Application device and method for applying a multicomponent coating medium

Abstract
An application device for the application in series of a paint or other coating compositions to motor vehicle bodies or add-on parts thereof has a nozzle print head which contains a plurality of nozzles arranged, for example, in one or more rows, which apply the coating composition to the surface to be coated as continuous jets or individual drops. The nozzle print head is arranged on a multi-axis coating robot. In contrast to application devices of this type known hitherto, the coating composition consists of at least two components which are to be mixed together, such as, for example, 2K paint, which are fed to the nozzle print head via separate supply lines for jointly supplying the nozzles.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a national stage of, and claims priority to, Patent Cooperation Treaty Application No. PCT/EP2017/081123, filed on Dec. 1, 2017, which application claims priority to German Application No. DE 10 2016 014 919.1, filed on Dec. 14, 2016, which applications are hereby incorporated herein by reference in their entireties.


BACKGROUND

The disclosure relates to an application device for the application in series of a coating composition to surfaces of workpieces, in particular of motor vehicle bodies and/or add-on parts thereof, having a nozzle applicator, referred to as a nozzle print head hereinbelow, which contains at least one nozzle or preferably a plurality of nozzles arranged side by side, which apply the coating composition to the surface to be coated as continuous jets or individual drops. “Application device” means a device which, in addition to the nozzle print head, which in particular is moved by means of a coating robot, can include further units such as the supply unit containing the coating composition and optionally mixers, colour changers and/or a flushing device. The disclosure relates further to a corresponding application and/or cleaning method.


For the general prior art, reference may first be made, for example, to DE 10 2010 019 612 A1, GB 2 367 771 A, DE 10 2013 002 412 A1, DE 198 52 079 A1, WO 2011/044491 A1, DE 200 17 629 U1, DE 694 29 354 T2 and DE 601 25 369 T2.


So-called nozzle print heads are known inter alia from WO 2010/046064 A1 (for continuous jets of paint) and WO 2011/138048 A1 (for generating drops of paint by applying vibration to the coating composition) and allow motor vehicle bodies to be coated, specifically painted, virtually without overspray, because the jets or drops can be directed with point accuracy at the desired surface regions. Coating without overspray has the considerable advantages described, for example, in the mentioned WO 2010/046064 A1 such as minimal losses of coating material and simplification of the coating booth by dispensing with the measures hitherto required for removing the overspray from a painting booth and/or from a waste air stream.


Nevertheless, such print heads can operate with a surface coating capacity of at least 1 m2/min, 2 m2/min, 3 m2/min, 4 m2/min or even 5 m2/min. The application efficiency of the print head can be more than 80%, 90% or even 99%, and in the coating booth the rate of air descent during operation can be less than 0.3 m/s, 0.2 m/s, 0.1 m/s, 0.07 m/s or even 0.05 m/s.


An important component of the nozzle print head can be a nozzle plate having openings formed in a plate plane which serve as nozzles.


All the above-mentioned features and advantages of the mentioned known nozzle print heads also apply to the disclosure described herein.


Furthermore, there is also known, for example, from U.S. Pat. No. 9,108,424 B2 a nozzle print head having a row of ink-jet nozzles for printing a surface with predetermined patterns, which print head works according to the so-called drop-on-demand principle. This principle is based on the use of electric valves, wherein a magnetic valve needle is guided as the plunger in a coil and is pulled up into the coil by supplying a current. A valve opening is thereby freed so that the fluid in question, in this case the ink, is able to emerge as drops of different sizes depending on the opening time. This principle can also be used in the disclosure described herein but, in contrast to the prior art, not for ink.


The above-mentioned application devices and other nozzle print heads that are already known all have the disadvantage that they are unable to satisfactorily apply multicomponent coating compositions such as, for example, the 2K or 3K paints, adhesives, sealants, adhesion promoters, primers, etc. which are conventional per se in the painting of motor vehicle bodies.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a cross-sectional view through a painting system according to the disclosure for painting motor vehicle body components having print heads as the application devices,



FIG. 2 is the schematic representation of components ejected from two nozzles according to an example of the disclosure,



FIG. 3 is the schematic representation of the generation of mutually overlapping coating points, and



FIG. 4 shows a nozzle unit to be used in an example of the disclosure.





DETAILED DESCRIPTION

The application device according to the disclosure first has, in accordance with the prior art, a nozzle applicator or nozzle print head for applying the coating composition to the component to be coated. The term “nozzle print head” used within the context of the disclosure is to be interpreted generally and serves merely to differentiate this nozzle applicator from all atomizers (e.g. rotary atomisers, air atomisers, airless atomisers, etc.) that deliver a spray mist of the coating composition to be applied. In contrast therewith, the nozzle print head generates radially narrowly limited coating agent jets or drops, whereby the jet is generated continuously, that is to say cohesively in its longitudinal direction, while the drops each travel in the same direction and are to be separate from one another in the direction of travel. In principle, it is conceivable that the nozzle print head contains only a single nozzle to which the already mixed coating composition is fed, or only two nozzles, of which one nozzle delivers a first component and the other nozzle delivers a second component. However, preference is given to print heads having a plurality of, for example, one or more parallel rows of nozzles.


The disclosure can moreover be implemented with all types of print heads or other nozzle applicators which differ from conventional atomisers in the manner mentioned above.


In addition, there are provided according to the disclosure at least one or two separate supply lines for components of the coating composition which are to be mixed together, which supply lines in typical examples of the disclosure are provided for jointly supplying all the nozzles of the print head with the same coating composition or components thereof. At least two separate supply lines lead to or into the nozzle print head if the components are to be mixed therein or not until they have left the nozzle print head. If, on the other hand, mixing is to take place in a mixer arranged outside the nozzle print head, one line leading from the outlet thereof into the nozzle print head is sufficient. In typical exemplary examples, the components are at least one material component (e.g. batch paint) and at least one curing agent component which reacts in a manner known per se with the material component for the curing thereof. In an exemplary examples of the disclosure, the components remain separate at least until they enter the nozzle print head.


One advantage of the disclosure is that the fully automatic surface coating, particularly painting, in series of complete motor vehicle bodies using any desired multicomponent coating agents (including special-effect paints) is for the first time possible virtually without overspray.


As has already been mentioned, the nozzles of the print head are to direct the jets or drops of the coating composition or its components targetedly at individual points of the surface to be coated in order to avoid overspray. The impact points thereby applied can adjoin one another or overlap with one another, as will be described in greater detail.


