This application is a national stage of, and claims priority to, Patent Cooperation Treaty Application No. PCT/EP2017/081123, filed on Dec. 1, 2017, which application claims priority to German Application No. DE 10 2016 014 919.1, filed on Dec. 14, 2016, which applications are hereby incorporated herein by reference in their entireties.
The disclosure relates to an application device for the application in series of a coating composition to surfaces of workpieces, in particular of motor vehicle bodies and/or add-on parts thereof, having a nozzle applicator, referred to as a nozzle print head hereinbelow, which contains at least one nozzle or preferably a plurality of nozzles arranged side by side, which apply the coating composition to the surface to be coated as continuous jets or individual drops. “Application device” means a device which, in addition to the nozzle print head, which in particular is moved by means of a coating robot, can include further units such as the supply unit containing the coating composition and optionally mixers, colour changers and/or a flushing device. The disclosure relates further to a corresponding application and/or cleaning method.
For the general prior art, reference may first be made, for example, to DE 10 2010 019 612 A1, GB 2 367 771 A, DE 10 2013 002 412 A1, DE 198 52 079 A1, WO 2011/044491 A1, DE 200 17 629 U1, DE 694 29 354 T2 and DE 601 25 369 T2.
So-called nozzle print heads are known inter alia from WO 2010/046064 A1 (for continuous jets of paint) and WO 2011/138048 A1 (for generating drops of paint by applying vibration to the coating composition) and allow motor vehicle bodies to be coated, specifically painted, virtually without overspray, because the jets or drops can be directed with point accuracy at the desired surface regions. Coating without overspray has the considerable advantages described, for example, in the mentioned WO 2010/046064 A1 such as minimal losses of coating material and simplification of the coating booth by dispensing with the measures hitherto required for removing the overspray from a painting booth and/or from a waste air stream.
Nevertheless, such print heads can operate with a surface coating capacity of at least 1 m2/min, 2 m2/min, 3 m2/min, 4 m2/min or even 5 m2/min. The application efficiency of the print head can be more than 80%, 90% or even 99%, and in the coating booth the rate of air descent during operation can be less than 0.3 m/s, 0.2 m/s, 0.1 m/s, 0.07 m/s or even 0.05 m/s.
An important component of the nozzle print head can be a nozzle plate having openings formed in a plate plane which serve as nozzles.
All the above-mentioned features and advantages of the mentioned known nozzle print heads also apply to the disclosure described herein.
Furthermore, there is also known, for example, from U.S. Pat. No. 9,108,424 B2 a nozzle print head having a row of ink-jet nozzles for printing a surface with predetermined patterns, which print head works according to the so-called drop-on-demand principle. This principle is based on the use of electric valves, wherein a magnetic valve needle is guided as the plunger in a coil and is pulled up into the coil by supplying a current. A valve opening is thereby freed so that the fluid in question, in this case the ink, is able to emerge as drops of different sizes depending on the opening time. This principle can also be used in the disclosure described herein but, in contrast to the prior art, not for ink.
The above-mentioned application devices and other nozzle print heads that are already known all have the disadvantage that they are unable to satisfactorily apply multicomponent coating compositions such as, for example, the 2K or 3K paints, adhesives, sealants, adhesion promoters, primers, etc. which are conventional per se in the painting of motor vehicle bodies.
The application device according to the disclosure first has, in accordance with the prior art, a nozzle applicator or nozzle print head for applying the coating composition to the component to be coated. The term “nozzle print head” used within the context of the disclosure is to be interpreted generally and serves merely to differentiate this nozzle applicator from all atomizers (e.g. rotary atomisers, air atomisers, airless atomisers, etc.) that deliver a spray mist of the coating composition to be applied. In contrast therewith, the nozzle print head generates radially narrowly limited coating agent jets or drops, whereby the jet is generated continuously, that is to say cohesively in its longitudinal direction, while the drops each travel in the same direction and are to be separate from one another in the direction of travel. In principle, it is conceivable that the nozzle print head contains only a single nozzle to which the already mixed coating composition is fed, or only two nozzles, of which one nozzle delivers a first component and the other nozzle delivers a second component. However, preference is given to print heads having a plurality of, for example, one or more parallel rows of nozzles.
The disclosure can moreover be implemented with all types of print heads or other nozzle applicators which differ from conventional atomisers in the manner mentioned above.
In addition, there are provided according to the disclosure at least one or two separate supply lines for components of the coating composition which are to be mixed together, which supply lines in typical examples of the disclosure are provided for jointly supplying all the nozzles of the print head with the same coating composition or components thereof. At least two separate supply lines lead to or into the nozzle print head if the components are to be mixed therein or not until they have left the nozzle print head. If, on the other hand, mixing is to take place in a mixer arranged outside the nozzle print head, one line leading from the outlet thereof into the nozzle print head is sufficient. In typical exemplary examples, the components are at least one material component (e.g. batch paint) and at least one curing agent component which reacts in a manner known per se with the material component for the curing thereof. In an exemplary examples of the disclosure, the components remain separate at least until they enter the nozzle print head.
One advantage of the disclosure is that the fully automatic surface coating, particularly painting, in series of complete motor vehicle bodies using any desired multicomponent coating agents (including special-effect paints) is for the first time possible virtually without overspray.
As has already been mentioned, the nozzles of the print head are to direct the jets or drops of the coating composition or its components targetedly at individual points of the surface to be coated in order to avoid overspray. The impact points thereby applied can adjoin one another or overlap with one another, as will be described in greater detail.
In accordance with the prior art, it is also advantageous in the disclosure to arrange the nozzle print head on a multi-axis coating robot which moves the nozzle print head over the surface to be coated. For example, reference may be made in this connection to the coating robots having 6 or more axes, with or without a linear movement axis, which are generally known per se from the prior art.
