired settings 908 or device status 910. The desired settings 908 may be similar to usage restrictions, but may include default settings relating to the generation of the aerosol. For example, increased temperature of the heating coil results in a different vapor. Additional settings may include vapor, droplet size, nicotine content, taste, and/or degree of liquid depletion or aging of the e-Cig's cartomizer. The local communication may further include complementary information from a smartphone that may be retrieved from the smartphone sensors, GPS, accelerometers, microphone, or other features of the smartphone. This information may be used for supplementing the usage of the e-Cig (e.g. the location that a user prefers). Accelerometer measurements may also be used for monitoring the handling of an e-Cig. An e-Cig may be sensitive to handling (for example accelerations), so the e-Cig acceleration history may be monitored, recorded, and analyzed to sense if an acceleration threshold has been reached, or to sense e-Cig lifetime duration influence. This may also assist in error or defect identification. A malfunctioning e-Cig may be determined to be caused by poor handling. The smartphone microphone may also be used for defect or error detection to listen to the e-Cig for a potential problem. For example, a gurgle or other noise may indicate a current or future problem.
The user may be able to configure the generation of the smoke using the smartphone. The device status 910 may include information about the components of the e-Cig. For example, if there is a component that is malfunctioning (e.g. the battery needs recharging or the LED is out), the smartphone may be notified. Likewise, updates to the e-Cig (e.g. controller or firmware updates) may be transmitted from the smartphone. The smartphone may further be configured to both locate and identify a particular e-Cig. It may also recognize whether a particular e-Liquid is a match for the cartomizer and vice-versa.
Although not shown in
As described, the enhanced communications of the e-Cig may include real-time social interaction. In one embodiment, the communication by the e-Cig may be through emails, text messages, photos, videos, or social network websites (e.g. FACEBOOK, TWITTER, LINKEDIN, etc.). The e-Cig may communicate information to a user's social circle. The communications may be controlled by the user. Commercial utilization of the communications may include on-line social marketing, sales, lead-generation, location-based offerings, market research and other applications. For example, communication offering a particular E-liquid may be made to the user such as when the current e-Liquid is running low, or when a new product is being offered that may be appealing to the user. The user may allow for a social network to be notified of which e-liquid is being used and how often. This communication may be used along with global positioning system (“GPS”) technologies to encourage social smoking. For example, two users (with GPS activated) may be in the same area and can be notified of their proximity. There may also be a notification of smoking preferences (e.g. e-Liquid type/taste, smoking times/lengths) to help join the users. In addition, to social connections, the enhanced communications may also be through businesses that may be notified of local smokers and can then provide discounts/sales for those smokers to shop and/or smoke at that business. For example, a user may be notified when they are close to such a business and offered a discount or coupon. In other words, the e-Cig provides functionality for connecting to individuals (social networking) or businesses. Enabling technologies, such as wire-line and wireless (e.g. Wi-Fi or cellular) networking, photography (such as smartphone-embedded cameras with automated on-line capabilities), location-aware technologies (such as GPS) and many more may improve the online social interaction.
The social interaction provided through this enhanced communication may encourage social smoking, commercialize co-offerings to smokers, support smoking cessation, encourage grouping via brand, taste, habits and other possibly identity-related criteria, etc. For example, when an e-Cig smoker is smoking, her smartphone may be aware of the fact that she is smoking, and is posting this fact (with her prior approval) on a website enabling special offers, combined with her location (with her prior approval) and her speed (indicating she is walking). The smartphone application/app can present a special, targeted offer to the smoker, suggesting a discounted deal for coffee in a nearby coffee place, to go well with her e-Cig. A unique smoking-related offering can be made given to the fact that many smokers like to smoke while consuming coffee, as one example.
The application or app described herein may further be used for taste testing and combination exchanges. The e-Cig combined with the smartphone may test the response to tastes (either new or incumbent) or to taste combinations. The smartphone may transmit the data to the e-Cig server, where the aggregated data could be used for development, marketing, and product offerings. Accordingly, users would be providing feedback for future development.