In accordance with the prior art, it is also advantageous in the disclosure to arrange the nozzle print head on a multi-axis coating robot which moves the nozzle print head over the surface to be coated. For example, reference may be made in this connection to the coating robots having 6 or more axes, with or without a linear movement axis, which are generally known per se from the prior art.


However, the disclosure is not limited to conventional robots having 6 or more rotary axes. Instead, the nozzle applicator could be arranged, for example, on a linear unit which substantially has only linear axes for moving the nozzle print head, advantageously under program control, over the surface to be coated. Such a linear unit could be placed, for example, temporarily on the workpiece to be coated, for example on a body roof, or instead also on the conveyor thereof (e.g. the conventional skids) and would then have the advantage that accuracy problems of conventional robot and conveyor systems as regards the positioning of the nozzle print head relative to the workpiece can be avoided.


As has likewise already been discussed, the disclosure is suitable for any desired multicomponent coating compositions such as, for example, 2K or 3K paint (including base paint and clear paint), primers, adhesives or sealants or preserving agents, etc., which each have at least one batch component and a curing agent component which reacts therewith.


Mixing of the components can be carried out in different ways and at different locations of the application system.


For example, the nozzle print head can direct the at least two components separately from one another onto the surface to be coated in such a manner that they mix together on the surface. Mixing of the components thus takes place here as a result of the impact of the drops or jets. It is possible that the print head ejects the components to be mixed simultaneously. In other examples of the disclosure, however, the print head ejects the components to be mixed in succession in time, that is to say first one and then the other component (for example first the batch paint and then the curing agent, or vice versa). In both cases, the jets or drops strike at substantially the same point.


According to another possibility of the disclosure, mixing can also take place in mid-air, that is to say the nozzles of the print head are so arranged relative to one another that the components meet on the path to the surface to be coated. An appropriate distance between the nozzle print head and the surface to be coated must here be maintained, for example, by means of the coating robot. Furthermore, it is possible that the drops of the components of the coating composition are ejected at different speeds and at different times so that the drop that is ejected later meets the drop ejected first in mid-air and mixes therewith.


As has already been mentioned, drops of different sizes can be generated using, for example, electric-valve-controlled nozzles. According to the disclosure it is possible by means of different drop sizes to adjust inter alia the mixing ratio if the components are not mixed until after they have left the nozzles.


According to a further possibility of the disclosure, however, mixing can also take place at or in the nozzle print head, for example by means of a mixer which, in a manner known per se, can be in the form of a static or dynamic mixer. The mixer can be arranged in or at the nozzle print head, for example integrated in the print head in a respective inflow passage of the nozzles, where it is connected to the at least two separate supply lines of the application device.


According to another possibility for mixing the components in the print head, the individual nozzles of the nozzle print head can also each be configured for mixing the components. According to a corresponding exemplary example of the disclosure, the respective nozzles can contain at least two passages leading to a nozzle outlet, which passages can extend concentrically to one another in this example, whereby the nozzle outlet can be formed by at least one annular gap and a central opening. In this exemplary example, each nozzle of the nozzle print head is thus actually a unit having at least two nozzle elements, namely the outlet openings of this nozzle unit.


In particular in each of the mentioned possibilities for mixing without a mixer, it can be advantageous to impart a swirling motion to at least one of the components, but preferably to both or all the components, whereby they mix better.


If the components are not mixed via a mixer, it can be necessary in the case of the application of cohesive jets to ensure the mixing ratio of the two components by regulating the volume flow rate of the two components. In the case of the application of drops, the mixing ratio can be controlled via the volume of the drops, for example by means of different opening times of the nozzles.


If a mixer is to be provided, it could also be integrated according to a further possibility of the disclosure into the supply lines outside the print head, preferably as close as possible to the nozzle print head or in the vicinity of a colour changer. The mixer has corresponding inlets, at which it is connected to the at least two separate supply lines, while its outlet is connected to the nozzle(s) via a common line.


Controlled colour change valve arrangements, conventionally referred to as colour changers, for selecting a desired coloured paint from a plurality of supplied different colours are generally known per se. In the case of the disclosure too, at least one colour changer can be provided which is connected to at least one of the supply lines of the application device or of the nozzle print head, for example for a batch paint component. The colour changer can advantageously be movably arranged, in particular on the coating robot which moves the nozzle print head, for example on one of its arms or also on a linear movement axis of the robot. The closer the colour changer to the nozzle print head, the smaller the unavoidable paint and flushing medium losses in the event of a colour change. However, the colour changer can instead also be arranged stationarily, for example on an inside or outside wall of the coating booth of the coating system in question here.


The nozzle print head can be formed by a nozzle plate which, as nozzles, contains openings arranged side by side in a plate plane. The nozzles can preferably be arranged in one or more parallel rows, for example also as columns and rows of a matrix. In corresponding examples of the disclosure, the longitudinal axes of the nozzles can extend perpendicularly to the plate plane. In other examples, on the other hand, the longitudinal axes of adjacent nozzles are inclined relative to the plate plane by different or equal angles, for example opposite equal angles.


For automatically controlling their opening times, the nozzles can be connected, for example within the scope of the program control conventional for coating systems, with electric or pneumatically controlled valves arranged in or on the nozzle print head, optionally, for example, on the nozzle plate.


The control valves can have, for example, a plunger which is displaceable electrically by a coil or pneumatically and which closes or opens the nozzle depending on its position.


According to an aspect of the application device according to the disclosure which is important especially for multicomponent coating compositions is the cleaning thereof before and after coating operations. For example, the nozzle print head can be flushed after a specified time or operating period, for example hourly or after several hours or at specific times of day (end of a shift or production, weekend) etc. or when a specific number of coated workpieces has been reached or when a specific amount of ejected paint has been reached. It can likewise be expedient to flush the nozzle print head after specific events of the coating operation, for example after every stoppage of a belt or other conveyor device conveying the vehicle bodies or other workpieces to be coated through a coating booth in the conventional manner, or after a predetermined number of conveyor stoppages. Flushing can also take place under signal control after a predetermined period of time has elapsed, for example as a result of an alarm or fault warning signal after the elapse of a period of time after which the reaction of two components is so far advanced that the application system must be flushed in order to avoid damage. In the case of the coating of bodies, flushing can also take place during the so-called body gaps, that is to say when, in the breaks after the coating of one body, the robot is waiting for the next body conveyed through the coating booth. The flushing operations can be controlled automatically in dependence on time monitoring devices.


