The subject matter of the invention is the application of 9-O-propargylcinchonine and 9-O-propargylcinchonidine for the manufacture of drugs used in anticancer treatment.
Cancer diseases are one of the principal health disorders reported in humans, having the highest mortality rates and increasing numbers of new cases, related first of all to the increased life length and to lifestyle. The treatment of cancer diseases is difficult, expensive and in many cases not efficacious. Therefore, there is an urgent need for novel substances with cytostatic activity. They are frequently sourced from natural products, in particular from alkaloids and derivatives thereof, such as taxol, camptothecin or Vinca alkaloids (for review, see Taglialatela-Scafati, O. Modern Alkaloids, Fattorusso E. (ed.), Wiley-VCH, 2007, p. 25). Cinchona bark alkaloids, such as for example quinine, quinidine and cinchonidine and cinchonine, do not have specific anti-cancer properties. In experimental therapies for cancer diseases with multi drug resistance (MDR), combinations of anti-cancer drugs have been used, such as cyclophosphamide, doxorubicin, methylprednisolone or vinblastine with not anticancer Cinchona alkaloids (quinine or cinchonine). These alkaloids inhibit the removal of the aforementioned anti-cancer drugs from multi-drug resistant cancerous cells, resulting in increase of the action of such drugs (Lee, S.-Y. et al. Environ. Tox., 2011, 26, 424 and Solary, E. et al., Leukemia, 2000, 14, 2085).
In the experimental anti-cancer differentiation therapy, in turn, compounds are used which may have an effect on the expression of genes associated with cancer growth combined with traditional chemotherapeutic agents which destroy cancerous cells. Weak inhibition of growth and differentiation of in vitro breast cancer cells (MCF-7) was reported for high concentrations of quinine and quinidine (IC50: 40 and 113 μM, respectively) which according to chemotherapy standards not qualify these substances as active drugs (Martirosyan, A. R. et al. Biochem. Pharmacol., 2004, 68, 1729).
The objective of the invention has been to develop novel applications of Cinchona alkaloid derivatives with cytotoxic activity in anti-cancer treatment.
The subject matter of the invention is the application of 9-O-propargyl ethers of a general formula represented by formula 1
wherein respective ethers have the following absolute configuration at C-8 and C-9 atoms:
Cytotoxic activity tests were performed using the following cancer cell lines: MCF-7 (breast cancer), HeLa (cervical cancer) A549 (pulmonary cancer) and KB (nasopharynx cancer) obtained from ECACC (European Collection of Cell Cultures).
Cytotoxicity tests were carried out using a standard procedure with sulphorhodamine B. They involved incubation of the cancer cell lines in the logarithmic growth phase for 72 hours with the compound tested and, subsequently, spectrophotometric determination of the degree of cell growth inhibition using adsorption of a dye (sulphorhodamine B) which binds cellular proteins. The determination was carried out according to a procedure reported in: Vichai, V., Kirtikara, K. Nature Protocols, 2006, 1, 1112.
Preparation of Cells for the Experiment:
Cancerous cells of the cell line tested in the logarithmic growth phase were seeded onto 24-well plates in a quantity of 20,000 cells/2 mL of the growth medium per well and, subsequently, incubated in an incubator at 37° C., in the 5% CO2 atmosphere for 24 hours.
Preparation of Test Compound Solutions:
Solutions of the test compounds were prepared in DMSO in the following concentration range: 0.05; 0.1; 0.5; 1; 5; 10; 50; 100 μM.
The cells of the lines tested were treated with the solutions of the test compounds in a laminar-flow chamber which ensured sterile working conditions according to the following procedure: the first three wells were used as a control: they contained 20 μL of DMSO only; successive solutions of the test compound were added to subsequent wells (20 μL), starting with the lowest concentration (three wells for each concentration level). Subsequently, the plates were placed in an incubator for 72 hours.
