All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
This disclosure relates generally to application of energy to tissue. More specifically, this disclosure relates to application of energy to tissue to treat conditions of the skin, epidermis, dermis and hypodermis.
Hyperhidrosis or excessive sweating is a common disorder which can result in excessive underarm, facial, or foot sweating. Excessive sweating may cause physical side-effects, including dehydration and infections, as well as emotional side-effects such as embarrassment. Many forms of treatment of hyperhidrosis are currently known, including medications, antiperspirants, botulinum toxins, and ablation therapy.
The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
When system 110 is assembled, applicator 114 may be connected to console 112 via multifunction connector 136. Console 112 may be configured to generate energy (e.g., microwave energy) at a frequency of, for example, approximately 5.8 gigahertz. Console 112 may be configured to generate energy (e.g., microwave energy) at a frequency of, for example, between approximately 5.3 gigahertz and 6.3 gigahertz or between approximately 5.0 gigahertz and 6.5 gigahertz. In some embodiments, applicator 114 may be connected to console 112 with, for example, a microwave cable, a tensile cord, a USB cable, coolant tubing and vacuum tubing. Applicator 114 may also be connected to a tissue interface module 116. These elements may be included in cable assembly 134. A foot pedal switch 132 may be connected to console 112 to control one or more of the functions of console 112, including the transmission of energy to applicator 114 or, alternatively, switches or buttons on applicator 114 may be used to control console 112.
In some embodiments, console 112 may also include a vacuum source, a cooling fluid source, (e.g., a chiller), a cooling fluid pump, an amplifier, a microwave generator, and control circuitry. These features of console 112 are internal to the console and are used to generate vacuum pressure, cooling fluid and microwave energy which may be transmitted through multifunction connector 136 and cable assembly 134 to applicator 114.
Skirt 206 may be made from, for example, a compliant medical grade plastic (e.g., a thermal plastic elastomer) such as, for example, urethane, or alternatively silicone, natural or synthetic rubber, elastomeric material, urethane foam with silicone, compliant plastic or a rubber seal coating. A suitable skirt 206 may have a height of between 0.15″ and 0.40″ and more specifically, approximately 0.25″ above tissue acquisition chamber 142 when skirt 206 is not compressed. In some embodiments, skirt 206 may have a durometer (hardness) of approximately 60 on the Shore A scale, or between 40 and 60, or between 20 and 80 on the Shore A scale. In one embodiment, skirt 206 may include inner walls having an average angle of approximately 53 degrees when not compressed. In one embodiment, skirt 206 may include inner walls having an average angle of approximately 49 degrees when not compressed. In some embodiments, these measurements may vary by, for example, up to plus or minus twenty percent. In some embodiments, skirt 206 may be clear or see-through to assist the physician in properly positioning applicator 114 with the tissue to be treated, by, for example, aligning skirt 206 with temporary markings on the patient's skin.
Attachment mechanisms 126 may be positioned on proximal side of tissue interface module 116, such as, for example in applicator chamber 118 and be adapted to facilitate the attachment of module 116 to applicator 114. In some embodiments, attachment mechanism 126 may include mechanical elements on applicator 114 and tissue interface module 116. In some embodiments, attachment mechanisms 126 may include a metal or ferromagnetic plate configured to cooperate with a magnet or magnets on applicator 114. In some embodiments, attachment mechanisms 126 form a completed magnetic circuit with elements of applicator 114, including, for example, magnet 186 and magnetic extenders 179 (see, for example,
Also shown in
As shown in
Referring still to
As described herein, attachment mechanisms 126 may be disposed on attachment supports 127 of
Fluid traps 156 may be configured to, for example, collect blood, sweat, and any other bodily fluids or tissue that may collect within tissue interface module 116 during treatment. Fluid traps 156 may further collect liquids or jells, such as, for example, K-Y jelly, used to facilitate acquisition of tissue. By collecting bodily fluids or tissues in fluid traps 156, tissue interface module 116 keeps filters 154 clear from obstructions that would otherwise interfere with the flow of air through such filters and might interfere with treatment or render treatment impossible. Thus, filters 154 are disposed between, and communicating with, both applicator chamber 118 and tissue acquisition chamber 142. As described above, filters 154 may include openings configured to permit air or gas to pass but prevent liquid from passing through filters 154. In one embodiment, applicator chamber 118 is able to communicate with tissue acquisition chamber 142 via filters 154 and vacuum channels 138. Tissue interface module 116 may further include vacuum interface 504.
Expandable aperture 170 may be included at a proximal end of tissue acquisition chamber 142, and expandable aperture 170 may include, for example, a gap at top of tissue acquisition chamber 142 between a bio-barrier 152 and an interior rim of tissue acquisition chamber 142. Vacuum notches 214 may be included in tissue acquisition chamber 142 proximal to the gap to enhance vacuum acquisition. In some embodiments, one wall (such as, for example, the wall formed by bio-barrier 152) of expandable aperture 170 may be flexible to increase in size and increase airflow when vacuum is applied. A tissue treatment surface 200 of applicator 114 may act to restrict the width of the aperture as it expands. A suitable expandable aperture 170 may be sized to allow air to pass into a vacuum path while preventing tissue from blocking such vacuum path.
Cooling plate 128 of applicator 114 may include an alumina or other metal frame surrounding the back side of cooling plate 128 to add structural strength to cooling plate 128, a plurality (e.g., four) of threaded rods may be bonded to the alumina frame to cooling plate 128 to a waveguide holder (not shown). In some embodiments, cooling plate 128 may comprise a ceramic material having approximately 94 to 99 percent alumina and 1 to 6 percent other material. Cooling plate 128 may further include one or more thermocouple traces (of, for example, copper and constantan). These thermocouples may be arranged to detect a temperature of cooling plate 128, a temperature of the surface of the tissue to be treated or a temperature of the interface. Such traces may be routed in side by side pairs to, for example, reduce the effect of noise on the output of such thermocouples. Such traces may be aligned to be perpendicular to the e-field emitted from the applicator to prevent the thermocouple traces from disrupting the e-field. When applicator 114 is attached to tissue interface module 116, applying vacuum to tissue interface module 116 may result in pulling bio-barrier 152 of
Other features of tissue interface module 116 but shown in
In
In one particular embodiment, as shown in
In one embodiment, the angle of engagement surface 125 of attachment mechanism 126 may be identical or substantially identical (in one embodiment, within, for example, five degrees) to the angle of applicator engagement surface 178 at a distal end of magnetic extenders 179 to provide a flush fit between the extenders and the attachment mechanism 126 when the tissue interface module 116 is attached to the applicator 114. In one embodiment, the angle of applicator engagement surfaces 178 may be arranged to be parallel or substantially parallel (in one embodiment within, for example, up to five degrees of parallel) to engagement surfaces 125 of attachment mechanism 126 to provide a flush fit between the extenders and the attachment mechanism 126 when tissue interface module 116 is attached to the applicator 114. In one embodiment of the invention engagement surface 125 may be sized and arranged to maximize the portion of engagement surface 125 contacted by applicator engagement surface 178. In one embodiment of the invention, a first portion of engagement surface 125 is arranged to contact a first applicator engagement surface 178A and a second portion of engagement surface 125 may be sized and arranged to contact a second applicator engagement surface 178B.
In one embodiment of the invention engagement surface 125 may be sized and arranged to form a ferromagnetic bridge between applicator engagement surface 178A and 178B when tissue interface module 116 is positioned on applicator 114. In one embodiment of the invention engagement surface 125 may be sized and arranged to form a closed magnetic circuit with applicator engagement surface 178A and 178B when tissue interface module 116 is positioned on applicator 114.
In
In some embodiments, the vacuum flow path is completely internal to tissue interface module 116 and applicator 114, originating in applicator 114 itself, and pulling vacuum from applicator chamber 118, through filters 154, through fluid traps 156, through expandable aperture 170, and finally through tissue acquisition chamber 142 to engage tissue in tissue acquisition chamber 142. In some embodiments, the vacuum flow path hooks up directly from applicator chamber 118 of tissue interface module 116 to vacuum inlets 174 of applicator 114, without requiring an external attachment from tissue interface module 116 to applicator 114 or to a separate vacuum source. In one embodiment, the vacuum path may include at least one portion having a gap width of approximately 0.036 inches. In one embodiment, the minimum gap width at any point along vacuum path A may be approximately 0.036 inches. In one embodiment, the smallest dimension in a cross section of the airflow pathway along vacuum path A will be approximately 0.036 inches. In some embodiments, these measurements may vary by, for example, up to plus or minus twenty percent. In one embodiment of the invention, the smallest cross section in vacuum path A will be the cross section formed on a first side by expandable aperture 170.