Different flushing media can be used for the cleaning, depending on the application. For example, in the case of a change of the coating operation between solvent-based (2K) paint and water-borne paint, different flushing media may be advantageous in each case, whereby a separating agent such as, for example, an alcohol can additionally also be used between the two flushing media. Furthermore, flushing media with different cleaning actions can be used (cascading), for example for reducing VOC emissions (that is to say volatile organic compounds) when the content of organic solvent increases in an aqueous flushing medium. Universal flushing media for water-borne paint and solvent-borne paint are, however, also known. VOC-free flushing medium is preferably used. For this purpose, different flushing programs, which differ in terms of their program sequence and/or their duration, can be used for different paints.


It can further be advantageous, in particular before a planned break in operation, to fill or wet the inside or outside surfaces of the nozzle print head that come into contact with one or more components of the coating composition with a fluid which at least substantially prevents deposits of the coating composition and/or the reaction of two components of the coating composition (within the scope of the disclosure, reaction generally means a chemical and/or curing reaction).


For flushing, flushing medium and pulsed air can be supplied alternately in a manner known per se. In addition or instead, flushing can also be carried out using an aerosol. If it is found to be necessary after flushing, the flushed paths can subsequently be emptied or dried with compressed air.


After flushing, it is advantageous to fill the paths in question with the coating composition or the components thereof again before the start of coating, which in coating systems is conventionally referred to as pressing on. Optionally, it can be expedient to eject at least one drop or a defined amount of the new coating agent or its components through the nozzle.


The flushing device provided for the described flushing operations can be formed by at least one flushing medium line which leads parallel to the component supply lines into the application device and can optionally be connected or connectable via a mixer or directly to all the nozzles. If a colour changer is present, a flushing medium line can be connected, for example, to an inlet of the colour changer, so that the flushing medium can be fed to the nozzle print head through the supply line, for example, for the batch paint component. A flushing medium line which leads separately into the nozzle print head is also conceivable.


In advantageous examples of the disclosure, an external flushing device can further be provided in the coating system, for example a separate flushing apparatus arranged in the vicinity of the coating robot and reachable thereby. If a storage device for storing the nozzle print head during breaks in coating is provided in the coating system, the flushing apparatus can also be integrated into the storage device.


In any case, the flushing device should preferably be in such a form that the nozzle passages and also the outside surface of the nozzle print head, that is to say optionally the nozzle plate, can be flushed. Furthermore, back flushing of the nozzle plate or nozzle passages can be advantageous, wherein the flushing medium is pressed through the nozzle passage from the outside inwards, for example in order to clean a blocked nozzle. It is thus not necessary to change the nozzle print head or the nozzle plate, as would otherwise be required, and material and working time can thus be saved. For catching all the fluids that are ejected (from the nozzles) during flushing, that is to say coating composition and flushing medium and/or aerosols, the flushing apparatus can be provided with a corresponding collecting device, from which the fluids can then be separated and disposed of.


In general, the losses of coating composition and flushing medium should be as small as possible, and VOC emissions should be avoided. In the application methods described herein, paint or coating composition losses caused by a flushing operation should be limited to in any case less than 10 l, but preferably to less than 5 l, 200 ml, 20 ml, 10 ml, 5 ml or even 2 ml, and the flushing agent requirement should be limited to less than 10 l, but preferably less than 5 l, 2 l, 200 ml, 100 ml, 50 ml, 20 ml or even 10 ml.


In order to reduce the paint loss and the consumption of flushing medium during a colour change, it can also be sufficient in the processing of multicomponent paints to flush only the regions that come into contact with the colour-giving component, for example of a 2K base paint or 2K clear paint, and with the mixture of the two components.


It should be mentioned in this connection that, especially if the components are not mixed until they leave the nozzles or after they have left the nozzles, and already mixed coating material thus does not flow in the nozzle print head, losses of flushing medium and time which are otherwise required can be avoided, especially because special mixing elements then do not have to be flushed.


If mixing does not take place until the components leave the nozzle or after they have left the nozzle, this additionally has the advantage that desired mixing ratios can be established in a particularly simple manner and without problems.


Finally, it should also be mentioned that it has been discovered that the nozzle print heads known from the prior art, which are suitable only for one-component paint, can be adapted to the requirements for two-component coating compositions. In particular, the size, that is to say hydraulic cross-sections, of the nozzles and their passages are to be dimensioned according to the particular mixing ratio. Moreover, solvent-resistant materials should be used where possible, such as, for example, seals made of FFKM (that is to say perfluorinated rubber).


In the painting system according to the disclosure shown in FIG. 1 for the complete painting in series of motor vehicle bodies, the components to be painted are transported on a conveyor 1, at a right angle to the plane of the drawing, through a painting booth 2 in which the components are then painted by painting robots in a manner which is in part known per se. In the example shown, the painting robots 3, 4 have two pivotable robot arms and each guide an application device via a multi-axis robot hand axis. For example, the robots can be robots having six or more rotary axes and optionally a linear movement axis along the conveyor path. Painting robots having at least seven rotary axes have the advantage in the painting of bodies that the expense of a movement axis can in many cases be dispensed with.


In contrast to conventional painting systems with conventional rotary atomisers or other atomisers, the painting robots 3, 4 guide as the application device nozzle print heads 8, 9 for 2K or multicomponent paint. These nozzle print heads have a substantially greater application efficiency than atomisers of more than 95% to 99% and thus generate virtually no overspray. On the one hand, this has the advantage that it is possible to omit the washing out beneath the booth which is required in conventional painting systems with atomisers. Instead, in the painting system according to the disclosure there can be an extraction of air 10 beneath the painting booth 2 which, if required, draws the booth air downwards out of the booth through a filter cover 11 without the need for any other outlay for collecting and separating off overspray. In many cases, the extraction of air is also possible without a filter. This can also take place via passages arranged in the region of the bottom.



FIG. 2 explains an example of the disclosure in which two components of the coating composition are not mixed together until they strike the surface to be coated, by the impact of the drops or jets. These drops or jets are generated by two nozzles D1 and D2, shown schematically, which are arranged side by side in a common plane of the nozzle print head, one nozzle ejecting a first component (e.g. batch paint) and the other nozzle ejecting a second component (curing agent). The components can be ejected in succession in time or also simultaneously at a time 1 and, corresponding to the painting distance L of the nozzles D1 and D2 from the surface F to be coated and the speeds of travel of the components, the two components strike the surface F slightly later at a time 2, namely at least approximately at the same point P, where they are mixed with one another.