When the user listens to music on the smartphone and smokes, the sound may be subtly changed based on the e-Cig usage. For example, during the puff the music may be subtly modified to compensate for the changes in the respiratory system in the head during the inhale. This change in sound may enhance the experience of smoking.
With smartphones and other devises that have input technologies that involve for example gestures, the LED at the e-Cig tip may be modulated to transfer data or commands to the device. The lighted tip may be used as a remote pen, under the proper command from the e-Cig for input or signaling purposes. Likewise, the e-Cig may be used as standard for length for smartphone photography.
The identifier code 1002 may enable identification of the cartomizer(s) type and taste(s) (e.g. via a QR-code or bar-code on the cartomizer). The identifier code may be read and identified by a smartphone camera and specific application software. In alternative embodiments, the identifier code may communicate with a RFID tag in the cartomizer and/or an NFC chip in the e-Cig and/or in the smartphone, combined with the proper software/application. External software programs, such as smartphone applications, web-sites, data-bases etc. (for example the e-Cig database) may be aware of a specific user's usage patterns and tastes. The ability to be specific about the special flavor of the e-Cig enables personalized offers to be most effective. To enable higher security the controller may not enable vaping until the identifier code is identified together with other communication and/or a password on the smartphone.
In one embodiment, the e-Cig 1000 may include a removable portion 1001 and an immoveable or permanent portion 1003. The immoveable or permanent (non-removable) portion 1003 may include a battery and controller, while the removable portion 1001 includes an e-Liquid and atomizer (e.g. cartomizer) that may be replaced. Different portions of the e-Cig 1000 may be part of either of the portions 1001, 1003. The LED may be installed in the cartomizer to enable a higher level of security.
The controller 1102 may include charging circuitry 1304 and a pulse width modulation (“PWM”) unit 1306 for controlling the heating element and supplying a certain amount of controlled power. Alternatively, the PWM 1306 may enable battery 1308 activation. The charging of the battery 1308 may occur through an external charger or the smartphone. There may also be input/output (“I/O”) 1310 circuitry for connections to/from the controller 1102. The power supply may be constant over time when a pressure difference switch is activated (e.g. when inhalation creates a pressure difference that passes a certain level). This may be accomplished with the PWM 1306 power supply.
In another embodiment, the controller may disable or reduce the power supplied to the heating element if an internal counter indicates that the user's smoke rate is higher than is allowed or when an allowed number of puffs has been reached, or when the number of puffs that indicates a spent cartomizer is reached. The user may utilize the app on the smartphone to set limits for frequency and duration that are communicated and enforced automatically by the e-Cig. It may include the ability to read from internal memory parameters and to change power supply mode or timing according to these parameters to the heating element. The controller CPU may be able to write to internal memory data about power supported by PWM power supply to heating elements. The controller may be able to analyze this data and to modify power supply to enable controlling for example voltage, amperage or any dependence between both.
The controller may further be configured to provide the ability to monitor and analyze any power consumption of any subunit, for example the power consumption of heating element. It may include the ability not to activate any unit at certain circumstances. For example, the heating element may warm the wick while disabling vaping.
The controller may be configured to idle with low power consumption when no inhalation or communication occurs. In one embodiment, the idle state may enable supply power to internal clock and an option to keep two-way communication in receive mode. The e-Cig may be in an idle state unless a particular action, such as vaping, cartridge replacement, movement, or a wake up call from the smartphone occurs. The smartphone app may be on receive mode unless it receives a wake up communication from the e-Cig. To enable idle state when the internal battery is finished the controller may have internal rechargeable battery with proper circuitry to load and unload it from a main power supply.