When using tissue interface module 116 vacuum may be achieved and maintained when tissue interface module 116 is attached to applicator 114, forming a seal between tissue interface module 116 and applicator 114, and tissue is engaged by tissue acquisition chamber 142 (as shown in
In one embodiment of the invention, when using tissue interface module 116, and particularly as tissue is pulled into tissue acquisition chamber 142, a balance or approximate balance between air pressure in applicator chamber 118 and tissue acquisition chamber 142 may be maintained. In one embodiment of the invention the air pressure in applicator chamber 118 may be, for at least a period of time, at a pressure below the air pressure in tissue acquisition chamber 142. In one embodiment of the invention, when using tissue interface module 116, and particularly as tissue is pulled into tissue acquisition chamber 142, a balance may be maintained wherein air pressure in applicator chamber 118 is slightly lower than an air pressure in tissue acquisition chamber 142. An applicator chamber 118 may be designed and configured to allow applicator 114, when inserted into applicator chamber 118 to form an airtight seal around applicator chamber 118 (e.g., with a gasket 158) and to position a distal end of applicator 114 (e.g., cooling plate 128 application surface) within a predetermined distance (e.g., approximately 0.026 inches) of bio-barrier 152. A first balance path (e.g., Path B in
In some embodiments, engagement surface 125 forms an Angle X (see
Bio-barrier 152 (which may also be referred to as a first bio-barrier, a membrane or first membrane) may be configured and/or made of a material which is substantially impermeable to both liquids (e.g., bodily fluids such as blood or sweat) and may also be impermeable to gases (e.g., air). In embodiments of the invention, substantially impermeable may mean that a barrier is, for example, permeable enough to permit some fluid and/or air to pass but not permeable enough to effect the functionality of the barrier or of tissue interface module 116. In embodiments of the invention, substantially impermeable may mean that a barrier is, for example, permeable enough to permit some fluid and/or air to pass but not permeable enough to allow biological fluids, such as blood or sweat, to pass. In some embodiments, bio-barrier 152 may be constructed of impermeable materials, such as, for example, polyurethane film and may have a thickness of, for example, 0.0005 inches or 0.00085 inches. In some embodiments, bio-barrier 152 may have a thickness of between approximately 0.00075 inches and 0.001 inches. Bio-barrier 152 is further designed to be sufficiently flexible to conform to applicator tissue treatment surface 502 (which may also be referred to as a tissue surface, treatment surface or distal surface of a cooling plate), where applicator tissue treatment surface 502 is located at a distal end of applicator 114 (see, for example,
Bio-barrier 152 may be designed to have specific microwave and thermal characteristics. For example, bio-barrier 152 may be designed to have a loss tangent (tan(δ)) of 0.1 or less, and more particularly, a loss tangent of approximately 0.0004. In some embodiments, Bio-barrier 152 may have a loss tangent (tan(δ)) of less than one. In one embodiment, bio-barrier 152 may be made from a material having a lost tangent of one or less. In other embodiments, bio-barrier 152 may be designed to have an electrical conductivity suitable for use a in a microwave system, such as having an electrical conductivity (σ) of between 0.0 and 0.2 siemens/meter. In one embodiment of the invention bio-barrier 152 may be designed to have an electrical conductivity which is less than or equal to the transmission frequency in hertz (e.g., 5.8 GHz) multiplied by the real part of the permittivity of bio-barrier 152. Bio-barrier 152 may also be designed to have a thermal conductivity and be made from a material suitable for use in a microwave system, such as having a thermal conductivity of at least approximately 0.1 watts per meter Kelvin (0.1 W/mK), and desirably 0.1 to 0.6 W/mK, and most desirably 0.25 to 0.45 W/mK. Furthermore, bio-barrier 152 may be designed to have a heat transfer coefficient which makes it suitable for efficiently removing heat from tissue adjacent to bio-barrier 152, such as having a heat transfer coefficient of approximately 7874 W/m2K. In some embodiments, these measurements may vary by, for example, up to plus or minus twenty percent.
In some embodiments, bio-barrier 152 may be designed to conform to applicator tissue treatment surface 502, particularly when a vacuum is applied to applicator chamber 118. In some embodiments, bio-barrier 152 may be configured to deflect at least 0.010 inches with a vacuum of, for example, approximately −20 inches of mercury applied to applicator chamber 118 without tearing or deforming. In some embodiments, these measurements may vary by, for example, up to plus or minus twenty percent. Bio-barrier 152 may be designed to deflect or stretch to cover applicator tissue treatment surface 502 without forming bubbles, voids or deformities as such bubbles, voids or deformities may perturb microwave energy passing through bio-barrier 152. Such perturbations may, in certain circumstances, result in potential hot spots adjacent tissue interface surface 200 and/or between bio-barrier 152 and applicator tissue treatment surface 502 (see, for example,
When tissue interface module 116 is placed against tissue, such as, for example, the skin, skirt 206 may engage the tissue and form a sealed enclosure, wherein the enclosure includes the tissue, tissue acquisition chamber 142, skirt 206, and bio-barrier 152. With tissue interface module 116 positioned on applicator 114, vacuum may then be applied by pulling air through vacuum inlets 174 (also referred to as vacuum ports or vacuum inlet openings) at a distal end of applicator 114 (see, for example,
In some embodiments, filters 154 may be made from hydrophobic material. In other embodiments, filters 154 may have a pore size which allows for passage of gas or air with a hydrophobicity that prevents the passage of liquids such as blood and sweat. In some embodiments, filters 154 may have a physical size and be made from a material having a pore size such that the overall opening facilitates the equalization of pressure across such filter 154 within approximately 0.25 seconds (with a range of between approximately 0.1 and 3 seconds) as tissue is drawn into tissue acquisition chamber 142. In some embodiments, filters 154 may have a physical size and be made from a material having a pore size which restricts the flow of air sufficiently to create a pressure differential between the air pressure in applicator chamber 118 and the air pressure in tissue acquisition chamber 142 during the time when air is flowing through filter 154. In some embodiments of the invention, filters 154 may act as air restrictors, restricting, but not eliminating the free flow of air between applicator chamber 118 and tissue acquisition chamber 142. In some embodiments, filters 154 may be positioned such that air pressure in tissue acquisition chamber 142 is greater than air pressure in applicator chamber 118 during periods when air is being drawn from tissue acquisition chamber 142 through applicator chamber 118, facilitating the positioning of a bio-barrier 152 against applicator tissue treatment surface 502 of applicator 114. In some embodiments, filters 154 may be positioned such that a vacuum in tissue acquisition chamber 142 is less than a vacuum in applicator chamber 118 during periods when air is drawn from tissue acquisition chamber 142 and applicator chamber 118, facilitating the positioning of a bio-barrier 152 against applicator tissue treatment surface 502 of applicator 114. In other embodiments, filters 154 may have a flow rate of a predetermined value when vacuum is applied. In one embodiment, filters 154 may have pore sizes of approximately 0.45 um and a flow area of approximately 1.86 square inches. In some embodiments, these measurements may vary by, for example, up to plus or minus twenty percent. Filter 154 may be, for example, PTFE on a polyester backing, polyethylene film, nylon or other material meeting the criteria set forth above.
The embodiments of the tissue interface modules illustrated in
In embodiments of the invention, such as, for example, the embodiments illustrated in
As shown in
In the embodiments of the invention illustrated in
In the embodiments of the invention illustrated in
Air flows through the interface module when a vacuum is applied to the vacuum interface at the proximal end of the tissue interface module. With the tissue interface module positioned on the applicator and no tissue engaged, air entering the tissue acquisition chamber flows into the tissue chamber, through the expandable aperture, into the vacuum trap, through the filter, under the engagement plate, through the applicator chamber to the vacuum interface and into the applicator. With the tissue interface module positioned on the applicator, and no tissue engaged, air in the applicator chamber flows through the applicator chamber to the vacuum interface and into the applicator.
With the distal end of the tissue interface module positioned against tissue, sealing the end of the tissue chamber from outside air, air in the tissue acquisition chamber is evacuated from the tissue acquisition chamber by flowing through the expandable channel, into the vacuum trap, through the filter, under the engagement plate, through the applicator chamber to the vacuum interface and into the applicator, creating a vacuum in the tissue acquisition chamber. The vacuum created in the tissue acquisition chamber pulls tissue into the tissue acquisition chamber, filling the tissue acquisition chamber. With the tissue interface module positioned on the applicator and tissue engaged, air in the applicator chamber flows through the applicator chamber to the vacuum interface and into the applicator, creating a vacuum in the applicator chamber.
With tissue engaged at the distal end of the tissue interface module, air evacuated from the tissue acquisition chamber must pass through a first vacuum path which includes the tissue acquisition chamber, the expandable aperture, the vacuum trap, the filter, a space under the engagement plate, the applicator chamber and the vacuum interface. With tissue engaged at the distal end of the tissue interface module, air evacuated from the applicator chamber must pass through a second vacuum path which includes the applicator chamber and the vacuum interface.
Air passing through the vacuum interface travels two pathways. Air in the applicator chamber flows through a first, direct pathway from the applicator chamber to the vacuum interface. Air in the tissue acquisition chamber travels a second, indirect, pathway which passes through the filter. The second, indirect pathway may further include one or more of: an expandable aperture; a vacuum trap, an applicator chamber and a vacuum interface.
The engagement and proper positioning of tissue is facilitated by positioning tissue at a distal end of a tissue acquisition chamber, forming a seal, pulling air from the tissue chamber though a pathway which includes in some embodiments a multifunction bio-barrier, the bio-barrier being composed of at least two parts. The first part of the bio-barrier may be substantially impermeable to air and fluids. The second part of the bio-barrier may be permeable to air but substantially impermeable to fluids. The first part of the multifunction bio-barrier may be a flexible bio-barrier which performs one or more of the following functions: preventing air from passing from the tissue acquisition chamber into the applicator chamber; preventing fluids from passing from the tissue acquisition chamber into the applicator chamber; diverting air being removed from the tissue chamber into a path which includes the second part of the multifunction bio-barrier; forming a substantially deformity free (e.g., no bubbles, voids or other deformities) seal against the distal end (e.g., cooling plate) of the applicator; forming at least one wall of an expandable aperture between the tissue acquisition chamber and the applicator chamber; and providing a pathway for energy and cooling to pass into tissue engaged in the tissue acquisition chamber. The second part of the multi-function bio-barrier may be one or more hydrophobic filters which performs one or more of the following functions: providing a pathway for air leaving the tissue acquisition chamber to enter the applicator chamber; preventing fluids (e.g., bodily fluids or lubricants) from passing from the tissue acquisition chamber into the applicator chamber; restricting the flow of air between the tissue acquisition chamber and the applicator chamber; ensuring that, at least while air is flowing from the tissue acquisition chamber to the applicator chamber, the air pressure in the tissue acquisition chamber is lower than the air pressure in the applicator chamber.
With tissue engaged at the distal end of the tissue interface module, air will flow through the first and second vacuum paths until tissue fills the tissue acquisition chamber. Airflow through the second vacuum path is restricted by the presence of the filter, resulting in a drop in air pressure across the filter such that the air pressure in the tissue acquisition chamber is lower than the air pressure in the applicator chamber. The presence of the filter ensures that this imbalance is maintained even in the presence of small air leaks in the seal between the applicator and the tissue interface module.
In embodiments employing a flexible bio-barrier, the presence of a vacuum imbalance with a higher pressure in the tissue acquisition chamber than in the applicator chamber forces the flexible bio-barrier against the distal end of the applicator and maintains the position of the flexible bio-barrier against the distal end of the applicator as tissue is drawn into the tissue acquisition chamber. The vacuum imbalance further assures that the flexible bio-barrier will sit against the distal end of the applicator without bubbles etc. until tissue fills the tissue acquisition chamber. Once the tissue acquisition chamber is filled, the presence of the tissue maintains the bio-barrier against the distal end of the applicator.