In the example shown, according to the representation, ejection directions (shown by broken lines) of the two nozzles D1 and D2 are inclined relative to the painting distance L, which is perpendicular to the surface F, and towards the respective other nozzle by, for example, opposite equal angles of travel α and β. The size of the chosen angle of travel, as well as being dependent on the painting distance L, is obviously also dependent on the distance, measured parallel to the surface F, between the nozzles D1 and D2 and can be, for example, between approximately 0 and 90°. The speeds of travel and/or the angles of travel of the two components can also be different from one another. If the nozzles D1 and D2 are opened at different times, a translation movement of the nozzles relative to the surface F during the application of the two components can also be taken into consideration.



FIG. 3 explains, schematically, the overlapping application of coating points to the surface F to be coated, there generally being applied drops of already mixed components which then in turn mix with one another on the surface F by flowing together. However, they could also be components which do not mix until they are on the surface F to be coated. While the nozzles are moved, for example, by the coating robot along the surface F with the specified speed of movement, they each generate a coating point, for example a drop, having a defined size a at predetermined successive, equally spaced times t1 to t5 etc. The respective nozzle is so controlled in terms of time that defined drop distances b along the surface F and consequently the desired overlapping of the applied drops are obtained. The degree of overlap can be between more than 0% and approximately 75% (triple overlap), that is to say approximately 10%, 20%, 30% or 50% (double overlap with b=½ a) or also b=⅓ a or ⅔ a. However, the coating points can instead be applied adjacent to one another, that is to say without an overlap (b=a).


In principle, such an application with or without an overlap is possible when the components are already mixed before or in the nozzle print head or after they have left the nozzle but before they reach the surface to be coated. An overlapping application is advantageous even if continuous jets are applied rather than individual drops.



FIG. 4 shows, schematically, a nozzle unit 40 in the form of a twin nozzle for mixing two components of a coating composition (e.g. 2K paint) in or at the nozzle print head. The nozzle unit 40 consists substantially of an outer tubular body 41 in the interior, for example the cylindrical interior, of which an inner tube 42, which, for example, is likewise cylindrical, is arranged concentrically. While FIG. 4B) shows a longitudinal section through this tubular nozzle unit 40, FIG. 4A) is a plan view of the lower nozzle end face in FIG. 4B). The outer tubular body 41 can protrude outwards, according to the representation, at the nozzle end face 43 axially beyond the inner tube 42. One component of the coating composition (e.g. batch paint) is pressed through the inner tube 41 to the outlet 45, which in the example under consideration is circular, while the second component (e.g. curing agent) is pressed to the outlet 46 in the form of an annular gap between the inner tube 42 and the outer tubular body 41. Conversely, it would also be possible to guide the first-mentioned component through the annular gap and consequently the second component through the inner tube.


In the example in question here, mixing of the components takes place at the end face 43 of the twin nozzle or nozzle unit 40 shown, that is to say at the outlet thereof, where each of the drops formed there according to the representation mix with one another. It can be advantageous if the formation of the respective drops does not begin at the same time but the two nozzle elements, that is to say the inner tube 42 and the outlet 46 in the form of the annular-gap nozzle, are controlled in terms of time by valves (not shown) so that the drop is formed at the inner tubular nozzle first and only then is the drop formed at the annular-gap nozzle. The reverse sequence can also be advantageous. However, simultaneous opening of the two nozzle elements is also conceivable instead.


As has been mentioned at the beginning, the nozzle print head according to the disclosure preferably holds a plurality of such nozzle units which in particular can be arranged in one or more rows.


While the disclosure in FIG. 4 explains a twin nozzle unit using the example of drop formation, such or similar twin nozzles are also conceivable for generating component jets which can be mixed at the nozzle outlets. In both cases, the two nozzle elements can be controlled in terms of their opening times jointly and/or each individually by associated controllable valves.


As has already been mentioned, it can be advantageous to provide the components to be mixed with a swirling motion. This can be achieved, for example, by means of a spiral groove on the inside of a nozzle passage (similar in principle to a rifled gun barrel).