The memory may store usage parameters (e.g. smoking length, frequency, puff length, droplet size, airflow, temperature, etc.) that may be monitored and controlled. The memory may be large enough to hold all information about a single puff, including time, duration and power consumption data. In addition it may include data about the temperature, power consumption and any other parameter from any sub-unit of the e-Cig. The user may use an app on the smartphone to set certain limits for certain parameters (i.e. input values). The input value 1402 is provided and the algorithm may check whether value is within range 1406 and look for other restrictions such as integer conformity. The memory stores the maximum/minimum values 1404. If the value is not restricted in 1408, a new input value is received 1410. If the input value is not within range 1406 or is restricted 1408, the parameter will not be changed and an error message is transmitted 1412.
An example of this is the selection of an atomizer, when there are two atomizers (e.g.
Healthcare professionals 1814 may also be connected with the network 1801. For medical purposes, information may be collected through the network 1801 (e.g. by the e-Cig server) for one or more users. The users may be grouped (e.g. by amount, frequency, or duration of usage). Puff data (e.g. inhalation duration, frequency) may be collected and used to monitor for changes. For example, a change in puff data may be used for notifying a user of a potential illness (e.g. having a cold, pulmonary diseases status, distress). The smartphone linkage may be then be used for identifying and retrieving appropriate medical information (websites) for the particular potential problem. In another embodiment, the e-Cig may be used for the transfer/inhalation of a medical material (medicine) with supervision or monitoring by the smartphone. For example, an e-Cig may be used as a replacement for current inhalators for various medical applications. Future smartphones may include scent sensing devices (e.g. nanotechnology-based). The scent detection may be used with the e-Cig for various uses, including monitoring operation (based on scent) of the e-Cig. Materials may be introduced that create some designed response in case of illness.
There may be access to the network 1801 from other custom or third-party services/applications 1810. There may be an app for the smartphone 1804 provided by the e-Cig server provider or e-Cig manufacturer, but other (third-party) applications may also receive (potentially limited) access to the network 1801.
The application developer server 1902 may provide data, software, settings, functions, and information (which may be referred to as a software development kit (“SDK”)) to an application developer to allow for development of an application that is associated with the e-Cig 701. The SDK may be an application development platform that is open to the developer community. In particular, this SDK is related to e-Cigs and e-Cig applications. The developer's kit may further include all data, software, and functions that a developer might need to develop an e-Cig related application, and the toolkit may be referred to as a software package or application programming interface (“API”). The developer may be a software coder that writes software that runs on the smartphone 702 or user device 703 for performing any one of a number of functions or services related to the e-Cig 701 or the e-Cig server 706. In particular, the applications that are developed may include any of the capabilities and communications described with respect to
The apps that are developed may be specific to the software or operating system of a particular device. For example, Apple operates the iTunes app store, and there are additional application or app stores for Android devices, Windows mobile devices, Blackberry devices, Facebook devices, and Java devices. There may be separate developer's kit for the different devices (hardware) or interfaces (software), or the developer's kit may be universal for more than one device. The apps may be installed through the app store for a particular device. In one embodiment, the third party developer may pay a fee (e.g. per download, percent of the app cost, or based on the data/functionality required) or may display an advertisement for the e-Cig operator 710. Alternatively, the app may be free and the third party developer pays nothing to the e-Cig operator 710. The app store may require separate fees, such as a portion of revenue received based on displayed advertisements.
The e-Cig's 701 internal management, communication infrastructure, and host infrastructure is opened for developers through the SDK. As described herein, any listing of potential applications and the information/data/functions from the e-Cig that may be provided through the SDK are merely exemplary and additional applications and additional e-Cig features may be utilized. For example, a device management application may utilize the following capabilities of the e-Cig: 1) host communications; 2) cartomizer percent usage; 3) statistical data and usage patterns (e.g. number of puffs, average puff length, etc.); and 4) battery state. The data provided to or analyzed by the apps may further include automatic smoking intricate logs, including puffs, time, location, with whom, for fun, smoking cessation help etc. These logs may be used to detect patterns in the smoking habits (e.g. different puffs in the morning, in meetings, etc.), and modifying the e-Cig characteristics accordingly.