In embodiments employing a flexible bio-barrier, establishing and maintaining a substantially discontinuity-free (e.g., bubble-free) interface between the flexible bio-barrier and the distal end of the applicator is important for a number of reasons. It reduces the chances of a burn resulting from an air pocket. It enhances the transfer of cold energy from the cooling plate to the tissue. It eliminates the insulating effect of air trapped between the flexible bio-barrier and the cooling plate. It enhances the coupling of microwave energy from the applicator to the tissue. It reduces or eliminates discontinuities which might perturb the microwaves being radiated into the skin.
In embodiments employing a flexible bio-barrier, the presence of a vacuum imbalance with a higher pressure in the tissue acquisition chamber than in the applicator chamber pulls the flexible bio-barrier against the distal end of the applicator, opening the expandable aperture and increasing the cross section of the vacuum path at the expandable aperture. Opening the expandable aperture increases the size of the opening connecting the tissue acquisition chamber to the vacuum trap. Opening the expandable aperture increases the cross sectional area of the narrowest point in the airflow pathway between the tissue acquisition chamber and the vacuum trap. Opening the expandable aperture increases the cross sectional area of the narrowest point in the airflow pathway between the tissue acquisition chamber and the applicator chamber. Opening the expandable aperture facilitates the flow of air between the tissue acquisition chamber and the vacuum trap and reduces the chances that airflow between the tissue acquisition chamber and vacuum trap would be blocked by, for example, tissue, bodily fluids or lubricants.
In embodiments employing a flexible bio-barrier, the tissue interface module facilitates the efficient transfer of energy between the applicator and the tissue by ensuring that the flexible bio-barrier is pulled against the distal end of the applicator in a manner which minimizes discontinuities (e.g., bubbles) which could form between the distal end of the applicator and the flexible bio-barrier. The elimination of discontinuities is important because such discontinuities could: prevent the efficient cooling of the skin by insulating the skin under the discontinuity from the cooling plate; result in the creation of “hot spots” which might cause patient burns; change the “load” characteristics of the skin/cooling plate interface at the frequency of interest, thus reducing the efficiency of energy transfer and, potentially, the effectiveness of the treatment.
Energy is transmitted to tissue through a method which includes a series of steps. The series of steps may include one or more of the following: positioning a tissue interface module at a distal end of an applicator; attaching the tissue interface module to the applicator by closing a magnetic circuit, channeling magnetic flux through an engagement mechanism on the tissue interface module; positioning the tissue interface module so that the distal end of the tissue interface module is in contact with tissue such as, for example, skin; evacuating air from an applicator chamber at a proximal end of the tissue interface module; evacuating air from a tissue acquisition chamber through the applicator chamber; creating a pressure differential such that the air pressure in the applicator chamber is, during the tissue acquisition period (the period during which tissue is being pulled into the acquisition chamber), lower than the air pressure in the tissue acquisition chamber; pulling air through a filter as the air passes from the tissue acquisition chamber into the applicator chamber; pulling a flexible bio-barrier against a distal side of a cooling plate positioned at the distal end of the applicator; forming a substantially defect-, bubble- and void-free interface between the flexible bio-barrier and the distal end of the applicator; opening an expandable aperture positioned between the tissue acquisition chamber and the applicator chamber; pulling tissue into the tissue acquisition chamber by continuing to evacuate air from the applicator chamber.
Energy is transmitted through an applicator and a tissue interface module. The energy transmission path in the applicator may include: an antenna; at least one field spreader; a fluid channel; and a cooling plate. The energy transmission path in the tissue interface module may include: a vacuum interface, an applicator chamber; a flexible bio-barrier and a tissue acquisition chamber. In this embodiment, the energy is radiated through the center of the vacuum interface.
Applicator engages by placing engagement plates positioned in the applicator chamber against parallel surfaces at the end of magnetic extenders on the applicator such that magnetic the engagement plates close a magnetic circuit which includes a magnet, two magnetic extenders and the engagement plates. The engagement plates are positioned at an angle of 22.5 degrees to ensure that they will be parallel to and contact the ends of the magnetic extenders, creating the closed magnetic circuit. With the tissue interface module properly positioned and the engagement plates closing the magnetic circuit, the magnet may be positioned to enable magnetic flux to flow through the closed magnetic circuit exerting a magnetic force which holds the tissue interface module in place.
To facilitate the proper positioning of the tissue interface module prior to full engagement, the magnet may be positioned to generate a first magnetic force until the tissue interface module is properly seated, at which time, the magnet is moved in a manner which results in the application of a second magnetic force, wherein the second magnetic force is greater than the first magnetic force.
To facilitate the proper placement of the tissue interface module prior to full engagement, the flux density in the magnetic circuit may be set at a first level until the tissue interface module is properly positioned and may be increased once the tissue interface module is properly positioned.
Removal of the tissue interface module may be accomplished by reducing the magnetic force exerted on the tissue interface module. Removal of the tissue interface module may be accomplished by reducing the magnetic flux density through the magnetic circuit formed when the tissue interface module is attached to the applicator.
Air may be evacuated from the applicator chamber when the applicator and/or system detects the presence of a tissue interface module. A vacuum may be used to initially position and hold the tissue interface module prior to activation of the magnetic circuit.
One aspect of the invention provides a tissue interface module for use with an applicator in a microwave-based tissue modification system. The tissue interface module has an applicator chamber on a proximal side of the tissue interface module and a tissue acquisition chamber on a distal side of the tissue interface module. The applicator chamber may include: an opening adapted to receive the applicator; an attachment mechanism positioned in the applicator chamber and adapted to attach the tissue interface module to the applicator; a sealing member positioned at a proximal side of the applicator chamber; and a vacuum interface positioned at a proximal side of the applicator chamber and adapted to receive a vacuum inlet positioned on a distal end of the applicator. The tissue acquisition chamber may include a tissue acquisition opening on a distal side of the tissue interface module. The system may also include a flexible bio-barrier positioned between, and in fluid communication with, the applicator chamber and the tissue acquisition chamber, the flexible bio-barrier being substantially impermeable to air or fluids; an airflow pathway within the tissue interface module, the airflow pathway connecting the applicator chamber and the tissue acquisition chamber; and a filter disposed in the airflow pathway connecting the applicator chamber and the tissue acquisition chamber, the filter being permeable to air and substantially impermeable to fluids.
In some embodiments, the tissue interface module may also include a variable flow restrictor between, and in communication with, the tissue acquisition chamber and the filter. The variable flow restrictor may be positioned in the airflow pathway. The variable flow restrictor may be a flexible element adapted to expand a flow opening in the airflow pathway in response to a pressure difference between the tissue acquisition chamber and the filter.
In some embodiments, the sealing member forms at least a portion of the vacuum interface and is adapted to provide a substantially air tight seal against a sealing surface on the applicator when the tissue interface module is attached to the applicator with the attachment mechanism.
Another aspect of the invention provides a tissue interface module for use with an applicator in a microwave-based tissue modification system. The tissue interface module has an applicator chamber on a proximal side of the tissue interface module and a tissue acquisition chamber on a distal side of the tissue interface module. The applicator chamber may include: an opening adapted to receive an applicator; at least one attachment plate positioned in the applicator chamber, the attachment plate adapted to magnetically attach to elements of a magnetic circuit positioned on a distal end of the applicator; a sealing member positioned at a proximal side of the applicator chamber; a vacuum interface positioned at a proximal side of the applicator chamber and adapted to connect to a vacuum source. The tissue acquisition chamber may include a tissue acquisition opening on a distal side of the tissue interface module. The tissue interface module may also have a flexible bio-barrier positioned between, and in fluid communication with, the applicator chamber and the tissue acquisition chamber, the flexible bio-barrier being substantially impermeable to air or fluids; an airflow pathway within the tissue interface module, the airflow pathway connecting the applicator chamber and the tissue acquisition chamber; and a filter disposed in the airflow pathway connecting the applicator chamber and the tissue acquisition chamber, the filter being permeable to air and substantially impermeable to fluids.
In some embodiments, the attachment plate has a magnetic element adapted to form a magnetic circuit with magnetic elements in the applicator. The attachment plate may be, e.g., a ferromagnetic plate.
In some embodiments, the tissue interface module has a tissue interface module engagement surface adapted to engage with a corresponding applicator engagement surface on the applicator, the tissue interface module engagement surface being disposed at an angle of approximately 17.5 degrees to 27.5 degrees, such as approximately 22.5 degrees, with respect to the flexible bio-barrier. In some such embodiments, the attachment mechanism includes a ferromagnetic plate and the tissue interface module engagement surface includes a surface of the ferromagnetic plate.
Yet another aspect of the invention provides a tissue interface module for use with an applicator in a microwave-based tissue modification system. The tissue interface module has an applicator chamber on a proximal side of the tissue interface module and a tissue acquisition chamber on a distal side of the tissue interface module. The applicator chamber may include: an opening adapted to receive an applicator; an attachment mechanism positioned in the applicator chamber and adapted to attach the tissue interface module to the applicator; a sealing member positioned at a proximal side of the applicator chamber; and a vacuum interface positioned at the proximal side of the applicator chamber and adapted to connect to a vacuum source. The tissue acquisition chamber may have a tissue acquisition opening on a distal side of the tissue interface module. The tissue interface module may also have a flexible bio-barrier positioned between, and in fluid communication with, the applicator chamber and the tissue acquisition chamber, the flexible bio-barrier being substantially impermeable to air or fluids and may also be substantially transparent to microwave energy; a vacuum pathway within the tissue interface module, the vacuum pathway including an exit opening at a proximal end of the tissue acquisition chamber; and a filter disposed between the exit opening and the vacuum interface, the filter being permeable to air and substantially impermeable to fluids.
In some embodiments, the vacuum pathway extends from the distal end of the tissue acquisition chamber to the vacuum interface. The tissue interface module may also include a second filter disposed between, and communicating with, the applicator chamber and the tissue acquisition chamber, the second filter being permeable to air and substantially impermeable to fluids. In some such embodiments, the filter and the second filter are positioned on opposing sides of the bio-barrier. The functional surface area of the bio-barrier may also be approximately the same as the functional surface area of the filter and the second filter combined.