However, the disclosure is not limited to conventional robots having 6 or more rotary axes. Instead, the nozzle applicator could be arranged, for example, on a linear unit which substantially has only linear axes for moving the nozzle print head, advantageously under program control, over the surface to be coated. Such a linear unit could be placed, for example, temporarily on the workpiece to be coated, for example on a body roof, or instead also on the conveyor thereof (e.g. the conventional skids) and would then have the advantage that accuracy problems of conventional robot and conveyor systems as regards the positioning of the nozzle print head relative to the workpiece can be avoided.
As has likewise already been discussed, the disclosure is suitable for any desired multicomponent coating compositions such as, for example, 2K or 3K paint (including base paint and clear paint), primers, adhesives or sealants or preserving agents, etc., which each have at least one batch component and a curing agent component which reacts therewith.
Mixing of the components can be carried out in different ways and at different locations of the application system.
For example, the nozzle print head can direct the at least two components separately from one another onto the surface to be coated in such a manner that they mix together on the surface. Mixing of the components thus takes place here as a result of the impact of the drops or jets. It is possible that the print head ejects the components to be mixed simultaneously. In other examples of the disclosure, however, the print head ejects the components to be mixed in succession in time, that is to say first one and then the other component (for example first the batch paint and then the curing agent, or vice versa). In both cases, the jets or drops strike at substantially the same point.
According to another possibility of the disclosure, mixing can also take place in mid-air, that is to say the nozzles of the print head are so arranged relative to one another that the components meet on the path to the surface to be coated. An appropriate distance between the nozzle print head and the surface to be coated must here be maintained, for example, by means of the coating robot. Furthermore, it is possible that the drops of the components of the coating composition are ejected at different speeds and at different times so that the drop that is ejected later meets the drop ejected first in mid-air and mixes therewith.
As has already been mentioned, drops of different sizes can be generated using, for example, electric-valve-controlled nozzles. According to the disclosure it is possible by means of different drop sizes to adjust inter alia the mixing ratio if the components are not mixed until after they have left the nozzles.
According to a further possibility of the disclosure, however, mixing can also take place at or in the nozzle print head, for example by means of a mixer which, in a manner known per se, can be in the form of a static or dynamic mixer. The mixer can be arranged in or at the nozzle print head, for example integrated in the print head in a respective inflow passage of the nozzles, where it is connected to the at least two separate supply lines of the application device.
According to another possibility for mixing the components in the print head, the individual nozzles of the nozzle print head can also each be configured for mixing the components. According to a corresponding exemplary example of the disclosure, the respective nozzles can contain at least two passages leading to a nozzle outlet, which passages can extend concentrically to one another in this example, whereby the nozzle outlet can be formed by at least one annular gap and a central opening. In this exemplary example, each nozzle of the nozzle print head is thus actually a unit having at least two nozzle elements, namely the outlet openings of this nozzle unit.
In particular in each of the mentioned possibilities for mixing without a mixer, it can be advantageous to impart a swirling motion to at least one of the components, but preferably to both or all the components, whereby they mix better.
If the components are not mixed via a mixer, it can be necessary in the case of the application of cohesive jets to ensure the mixing ratio of the two components by regulating the volume flow rate of the two components. In the case of the application of drops, the mixing ratio can be controlled via the volume of the drops, for example by means of different opening times of the nozzles.
If a mixer is to be provided, it could also be integrated according to a further possibility of the disclosure into the supply lines outside the print head, preferably as close as possible to the nozzle print head or in the vicinity of a colour changer. The mixer has corresponding inlets, at which it is connected to the at least two separate supply lines, while its outlet is connected to the nozzle(s) via a common line.
Controlled colour change valve arrangements, conventionally referred to as colour changers, for selecting a desired coloured paint from a plurality of supplied different colours are generally known per se. In the case of the disclosure too, at least one colour changer can be provided which is connected to at least one of the supply lines of the application device or of the nozzle print head, for example for a batch paint component. The colour changer can advantageously be movably arranged, in particular on the coating robot which moves the nozzle print head, for example on one of its arms or also on a linear movement axis of the robot. The closer the colour changer to the nozzle print head, the smaller the unavoidable paint and flushing medium losses in the event of a colour change. However, the colour changer can instead also be arranged stationarily, for example on an inside or outside wall of the coating booth of the coating system in question here.
The nozzle print head can be formed by a nozzle plate which, as nozzles, contains openings arranged side by side in a plate plane. The nozzles can preferably be arranged in one or more parallel rows, for example also as columns and rows of a matrix. In corresponding examples of the disclosure, the longitudinal axes of the nozzles can extend perpendicularly to the plate plane. In other examples, on the other hand, the longitudinal axes of adjacent nozzles are inclined relative to the plate plane by different or equal angles, for example opposite equal angles.
For automatically controlling their opening times, the nozzles can be connected, for example within the scope of the program control conventional for coating systems, with electric or pneumatically controlled valves arranged in or on the nozzle print head, optionally, for example, on the nozzle plate.
The control valves can have, for example, a plunger which is displaceable electrically by a coil or pneumatically and which closes or opens the nozzle depending on its position.
According to an aspect of the application device according to the disclosure which is important especially for multicomponent coating compositions is the cleaning thereof before and after coating operations. For example, the nozzle print head can be flushed after a specified time or operating period, for example hourly or after several hours or at specific times of day (end of a shift or production, weekend) etc. or when a specific number of coated workpieces has been reached or when a specific amount of ejected paint has been reached. It can likewise be expedient to flush the nozzle print head after specific events of the coating operation, for example after every stoppage of a belt or other conveyor device conveying the vehicle bodies or other workpieces to be coated through a coating booth in the conventional manner, or after a predetermined number of conveyor stoppages. Flushing can also take place under signal control after a predetermined period of time has elapsed, for example as a result of an alarm or fault warning signal after the elapse of a period of time after which the reaction of two components is so far advanced that the application system must be flushed in order to avoid damage. In the case of the coating of bodies, flushing can also take place during the so-called body gaps, that is to say when, in the breaks after the coating of one body, the robot is waiting for the next body conveyed through the coating booth. The flushing operations can be controlled automatically in dependence on time monitoring devices.