Claims
  • 1. A method, comprising: ejecting drops of a coating composition onto surfaces of motor vehicle bodies or add-on parts, the coating composition consisting of at least two components which are to be mixed together,the droplets ejected from a nozzle print head which contains a pair of nozzles arranged side by side which apply the coating composition to the surface to be coated as individual drops, the nozzle print head is arranged on a multi-axis coating robot which moves the nozzle print head over the surface to be coated,the two components supplied to the pair of nozzles by two supply lines,the drops of the components of the coating composition ejected from the pair of nozzles at different speeds of travel and at different times so that the drop that is ejected later meets the drop ejected first in mid-air and mixes therewith.
  • 2. The method according to claim 1, characterised in that the pair of nozzles of the nozzle print head targetedly direct the drops of the coating composition or the components thereof at individual points of the surface to be coated, wherein the applied impact points in particular adjoin one another or overlap with one another.
  • 3. The method according to claim 1, characterised in that the coating composition is (a) a liquid multicomponent paint,(b) a primer,(c) an adhesive or sealant or(d) a preserving agent,and in each case has at least one batch component and at least one curing agent component that reacts therewith.
  • 4. The method according to claim 1, characterised in that there is provided at least one colour changer which (a) is connected to at least one of the supply lines of the application device or of the nozzle print head and supplies selectable paint components of different colours to the at least one supply line in a controlled manner, and(b) is arranged on a painting robot which moves the nozzle print head relative to the surface to be coated, or(c) is fixedly arranged in a painting booth.
  • 5. The method according to claim 1, characterised in that the pair of nozzles each contain at least two passages which lead to a nozzle outlet.
  • 6. The method according to claim 1, further comprising imparting a swirling motion to the ejected components by constructive shaping of the pair of nozzles or the supply channels thereof, for the purpose of better mixing.
  • 7. The method according to claim 1, characterised in that the pair of nozzles of the nozzle print head are controllable in respect of their respective opening and closing times by program control signals for actuating valves of the nozzles.
  • 8. The method according to claim 1, characterised in that longitudinal axes of the pair of nozzles of the nozzle print head, with respect to a plane of a nozzle plate of the nozzle print head, (a) extend perpendicularly to the plane, or(b) extend at an angle to the plane, in particular at different, equal or opposite equal angles of adjacent nozzles.
  • 9. The method according to claim 1, characterised in that the nozzle print head includes a nozzle plate which contains, in a plate plane, openings serving as the pair of nozzles, the openings arranged in one or more parallel rows.
  • 10. The method according to claim 1, characterised in that there is provided a flushing device for the nozzle print head, which (a) is formed by at least one flushing medium line which leads into the application device or into the nozzle print head and to which the pair of nozzles are connected, or(b) is formed by an apparatus arranged externally in a coating system in the vicinity of a multi-axis robot which moves the nozzle print head.
  • 11. The method according to claim 10, characterised in that the flushing apparatus (a) is configured for flushing nozzle passages of the pair of nozzles, or(b) for flushing an outside surface of the nozzle print head or a nozzle plate containing the nozzles,(c) has a collecting device for collecting coating composition or flushing medium ejected from the pair of nozzles during flushing.
  • 12. The method according to claim 5, characterised in that the at least two passages extend concentrically to one another.
  • 13. The method according to claim 12, characterised in that the at least two passages are formed by one annular gap and a central opening.
Priority Claims (1)
Number Date Country Kind
10 2016 014 919.1 Dec 2016 DE national
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2017/081123 12/1/2017 WO
Publishing Document Publishing Date Country Kind
WO2018/108573 6/21/2018 WO A
US Referenced Citations (175)
Number Name Date Kind
3421694 Muller Jan 1969 A
3717306 Hushon Feb 1973 A
3981320 Wiggins Sep 1976 A
4141231 Kudlich Feb 1979 A
4375865 Springer Mar 1983 A
4383264 Lewis May 1983 A
4423999 Choly Jan 1984 A
4430010 Zrenner et al. Feb 1984 A
4435719 Snaper Mar 1984 A
4478241 Cardenas-Franco Oct 1984 A
4555719 Arway et al. Nov 1985 A
4593360 Cocks Jun 1986 A
4668948 Merkel May 1987 A
4714044 Kikuchi Dec 1987 A
4734711 Piatt et al. Mar 1988 A
4826135 Mielke May 1989 A
4894252 Bongen et al. Jan 1990 A
4941778 Lehmann Jul 1990 A
4974780 Nakamura et al. Dec 1990 A
4985715 Cypher et al. Jan 1991 A
5050533 Zaber Sep 1991 A
5072881 Taube, III Dec 1991 A
5429682 Harlow, Jr. et al. Jul 1995 A
5435884 Simmons et al. Jul 1995 A
5538221 Joswig Jul 1996 A
5556466 Martin et al. Sep 1996 A
5602575 Pauly Feb 1997 A
5636795 Sedgwick et al. Jun 1997 A
5647542 Diana Jul 1997 A
5659347 Taylor Aug 1997 A
5681619 Ogasawara Oct 1997 A
5740967 Simmons et al. Apr 1998 A
5843515 Crum et al. Dec 1998 A
5951882 Simmons et al. Sep 1999 A
5964407 Sandkleiva Oct 1999 A
5976343 Schlaak Nov 1999 A
6179217 Osamu et al. Jan 2001 B1
6325302 Guzowski Dec 2001 B1
