The present invention relates generally to a mixing tip and method for dispensing a fluid and a particulate from a cannula, and more particularly, to a mixing tip configured for dispensing a gas and a particulate for use in a medical procedure.
Generally, it is well-known to dispense a particulate with a fluid for use in medical procedures. More specifically, the particulate and the fluid are separately received within a fluidization chamber for fluidizing the particulate within the fluid. Once the particulate is fluidized, the fluidized particulate and fluid are initially forced from the fluidization chamber with a generally turbulent flow under the influence of pressure and finally dispensed to beneficially affect the outcome of the medical procedure. For instance, a particulate, such as a coagulant particulate may be fluidized with a fluid, such as a gas, and applied onto an anatomical site for reducing the flow of blood by hemostatic clotting.
Traditionally, the fluidized coagulant particulate and gas are forced along a flow channel of an applicator for delivering the fluidized coagulant to the anatomical site. While the flow channel is useful for directing the fluidized coagulant particulate during a topical application, the flow channel may be especially useful for directing the fluidized coagulant particulate into a patient during a laparoscopic application. However, the fluidized coagulant particulate tends to stratify, or separate, from the gas due to an increasing laminar flow along the flow channel. Coagulant particulate, especially if heavy and/or sticky, tends to fall from the laminar flow and gather into a rivulet stream at a bottom of the flow channel. Thus, the rivulet stream dribbles and/or drools from the applicator while dispensing from the applicator, creating waste and mess near the anatomical site.
Moreover, the fluidized coagulant particulate directed toward the anatomical site contains variable concentrations of the coagulant particulate due to the stratification. For example, high concentrations of coagulant particulate may surge from the applicator, while low concentrations may fail to reach the anatomical site altogether. The variable concentrations of coagulant particulate may ultimately lead to wasted coagulant particulate and increased time of application to the anatomical site.
Traditional attempts for improving the distribution of the fluidized coagulant particulate to uniform density and concentration generally include increasing the amount of gas along the flow channel relative to the coagulant particulate. For example, another fluidization chamber may be added for re-fluidizing the coagulant particulate just before being discharged from the applicator. While this may effectively create a uniform density and concentration of coagulant particulate within the gas, the overall density of the coagulant particulate is reduced. Therefore, the use of the additional fluidization chamber dilutes the coagulant particulate and requires additional time and expense to complete.
There is a need for a mixing tip and method for dispensing a fluid and a particulate, such as a gas and a particulate, that addresses present challenges and characteristics such as those discussed above.
An exemplary embodiment of an applicator for dispensing a generally uniform density of a particulate and fluid includes a cannula and a mixing tip. The cannula has a distal cannula end portion, a proximal cannula end portion, and a flow channel extending therethrough. The mixing tip includes a housing, an inlet, and an outlet. The inlet is positioned at a proximal end portion of the housing and configured for attaching to an applicator and receiving a stratified particulate and fluid. The outlet is positioned at a distal end portion of the housing. The mixing tip also includes a mixing channel and a first fin. The mixing channel extends through the housing from the inlet to the outlet. The first fin is positioned within the housing and extends along at least a portion of the mixing channel. In addition, the first fin is configured in a generally spiral shape about the mixing channel and positioned between the inlet and the outlet for mixing the particulate and the fluid. As such, the first fin distributes the particulate generally uniformly within the fluid for discharge from the outlet.
In one aspect, the mixing tip is operatively connected to the distal cannula end portion, and the inlet is fluidly connected to the flow channel for receiving the stratified particulate and fluid.
In use, the mixing tip dispenses a stream of fluid and particulate from the cannula during a medical procedure. The stream has a stratified particulate portion having a higher concentration of particulate than the remainder of the stream. The method includes directing the stream into the mixing channel of the mixing tip. The method also includes rotating the stream along a fluid within the mixing channel to increase turbulence and mixing the stratified particulate portion of the stream with the remainder of the stream to form a mixed stream. The mixed stream is mixed such that the particulate has a generally uniform density throughout the mixed stream of the fluid and particulate. Furthermore, the method includes discharging the mixed stream from the mixing tip.
Various additional objectives, advantages, and features of the invention will be appreciated from a review of the following detailed description of the illustrative embodiments taken in conjunction with the accompanying drawings.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with a general description of the invention given above, and the detailed description given below serve to explain the invention.