As described above, the communications of the e-Cig may be used for any number of social applications. In addition, the application development may also include social aspects. There may be developer forums or networks that are used for connections between developers. As described, the SDK may be provided through the Internet, such as at http://developergreensmoke.com in one embodiment.
Exemplary applications may relate to smoking experience, smoking device management, smoking usage pattern feedback (e.g. mood feedback, smoking enhancement, health monitoring, etc.), social, fun applications (gaming, courting etc.), and/or visual communication (e.g. e-Cig LED). Additional exemplary applications may include cessation services. Cessation may be a value-added service to NRT (e.g., pharmaceutical company publishes the app). Additional social examples include dating. For example, when two people with matching profiles are in the same location their LEDs may blink in a certain fashion. There may be an e-Cig Messenger for creating a “C2C” (cigarette-to-cigarette) language. The C2C messaging language may be referred to as “Smoke Signals” and provides communications between e-Cigs. An app may detect that a cartomizer is about to run out and may find closest retail outlet, or a nearby “friend” may get an alert and offers to provide a new cartridge. Game apps may include trivia or contests (e.g. who smokes the longest puff). In one embodiment, the usage of the e-Cig may be an input for the game (e.g. one long puff versus two short puffs). There may be apps specific to a smoker's interests, including sports teams, music, movies, or television.
A “computer-readable medium,” “machine readable medium,” “propagated-signal” medium, and/or “signal-bearing medium” may comprise any device that includes, stores, communicates, propagates, or transports software for use by or in connection with an instruction executable system, apparatus, or device. The machine-readable medium may selectively be, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, device, or propagation medium. A non-exhaustive list of examples of a machine-readable medium would include: an electrical connection “electronic” having one or more wires, a portable magnetic or optical disk, a volatile memory such as a Random Access Memory “RAM”, a Read-Only Memory “ROM”, an Erasable Programmable Read-Only Memory (EPROM or Flash memory), or an optical fiber. A machine-readable medium may also include a tangible medium upon which software is printed, as the software may be electronically stored as an image or in another format (e.g., through an optical scan), then compiled, and/or interpreted or otherwise processed. The processed medium may then be stored in a computer and/or machine memory.
In an alternative embodiment, dedicated hardware implementations, such as application specific integrated circuits, programmable logic arrays and other hardware devices, can be constructed to implement one or more of the methods described herein. Applications that may include the apparatus and systems of various embodiments can broadly include a variety of electronic and computer systems. One or more embodiments described herein may implement functions using two or more specific interconnected hardware modules or devices with related control and data signals that can be communicated between and through the modules, or as portions of an application-specific integrated circuit. Accordingly, the present system encompasses software, firmware, and hardware implementations.
The illustrations of the embodiments described herein are intended to provide a general understanding of the structure of the various embodiments. The illustrations are not intended to serve as a complete description of all of the elements and features of apparatus and systems that utilize the structures or methods described herein. Many other embodiments may be apparent to those of skill in the art upon reviewing the disclosure. Other embodiments may be utilized and derived from the disclosure, such that structural and logical substitutions and changes may be made without departing from the scope of the disclosure. Additionally, the illustrations are merely representational and may not be drawn to scale. Certain proportions within the illustrations may be exaggerated, while other proportions may be minimized. Accordingly, the disclosure and the figures are to be regarded as illustrative rather than restrictive.
This application claims priority as a Continuation-in-part to U.S. application Ser. No. 13/870,654, filed on Apr. 25, 2013, entitled Electronic Cigarette with Communication Enhancements,” which claimed priority to Provisional Application No. 61/637,980, filed on Apr. 25, 2012, entitled “Electronic Cigarette with Communication Enhancements,” the entire disclosures of both are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61637980 | Apr 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13870654 | Apr 2013 | US |
Child | 13898094 | US |