Still another aspect of the invention provides a tissue interface module having an applicator chamber on a proximal side and a tissue acquisition chamber on a distal side; a bio-barrier positioned between, and in fluid communication with, the applicator chamber and the tissue acquisition chamber, the bio-barrier being substantially impermeable, flexible, and microwave transparent; a vacuum path extending from a distal end of the tissue acquisition chamber to a proximal end of the applicator chamber and including a filter, a vacuum trap and an expandable aperture; the vacuum path being adapted to facilitate the flow of air from the tissue acquisition chamber, through the expandable aperture, through the vacuum trap, through the filter and into the applicator chamber when the applicator chamber is attached to a vacuum source.
In some embodiments, the tissue interface module also includes: an outer shell; an inner insert positioned in the outer shell to form a body of the tissue interface module; a gasket positioned on the inner insert and (i) providing a vacuum seal between the inner insert and the outer shell on a distal side of the gasket, (ii) being shaped to provide a vacuum seal to an applicator on a proximal side of the gasket, and (iii) forming a portion of the vacuum trap. The tissue interface module may also include a reflector (i) reflecting at least a portion of any microwave energy entering the applicator chamber; (ii) electrically isolated from an applicator positioned in the applicator chamber; (iii) positioned between the outer shell and the inner insert; and (iv) having a distal end surrounding at least a portion of the tissue acquisition chamber.
In some embodiments, the tissue interface module also has a latch plate positioned in the applicator chamber on the inner insert and including an attachment surface forming a predetermined angle with the bio-barrier when the bio-barrier is in a first position. The predetermined angle may be between 17.5 degrees and 27.5 degrees, such as approximately 22.5 degrees.
Yet another aspect of the invention provides a method of treating a patient including the following steps: attaching a tissue interface module to an applicator, wherein the distal end of the applicator is positioned in an applicator chamber of the tissue interface module; placing a distal opening of a tissue acquisition chamber of the tissue interface module against a tissue surface; pulling a portion of the patient's skin into the tissue acquisition chamber by creating a vacuum in the tissue acquisition chamber, the vacuum being created by drawing air from the tissue acquisition chamber to a vacuum source in the applicator through a vacuum path including the applicator chamber and a filter between the applicator chamber and the tissue acquisition chamber; and applying microwave energy to tissue positioned in the tissue acquisition chamber.
In some embodiments, the method also includes the step of cooling tissue in the tissue acquisition chamber during the application of microwave energy. In some embodiments, air is pulled from the tissue acquisition chamber, through the filter, into the applicator chamber and into a vacuum interface positioned on the distal end of the applicator.
In some embodiments, the applicator chamber and the tissue acquisition chamber are separated by, and in fluid communication with, a flexible bio-barrier. In such embodiments, the step of applying microwave energy can include the step of applying such energy through the flexible bio-barrier, and the step of pulling a portion of the patient's skin into the tissue acquisition chamber pulls the flexible bio-barrier against a distal end of the applicator.
In some embodiments, the method includes the step of varying a size of an opening between the tissue acquisition chamber and the filter during the step of creating a vacuum, such as by pulling the flexible bio-barrier against the distal end of the applicator.
Yet another aspect of the invention provides a method of treating a patient including the following steps: attaching a tissue interface module to an applicator, wherein the distal end of the applicator is positioned in an applicator chamber of the tissue interface module; placing a distal opening of a tissue acquisition chamber of the tissue interface module against a tissue surface; pulling a portion of the patient's skin into the tissue acquisition chamber by reducing the air pressure in the applicator chamber below the air pressure in the tissue acquisition chamber; and applying microwave energy to tissue positioned in the tissue acquisition chamber.
In some embodiments, the method also includes the step of drawing air from the tissue acquisition chamber to a vacuum source in the applicator through a vacuum path including the applicator chamber and a filter between the applicator chamber and the tissue acquisition chamber. In some such embodiments, air pressure in the applicator chamber is maintained at a pressure below the air pressure in the tissue acquisition chamber for at least as long as air continues to pass through the filter. Some embodiments also add the step of cooling tissue adjacent the bio-barrier during the application of microwave energy.
In some embodiments, the applicator chamber and the tissue acquisition chamber are separated by, and in fluid communication with, a flexible bio-barrier. In such embodiments, the step of applying microwave energy may include the step of applying such energy through the flexible bio-barrier, and the step of pulling a portion of the patient's skin into the tissue acquisition chamber may pull the flexible bio-barrier against a distal end of the applicator. In some embodiments, the step of reducing the air pressure in the applicator chamber includes the step of drawing air from the applicator chamber through a vacuum inlet at a proximal end of the applicator chamber via a vacuum interface at a distal end of the applicator.
Another aspect of the invention provides a method of treating a patient including the steps of: magnetically coupling a tissue interface module to an applicator, wherein the distal end of the applicator is positioned in an applicator chamber of the tissue interface module; placing a distal opening of a tissue acquisition chamber of the tissue interface module against a tissue surface; pulling a portion of the patient's skin into the tissue acquisition chamber by creating a vacuum in the tissue acquisition chamber, the vacuum being created by drawing air from the tissue acquisition chamber to a vacuum source in the applicator through a vacuum path that includes the applicator chamber and a filter between the applicator chamber and the tissue acquisition chamber; and applying microwave energy to tissue positioned in the tissue acquisition chamber.
In some embodiments, the step of magnetically coupling includes the steps of: sensing the presence of the tissue interface module in the proximity of the distal end of the applicator; evacuating air from the applicator chamber to position the tissue interface module on the applicator; and energizing a magnetic circuit to engage the tissue interface module to the applicator.
In some embodiments, the tissue interface module may have at least one engagement plate, and the applicator may include a magnetic circuit with at least two magnetic extenders arranged at a distal end of the applicator. In such embodiments, the step of positioning the tissue interface module may include the steps of placing the engagement plate in the proximity of the magnetic extenders and activating a magnetic circuit.
In some embodiments, the step of placing the engagement plate in the proximity of the magnetic extenders includes the step of placing an engagement surface of the engagement plate in contact with the magnetic extenders such that the engagement plate forms at least a portion of a magnetic circuit with the magnetic extenders. In some such embodiments, the step of activating the magnetic circuit includes the step of increasing the magnetic force applied to the engagement surface.
In some embodiments, a bio-barrier separates the applicator chamber from the tissue acquisition chamber, the tissue interface module engagement surface being disposed at an angle of approximately 22.5 degrees with respect to the flexible bio-barrier.
Yet another aspect of the invention provides a method of treating tissue of a patient, the method including the following steps: mating a tissue interface module to an applicator to place the distal end of a microwave antenna, a cooling plate, and a vacuum inlet within an applicator chamber of the tissue interface module; actuating a magnet to complete a magnetic circuit between an attachment mechanism of the tissue interface module and the applicator; placing a distal opening of a tissue acquisition chamber of the tissue interface module against a tissue surface; drawing a vacuum from a vacuum source in the applicator through the applicator chamber, a filter between the applicator chamber and the tissue acquisition chamber; and applying microwave energy to the patient's tissue.
Still another aspect of the invention provides a method of pulling air through a consumable medical device, the method including the steps of: creating a vacuum in an applicator chamber of said consumable medical device, the applicator chamber being separated from a tissue acquisition chamber by a bio-barrier, the bio-barrier being flexible and impermeable to bodily fluids and air; pulling air into the applicator chamber from a vacuum trap through a filter, the filter being permeable to air but substantially impermeable to bodily fluids; pulling air into the vacuum trap through an expandable aperture, wherein the expandable aperture (i) substantially surrounds the tissue acquisition chamber, (ii) is formed at least in part by the bio-barrier, (iii) opens upon the application of vacuum to the applicator chamber, which pulls said bio-barrier into the applicator chamber and against a cooling plate; creating a vacuum in said tissue acquisition chamber; and pulling tissue positioned outside said tissue acquisition chamber into said tissue acquisition chamber using said vacuum created in said tissue acquisition chamber.
Another aspect of the invention provides a tissue interface module for use with an applicator in a microwave-based tissue modification system. The tissue interface module may include an applicator chamber adapted to receive the applicator; a vacuum interface adapted to connect the applicator chamber with a vacuum source; a tissue acquisition chamber with an opening adapted to be applied to a patient's tissue; an airflow path between the tissue acquisition chamber and the vacuum interface; and a flow restrictor (such as, e.g., an air filter) disposed in the airflow path such that air pressure in the tissue acquisition chamber is greater than air pressure in the applicator chamber when air is moving from the applicator chamber through the vacuum interface to a vacuum source.
In some embodiments, the tissue interface module also includes a flexible bio-barrier positioned between, and in fluid communication with, the applicator chamber and the tissue acquisition chamber, with the flexible bio-barrier being substantially impermeable to air or fluids. In some such embodiments, the tissue interface module may also include an expandable aperture disposed in the airflow path, the expandable aperture formed at least in part by the flexible bio-barrier. The expandable aperture may be disposed in a portion of the airflow path between the tissue acquisition chamber and the flow restrictor.
Yet another aspect of the invention provides a method of treating a patient including the following steps: placing a distal end of an applicator into an applicator chamber of a tissue interface module; placing a distal opening of a tissue acquisition chamber of the tissue interface module against a skin surface of the patient; applying vacuum from a vacuum source to the applicator chamber; applying vacuum to the tissue acquisition chamber from the applicator chamber through a flow restrictor so that the air pressure in the tissue acquisition chamber is higher than the air pressure in the applicator chamber while air is flowing out of the tissue interface module through the vacuum interface; and applying microwave energy from the applicator to the skin surface.
In some embodiments, the applicator chamber and the tissue acquisition chamber are separated by, and in fluid communication with, a flexible bio-barrier, and the method further includes the step of moving the flexible bio-barrier against a distal end of the applicator. The flexible bio-barrier may also form part of an aperture between the tissue acquisition chamber and the applicator chamber, and the step of moving the flexible bio-barrier may include the step of expanding the aperture.
In some embodiments, the flow restrictor includes a filter disposed in an airflow path between the tissue acquisition chamber and the applicator chamber. The method may also include the step of pulling a portion of the skin surface into the tissue acquisition chamber prior to the step of applying microwave energy.