Different flushing media can be used for the cleaning, depending on the application. For example, in the case of a change of the coating operation between solvent-based (2K) paint and water-borne paint, different flushing media may be advantageous in each case, whereby a separating agent such as, for example, an alcohol can additionally also be used between the two flushing media. Furthermore, flushing media with different cleaning actions can be used (cascading), for example for reducing VOC emissions (that is to say volatile organic compounds) when the content of organic solvent increases in an aqueous flushing medium. Universal flushing media for water-borne paint and solvent-borne paint are, however, also known. VOC-free flushing medium is preferably used. For this purpose, different flushing programs, which differ in terms of their program sequence and/or their duration, can be used for different paints.
It can further be advantageous, in particular before a planned break in operation, to fill or wet the inside or outside surfaces of the nozzle print head that come into contact with one or more components of the coating composition with a fluid which at least substantially prevents deposits of the coating composition and/or the reaction of two components of the coating composition (within the scope of the disclosure, reaction generally means a chemical and/or curing reaction).
For flushing, flushing medium and pulsed air can be supplied alternately in a manner known per se. In addition or instead, flushing can also be carried out using an aerosol. If it is found to be necessary after flushing, the flushed paths can subsequently be emptied or dried with compressed air.
After flushing, it is advantageous to fill the paths in question with the coating composition or the components thereof again before the start of coating, which in coating systems is conventionally referred to as pressing on. Optionally, it can be expedient to eject at least one drop or a defined amount of the new coating agent or its components through the nozzle.
The flushing device provided for the described flushing operations can be formed by at least one flushing medium line which leads parallel to the component supply lines into the application device and can optionally be connected or connectable via a mixer or directly to all the nozzles. If a colour changer is present, a flushing medium line can be connected, for example, to an inlet of the colour changer, so that the flushing medium can be fed to the nozzle print head through the supply line, for example, for the batch paint component. A flushing medium line which leads separately into the nozzle print head is also conceivable.
In advantageous examples of the disclosure, an external flushing device can further be provided in the coating system, for example a separate flushing apparatus arranged in the vicinity of the coating robot and reachable thereby. If a storage device for storing the nozzle print head during breaks in coating is provided in the coating system, the flushing apparatus can also be integrated into the storage device.
In any case, the flushing device should preferably be in such a form that the nozzle passages and also the outside surface of the nozzle print head, that is to say optionally the nozzle plate, can be flushed. Furthermore, back flushing of the nozzle plate or nozzle passages can be advantageous, wherein the flushing medium is pressed through the nozzle passage from the outside inwards, for example in order to clean a blocked nozzle. It is thus not necessary to change the nozzle print head or the nozzle plate, as would otherwise be required, and material and working time can thus be saved. For catching all the fluids that are ejected (from the nozzles) during flushing, that is to say coating composition and flushing medium and/or aerosols, the flushing apparatus can be provided with a corresponding collecting device, from which the fluids can then be separated and disposed of.
In general, the losses of coating composition and flushing medium should be as small as possible, and VOC emissions should be avoided. In the application methods described herein, paint or coating composition losses caused by a flushing operation should be limited to in any case less than 10 l, but preferably to less than 5 l, 200 ml, 20 ml, 10 ml, 5 ml or even 2 ml, and the flushing agent requirement should be limited to less than 10 l, but preferably less than 5 l, 2 l, 200 ml, 100 ml, 50 ml, 20 ml or even 10 ml.
In order to reduce the paint loss and the consumption of flushing medium during a colour change, it can also be sufficient in the processing of multicomponent paints to flush only the regions that come into contact with the colour-giving component, for example of a 2K base paint or 2K clear paint, and with the mixture of the two components.
It should be mentioned in this connection that, especially if the components are not mixed until they leave the nozzles or after they have left the nozzles, and already mixed coating material thus does not flow in the nozzle print head, losses of flushing medium and time which are otherwise required can be avoided, especially because special mixing elements then do not have to be flushed.
If mixing does not take place until the components leave the nozzle or after they have left the nozzle, this additionally has the advantage that desired mixing ratios can be established in a particularly simple manner and without problems.
Finally, it should also be mentioned that it has been discovered that the nozzle print heads known from the prior art, which are suitable only for one-component paint, can be adapted to the requirements for two-component coating compositions. In particular, the size, that is to say hydraulic cross-sections, of the nozzles and their passages are to be dimensioned according to the particular mixing ratio. Moreover, solvent-resistant materials should be used where possible, such as, for example, seals made of FFKM (that is to say perfluorinated rubber).
In the painting system according to the disclosure shown in
In contrast to conventional painting systems with conventional rotary atomisers or other atomisers, the painting robots 3, 4 guide as the application device nozzle print heads 8, 9 for 2K or multicomponent paint. These nozzle print heads have a substantially greater application efficiency than atomisers of more than 95% to 99% and thus generate virtually no overspray. On the one hand, this has the advantage that it is possible to omit the washing out beneath the booth which is required in conventional painting systems with atomisers. Instead, in the painting system according to the disclosure there can be an extraction of air 10 beneath the painting booth 2 which, if required, draws the booth air downwards out of the booth through a filter cover 11 without the need for any other outlay for collecting and separating off overspray. In many cases, the extraction of air is also possible without a filter. This can also take place via passages arranged in the region of the bottom.
In the example shown, according to the representation, ejection directions (shown by broken lines) of the two nozzles D1 and D2 are inclined relative to the painting distance L, which is perpendicular to the surface F, and towards the respective other nozzle by, for example, opposite equal angles of travel α and β. The size of the chosen angle of travel, as well as being dependent on the painting distance L, is obviously also dependent on the distance, measured parallel to the surface F, between the nozzles D1 and D2 and can be, for example, between approximately 0 and 90°. The speeds of travel and/or the angles of travel of the two components can also be different from one another. If the nozzles D1 and D2 are opened at different times, a translation movement of the nozzles relative to the surface F during the application of the two components can also be taken into consideration.