After the end of incubation, the adhered cells were fixed by adding 500 μL of cold (4° C.) 50% trichloroacetic acid (TCA) and incubated at 4° C. for 1 hour. Subsequently, each well was rinsed with sterile water and dried. The operation was repeated five times. The fixed cells were stained for 30 minutes by adding 500 μL of 0.4% of a dye solution (sulphorhodamine B) dissolved in 1% acetic acid. Any unbound dye was removed by decanting it from the plate, and the cells were washed 4 times with 1% acetic acid. Subsequently, the plates were dried in air for approx. 5 minutes. Any unbound dye was dissolved by adding 1500 μL of 10 mM mM Tris-base buffer (trishydroxymethylaminomethane) to each well and shaken using an orbital shaker for 5 minutes. Subsequently, 200 μL of solution from each well was transferred to each of two wells on a new 96-well plate and absorption of the solutions was determined spectrophotometrically at a wavelength of 490-530 nm using a plate reader. Percentage inhibition of cell growth by the test compound was calculated assuming the absorption of the control solution as 100%.
Depending on the type of the cell line, the following growth media were used:
IC50 values, denoting concentration of a compound needed to obtain 50% inhibition of cell growth, were determined for all the derivatives tested. Derivatives for which IC50<4 μg/mL are generally assumed as active (abbreviated as A), derivatives with values in an IC50 range of 4-30 μg/mL are considered medium active (abbreviated as MA), while those for which IC50>30 μg/mL are considered non-active (abbreviated as NA) (National Cancer Institute, Division of Cancer Treatment, Drug Research and Development. Program Procedure. Instruction and technical documentation change notice, instruction 14. Screening data summary interpretation and outline of current screening. Edition NCI NIH, Bethesda Rev., 1980, 6, 31-62).
To enable comparison, identical tests were performed using known cytotoxic agents: 5-fluoro-2′-deoxyuridine and 5-fluorouracil as well as other cinchona alkaloids and their derivatives: cinchonine and 9-O-propargylquinine and 9-O-propagylquinidine.
The results of cytotoxic activity tests for the compounds of general formula 1 are shown in Table 1. The values are average results of three independent determinations.
The in vitro cytotoxicity against cancer cell lines of breast cancer, cervical cancer, lung cancer and nasopharynx cancer of the PCN compound is within the range of high activity, while that for the PCD compound is within the range of medium activity. The cytotoxicity of both compounds (PCN and PCD) in each case was higher than that of currently used anti-cancer agents, such as 5-fluoro-2′-deoxyuridine and 5-fluorouracil.
The subject matter of the invention is the application of 9-O-propargylcinchonine (PCN) and 9-O-propargylcinchonidine (PCD) for the manufacture of drugs used in breast cancer chemotherapy.
The tests performed confirmed that PCN has the highest activity against the MCF-7 line with an IC50 value of 3.0 μg/mL. It is more than six times as cytotoxic as 5FU, the control compound currently used in anti-cancer treatment, and 3.8 times as active as 5FdU. The PCD compound (IC50, 9.3 μg/mL) also has higher activity than 5FU and 5FdU, the control compounds, for which IC50 values are 18.2 and 11.4 μg/mL, respectively.
Another aspect of the invention is the application of 9-O-propargylcinchonine (PCN) and 9-O-propargylcinchonidine (PCD) for the manufacture of drugs used in cervical cancer chemotherapy.
The tests performed confirmed that PCN has the highest activity with an IC50 value of 3.5 μg/mL. PCN is six times as cytotoxic as 5FU (the control compound) and 3.7 times as cytotoxic as 5FdU. The PCD compound (IC50, 10.0 μg/mL) also has higher activity than 5FU and 5FdU for which IC50 values are 21.0 and 13.0 μg/mL, respectively.
Another aspect of the invention is the application of 9-O-propargylcinchonine (PCN) and 9-O-propargylcinchonidine (PCD) for the manufacture of drugs used in pulmonary cancer chemotherapy.
The tests performed confirmed that PCN has the highest activity with an IC50 value of 3.9 μg/mL. PCN is more than five times as cytotoxic as 5FU (the control compound) and more than three times as cytotoxic as 5FdU. The PCD compound with an IC50 of 16.0 μg/mL is more active than 5FU (IC50 21.4 μg/mL) and slightly less active than 5FdU (IC50, 13.4 μg/mL).