Still another aspect of the invention provides a method of treating a patient including the following steps: placing a distal end of an applicator into an applicator chamber of a tissue interface module; placing a distal opening of a tissue acquisition chamber of the tissue interface module against a skin surface of the patient; reducing air pressure in the applicator chamber at a first rate; reducing air pressure in the tissue acquisition chamber at a second rate slower than the first rate so that the air pressure in the tissue acquisition chamber is higher than the air pressure in the applicator chamber; and applying microwave energy from the applicator to the skin surface.
In some embodiments, the applicator chamber and the tissue acquisition chamber are separated by, and in fluid communication with, a flexible bio-barrier, and the method further includes the step of moving the flexible bio-barrier against a distal end of the applicator. The flexible bio-barrier may also form part of an aperture between the tissue acquisition chamber and the applicator chamber, and the step of moving the flexible bio-barrier may include the step of expanding the aperture.
In some embodiments, the flow restrictor includes a filter disposed in an airflow path between the tissue acquisition chamber and the applicator chamber. The method may also include the step of pulling a portion of the skin surface into the tissue acquisition chamber prior to the step of applying microwave energy.
Another aspect of the invention provides a tissue interface module for use with an applicator in a microwave-based tissue modification system, the tissue interface module having an applicator chamber on a proximal side of the tissue interface module, the applicator chamber having an opening adapted to receive the applicator; an attachment mechanism positioned in the applicator chamber and adapted to attach the tissue interface module to the applicator; a proximal sealing member positioned at a proximal side of the applicator chamber and adapted to provide a first seal between the tissue interface module and the applicator when the tissue interface module is attached to the applicator; a vacuum interface positioned at a proximal side of the applicator chamber; a tissue acquisition chamber including a tissue acquisition opening on a distal side of the tissue interface module; a central opening between the applicator chamber and the tissue acquisition chamber; an intermediate sealing member surrounding the central opening and adapted to provide a second seal between the tissue interface module and the applicator and to prevent fluid flow through the central opening; an airflow pathway within the tissue interface module, the airflow pathway connecting the applicator chamber and the tissue acquisition chamber, the airflow pathway bypassing the intermediate sealing member and the central opening; and a filter disposed in the airflow pathway, the filter being permeable to air and substantially impermeable to fluids.
In some embodiments, the vacuum interface is adapted to receive a vacuum inlet positioned on a distal end of the applicator. The proximal sealing member may optionally form at least a portion of the vacuum interface.
In some embodiments, the second seal includes a seal between the tissue interface module and a cooling plate positioned at a distal end of the applicator. The tissue interface module may also include a distal sealing member positioned at the tissue acquisition opening.
Yet another aspect of the invention provides a tissue interface module for use with an applicator in a microwave-based tissue modification system. The tissue interface module may include: an applicator chamber on a proximal side of the tissue interface module, the applicator chamber having an opening adapted to receive an applicator; at least one attachment plate positioned in the applicator chamber, the attachment plate positioned to engage with elements of a magnetic circuit positioned on a distal end of the applicator; a proximal sealing member positioned at a proximal side of the applicator chamber and adapted to provide a first seal between the tissue interface module and the applicator when the tissue interface module is attached to the applicator; a vacuum interface positioned at a proximal side of the applicator chamber and adapted to connect to a vacuum source; a tissue acquisition chamber including a tissue acquisition opening on a distal side of the tissue interface module; a central opening between the applicator chamber and the tissue acquisition chamber; an intermediate sealing member surrounding at least a portion of the central opening and adapted to provide a second seal between the tissue interface module and the applicator and to prevent fluid flow through the central opening; an airflow pathway within the tissue interface module, the airflow pathway connecting the applicator chamber and the tissue acquisition chamber, the airflow pathway bypassing the intermediate sealing member and the central opening; and a filter disposed in the airflow pathway, the filter being permeable to air and substantially impermeable to fluids.
In some embodiments, the attachment plate includes a magnetic element (such as, e.g., a ferromagnetic plate) adapted to form a magnetic circuit with magnetic elements in the applicator.
In some embodiments, the tissue interface module has a tissue interface module engagement surface adapted to engage with a corresponding applicator engagement surface on the applicator, the tissue interface module engagement surface being disposed at an angle of approximately 22.5 degrees with respect to a plane containing the intermediate sealing member. In some such embodiments, the attachment plate mechanism includes a ferromagnetic plate and the tissue interface module engagement surface includes a surface of the ferromagnetic plate.
In some embodiments, the tissue interface has a tissue interface module engagement surface adapted to engage with a corresponding applicator engagement surface on the applicator, the tissue interface module engagement surface being disposed at an angle of between approximately 17.5 degrees and approximately 27.5 degrees with respect to a plane containing the intermediate sealing member.
Still another aspect of the invention provides a tissue interface module for use with an applicator in a microwave-based tissue modification system, the tissue interface module including: an applicator chamber on a proximal side of the tissue interface module, the applicator chamber having an opening adapted to receive an applicator; an attachment mechanism positioned in the applicator chamber and adapted to attach the tissue interface module to the applicator; a proximal sealing member positioned at a proximal side of the applicator chamber and adapted to provide a first seal between the tissue interface module and the applicator when the tissue interface module is attached to the applicator; a vacuum interface positioned at a proximal side of the applicator chamber; a tissue acquisition chamber on a distal side of the tissue interface module, the tissue acquisition chamber having a tissue acquisition opening on a distal side of the tissue interface module and a central opening between the applicator chamber and the tissue acquisition chamber; an intermediate sealing member surrounding at least a portion of the central opening and adapted to provide a second seal between the tissue interface module and the applicator and to prevent fluid flow through the central opening; a vacuum pathway within the tissue interface module, the vacuum pathway including a first opening on a first side of the intermediate sealing member, a second opening on a second side of the intermediate sealing member; and a filter disposed between the first and second openings, the filter being permeable to air and substantially impermeable to fluids; wherein the vacuum pathway extends through the filter from a first side of the intermediate sealing member to a second side of the intermediate sealing member when fluid flow through the central opening is prevented. In some embodiments, with the tissue interface module affixed to the applicator, the vacuum flow path begins at the distal end of the tissue acquisition chamber and terminates at the vacuum interface.
Another aspect of the invention provides a tissue interface module having: an applicator chamber positioned on a proximal side of said tissue interface module; a tissue acquisition chamber positioned on a distal side of said tissue interface module; a central opening; an intermediate sealing member surrounding at least a portion of the central opening and adapted to provide a seal between the tissue interface module and the applicator and to prevent fluid flow through the central opening; a vacuum path extending from a proximal side of the intermediate sealing member to a distal side of the intermediate sealing member, the vacuum path including a filter and a vacuum trap; wherein the vacuum path is adapted to facilitate the flow of air from the tissue acquisition chamber, through the vacuum trap, through the filter and into the applicator chamber when the applicator chamber is attached to the applicator vacuum port when fluid flow through the central opening is prevented.
Yet another aspect of the invention provides a method of treating a patient including the following steps: positioning a distal end of an applicator in an applicator chamber of a tissue interface module; sealing a central opening between the applicator chamber and a tissue acquisition chamber of the tissue interface module against the distal end of the applicator; applying a vacuum to the applicator chamber; placing a distal opening of a tissue acquisition chamber of the tissue interface module against a tissue surface; pulling a portion of the patient's tissue into the tissue acquisition chamber by creating a vacuum in the tissue acquisition chamber, the vacuum being created by drawing air from the tissue acquisition chamber to a vacuum source in the applicator through a vacuum path comprising the applicator chamber and a filter between the applicator chamber and the tissue acquisition chamber; and applying microwave energy to tissue positioned in the tissue acquisition chamber.
In some embodiments, the method also includes the step of cooling the tissue in the acquisition chamber. The method may also include the step of sealing the applicator chamber against the applicator at a vacuum interface.
In some embodiments, the method includes the step of magnetically attaching the tissue interface module to the applicator such as, e.g., by forming a magnetic circuit between elements of the applicator and the tissue interface module.
Another aspect of the invention provides a tissue interface module for use with an applicator in a microwave-based tissue modification system, the tissue interface module including: an attachment mechanism on a proximal side of the tissue interface module adapted to attach to an applicator; an applicator chamber adapted to receive a microwave antenna, a cooling element, and a vacuum port of the applicator, the applicator chamber comprising a bio-barrier on a distal side; a tissue acquisition chamber having a tissue acquisition opening on a distal side of the tissue interface module; and a filter disposed between, and communicating with, the applicator chamber and the tissue acquisition chamber, the filter having openings configured to permit air to pass and to prevent liquid from passing.
In some embodiments, the tissue interface module also has a variable flow restrictor between, and in communication with, the tissue acquisition chamber and the filter. The variable flow restrictor may have a flexible element adapted to expand a flow opening between the tissue acquisition chamber and the filter in response to a pressure difference between the tissue acquisition chamber and the filter.
In some embodiments, the attachment mechanism has a magnetic element (such as, e.g., a ferromagnetic plate) adapted to magnetically attach to a corresponding element in the applicator. The tissue interface module may also have a tissue interface module engagement surface adapted to engage with a corresponding applicator engagement surface on the applicator, the tissue interface module engagement surface being disposed at an angle of approximately 12.5 degrees to 32.5 degrees, or approximately 17.5 degrees to 27.5 degrees, or approximately 22.5 degrees, with respect to the bio-barrier.
In some embodiments, the tissue interface module also has a vacuum flow path from the tissue acquisition chamber, through the filter, into the applicator chamber. In some embodiments, the tissue interface module has a vacuum flow path from the tissue acquisition chamber, through the filter, through the applicator chamber, into the vacuum port of the applicator.
In some embodiments, the tissue interface module may also have a second filter disposed between, and communicating with, the applicator chamber and the tissue acquisition chamber, the second filter having openings configured to permit air to pass and to prevent liquid from passing. In some such embodiments, the filter and the second filter are positioned on opposing sides of the bio-barrier. The bio-barrier may have approximately the same surface area as the filter and the second filter combined.
Another aspect of the invention provides a method of treating tissue of a patient including the following steps: attaching a tissue interface module to an applicator to place a microwave antenna, a cooling plate, and a vacuum port within an applicator chamber of the tissue interface module; placing a distal opening of a tissue acquisition chamber of the tissue interface module against a tissue surface; drawing a vacuum from a vacuum source in the applicator through the applicator chamber, a filter between the applicator chamber and the tissue acquisition chamber; and applying microwave energy to the patient's tissue.