With reference to
The mixing tip 14 includes an outlet 28 and is also connected to the cannula 15 for discharging and dispensing the fluid and particulate onto an anatomical site, which may be located anywhere on or within a patient. More particularly, the fluid is pressurized at the fluid source 22, which forces the fluid and the particulate along the cannula 15 and through the mixing tip 14. According to an exemplary embodiment, the fluid from the fluid source 22 is a gas and the particulate is a coagulant particulate for dispensing on the anatomical site. However, the applicator 12 is not intended to be limited to the exemplary embodiment described herein. While the exemplary embodiment of the applicator 12 receives gas and particulate for mixing, discharging, and dispensing, it will be appreciated that any fluid, such as a liquid or gas, and particulate, may be used in accordance with the invention during a medical procedure. In this respect, the fluid source 22 may be a gas source or a liquid source. More particularly, the mixing tip 14, the applicator 12, the gas, and the coagulant particulate may be used in a surgical procedure, such as laparoscopic or topical surgery, for improving hemostatic clotting during the procedure.
The cannula 15 receives the gas and particulate from the outlet port 26 as the mixture. More particularly, the cannula 15 has a proximal cannula end portion 36 and a distal cannula end portion 38 and includes an outer tube 40 and a hypo tube 42. The hypo tube 42 is concentrically supported within the outer tube 40 by proximal and distal plugs 44, 46 respectively positioned at the upstream and distal cannula end portions 36, 38. A vent hole 39 also extends through the outer tube 40. Specifically, the vent hole 39 is positioned between the proximal and distal plugs 36, 38 for improving sterilization within the outer tube 40. In addition, the hypo tube 42 defines a flow channel 48 within the cannula 15. The cannula 15 is affixed and sealed within the hub 16 so that the outlet port 26 and the flow channel 48 are in fluid communication for receiving the relatively turbulent flow of fluidized particulate and gas.
The flow channel 48 extends through the hypo tube 42 from the proximal cannula end portion 36 toward the distal cannula end portion 38, which is configured to connect to the mixing tip 14. Generally, the mixing tip 14 includes an inlet 50, the outlet 28, and a mixing channel 52 extending therebetween. In order to couple the mixing tip 14 to the cannula 15, the outer tube 40 extends farther than the hypo tube 42. In this way, the mixing tip 14 is inserted within the outer tube 40 and the hypo tube 42 is inserted into the inlet 50 of the mixing tip 14.
As the fluidized particulate and gas move along the flow channel 48 and toward the mixing tip 14, the flow turbulence may decrease from turbulent to laminar, especially within the stream of gas and particulate immediately adjacent to the hypo tube 42. The relatively less turbulent flow and laminar flow of the fluidized particulate causes the particulate to fall from the gas and gather in a rivulet moving toward the distal cannula end portion 38 of the cannula 15. However, the mixing tip 14 is configured for mixing the particulate with the gas and creating turbulent flow in order to re-fluidize the particulate within the gas. In this way, the particulate is generally uniformly distributed throughout the discharging gas with generally uniform density and concentration for application onto the anatomical site.
The malleable distal tube 38a may be used to position the mixing tip 14 for directing the discharging stream of the fluidized particulate. For example, laparoscopic surgery may require the use of a trocar for accessing the anatomical site within the patient. Given the limited space within the patient, accessing the anatomical site may be difficult. However, access to the anatomical site may be improved by bending the malleable distal tube 38a in order to position the outlet 28 of the mixing tip 14 after insertion within the trocar. For example, a medical professional, such as a doctor or nurse, may insert the mixing tip 14 and a portion of the malleable distal tube 38a into the trocar and bend the malleable distal tube 38a with a forceps to aim at the anatomical site. The operator may bend the malleable distal tube 38a into any desirable shape. Of course, when the medical professional releases the forceps, the malleable distal tube 38a maintains the desired shape. Similarly, bending the malleable distal tube 38a to aim the mixing tip 14 may also reduce the necessity of either moving the applicator 12a between various trocars or repositioning the patient to improve the aim of the mixing tip 14 to the anatomical site. While bending the malleable distal tube 38a may cause additional particulate to fall from the gas and stratify, the mixing tip 14 connected to the malleable distal tube 38a fluidizes the additional fallen particulate for use on the anatomical site. Thereby, the fluidized particulate discharging from the mixing tip 14 may be directed onto an otherwise unreachable or difficult to reach anatomical site with the aid of the malleable distal tube 38a.