In principle, such an application with or without an overlap is possible when the components are already mixed before or in the nozzle print head or after they have left the nozzle but before they reach the surface to be coated. An overlapping application is advantageous even if continuous jets are applied rather than individual drops.
In the example in question here, mixing of the components takes place at the end face 43 of the twin nozzle or nozzle unit 40 shown, that is to say at the outlet thereof, where each of the drops formed there according to the representation mix with one another. It can be advantageous if the formation of the respective drops does not begin at the same time but the two nozzle elements, that is to say the inner tube 42 and the outlet 46 in the form of the annular-gap nozzle, are controlled in terms of time by valves (not shown) so that the drop is formed at the inner tubular nozzle first and only then is the drop formed at the annular-gap nozzle. The reverse sequence can also be advantageous. However, simultaneous opening of the two nozzle elements is also conceivable instead.
As has been mentioned at the beginning, the nozzle print head according to the disclosure preferably holds a plurality of such nozzle units which in particular can be arranged in one or more rows.
While the disclosure in
As has already been mentioned, it can be advantageous to provide the components to be mixed with a swirling motion. This can be achieved, for example, by means of a spiral groove on the inside of a nozzle passage (similar in principle to a rifled gun barrel).
Number | Date | Country | Kind |
---|---|---|---|
10 2016 014 919.1 | Dec 2016 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/081123 | 12/1/2017 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/108573 | 6/21/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3421694 | Muller | Jan 1969 | A |
3717306 | Hushon | Feb 1973 | A |
3981320 | Wiggins | Sep 1976 | A |
4141231 | Kudlich | Feb 1979 | A |
4375865 | Springer | Mar 1983 | A |
4383264 | Lewis | May 1983 | A |
4423999 | Choly | Jan 1984 | A |
4430010 | Zrenner et al. | Feb 1984 | A |
4435719 | Snaper | Mar 1984 | A |
4478241 | Cardenas-Franco | Oct 1984 | A |
4555719 | Arway et al. | Nov 1985 | A |
4593360 | Cocks | Jun 1986 | A |
4668948 | Merkel | May 1987 | A |
4714044 | Kikuchi | Dec 1987 | A |
4734711 | Piatt et al. | Mar 1988 | A |
4826135 | Mielke | May 1989 | A |
4894252 | Bongen et al. | Jan 1990 | A |
4941778 | Lehmann | Jul 1990 | A |
4974780 | Nakamura et al. | Dec 1990 | A |
4985715 | Cypher et al. | Jan 1991 | A |
5050533 | Zaber | Sep 1991 | A |
5072881 | Taube, III | Dec 1991 | A |
5429682 | Harlow, Jr. et al. | Jul 1995 | A |
5435884 | Simmons et al. | Jul 1995 | A |
5538221 | Joswig | Jul 1996 | A |
5556466 | Martin et al. | Sep 1996 | A |
5602575 | Pauly | Feb 1997 | A |
5636795 | Sedgwick et al. | Jun 1997 | A |
5647542 | Diana | Jul 1997 | A |
5659347 | Taylor | Aug 1997 | A |
5681619 | Ogasawara | Oct 1997 | A |
5740967 | Simmons et al. | Apr 1998 | A |
5843515 | Crum et al. | Dec 1998 | A |
5951882 | Simmons et al. | Sep 1999 | A |
5964407 | Sandkleiva | Oct 1999 | A |
5976343 | Schlaak | Nov 1999 | A |
6179217 | Osamu et al. | Jan 2001 | B1 |
6325302 | Guzowski | Dec 2001 | B1 |
6540835 | Kim et al. | Apr 2003 | B2 |
6607145 | Boriani et al. | Aug 2003 | B1 |
6641667 | Ochiai et al. | Nov 2003 | B2 |
6712285 | Provenaz et al. | Mar 2004 | B2 |
6777032 | Ogasahara et al. | Aug 2004 | B2 |
6811807 | Zimmermann et al. | Nov 2004 | B1 |
6849684 | Poppe et al. | Feb 2005 | B2 |
7160105 | Edwards | Jan 2007 | B2 |
7178742 | Nellentine et al. | Feb 2007 | B2 |
7182815 | Katagami et al. | Feb 2007 | B2 |
7244310 | Edwards | Jul 2007 | B2 |
7270712 | Edwards | Sep 2007 | B2 |
7357959 | Bauer | Apr 2008 | B2 |
7387071 | Heinke et al. | Jun 2008 | B2 |
7449070 | Fellingham | Nov 2008 | B2 |
7604333 | Horsnell | Oct 2009 | B2 |
7757632 | Edwards | Jul 2010 | B2 |
7837071 | Achrainer | Nov 2010 | B2 |
7901741 | Katagami et al. | Mar 2011 | B2 |
8028651 | Rademacher et al. | Oct 2011 | B2 |
8118385 | Van De Wynckel et al. | Feb 2012 | B2 |
8449087 | Kataoka et al. | May 2013 | B2 |
8545943 | Frankenberger et al. | Oct 2013 | B2 |
8652581 | Merchant | Feb 2014 | B2 |
8678535 | Beier et al. | Mar 2014 | B2 |
8875655 | Pettersson et al. | Nov 2014 | B2 |
8882242 | Beier et al. | Nov 2014 | B2 |
9010899 | Harjee et al. | Apr 2015 | B2 |
9108424 | Wallsten et al. | Aug 2015 | B2 |
9140247 | Herre et al. | Sep 2015 | B2 |