Some embodiments add the step of varying a size of an opening between the tissue acquisition chamber and the filter during the step of drawing a vacuum, such as by moving a flexible member to change the size of the opening. In some embodiments, the attaching step includes the step of magnetically coupling the tissue interface module to the applicator.
In some embodiments, the applicator chamber has a bio-barrier on a distal side, and the attaching step includes the step of engaging a magnetic tissue interface module engagement surface with a corresponding applicator engagement surface on the applicator, the tissue interface module engagement surface being disposed at an angle of approximately 17.5 degrees to 27.5 degrees with respect to the bio-barrier.
Still another aspect of the invention provides a microwave-based tissue modification system having: a microwave applicator with a microwave antenna, a cooling element, and a vacuum port; and a tissue interface module with: an attachment mechanism on a proximal side of the tissue interface module adapted to attach to the microwave applicator; an applicator chamber adapted to connect to the microwave antenna, the cooling element, and the vacuum port of the microwave applicator, the applicator chamber having a bio-barrier on a distal side; a tissue acquisition chamber having a tissue acquisition opening on a distal side of the tissue interface module; and a filter disposed between, and communicating with, the applicator chamber and the tissue acquisition chamber, the filter having openings configured to permit air to pass and to prevent liquid from passing.
In some embodiments, the tissue modification system also has a variable flow restrictor between, and in communication with, the tissue acquisition chamber and the filter. In some embodiments, the attachment mechanism includes a magnetic element adapted to magnetically attach to a corresponding element in the applicator. The tissue modification system may also include a tissue interface module engagement surface adapted to engage with a corresponding applicator engagement surface on the microwave applicator, the tissue interface module engagement surface being disposed at an angle of approximately 17.5 degrees to 27.5 degrees with respect to the bio-barrier.
In some embodiments, the tissue modification system has a vacuum flow path from the tissue acquisition chamber, through the filter, through the applicator chamber, into the vacuum port of the microwave applicator. The tissue interface module may also have a second filter disposed between, and communicating with, the applicator chamber and the tissue acquisition chamber, the second filter having openings configured to permit air to pass and to prevent liquid from passing. In some such embodiments, the filter and the second filter are positioned on opposing sides of the bio-barrier.
Yet another aspect of the invention provides a tissue interface module for use with an applicator in a microwave-based tissue modification system, the tissue interface module having: an attachment mechanism on a proximal side of the tissue interface module adapted to attach to an applicator, the attachment mechanism including an engagement surface that forms an angle of approximately 17.5 degrees to 27.5 degrees from horizontal; an applicator chamber adapted to connect to a microwave antenna, a cooling element, and a vacuum port of the applicator, the applicator chamber comprising a bio-barrier on a distal side, wherein the bio-barrier is configured to prevent air and liquid from passing; a tissue acquisition chamber having a tissue acquisition opening defined by a skirt on a distal side of the tissue interface module; and a filter disposed between, and communicating with, the applicator chamber and the tissue acquisition chamber, the filter having openings configured to permit air to pass and to prevent liquid from passing.
In some embodiments, the tissue interface module has a vacuum flow path from the tissue acquisition chamber, through the filter, through the applicator chamber, into the vacuum port of the microwave applicator. The tissue interface module may also include a second filter disposed between, and communicating with, the applicator chamber and the tissue acquisition chamber, the second filter having openings configured to permit air to pass and to prevent liquid from passing. In some such embodiments, the filter and the second filter are positioned on opposing sides of the bio-barrier. In some embodiments, the tissue interface module also has a fluid trap disposed between the tissue acquisition chamber and the filter, the fluid trap configured to capture tissue and liquid.
Another aspect of the invention provides a consumable medical device having: an applicator chamber positioned on a proximal side of said consumable; a tissue chamber positioned on a distal side of said consumable medical device; a first bio-barrier positioned between the applicator chamber and the tissue chamber, the first bio-barrier being: substantially impermeable, flexible and microwave transparent; a vacuum path extending from a distal end of the applicator chamber to a proximal end of the tissue chamber and including a second bio-barrier, a vacuum trap, and an expandable aperture, the vacuum path being adapted to facilitate the flow of air from the tissue chamber, through the expandable aperture, through the vacuum trap, through the second bio-barrier and into the applicator chamber.
In some embodiments, the consumable also includes a shell; an insert positioned in the shell to form a body of said consumable; a gasket positioned on the insert, providing a vacuum seal between the insert and the shell on a distal side of the gasket, being shaped to provide a vacuum seal to an applicator on a proximal side of the gasket and forming a portion of the vacuum trap.
In some embodiments, the consumable also includes a reflector reflecting at least a portion of any microwave energy entering the applicator chamber, the reflector being electrically isolated from an applicator positioned in said applicator chamber, being positioned between the shell and the insert, and having a distal end surrounding at least a portion of the tissue chamber.
In some embodiments, the consumable also has a latch plate positioned in the applicator chamber on said insert, forming a predetermined angle with the first bio-barrier when the first bio-barrier is in a first position.
Still another aspect of the invention provides a method of transmitting energy to a patient for the purpose of reducing sweat, the method including the steps of: transmitting the energy through an applicator having: an antenna; a field spreader, a fluid channel, and a cooling plate; and transmitting the energy through a consumable having: an applicator chamber; a flexible bio-barrier; and a tissue chamber.
Yet another aspect of the invention provides a consumable including a flexible bio-barrier and a cooling plate configured to cooperate to form expandable channel connecting a tissue chamber to an applicator chamber, the consumable including a vacuum path wherein air from a the tissue chamber passes through: the expandable channel; a fluid trap; a second bio-barrier; vacuum channels separating second bio-barrier from an attachment mechanism (such as, e.g., a magnetic plate); and an applicator chamber.
Another aspect of the invention provides a multifunctional connector adapted to connect an applicator to a microwave generator console through a cable assembly, the connector having: a cooling fluid connector; a cooling fluid return connector; a microwave connector; electronic connectors; and vacuum connectors.
As for additional details pertinent to the present invention, materials and manufacturing techniques may be employed as within the level of those with skill in the relevant art. The same may hold true with respect to method-based aspects of the invention in terms of additional acts commonly or logically employed. Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein. Likewise, reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in the appended claims, the singular forms “a,” “and,” “said,” and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation. Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The breadth of the present invention is not to be limited by the subject specification, but rather only by the plain meaning of the claim terms employed.