6540835 Kim et al. Apr 2003 B2
6607145 Boriani et al. Aug 2003 B1
6641667 Ochiai et al. Nov 2003 B2
6712285 Provenaz et al. Mar 2004 B2
6777032 Ogasahara et al. Aug 2004 B2
6811807 Zimmermann et al. Nov 2004 B1
6849684 Poppe et al. Feb 2005 B2
7160105 Edwards Jan 2007 B2
7178742 Nellentine et al. Feb 2007 B2
7182815 Katagami et al. Feb 2007 B2
7244310 Edwards Jul 2007 B2
7270712 Edwards Sep 2007 B2
7357959 Bauer Apr 2008 B2
7387071 Heinke et al. Jun 2008 B2
7449070 Fellingham Nov 2008 B2
7604333 Horsnell Oct 2009 B2
7757632 Edwards Jul 2010 B2
7837071 Achrainer Nov 2010 B2
7901741 Katagami et al. Mar 2011 B2
8028651 Rademacher et al. Oct 2011 B2
8118385 Van De Wynckel et al. Feb 2012 B2
8449087 Kataoka et al. May 2013 B2
8545943 Frankenberger et al. Oct 2013 B2
8652581 Merchant Feb 2014 B2
8678535 Beier et al. Mar 2014 B2
8875655 Pettersson et al. Nov 2014 B2
8882242 Beier et al. Nov 2014 B2
9010899 Harjee et al. Apr 2015 B2
9108424 Wallsten et al. Aug 2015 B2
9140247 Herre et al. Sep 2015 B2
9156054 Ikushima Oct 2015 B2
9266353 Beier et al. Feb 2016 B2
9393787 Ikushima Jul 2016 B2
9464573 Remy et al. Oct 2016 B2
9592524 Fritz et al. Mar 2017 B2
9701143 Ikushima Jul 2017 B2
9707585 Reimert et al. Jul 2017 B2
9844792 Pettersson et al. Dec 2017 B2
9901945 Fehr et al. Feb 2018 B2
9914150 Pettersson et al. Mar 2018 B2
10016977 Stefani et al. Jul 2018 B2
10105946 Nakamura et al. Oct 2018 B2
10150304 Herre et al. Dec 2018 B2
10252552 Pitz et al. Apr 2019 B2
10272677 Stefani et al. Apr 2019 B2
10532569 Wallsten et al. Jan 2020 B2
20010017085 Kubo et al. Aug 2001 A1
20010019340 Kubo et al. Sep 2001 A1
20020024544 Codos Feb 2002 A1
20020043280 Ochiai et al. Apr 2002 A1
20020043567 Provenaz et al. Apr 2002 A1
20020105688 Katagami et al. Aug 2002 A1
20020109741 Okabe et al. Aug 2002 A1
20020128371 Poppe et al. Sep 2002 A1
20030020783 Sanada Jan 2003 A1
20030041884 Bahr Mar 2003 A1
20030049383 Ogasahara et al. Mar 2003 A1
20040028830 Bauer Feb 2004 A1
20040089234 Hagglund et al. May 2004 A1
20040107900 Clifford et al. Jun 2004 A1
20040123159 Kerstens Jun 2004 A1
20040173144 Edwards Sep 2004 A1
20040221804 Zimmermann et al. Nov 2004 A1
20040231594 Edwards Nov 2004 A1
20040238522 Edwards Dec 2004 A1
20040256501 Mellentine et al. Dec 2004 A1
20040261700 Edwards Dec 2004 A1
20050000422 Edwards Jan 2005 A1
20050015050 Mowery et al. Jan 2005 A1
20050016451 Edwards Jan 2005 A1
20050023367 Reighard et al. Feb 2005 A1
20050156963 Song et al. Jul 2005 A1
20050243112 Kobayashi et al. Nov 2005 A1
20060061613 Fienup et al. Mar 2006 A1
20060068109 Frankenberger et al. Mar 2006 A1
20060146379 Katagami et al. Jul 2006 A1
20060238587 Horsnell Oct 2006 A1
20060251796 Fellingham Nov 2006 A1
20070062383 Gazeau Mar 2007 A1
20070292626 Larsson et al. Dec 2007 A1
20080271674 Rademarcher Nov 2008 A1
20080309698 Nakano et al. Dec 2008 A1
20090027433 Van De Wynckel et al. Jan 2009 A1
20090029069 Edwards Jan 2009 A1
20090117283 Herre May 2009 A1
20090181182 Sloan Jul 2009 A1
20100132612 Achrainer Jun 2010 A1
20100156970 Ikushima Jun 2010 A1
20100170918 Achrainer Jul 2010 A1
20100225685 Kwon Sep 2010 A1
20100279013 Frankenberger et al. Nov 2010 A1
20100282283 Bauer Nov 2010 A1
20100321448 Buestgens et al. Dec 2010 A1
20110014371 Herre Jan 2011 A1
20110084150 Merchant Apr 2011 A1
20110248046 Simion Oct 2011 A1
20110262622 Herre Oct 2011 A1
20120085842 Ciardella Apr 2012 A1
20120105522 Wallsten May 2012 A1
20120114849 Melcher May 2012 A1
20120162331 Kataoka Jun 2012 A1
20120186518 Herre Jul 2012 A1
20120219699 Pettersson et al. Aug 2012 A1
20120249679 Beier et al. Oct 2012 A1
20120282405 Herre Nov 2012 A1
20130201243 Yoshida Aug 2013 A1
20130215203 Chen Aug 2013 A1
20130257984 Beier et al. Oct 2013 A1
20130284833 Fritz Oct 2013 A1
20140076985 Pettersson et al. Mar 2014 A1
20140242285 Pettersson et al. Aug 2014 A1
20140329001 Rouaud et al. Nov 2014 A1
20150009254 Kaiba et al. Jan 2015 A1
20150042716 Beier et al. Feb 2015 A1
20150086723 Bustgens Mar 2015 A1
20150098028 Ohnishi Apr 2015 A1
20150328654 Schwab Nov 2015 A1
20150375258 Fritz et al. Dec 2015 A1
20150375507 Ikushima Dec 2015 A1
20160052312 Pitz et al. Feb 2016 A1
20160074822 Han Mar 2016 A1
20160288552 Ikushima Oct 2016 A1
20160306364 Ikushima et al. Oct 2016 A1
20170087837 Stefani et al. Mar 2017 A1
20170106393 Hamspon et al. Apr 2017 A1
20170136481 Fritz et al. May 2017 A1
20170252765 Medard Sep 2017 A1
20170267002 Pitz et al. Sep 2017 A1
20170299088 Rau Oct 2017 A1
20170361346 Lahidjanian Dec 2017 A1
20180022105 Nakamura et al. Jan 2018 A1
20180056670 Kerr Mar 2018 A1
20180093491 Murayama et al. Apr 2018 A1
20180178505 Stefani et al. Jun 2018 A1
20180222186 Stefani et al. Aug 2018 A1
20180250955 Herre Sep 2018 A1
20190091712 Medard et al. Mar 2019 A1
Foreign Referenced Citations (198)
Number Date Country
2287527 Aug 1998 CN
1331661 Jan 2002 CN
1438942 Aug 2003 CN
1512919 Jul 2004 CN
1176815 Nov 2004 CN
1668386 Sep 2005 CN
1761530 Apr 2006 CN
101264698 Sep 2008 CN
101309755 Nov 2008 CN
101657264 Feb 2010 CN
101784348 Jul 2010 CN
102177002 Sep 2011 CN
102198434 Sep 2011 CN
102971080 Mar 2013 CN
103153483 Jun 2013 CN
103909743 Jul 2014 CN
104613205 May 2015 CN
104994966 Oct 2015 CN
105358259 Feb 2016 CN
205042649 Feb 2016 CN
106414081 Feb 2017 CN
1284250 Nov 1968 DE
7710895 Sep 1977 DE
3045401 Jul 1982 DE
3221327 Sep 1983 DE
3225554 Jan 1984 DE
3634747 Aug 1987 DE
3804092 Sep 1988 DE
4013322 Oct 1991 DE
4115111 Nov 1991 DE
4138491 May 1993 DE
9405600 Jun 1994 DE
68924202 Feb 1996 DE
19606716 Aug 1997 DE
19630290 Jan 1998 DE
19731829 Jan 1999 DE
19743804 Apr 1999 DE
9422327 Mar 2000 DE
19852079 May 2000 DE
19936790 Feb 2001 DE
20017629 Mar 2001 DE
10048749 Apr 2002 DE
69429354 May 2002 DE
69622407 Mar 2003 DE