9156054 | Ikushima | Oct 2015 | B2 |
9266353 | Beier et al. | Feb 2016 | B2 |
9393787 | Ikushima | Jul 2016 | B2 |
9464573 | Remy et al. | Oct 2016 | B2 |
9592524 | Fritz et al. | Mar 2017 | B2 |
9701143 | Ikushima | Jul 2017 | B2 |
9707585 | Reimert et al. | Jul 2017 | B2 |
9844792 | Pettersson et al. | Dec 2017 | B2 |
9901945 | Fehr et al. | Feb 2018 | B2 |
9914150 | Pettersson et al. | Mar 2018 | B2 |
10016977 | Stefani et al. | Jul 2018 | B2 |
10105946 | Nakamura et al. | Oct 2018 | B2 |
10150304 | Herre et al. | Dec 2018 | B2 |
10252552 | Pitz et al. | Apr 2019 | B2 |
10272677 | Stefani et al. | Apr 2019 | B2 |
10532569 | Wallsten et al. | Jan 2020 | B2 |
20010017085 | Kubo et al. | Aug 2001 | A1 |
20010019340 | Kubo et al. | Sep 2001 | A1 |
20020024544 | Codos | Feb 2002 | A1 |
20020043280 | Ochiai et al. | Apr 2002 | A1 |
20020043567 | Provenaz et al. | Apr 2002 | A1 |
20020105688 | Katagami et al. | Aug 2002 | A1 |
20020109741 | Okabe et al. | Aug 2002 | A1 |
20020128371 | Poppe et al. | Sep 2002 | A1 |
20030020783 | Sanada | Jan 2003 | A1 |
20030041884 | Bahr | Mar 2003 | A1 |
20030049383 | Ogasahara et al. | Mar 2003 | A1 |
20040028830 | Bauer | Feb 2004 | A1 |
20040089234 | Hagglund et al. | May 2004 | A1 |
20040107900 | Clifford et al. | Jun 2004 | A1 |
20040123159 | Kerstens | Jun 2004 | A1 |
20040173144 | Edwards | Sep 2004 | A1 |
20040221804 | Zimmermann et al. | Nov 2004 | A1 |
20040231594 | Edwards | Nov 2004 | A1 |
20040238522 | Edwards | Dec 2004 | A1 |
20040256501 | Mellentine et al. | Dec 2004 | A1 |
20040261700 | Edwards | Dec 2004 | A1 |
20050000422 | Edwards | Jan 2005 | A1 |
20050015050 | Mowery et al. | Jan 2005 | A1 |
20050016451 | Edwards | Jan 2005 | A1 |
20050023367 | Reighard et al. | Feb 2005 | A1 |
20050156963 | Song et al. | Jul 2005 | A1 |
20050243112 | Kobayashi et al. | Nov 2005 | A1 |
20060061613 | Fienup et al. | Mar 2006 | A1 |
20060068109 | Frankenberger et al. | Mar 2006 | A1 |
20060146379 | Katagami et al. | Jul 2006 | A1 |
20060238587 | Horsnell | Oct 2006 | A1 |
20060251796 | Fellingham | Nov 2006 | A1 |
20070062383 | Gazeau | Mar 2007 | A1 |
20070292626 | Larsson et al. | Dec 2007 | A1 |
20080271674 | Rademarcher | Nov 2008 | A1 |
20080309698 | Nakano et al. | Dec 2008 | A1 |
20090027433 | Van De Wynckel et al. | Jan 2009 | A1 |
20090029069 | Edwards | Jan 2009 | A1 |
20090117283 | Herre | May 2009 | A1 |
20090181182 | Sloan | Jul 2009 | A1 |
20100132612 | Achrainer | Jun 2010 | A1 |
20100156970 | Ikushima | Jun 2010 | A1 |
20100170918 | Achrainer | Jul 2010 | A1 |
20100225685 | Kwon | Sep 2010 | A1 |
20100279013 | Frankenberger et al. | Nov 2010 | A1 |
20100282283 | Bauer | Nov 2010 | A1 |
20100321448 | Buestgens et al. | Dec 2010 | A1 |
20110014371 | Herre | Jan 2011 | A1 |
20110084150 | Merchant | Apr 2011 | A1 |
20110248046 | Simion | Oct 2011 | A1 |
20110262622 | Herre | Oct 2011 | A1 |
20120085842 | Ciardella | Apr 2012 | A1 |
20120105522 | Wallsten | May 2012 | A1 |
20120114849 | Melcher | May 2012 | A1 |
20120162331 | Kataoka | Jun 2012 | A1 |
20120186518 | Herre | Jul 2012 | A1 |
20120219699 | Pettersson et al. | Aug 2012 | A1 |
20120249679 | Beier et al. | Oct 2012 | A1 |
20120282405 | Herre | Nov 2012 | A1 |
20130201243 | Yoshida | Aug 2013 | A1 |
20130215203 | Chen | Aug 2013 | A1 |
20130257984 | Beier et al. | Oct 2013 | A1 |
20130284833 | Fritz | Oct 2013 | A1 |
20140076985 | Pettersson et al. | Mar 2014 | A1 |
20140242285 | Pettersson et al. | Aug 2014 | A1 |
20140329001 | Rouaud et al. | Nov 2014 | A1 |
20150009254 | Kaiba et al. | Jan 2015 | A1 |
20150042716 | Beier et al. | Feb 2015 | A1 |
20150086723 | Bustgens | Mar 2015 | A1 |
20150098028 | Ohnishi | Apr 2015 | A1 |
20150328654 | Schwab | Nov 2015 | A1 |
20150375258 | Fritz et al. | Dec 2015 | A1 |
20150375507 | Ikushima | Dec 2015 | A1 |
20160052312 | Pitz et al. | Feb 2016 | A1 |
20160074822 | Han | Mar 2016 | A1 |
20160288552 | Ikushima | Oct 2016 | A1 |
20160306364 | Ikushima et al. | Oct 2016 | A1 |
20170087837 | Stefani et al. | Mar 2017 | A1 |
20170106393 | Hamspon et al. | Apr 2017 | A1 |
20170136481 | Fritz et al. | May 2017 | A1 |
20170252765 | Medard | Sep 2017 | A1 |
20170267002 | Pitz et al. | Sep 2017 | A1 |
20170299088 | Rau | Oct 2017 | A1 |
20170361346 | Lahidjanian | Dec 2017 | A1 |
20180022105 | Nakamura et al. | Jan 2018 | A1 |
20180056670 | Kerr | Mar 2018 | A1 |
20180093491 | Murayama et al. | Apr 2018 | A1 |
20180178505 | Stefani et al. | Jun 2018 | A1 |
20180222186 | Stefani et al. | Aug 2018 | A1 |
20180250955 | Herre | Sep 2018 | A1 |
20190091712 | Medard et al. | Mar 2019 | A1 |