The malleable distal tube 38a is also generally transparent for enhanced visualization of powder passing therethrough. For example, viewing the laparoscopic procedure may be difficult given the inherent challenges of operating within the patient. As such, the medical professional may lack visibility of the mixing tip 14 or portions of the anatomical site during the procedure. However, the medical professional may view the particulate passing through the transparent malleable distal tube 38a in order to ensure that the particulate is being applied to the anatomical site. Finally, with respect to
The exemplary mixing tip 14 includes a generally cylindrical housing 56 having a proximal end portion 58 and a distal end portion 60. The distal end portion 60 includes a front face 62 having the outlet 28, and the proximal end portion 58 includes a rear face 64 having the inlet 50. As described above, the mixing tip 14 is configured for insertion into the outer tube 40 shown in
Each of the first, second, and third fins 68a, 68b, 68c are symmetrically positioned along the mixing channel 52 and gradually spiral about the mixing channel 52 in a generally spiral shape for generating turbulence within the fluidized particulate and gas passing therethrough. According to the exemplary embodiment, each of the first, second, and third fins 68a, 68b, 68c spiral approximately 120 degrees from the inlet 50 toward the outlet 28. However, it will be appreciated that the desired spiraling may be used in order to generate more or less turbulence depending on the application and the types of fluid and particulate mixed in accordance with the principles of the invention described herein. Furthermore, the first, second, and third fins 68a, 68b, 68c define first, second, and third grooves 70a, 70b, 70c that spiral adjacent to each of the fins 68a, 68b, 68c. Generally, the grooves 70a, 70b, 70c work in coordination with the fins 68a, 68b, 68c for similarly rotating and/or agitating the stream of the fluidized particulate and gas to create additional turbulence.
With respect to
It will be appreciated that the shape and number of fins and grooves may vary to accommodate varying fluids, particulates, or medical procedures. For example, the mixing tip 14 may accommodate higher or lower density particulates by increasing or decreasing the size of the mixing channel 52. Similarly, increasing the length and/or number of fins may increase turbulence, while reducing the length and/or number of fins may decrease the likelihood of clogging the mixing channel 52. According to the exemplary embodiment, the outlet 28 is generally circular and thus, produces a generally conical plume of fluidized particulate and gas. However, the shape of the outlet 28 may be changed in order to create a generally flat or rectangular plume. For example, the flat or rectangular plume may be used for topical surgery, and the conical plume may be used for laparoscopic surgery.
While the present invention has been illustrated by the description of one or more embodiments thereof, and while the embodiments have been described in considerable detail, they are not intended to restrict or in any way limit the scope of the appended claims to such detail. The various features shown and described herein may be used alone or in any combination. Additional advantages and modifications will readily appear to those skilled in the art. The invention in its broader aspects is therefore not limited to the specific details, representative apparatus and method and illustrative examples shown and described. Accordingly, departures may be from such details without departing from the scope of the general inventive concept.
Number | Name | Date | Kind |
---|---|---|---|
1784503 | Swann | Dec 1930 | A |
2604094 | Miller et al. | Jul 1952 | A |
4123800 | Mazzei | Oct 1978 | A |
4521349 | Weber | Jun 1985 | A |
4660772 | Rice | Apr 1987 | A |
6132396 | Antanavich et al. | Oct 2000 | A |
6200288 | Heaton et al. | Mar 2001 | B1 |
20110178495 | Ji | Jul 2011 | A1 |
Number | Date | Country |
---|---|---|
29516077 | Feb 1997 | DE |
10240324 | Mar 2004 | DE |
102004049983 | Apr 2006 | DE |
0237507 | Sep 1987 | EP |
H06198223 | Jul 1994 | JP |
2012085600 | Jun 2012 | WO |
Entry |
---|
European Patent Office, European Search Report in EP Application No. 14158037, Jun. 20, 2014. |
European Patent Office, European Search Report in EP Application No. 13158753, Aug. 13, 2014. |
Number | Date | Country | |
---|---|---|---|
20140257174 A1 | Sep 2014 | US |