10307719 Sep 2003 DE
60001898 Feb 2004 DE
102004021223 Dec 2004 DE
10331206 Jan 2005 DE
102004034270 Feb 2006 DE
102004044655 Mar 2006 DE
102004049471 Apr 2006 DE
60212523 Feb 2007 DE
69836128 Aug 2007 DE
60125369 Oct 2007 DE
102006021623 Nov 2007 DE
102006056051 May 2008 DE
102007018877 Oct 2008 DE
60132100 Dec 2008 DE
102007037663 Feb 2009 DE
10 2008 018 881 Sep 2009 DE
102008053178 May 2010 DE
102009029946 Dec 2010 DE
102009038462 Mar 2011 DE
102010004496 Jul 2011 DE
102010019612 Nov 2011 DE
102012006371 Jul 2012 DE
102012005087 Oct 2012 DE
102012005650 Sep 2013 DE
102012212469 Jan 2014 DE
102012109123 Mar 2014 DE
202013101134 Jun 2014 DE
102013002412 Aug 2014 DE
102013011107 Aug 2014 DE
102013205171 Sep 2014 DE
102014006991 Dec 2014 DE
102014007523 Nov 2015 DE
102014008183 Dec 2015 DE
10 2014 217 892 Mar 2016 DE
102014012705 Mar 2016 DE
102014013158 Mar 2016 DE
10 2016 014 952 Jun 2018 DE
0138322 Apr 1985 EP
0297309 Jan 1989 EP
0665106 Aug 1995 EP
1120258 Aug 2001 EP
1270086 Jan 2003 EP
1764226 Mar 2007 EP
1852733 Nov 2007 EP
1884365 Feb 2008 EP
1946846 Jul 2008 EP
2002898 Dec 2008 EP
2133154 Dec 2009 EP
2151282 Feb 2010 EP
2196267 Jun 2010 EP
2380744 Oct 2011 EP
2433716 Mar 2012 EP
2468512 Jun 2012 EP
2641661 Sep 2013 EP
2644392 Oct 2013 EP
2777938 Sep 2014 EP
2799150 Nov 2014 EP
2842753 Mar 2015 EP
3002128 Apr 2016 EP
3156138 Apr 2017 EP
3213823 Sep 2017 EP
3257590 Dec 2017 EP
3272669 Jan 2018 EP
3068626 Oct 2019 EP
3010918 Mar 2015 FR
2200433 Aug 1988 GB
2367771 Apr 2002 GB
2507069 Apr 2014 GB
S5722070 Feb 1982 JP
S62116442 May 1987 JP
H04-106669 Sep 1992 JP
H0798171 Oct 1995 JP
H09192583 Jul 1997 JP
2000158670 Jun 2000 JP
2000317354 Nov 2000 JP
2001129456 May 2001 JP
2001157863 Jun 2001 JP
2001239652 Sep 2001 JP
2001300404 Oct 2001 JP
2005501745 Jan 2002 JP
2002361863 Dec 2002 JP
2003506210 Feb 2003 JP
2003136030 May 2003 JP
2003164780 Jun 2003 JP
2004142382 May 2004 JP
2004528956 Sep 2004 JP
2004337710 Dec 2004 JP
2005526234 Sep 2005 JP
2007021760 Feb 2007 JP
2007152666 Jun 2007 JP
2007520340 Jul 2007 JP
2007245633 Sep 2007 JP
2007289848 Nov 2007 JP
2008110332 May 2008 JP
2009006324 Jan 2009 JP
2010528852 Aug 2010 JP
2010531213 Sep 2010 JP
2010531729 Sep 2010 JP
2010241003 Oct 2010 JP
2011206958 Oct 2011 JP
2012011310 Jan 2012 JP
2012506305 Mar 2012 JP
2012135925 Jul 2012 JP
2012206116 Oct 2012 JP
2012228643 Nov 2012 JP
2012228660 Nov 2012 JP
2013067179 Apr 2013 JP
2013530816 Aug 2013 JP
2013530816 Aug 2013 JP
2013188706 Sep 2013 JP
2014019140 Feb 2014 JP
2014050832 Mar 2014 JP
2014111307 Jun 2014 JP
2015-009222 Jan 2015 JP
2015027636 Feb 2015 JP
2015096322 May 2015 JP
2015520011 Jul 2015 JP
2015193129 Nov 2015 JP
2015535735 Dec 2015 JP
2016507372 Mar 2016 JP
2016526910 Sep 2016 JP
2016175077 Oct 2016 JP
2016175662 Oct 2016 JP
2018012065 Jan 2018 JP
2020513311 May 2020 JP
2020513314 May 2020 JP
8601775 Mar 1986 WO
9856585 Dec 1998 WO
02098576 Dec 2002 WO
03021519 Mar 2003 WO
2003062129 Jul 2003 WO
2004048112 Jun 2004 WO
2004085738 Oct 2004 WO
2005016556 Feb 2005 WO
2005075170 Aug 2005 WO
2006022217 Mar 2006 WO
2007121905 Nov 2007 WO
2009019036 Feb 2009 WO
2010046064 Apr 2010 WO
2010146473 Dec 2010 WO
2011044491 Apr 2011 WO
2011128439 Oct 2011 WO
2011138048 Nov 2011 WO
2013121565 Aug 2013 WO
2015071270 May 2015 WO
2015096322 Jul 2015 WO
2015186014 Dec 2015 WO
2016-087016 Jun 2016 WO
2016142510 Sep 2016 WO
2016145000 Sep 2016 WO
2017006245 Jan 2017 WO
2017006246 Jan 2017 WO
2018102846 Jun 2018 WO
2018108565 Jun 2018 WO
Non-Patent Literature Citations (63)
Entry
China National Intellectual Property Administration Office Action and Search Report for CN Application No. 2017800//018.3 dated Aug. 27, 2020 (11 pages; Search Report in English).
Ghasem, G. et al.; “Chapter 2 Background on Sprays and Their Production”, Industrial Sprays and Atomization: Design, Analysis and Applications, Jan. 1, 2002, Springer, London, pp. 7-33, XP009195118, ISBN: 978-1-4471-3816-7.
International Search Report and Written Opinion for PCT/EP2017/081141 dated Feb. 26, 2018 (17 pages; with English translation).
International Search Report and Written Opinion for PCT/EP2017/081114 dated May 15, 2018 (33 pages; with English translation).
Anonymous: “Roboterkalibrierung—Wikipedia”, Nov. 7, 2016, XP055471615, Gefunden im Internet: URL: https://de.wikipedia.org/w/index.php?title=Roboterkalibrierung&oldid=159460756 [gefunden am Apr. 30, 2018] das ganze dockument (8 pages; with English translation).
Beyer, Lukas: “Genauigkeitssteigerung von Industrierobotern”, Forschungsberichte Aus Dem Laboratorium Fertigungstechnik/Helmut-Schmidt-Universitat, Universitat Der Bundeswehr Hamburg, Dec. 31, 2005, Seiten 1-4, XP009505118; ISSN: 1860-2886; ISBN: 978-3-8322-3681-6 (13 pages; with English machine translation).
International Search Report and Written Opinion for PCT/EP2017/081108 dated Feb. 28, 2018 (with English translation; 18 pages).
International Search Report and Written Opinion for PCT/EP2017/081099 dated Feb. 26, 2018 (21 pages; with English translation).
International Search Report and Written Opinion for PCT/EP2017/081102 dated Mar. 14, 2018 (16 pages; with English translation).
International Search Report and Written Opinion for PCT/EP2017/081105 dated Feb. 26, 2018 (19 pages; with English translation).
International Search Report and Written Opinion for PCT/EP2017/081152 dated May 15, 2018 (25 pages; with English translation).
International Search Report and Written Opinion for PCT/EP2017/081098 dated May 14, 2018 (26 pages; with English translation).
International Search Report and Written Opinion for PCT/EP2017/081101 dated Feb. 28, 2018 (14 pages; with English translation).