Number | Date | Country |
---|---|---|
2287527 | Aug 1998 | CN |
1331661 | Jan 2002 | CN |
1438942 | Aug 2003 | CN |
1512919 | Jul 2004 | CN |
1176815 | Nov 2004 | CN |
1668386 | Sep 2005 | CN |
1761530 | Apr 2006 | CN |
101264698 | Sep 2008 | CN |
101309755 | Nov 2008 | CN |
101657264 | Feb 2010 | CN |
101784348 | Jul 2010 | CN |
102177002 | Sep 2011 | CN |
102198434 | Sep 2011 | CN |
102971080 | Mar 2013 | CN |
103153483 | Jun 2013 | CN |
103909743 | Jul 2014 | CN |
104613205 | May 2015 | CN |
104994966 | Oct 2015 | CN |
105358259 | Feb 2016 | CN |
205042649 | Feb 2016 | CN |
106414081 | Feb 2017 | CN |
1284250 | Nov 1968 | DE |
7710895 | Sep 1977 | DE |
3045401 | Jul 1982 | DE |
3221327 | Sep 1983 | DE |
3225554 | Jan 1984 | DE |
3634747 | Aug 1987 | DE |
3804092 | Sep 1988 | DE |
4013322 | Oct 1991 | DE |
4115111 | Nov 1991 | DE |
4138491 | May 1993 | DE |
9405600 | Jun 1994 | DE |
68924202 | Feb 1996 | DE |
19606716 | Aug 1997 | DE |
19630290 | Jan 1998 | DE |
19731829 | Jan 1999 | DE |
19743804 | Apr 1999 | DE |
9422327 | Mar 2000 | DE |
19852079 | May 2000 | DE |
19936790 | Feb 2001 | DE |
20017629 | Mar 2001 | DE |
10048749 | Apr 2002 | DE |
69429354 | May 2002 | DE |
69622407 | Mar 2003 | DE |
10307719 | Sep 2003 | DE |
60001898 | Feb 2004 | DE |
102004021223 | Dec 2004 | DE |
10331206 | Jan 2005 | DE |
102004034270 | Feb 2006 | DE |
102004044655 | Mar 2006 | DE |
102004049471 | Apr 2006 | DE |
60212523 | Feb 2007 | DE |
69836128 | Aug 2007 | DE |
60125369 | Oct 2007 | DE |
102006021623 | Nov 2007 | DE |
102006056051 | May 2008 | DE |
102007018877 | Oct 2008 | DE |
60132100 | Dec 2008 | DE |
102007037663 | Feb 2009 | DE |
10 2008 018 881 | Sep 2009 | DE |
102008053178 | May 2010 | DE |
102009029946 | Dec 2010 | DE |
102009038462 | Mar 2011 | DE |
102010004496 | Jul 2011 | DE |
102010019612 | Nov 2011 | DE |
102012006371 | Jul 2012 | DE |
102012005087 | Oct 2012 | DE |
102012005650 | Sep 2013 | DE |
102012212469 | Jan 2014 | DE |
102012109123 | Mar 2014 | DE |
202013101134 | Jun 2014 | DE |
102013002412 | Aug 2014 | DE |
102013011107 | Aug 2014 | DE |
102013205171 | Sep 2014 | DE |
102014006991 | Dec 2014 | DE |
102014007523 | Nov 2015 | DE |
102014008183 | Dec 2015 | DE |
10 2014 217 892 | Mar 2016 | DE |
102014012705 | Mar 2016 | DE |
102014013158 | Mar 2016 | DE |
10 2016 014 952 | Jun 2018 | DE |
0138322 | Apr 1985 | EP |
0297309 | Jan 1989 | EP |
0665106 | Aug 1995 | EP |
1120258 | Aug 2001 | EP |
1270086 | Jan 2003 | EP |
1764226 | Mar 2007 | EP |
1852733 | Nov 2007 | EP |
1884365 | Feb 2008 | EP |
1946846 | Jul 2008 | EP |
2002898 | Dec 2008 | EP |
2133154 | Dec 2009 | EP |
2151282 | Feb 2010 | EP |
2196267 | Jun 2010 | EP |
2380744 | Oct 2011 | EP |
2433716 | Mar 2012 | EP |
2468512 | Jun 2012 | EP |
2641661 | Sep 2013 | EP |
2644392 | Oct 2013 | EP |
2777938 | Sep 2014 | EP |
2799150 | Nov 2014 | EP |
2842753 | Mar 2015 | EP |
3002128 | Apr 2016 | EP |
3156138 | Apr 2017 | EP |
3213823 | Sep 2017 | EP |
3257590 | Dec 2017 | EP |
3272669 | Jan 2018 | EP |
3068626 | Oct 2019 | EP |
3010918 | Mar 2015 | FR |
2200433 | Aug 1988 | GB |
2367771 | Apr 2002 | GB |
2507069 | Apr 2014 | GB |
S5722070 | Feb 1982 | JP |
S62116442 | May 1987 | JP |
H04-106669 | Sep 1992 | JP |
H0798171 | Oct 1995 | JP |
H09192583 | Jul 1997 | JP |
2000158670 | Jun 2000 | JP |
2000317354 | Nov 2000 | JP |
2001129456 | May 2001 | JP |
2001157863 | Jun 2001 | JP |
2001239652 | Sep 2001 | JP |
2001300404 | Oct 2001 | JP |
2005501745 | Jan 2002 | JP |
2002361863 | Dec 2002 | JP |
2003506210 | Feb 2003 | JP |
2003136030 | May 2003 | JP |
2003164780 | Jun 2003 | JP |
2004142382 | May 2004 | JP |
2004528956 | Sep 2004 | JP |
2004337710 | Dec 2004 | JP |
2005526234 | Sep 2005 | JP |
2007021760 | Feb 2007 | JP |
2007152666 | Jun 2007 | JP |
2007520340 | Jul 2007 | JP |
2007245633 | Sep 2007 | JP |
2007289848 | Nov 2007 | JP |
2008110332 | May 2008 | JP |
2009006324 | Jan 2009 | JP |
2010528852 | Aug 2010 | JP |
2010531213 | Sep 2010 | JP |
2010531729 | Sep 2010 | JP |
2010241003 | Oct 2010 | JP |
2011206958 | Oct 2011 | JP |
2012011310 | Jan 2012 | JP |
2012506305 | Mar 2012 | JP |
2012135925 | Jul 2012 | JP |
2012206116 | Oct 2012 | JP |
2012228643 | Nov 2012 | JP |
2012228660 | Nov 2012 | JP |
2013067179 | Apr 2013 | JP |
2013530816 | Aug 2013 | JP |
2013530816 | Aug 2013 | JP |
2013188706 | Sep 2013 | JP |
2014019140 | Feb 2014 | JP |
2014050832 | Mar 2014 | JP |
2014111307 | Jun 2014 | JP |
2015-009222 | Jan 2015 | JP |
2015027636 | Feb 2015 | JP |
2015096322 | May 2015 | JP |