Another aspect of the invention is the application of 9-O-propargylcinchonine (PCN) and 9-O-propargylcinchonidine (PCD) for the manufacture of drugs used in nasopharynx cancer chemotherapy.
The tests performed confirmed that PCN has the highest activity with an IC50 value of 3.2 μg/mL. Compared to 5FU and 5FdU, PCN has 6.8 and 4.3 times as high activity, respectively. The PCD compound (IC50, 9.5 μg/mL) also has higher activity than 5FU and 5FdU (the control compounds) for which IC50 values are 22.0 and 13.7 μg/mL, respectively.
The cytotoxicity of compounds of general formula 1 is associated with absolute configuration at C-8 and C-9 atoms; the PCN compound with the highest activity is cinchonine derivative with (8R,9S) configuration, and a change to the opposite configuration, (8S,9R), found in the PCD derivative and cinchonidine from which it is prepared, leads to an about 3-fold reduction in cytotoxic activity.
The subject matter of the invention is explained by an embodiment which illustrates the synthesis of the PCN compound.
The Cinchona alkaloid 9-O-propargyl ether was prepared from a natural alkaloid isolated from Cinchona bark using a procedure disclosed in patent EP1477488.
Cinchonine (883 mg; 3 mmol) was dissolved in anhydrous DMF (12 mL); subsequently, the solution was placed on an ice bath. The mixture was cooled to approx. 5° C. and sodium hydride (50% NaH in mineral oil, 300 mg, 2 equivalents) was added portionwise over 0.5 hour. The solution was stirred for 2 hours and propargyl bromide as a 80% solution in toluene (0.42 mL; 3.75 mmol, 1.25 equivalents) was added using a syringe. The reaction mixture was left to stand overnight at room temperature. Subsequently, dichloromethane (50 ml) was added to the reaction mixture and the organic solution was washed sequentially with saturated NaCl solution (30 ml) and distilled water (30 mL). The organic layer was dried with anhydrous magnesium sulphate; subsequently, the drying agent was filtered off and the solvents were evaporated using a vacuum evaporator, maintaining the water bath temperature in the 40-45° C. range. The crude product, 9-O-propargylcinchonine (PCN), was purified on a chromatographic column with silica gel (60H, 0.045-0.075 mm/200-300 mesh from Merck) in the gradient: CH2Cl2/n-hexane, CH2Cl2, 1% MeOH/CH2Cl2, 5% MeOH/CH2Cl2. The PCN compound was obtained as oil with a purity of >99% and in yield of approx. 80%.
1H NMR (300/400 MHz, CDCl3): δ 1.24 (m, 1H), 1.52 (m, 2H), 2.11 (m, 1H), 2.28 (q, 1H, J=8.0 Hz), 2.46 (t, 1H, J=2.3 Hz), 2.72-2.97 (m, 3H), 3.11 (m, 1H), 3.49 (s, 1H), 3.92 (d, 1H, J=1.8 Hz), 3.95 (d, 1H, J=1.8 Hz), 4.21 (d, 1H, J=2.4 Hz), 4.25 (d, 1H, J=2.4 Hz), 5.01 (d, 1H, J=3.7 Hz), 5.14 (d, 1H, J=11.1 Hz), 6.10 (ddd, 1H, J=17.3, 10.1, 7.6 Hz), 7.26 (s, 1H), 7.48 (d, 1H, J=4.3 Hz), 7.59 (m, 1H), 7.73 (m, 1H), 8.15 (d, 1H, J=8.4 Hz), 8.18 (d, 1H, J=8.5 Hz), 8.91 (d, 1H, J=4.3 Hz)
13C NMR (CDCl3): δ 20.35, 28.10, 40.00, 49.22, 49.98, 56.48, 60.30, 75.13, 114.74, 123.24, 126.81, 129.18, 130.46, 148.51, 150.08.
MS ES (m/z): (−) 331 (M−H)−, 367/369 (M+Cl)−; (+) 333 (M+H)+, 355 (M+Na)+.
Number | Date | Country | Kind |
---|---|---|---|
P.407154 | Feb 2014 | PL | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/PL2014/050011 | 3/4/2014 | WO | 00 |