International Search Report and Written Opinion for PCT/EP2017/081121 dated Feb. 26, 2018 (20 pages; with English translation).
International Search Report and Written Opinion for PCT/EP2017/081117 dated Mar. 12, 2018 (27 pages; with English translation).
International Search Report and Written Opinion for PCT/EP2017/081123 dated Feb. 26, 2018 (20 pages; with English translation).
European Search Report for EP20170638.9 dated Sep. 14, 2020 (4 pages—English translation not available).
European Search Report for EP20170021.8 dated Sep. 8, 2020 (11 pages—English translation not available).
European Search Report for EP20170025.9 dated Sep. 9, 2020 (4 pages—English translation not available).
European Search Report for EP20170016.8 dated Sep. 7, 2020 (4 pages—English translation not available).
Non-Final Office Action dated Apr. 28, 2021 for U.S. Appl. No. 16/468,693 (109 pages).
Final Office Action dated Apr. 19, 2021 for U.S. Appl. No. 16/468,700 (62 pages).
Non-Final Office Action for U.S. Appl. No. 16/468,691 dated Jan. 7, 2021 (79 pages).
Chinese Office Action for Application No. CN20178007017.9 dated Aug. 31, 2020 (8 pages; with English translation).
Non Final Office Action for U.S. Appl. No. 16/468,697 dated Oct. 22, 2020 (78 pages).
Non Final Office Action for U.S. Appl. No. 16/468,696 dated Nov. 2, 2020 (58 pages).
Non Final Office Action for U.S. Appl. Mo. 16/468,689 dated Oct. 15, 2020 (77 pages).
Chinese Office Action for CN201780077476.7 dated Sep. 23, 2020 (12 pages; English translation not available).
Non Final Office Action for U.S. Appl. No. 16/468,700 dated Dec. 1, 2020 (73 pages).
Chinese Office Action and Search Report for CN201780077603.3 dated Oct. 12, 2020 (15 pages; English translation not available).
JPO Submission for JP2019-531096; submitted Dec. 21, 2020 (32 pages; with English translation).
JPO Submission for JP2019-531957; submitted Dec. 21, 2020 (21 pages; with English translation).
EPO Examination Report for Application No. 201702818.1 dated Dec. 18, 2020 (with English machine translation; 6 pages).
Final Office Action dated Mar. 19, 2021 for U.S. Appl. No. 16/468,696 (45 pages).
EPO Official Notification of Opposition for Application No. 17821803.8 dated Feb. 10, 2021 (64 pages; with English machine translation).
Non-Final Office Action dated Feb. 18, 2021 for U.S. Appl. No. 16/468,692 (97 pages).
Notice of Allowance mailed in U.S. Appl. No. 16/468,689 dated Jun. 2, 2021 (38 pages).
Fianl Office Action dated May 13, 2021 for U.S. Appl. No. 16/468,691 (70 pages).
JPO Notification of Reasons for Rejection for Application No. JP2019-532030 dated May 18, 2021 (6 pages; with English translation).
CIPO Office Action for Application No. CN201780077474.8 dated Apr. 26, 2021 (17 pages; with English translation).
Notification of Reasons for Refusal for Application No. JP2019-532012 dated Jun. 22, 2021 (6 pages; with English machine translation).
Notification of Reasons for Refusal for Application No. JP2019-527330 dated Jun. 22, 2021 (10 pages; with English machine translation).
Chinese Office Action dated Jun. 2, 2021 for Application No. CN201780077017 9 (17 pages; with English machine translation).
Japanese Notification of Reasons for Rejection dated Jun. 1, 2021 for Application No. JP2019-531944 (14 pages; with English machine translation).
Japanese Notification of Reasons for Rejection dated Jun. 8, 2021 for Application No. JP2019-531957 (13 pages; with English machine translation).
Supplemental Notice of Allowability dated Jul. 8, 2021 for U.S. Appl. No. 16/468,696 (11 pages).
Liptak, Bela. (2006). Instrument Engineers' Handbook (4th Edition)—Process Control and Optimization, vol. 2—2.1.3.5 Process Time Constant, (pp. 99-102). Taylor & Francis. Retrieved from https://app.knovel.eom/hotlink/pdf/id:kt00CC7HL1/instrument-engineers/process-time-constant (Year: 2006).
Japenese Patent Office Notice of Reasons of Refusal for Application No. JP 2019-531967 dated Jun. 8, 2021 (8 pages; with English machine translation).
JPO Office Action dated Jul. 3, 2021 for Application No. JP2019-532024 (12 pages; with English machine translation).
Non-Final Office Action dated Aug. 27, 2021 for U.S. Appl. No. 16/468,695 (149 pages).
JPO Decision to Grant dated Oct. 3, 2021 for Application No. JP2019-532113 (7 pages; with English machine translation).
Final Office Action dated Oct. 7, 2021 for U.S. Appl. No. 16/468,693 (58 pages).
JPO Office Action for Application No. JP2019-531097 dated Jun. 29, 2021 (10 pages; with English machine translation).
JPO Office Action for Application No. 2019-531096 dated Jul. 6, 2021 (9 pages; with English machine translation).
JPO Office Action for Application No. 2019-531098 dated Jul. 6, 2021 (5 pages; English translation only).
JPO Office Action for Application No. 2019-531459 dated Jul. 6, 2021 (8 pages; with English machine translation).
Non-Final Office Action dated Dec. 24, 2021 for related U.S. Appl. No. 16/468,693 (19 pages).
Chinese Office Action in related application No. CN201780077045.0 dated Jan. 29, 2022 (17 pages; English machine translation provided).
Non Final Office Action dated Nov. 23, 2021 for U.S. Appl. No. 16/468,694 (163 pages).
JPO Decision to Grant in related application No. JP2019-532030 dated Dec. 1, 2022 (6 pages; English machine translation provided).
Non-Final Office Action for related U.S. Appl. No. 16/468,699 dated Mar. 9, 2022 (180 pages).
JPO Decision to Grant in related application JP2019-532012 dated Jan. 25, 2022 (6 pages; with English machine translation).
EPO Notification of Objection dated May 18, 2022 for Patent No. EP3718643, related to related U.S. Appl. No. 16/468,693 (55 pages; with English machine translation).
Related Publications (1)
Number Date Country
20190299231 A1 Oct 2019 US