2015520011 | Jul 2015 | JP |
2015193129 | Nov 2015 | JP |
2015535735 | Dec 2015 | JP |
2016507372 | Mar 2016 | JP |
2016526910 | Sep 2016 | JP |
2016175077 | Oct 2016 | JP |
2016175662 | Oct 2016 | JP |
2018012065 | Jan 2018 | JP |
2020513311 | May 2020 | JP |
2020513314 | May 2020 | JP |
8601775 | Mar 1986 | WO |
9856585 | Dec 1998 | WO |
02098576 | Dec 2002 | WO |
03021519 | Mar 2003 | WO |
2003062129 | Jul 2003 | WO |
2004048112 | Jun 2004 | WO |
2004085738 | Oct 2004 | WO |
2005016556 | Feb 2005 | WO |
2005075170 | Aug 2005 | WO |
2006022217 | Mar 2006 | WO |
2007121905 | Nov 2007 | WO |
2009019036 | Feb 2009 | WO |
2010046064 | Apr 2010 | WO |
2010146473 | Dec 2010 | WO |
2011044491 | Apr 2011 | WO |
2011128439 | Oct 2011 | WO |
2011138048 | Nov 2011 | WO |
2013121565 | Aug 2013 | WO |
2015071270 | May 2015 | WO |
2015096322 | Jul 2015 | WO |
2015186014 | Dec 2015 | WO |
2016-087016 | Jun 2016 | WO |
2016142510 | Sep 2016 | WO |
2016145000 | Sep 2016 | WO |
2017006245 | Jan 2017 | WO |
2017006246 | Jan 2017 | WO |
2018102846 | Jun 2018 | WO |
2018108565 | Jun 2018 | WO |
Entry |
---|
China National Intellectual Property Administration Office Action and Search Report for CN Application No. 2017800//018.3 dated Aug. 27, 2020 (11 pages; Search Report in English). |
Ghasem, G. et al.; “Chapter 2 Background on Sprays and Their Production”, Industrial Sprays and Atomization: Design, Analysis and Applications, Jan. 1, 2002, Springer, London, pp. 7-33, XP009195118, ISBN: 978-1-4471-3816-7. |
International Search Report and Written Opinion for PCT/EP2017/081141 dated Feb. 26, 2018 (17 pages; with English translation). |
International Search Report and Written Opinion for PCT/EP2017/081114 dated May 15, 2018 (33 pages; with English translation). |
Anonymous: “Roboterkalibrierung—Wikipedia”, Nov. 7, 2016, XP055471615, Gefunden im Internet: URL: https://de.wikipedia.org/w/index.php?title=Roboterkalibrierung&oldid=159460756 [gefunden am Apr. 30, 2018] das ganze dockument (8 pages; with English translation). |
Beyer, Lukas: “Genauigkeitssteigerung von Industrierobotern”, Forschungsberichte Aus Dem Laboratorium Fertigungstechnik/Helmut-Schmidt-Universitat, Universitat Der Bundeswehr Hamburg, Dec. 31, 2005, Seiten 1-4, XP009505118; ISSN: 1860-2886; ISBN: 978-3-8322-3681-6 (13 pages; with English machine translation). |
International Search Report and Written Opinion for PCT/EP2017/081108 dated Feb. 28, 2018 (with English translation; 18 pages). |
International Search Report and Written Opinion for PCT/EP2017/081099 dated Feb. 26, 2018 (21 pages; with English translation). |
International Search Report and Written Opinion for PCT/EP2017/081102 dated Mar. 14, 2018 (16 pages; with English translation). |
International Search Report and Written Opinion for PCT/EP2017/081105 dated Feb. 26, 2018 (19 pages; with English translation). |
International Search Report and Written Opinion for PCT/EP2017/081152 dated May 15, 2018 (25 pages; with English translation). |
International Search Report and Written Opinion for PCT/EP2017/081098 dated May 14, 2018 (26 pages; with English translation). |
International Search Report and Written Opinion for PCT/EP2017/081101 dated Feb. 28, 2018 (14 pages; with English translation). |
International Search Report and Written Opinion for PCT/EP2017/081121 dated Feb. 26, 2018 (20 pages; with English translation). |
International Search Report and Written Opinion for PCT/EP2017/081117 dated Mar. 12, 2018 (27 pages; with English translation). |
International Search Report and Written Opinion for PCT/EP2017/081123 dated Feb. 26, 2018 (20 pages; with English translation). |
European Search Report for EP20170638.9 dated Sep. 14, 2020 (4 pages—English translation not available). |
European Search Report for EP20170021.8 dated Sep. 8, 2020 (11 pages—English translation not available). |
European Search Report for EP20170025.9 dated Sep. 9, 2020 (4 pages—English translation not available). |
European Search Report for EP20170016.8 dated Sep. 7, 2020 (4 pages—English translation not available). |
Non-Final Office Action dated Apr. 28, 2021 for U.S. Appl. No. 16/468,693 (109 pages). |
Final Office Action dated Apr. 19, 2021 for U.S. Appl. No. 16/468,700 (62 pages). |
Non-Final Office Action for U.S. Appl. No. 16/468,691 dated Jan. 7, 2021 (79 pages). |
Chinese Office Action for Application No. CN20178007017.9 dated Aug. 31, 2020 (8 pages; with English translation). |
Non Final Office Action for U.S. Appl. No. 16/468,697 dated Oct. 22, 2020 (78 pages). |