This application is a continuation of U.S. application Ser. No. 15/090,273, filed Apr. 4, 2016, now U.S. Pat. No. 10,321,954, which is a division of U.S. application Ser. No. 13/563,656, filed Jul. 31, 2012, now U.S. Pat. No. 9,314,301, which claims the benefit under 35 U.S.C. § 119 of U.S. Provisional Patent Application No. 61/513,834, filed Aug. 1, 2011, titled “Applicator and Consumable for Dermatological Device”; U.S. Provisional Patent Application No. 61/555,410, filed Nov. 3, 2011, titled “Applicator and Tissue Interface Module for Dermatological Device”; U.S. Provisional Patent Application No. 61/673,697, filed Jul. 19, 2012, titled “Applicator and Tissue Interface Module for Dermatological Device”; and U.S. Provisional Patent Application No. 61/676,833, filed Jul. 27, 2012, titled “Applicator And Tissue Interface Module For Dermatological Device,” the disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2407690 | Southworth | Sep 1946 | A |
3307553 | Liebner | Mar 1967 | A |
3527227 | Fritz | Sep 1970 | A |
3693623 | Harte et al. | Sep 1972 | A |
3845267 | Fitzmayer | Oct 1974 | A |
4069827 | Dominy | Jan 1978 | A |
4095602 | Leveen | Jun 1978 | A |
4108147 | Kantor | Aug 1978 | A |
4140130 | Storm, III | Feb 1979 | A |
4174713 | Mehl | Nov 1979 | A |
4190053 | Sterzer | Feb 1980 | A |
4190056 | Tapper et al. | Feb 1980 | A |
4197860 | Sterzer | Apr 1980 | A |
4228809 | Paglione | Oct 1980 | A |
4292960 | Paglione | Oct 1981 | A |
4332260 | Bicher et al. | Jun 1982 | A |
4375220 | Matvias | Mar 1983 | A |
4378806 | Cohn | Apr 1983 | A |
4388924 | Weissman et al. | Jun 1983 | A |
4397313 | Vaguine | Aug 1983 | A |
4397314 | Vaguine | Aug 1983 | A |
4446874 | Vaguine | May 1984 | A |
4528991 | Dittmar et al. | Jul 1985 | A |
4589424 | Vaguine | May 1986 | A |
4597379 | Kihn et al. | Jul 1986 | A |
4614191 | Perler | Sep 1986 | A |
4617926 | Sutton | Oct 1986 | A |
4632128 | Paglione et al. | Dec 1986 | A |
4641649 | Walinsky et al. | Feb 1987 | A |
4669475 | Turner | Jun 1987 | A |
4672980 | Turner | Jun 1987 | A |
4690156 | Kikuchi et al. | Sep 1987 | A |
4702262 | Andersen et al. | Oct 1987 | A |
4744372 | Kikuchi et al. | May 1988 | A |
4747416 | Kikuchi et al. | May 1988 | A |
4794930 | Machida et al. | Jan 1989 | A |
4798215 | Turner | Jan 1989 | A |
4800899 | Elliott | Jan 1989 | A |
4825880 | Stauffer et al. | May 1989 | A |
4841989 | Kikuchi et al. | Jun 1989 | A |
4841990 | Kikuchi et al. | Jun 1989 | A |
4860752 | Turner | Aug 1989 | A |
4881543 | Trembly et al. | Nov 1989 | A |
4891483 | Kikuchi et al. | Jan 1990 | A |
4945912 | Langberg | Aug 1990 | A |
4974587 | Turner et al. | Dec 1990 | A |
5059192 | Zaias | Oct 1991 | A |
5097846 | Larsen | Mar 1992 | A |
5101836 | Lee | Apr 1992 | A |
5107832 | Guibert et al. | Apr 1992 | A |
5143063 | Fellner | Sep 1992 | A |
5186181 | Franconi et al. | Feb 1993 | A |
5190518 | Takasu | Mar 1993 | A |
5198776 | Carr | Mar 1993 | A |
5226907 | Tankovich | Jul 1993 | A |
5234004 | Hascoet et al. | Aug 1993 | A |
5246438 | Langberg | Sep 1993 | A |
5272301 | Finger et al. | Dec 1993 | A |
5295955 | Rosen et al. | Mar 1994 | A |
5301692 | Knowlton | Apr 1994 | A |
5305748 | Wilk | Apr 1994 | A |
5315994 | Guibert et al. | May 1994 | A |
5316000 | Chapelon et al. | May 1994 | A |
5364336 | Carr | Nov 1994 | A |
5364394 | Mehl | Nov 1994 | A |
5383917 | Desai et al. | Jan 1995 | A |
5385544 | Edwards et al. | Jan 1995 | A |
5405346 | Grundy et al. | Apr 1995 | A |
5407440 | Zinreich et al. | Apr 1995 | A |
5409484 | Erlich et al. | Apr 1995 | A |
5421819 | Edwards et al. | Jun 1995 | A |
5425728 | Tankovich | Jun 1995 | A |
5431650 | Cosmescu | Jul 1995 | A |
5433740 | Yamaguchi | Jul 1995 | A |
5441532 | Fenn | Aug 1995 | A |
5443487 | Guibert et al. | Aug 1995 | A |
5462521 | Brucker et al. | Oct 1995 | A |
5474071 | Chapelon et al. | Dec 1995 | A |
5503150 | Evans | Apr 1996 | A |
5507741 | L'Esperance, Jr. | Apr 1996 | A |
5507790 | Weiss | Apr 1996 | A |
5509929 | Hascoet et al. | Apr 1996 | A |
5522814 | Bernaz | Jun 1996 | A |
5531662 | Carr | Jul 1996 | A |
5540681 | Strul et al. | Jul 1996 | A |
5549639 | Ross | Aug 1996 | A |
5553612 | Lundback | Sep 1996 | A |
5569237 | Beckenstein | Oct 1996 | A |
5571154 | Ren | Nov 1996 | A |
5575789 | Bell et al. | Nov 1996 | A |
5584830 | Ladd et al. | Dec 1996 | A |
5586981 | Hu | Dec 1996 | A |
5595568 | Anderson et al. | Jan 1997 | A |
5649973 | Tierney et al. | Jul 1997 | A |
5660836 | Knowlton | Aug 1997 | A |
5662110 | Carr | Sep 1997 | A |
5669916 | Anderson | Sep 1997 | A |
5674219 | Monson et al. | Oct 1997 | A |
5683381 | Carr et al. | Nov 1997 | A |
5683382 | Lenihan et al. | Nov 1997 | A |
5690614 | Carr et al. | Nov 1997 | A |
5707403 | Grove et al. | Jan 1998 | A |
5724966 | Lundback | Mar 1998 | A |
5733269 | Fuisz | Mar 1998 | A |
5735844 | Anderson et al. | Apr 1998 | A |
5742392 | Anderson et al. | Apr 1998 | A |
5743899 | Zinreich | Apr 1998 | A |
5755753 | Knowlton | May 1998 | A |
5769879 | Richards et al. | Jun 1998 | A |
5776127 | Anderson et al. | Jul 1998 | A |
5782897 | Carr | Jul 1998 | A |
5810801 | Anderson et al. | Sep 1998 | A |
5810804 | Gough et al. | Sep 1998 | A |
5814996 | Winter | Sep 1998 | A |
5824023 | Anderson | Oct 1998 | A |
5830208 | Muller | Nov 1998 | A |
5836999 | Eckhouse et al. | Nov 1998 | A |
5868732 | Waldman et al. | Feb 1999 | A |
5879346 | Waldman et al. | Mar 1999 | A |
5891094 | Masterson et al. | Apr 1999 | A |
5897549 | Tankovich | Apr 1999 | A |
5902263 | Patterson et al. | May 1999 | A |
5904709 | Arndt et al. | May 1999 | A |
5919218 | Carr | Jul 1999 | A |
5928797 | Vineberg | Jul 1999 | A |
5931860 | Reid et al. | Aug 1999 | A |
5949845 | Sterzer | Sep 1999 | A |
5971982 | Betsill et al. | Oct 1999 | A |
5979454 | Anvari et al. | Nov 1999 | A |
5983124 | Carr | Nov 1999 | A |
5983900 | Clement et al. | Nov 1999 | A |
5989245 | Pescott | Nov 1999 | A |
6015404 | Altshuler et al. | Jan 2000 | A |
6024095 | Stanley, III | Feb 2000 | A |
6026331 | Feldberg et al. | Feb 2000 | A |
6026816 | McMillan et al. | Feb 2000 | A |
6030378 | Stewart | Feb 2000 | A |
6036632 | Whitmore, III et al. | Mar 2000 | A |
6047215 | McClure et al. | Apr 2000 | A |
6050990 | Tankovich et al. | Apr 2000 | A |
6077294 | Cho et al. | Jun 2000 | A |
6080146 | Altshuler et al. | Jun 2000 | A |
6093186 | Goble | Jul 2000 | A |
6097985 | Kasevich et al. | Aug 2000 | A |
6104959 | Spertell | Aug 2000 | A |
6106514 | O'Donnell, Jr. | Aug 2000 | A |
6113559 | Klopotek | Sep 2000 | A |
6113593 | Tu et al. | Sep 2000 | A |
6126636 | Naka | Oct 2000 | A |
6129696 | Sibalis | Oct 2000 | A |
6139569 | Ingle et al. | Oct 2000 | A |
6149644 | Xie | Nov 2000 | A |
6162212 | Kreindel et al. | Dec 2000 | A |
6162218 | Elbrecht et al. | Dec 2000 | A |
6171301 | Nelson et al. | Jan 2001 | B1 |
6175768 | Arndt et al. | Jan 2001 | B1 |
6181970 | Kasevich | Jan 2001 | B1 |
6183773 | Anderson | Feb 2001 | B1 |
6187001 | Azar et al. | Feb 2001 | B1 |
6197020 | O'Donnell, Jr. | Mar 2001 | B1 |
6208903 | Richards et al. | Mar 2001 | B1 |
6210367 | Carr | Apr 2001 | B1 |
6214034 | Azar | Apr 2001 | B1 |
6223076 | Tapper | Apr 2001 | B1 |
6231569 | Bek et al. | May 2001 | B1 |
6235016 | Stewart | May 2001 | B1 |
6241753 | Knowlton | Jun 2001 | B1 |
6245062 | Berube et al. | Jun 2001 | B1 |
6264652 | Eggers et al. | Jul 2001 | B1 |
6273884 | Altshuler et al. | Aug 2001 | B1 |
6277104 | Lasko et al. | Aug 2001 | B1 |
6277111 | Clement et al. | Aug 2001 | B1 |
6277116 | Utely et al. | Aug 2001 | B1 |
6280441 | Ryan | Aug 2001 | B1 |
6283956 | McDaniel | Sep 2001 | B1 |
6283987 | Laird et al. | Sep 2001 | B1 |
6287302 | Berube | Sep 2001 | B1 |
6290699 | Hall et al. | Sep 2001 | B1 |
6293941 | Strul et al. | Sep 2001 | B1 |
6306128 | Waldman et al. | Oct 2001 | B1 |
6306130 | Anderson et al. | Oct 2001 | B1 |
6319211 | Ito et al. | Nov 2001 | B1 |
6322584 | Ingle et al. | Nov 2001 | B2 |
6325769 | Klopotek | Dec 2001 | B1 |
6325796 | Berube et al. | Dec 2001 | B1 |
6330479 | Stauffer | Dec 2001 | B1 |
6334074 | Spertell | Dec 2001 | B1 |
6347251 | Deng | Feb 2002 | B1 |
6350263 | Wetzig et al. | Feb 2002 | B1 |
6350276 | Knowlton | Feb 2002 | B1 |