Non Final Office Action for U.S. Appl. No. 16/468,696 dated Nov. 2, 2020 (58 pages). |
Non Final Office Action for U.S. Appl. Mo. 16/468,689 dated Oct. 15, 2020 (77 pages). |
Chinese Office Action for CN201780077476.7 dated Sep. 23, 2020 (12 pages; English translation not available). |
Non Final Office Action for U.S. Appl. No. 16/468,700 dated Dec. 1, 2020 (73 pages). |
Chinese Office Action and Search Report for CN201780077603.3 dated Oct. 12, 2020 (15 pages; English translation not available). |
JPO Submission for JP2019-531096; submitted Dec. 21, 2020 (32 pages; with English translation). |
JPO Submission for JP2019-531957; submitted Dec. 21, 2020 (21 pages; with English translation). |
EPO Examination Report for Application No. 201702818.1 dated Dec. 18, 2020 (with English machine translation; 6 pages). |
Final Office Action dated Mar. 19, 2021 for U.S. Appl. No. 16/468,696 (45 pages). |
EPO Official Notification of Opposition for Application No. 17821803.8 dated Feb. 10, 2021 (64 pages; with English machine translation). |
Non-Final Office Action dated Feb. 18, 2021 for U.S. Appl. No. 16/468,692 (97 pages). |
Notice of Allowance mailed in U.S. Appl. No. 16/468,689 dated Jun. 2, 2021 (38 pages). |
Fianl Office Action dated May 13, 2021 for U.S. Appl. No. 16/468,691 (70 pages). |
JPO Notification of Reasons for Rejection for Application No. JP2019-532030 dated May 18, 2021 (6 pages; with English translation). |
CIPO Office Action for Application No. CN201780077474.8 dated Apr. 26, 2021 (17 pages; with English translation). |
Notification of Reasons for Refusal for Application No. JP2019-532012 dated Jun. 22, 2021 (6 pages; with English machine translation). |
Notification of Reasons for Refusal for Application No. JP2019-527330 dated Jun. 22, 2021 (10 pages; with English machine translation). |
Chinese Office Action dated Jun. 2, 2021 for Application No. CN201780077017 9 (17 pages; with English machine translation). |
Japanese Notification of Reasons for Rejection dated Jun. 1, 2021 for Application No. JP2019-531944 (14 pages; with English machine translation). |
Japanese Notification of Reasons for Rejection dated Jun. 8, 2021 for Application No. JP2019-531957 (13 pages; with English machine translation). |
Supplemental Notice of Allowability dated Jul. 8, 2021 for U.S. Appl. No. 16/468,696 (11 pages). |
Liptak, Bela. (2006). Instrument Engineers' Handbook (4th Edition)—Process Control and Optimization, vol. 2—2.1.3.5 Process Time Constant, (pp. 99-102). Taylor & Francis. Retrieved from https://app.knovel.eom/hotlink/pdf/id:kt00CC7HL1/instrument-engineers/process-time-constant (Year: 2006). |
Japenese Patent Office Notice of Reasons of Refusal for Application No. JP 2019-531967 dated Jun. 8, 2021 (8 pages; with English machine translation). |
JPO Office Action dated Jul. 3, 2021 for Application No. JP2019-532024 (12 pages; with English machine translation). |
Non-Final Office Action dated Aug. 27, 2021 for U.S. Appl. No. 16/468,695 (149 pages). |
JPO Decision to Grant dated Oct. 3, 2021 for Application No. JP2019-532113 (7 pages; with English machine translation). |
Final Office Action dated Oct. 7, 2021 for U.S. Appl. No. 16/468,693 (58 pages). |
JPO Office Action for Application No. JP2019-531097 dated Jun. 29, 2021 (10 pages; with English machine translation). |
JPO Office Action for Application No. 2019-531096 dated Jul. 6, 2021 (9 pages; with English machine translation). |
JPO Office Action for Application No. 2019-531098 dated Jul. 6, 2021 (5 pages; English translation only). |
JPO Office Action for Application No. 2019-531459 dated Jul. 6, 2021 (8 pages; with English machine translation). |
Non-Final Office Action dated Dec. 24, 2021 for related U.S. Appl. No. 16/468,693 (19 pages). |
Chinese Office Action in related application No. CN201780077045.0 dated Jan. 29, 2022 (17 pages; English machine translation provided). |
Non Final Office Action dated Nov. 23, 2021 for U.S. Appl. No. 16/468,694 (163 pages). |
JPO Decision to Grant in related application No. JP2019-532030 dated Dec. 1, 2022 (6 pages; English machine translation provided). |
Non-Final Office Action for related U.S. Appl. No. 16/468,699 dated Mar. 9, 2022 (180 pages). |
JPO Decision to Grant in related application JP2019-532012 dated Jan. 25, 2022 (6 pages; with English machine translation). |
EPO Notification of Objection dated May 18, 2022 for Patent No. EP3718643, related to related U.S. Appl. No. 16/468,693 (55 pages; with English machine translation). |
Number | Date | Country | |
---|---|---|---|
20190299231 A1 | Oct 2019 | US |