6361531 | Hissong | Mar 2002 | B1 |
6364876 | Erb et al. | Apr 2002 | B1 |
6383176 | Connors et al. | May 2002 | B1 |
6387103 | Shadduck | May 2002 | B2 |
6402739 | Neev | Jun 2002 | B1 |
6409720 | Hissong et al. | Jun 2002 | B1 |
6409722 | Hoey et al. | Jun 2002 | B1 |
6413253 | Koop et al. | Jul 2002 | B1 |
6413254 | Hissong et al. | Jul 2002 | B1 |
6413255 | Stern | Jul 2002 | B1 |
6427089 | Knowlton | Jul 2002 | B1 |
6428532 | Doukas et al. | Aug 2002 | B1 |
6430446 | Knowlton | Aug 2002 | B1 |
6436094 | Reuter | Aug 2002 | B1 |
6436127 | Anderson et al. | Aug 2002 | B1 |
6443914 | Costantino | Sep 2002 | B1 |
6443946 | Clement et al. | Sep 2002 | B2 |
6451013 | Bays et al. | Sep 2002 | B1 |
6451015 | Rittman, III et al. | Sep 2002 | B1 |
6457476 | Elmer et al. | Oct 2002 | B1 |
6461378 | Knowlton | Oct 2002 | B1 |
6468235 | Ito et al. | Oct 2002 | B2 |
6470216 | Knowlton | Oct 2002 | B1 |
6471662 | Jaggy et al. | Oct 2002 | B1 |
6471696 | Berube et al. | Oct 2002 | B1 |
6475179 | Wang et al. | Nov 2002 | B1 |
6475211 | Chess et al. | Nov 2002 | B2 |
6480746 | Ingle et al. | Nov 2002 | B1 |
6485484 | Connors et al. | Nov 2002 | B1 |
6485703 | Coté et al. | Nov 2002 | B1 |
6500141 | Irion et al. | Dec 2002 | B1 |
6508813 | Altshuler | Jan 2003 | B1 |
6514250 | Jahns et al. | Feb 2003 | B1 |
6517532 | Altshuler et al. | Feb 2003 | B1 |
6529778 | Prutchi | Mar 2003 | B2 |
6558382 | Jahns et al. | May 2003 | B2 |
6575969 | Rittman, III et al. | Jun 2003 | B1 |
6577903 | Cronin et al. | Jun 2003 | B1 |
6584360 | Francischelli et al. | Jun 2003 | B2 |
6585733 | Wellman | Jul 2003 | B2 |
6595934 | Hissong et al. | Jul 2003 | B1 |
6600951 | Anderson | Jul 2003 | B1 |
6605080 | Altshuler et al. | Aug 2003 | B1 |
6607498 | Eshel | Aug 2003 | B2 |
6626854 | Friedman et al. | Sep 2003 | B2 |
6628990 | Habib et al. | Sep 2003 | B1 |
6629974 | Penny et al. | Oct 2003 | B2 |
6645162 | Friedman et al. | Nov 2003 | B2 |
6648904 | Altshuler et al. | Nov 2003 | B2 |
6652518 | Wellman et al. | Nov 2003 | B2 |
6653618 | Zenzie | Nov 2003 | B2 |
6662054 | Kreindel et al. | Dec 2003 | B2 |
6663659 | McDaniel | Dec 2003 | B2 |
6676654 | Balle Petersen et al. | Jan 2004 | B1 |
6676655 | McDaniel | Jan 2004 | B2 |
6682501 | Nelson et al. | Jan 2004 | B1 |
6692450 | Coleman | Feb 2004 | B1 |
6723090 | Altshuler et al. | Apr 2004 | B2 |
6725095 | Fenn et al. | Apr 2004 | B2 |
6736810 | Hoey et al. | May 2004 | B2 |
6743222 | Durkin et al. | Jun 2004 | B2 |
6763836 | Tasto et al. | Jul 2004 | B2 |
6766202 | Underwood et al. | Jul 2004 | B2 |
6807446 | Fenn et al. | Oct 2004 | B2 |
6808532 | Andersen et al. | Oct 2004 | B2 |
6821274 | McHale et al. | Nov 2004 | B2 |
6823216 | Salomir et al. | Nov 2004 | B1 |
6824542 | Jay | Nov 2004 | B2 |
6856839 | Litovitz | Feb 2005 | B2 |
6861954 | Levin | Mar 2005 | B2 |
6878144 | Altshuler et al. | Apr 2005 | B2 |
6878147 | Prakash et al. | Apr 2005 | B2 |
6881212 | Clement et al. | Apr 2005 | B1 |
6887239 | Elstrom et al. | May 2005 | B2 |
6887260 | McDaniel | May 2005 | B1 |
6888319 | Inochkin et al. | May 2005 | B2 |
6897238 | Anderson | May 2005 | B2 |
6907879 | Drinan et al. | Jun 2005 | B2 |
6916316 | Jay | Jul 2005 | B2 |
6918908 | Bonner et al. | Jul 2005 | B2 |
6939344 | Kreindel | Sep 2005 | B2 |
6939346 | Kannenberg et al. | Sep 2005 | B2 |
6955672 | Cense et al. | Oct 2005 | B2 |
6974415 | Cerwin et al. | Dec 2005 | B2 |
6976984 | Cense et al. | Dec 2005 | B2 |
6997923 | Anderson et al. | Feb 2006 | B2 |
7006874 | Knowlton et al. | Feb 2006 | B2 |
7022121 | Stern et al. | Apr 2006 | B2 |
7029469 | Vasily | Apr 2006 | B2 |
7033352 | Gauthier et al. | Apr 2006 | B1 |
7044959 | Anderson et al. | May 2006 | B2 |
7056318 | Black | Jun 2006 | B2 |
7066929 | Azar et al. | Jun 2006 | B1 |
7074218 | Washington et al. | Jul 2006 | B2 |
7081111 | Svaasand et al. | Jul 2006 | B2 |
7089054 | Palti | Aug 2006 | B2 |
7107997 | Moses et al. | Sep 2006 | B1 |
7115123 | Knowlton et al. | Oct 2006 | B2 |
7118590 | Cronin | Oct 2006 | B1 |
7122029 | Koop et al. | Oct 2006 | B2 |
7128739 | Prakash et al. | Oct 2006 | B2 |
7135033 | Altshuler et al. | Nov 2006 | B2 |
7136699 | Palti | Nov 2006 | B2 |
7141049 | Stern et al. | Nov 2006 | B2 |
7151964 | Desai et al. | Dec 2006 | B2 |
7153256 | Riehl et al. | Dec 2006 | B2 |
7153285 | Lauman et al. | Dec 2006 | B2 |
7162291 | Nachaliel | Jan 2007 | B1 |
7163536 | Godara | Jan 2007 | B2 |
7175950 | Anderson et al. | Feb 2007 | B2 |
7189230 | Knowlton | Mar 2007 | B2 |
7192429 | Trembly | Mar 2007 | B2 |
7204832 | Altshuler et al. | Apr 2007 | B2 |
7217265 | Hennings et al. | May 2007 | B2 |
7220254 | Altshuler et al. | May 2007 | B2 |
7220778 | Anderson et al. | May 2007 | B2 |
7229436 | Stern et al. | Jun 2007 | B2 |
7234739 | Saitoh et al. | Jun 2007 | B2 |
7238182 | Swoyer et al. | Jul 2007 | B2 |
7241291 | Kreindel et al. | Jul 2007 | B2 |
7247155 | Hoey et al. | Jul 2007 | B2 |
7250047 | Anderson et al. | Jul 2007 | B2 |
7252628 | Van Hal et al. | Aug 2007 | B2 |
7258674 | Cribbs et al. | Aug 2007 | B2 |
7267675 | Stern et al. | Sep 2007 | B2 |
7276058 | Altshuler et al. | Oct 2007 | B2 |
7290326 | Dutton | Nov 2007 | B2 |
7309335 | Altshuler et al. | Dec 2007 | B2 |
7311674 | Gingrich et al. | Dec 2007 | B2 |
7329273 | Altshuler et al. | Feb 2008 | B2 |
7329274 | Altshuler et al. | Feb 2008 | B2 |
7331951 | Eshel et al. | Feb 2008 | B2 |
7344587 | Khan et al. | Mar 2008 | B2 |
7347855 | Eshel et al. | Mar 2008 | B2 |
7351252 | Altshuler et al. | Apr 2008 | B2 |
7354448 | Altshuler et al. | Apr 2008 | B2 |
7367341 | Anderson et al. | May 2008 | B2 |
7377917 | Trembly | May 2008 | B2 |
7399297 | Ikadai et al. | Jul 2008 | B2 |
7422586 | Morris et al. | Sep 2008 | B2 |
7422598 | Altshuler et al. | Sep 2008 | B2 |
7431718 | Ikadai | Oct 2008 | B2 |
7470270 | Azar et al. | Dec 2008 | B2 |
7479101 | Hunter et al. | Jan 2009 | B2 |
7481807 | Knudsen et al. | Jan 2009 | B2 |
7491171 | Barthe et al. | Feb 2009 | B2 |
7524328 | Connors et al. | Apr 2009 | B2 |
7530356 | Slayton et al. | May 2009 | B2 |
7530958 | Slayton et al. | May 2009 | B2 |
7540869 | Altshuler et al. | Jun 2009 | B2 |
7544204 | Krespi et al. | Jun 2009 | B2 |
7565207 | Turner et al. | Jul 2009 | B2 |
7568619 | Todd et al. | Aug 2009 | B2 |
7588547 | Deem et al. | Sep 2009 | B2 |
7599745 | Palti | Oct 2009 | B2 |
7601128 | Deem et al. | Oct 2009 | B2 |
7613523 | Eggers et al. | Nov 2009 | B2 |
7630774 | Karni et al. | Dec 2009 | B2 |
7643883 | Kreindel | Jan 2010 | B2 |
7682321 | Naldoni | Mar 2010 | B2 |
7713234 | Karanzas | May 2010 | B2 |
7722535 | Randlov et al. | May 2010 | B2 |
7722600 | Connors et al. | May 2010 | B2 |
7722656 | Segal | May 2010 | B1 |
7736360 | Mody et al. | Jun 2010 | B2 |
7740600 | Slatkine et al. | Jun 2010 | B2 |
7740651 | Barak et al. | Jun 2010 | B2 |
7749260 | Da Silva et al. | Jul 2010 | B2 |
7758524 | Barthe et al. | Jul 2010 | B2 |
7758537 | Brunell et al. | Jul 2010 | B1 |
7762964 | Slatkine | Jul 2010 | B2 |
7763060 | Baumann | Jul 2010 | B2 |
7771421 | Stewart et al. | Aug 2010 | B2 |
7799019 | Turovskiy et al. | Sep 2010 | B2 |
7805201 | Palti | Sep 2010 | B2 |
7815570 | Eshel et al. | Oct 2010 | B2 |
7815633 | Zanelli et al. | Oct 2010 | B2 |
7824394 | Manstein | Nov 2010 | B2 |
7828734 | Azhari et al. | Nov 2010 | B2 |
7837694 | Tethrake et al. | Nov 2010 | B2 |
7842029 | Anderson et al. | Nov 2010 | B2 |
7854754 | Ting et al. | Dec 2010 | B2 |
7857773 | Desilets et al. | Dec 2010 | B2 |
7857775 | Rosenberg et al. | Dec 2010 | B2 |
7862564 | Goble | Jan 2011 | B2 |
7864129 | Konishi | Jan 2011 | B2 |
7891362 | Domankevitz et al. | Feb 2011 | B2 |
7905844 | Desilets et al. | Mar 2011 | B2 |
8073550 | Spertell | Dec 2011 | B1 |
8211099 | Buysse et al. | Jul 2012 | B2 |
8343145 | Brannan | Jan 2013 | B2 |
8367959 | Spertell | Feb 2013 | B2 |
8394092 | Brannan | Mar 2013 | B2 |
8401668 | Deem et al. | Mar 2013 | B2 |
8406894 | Johnson et al. | Mar 2013 | B2 |
8469951 | Ben-Haim et al. | Jun 2013 | B2 |
8535302 | Ben-Haim et al. | Sep 2013 | B2 |
8688228 | Johnson et al. | Apr 2014 | B2 |
8825176 | Johnson et al. | Sep 2014 | B2 |
8853600 | Spertell | Oct 2014 | B2 |
8939914 | Turnquist et al. | Jan 2015 | B2 |
9028477 | Ben-Haim et al. | May 2015 | B2 |
9149331 | Deem et al. | Oct 2015 | B2 |
9216058 | Spertell | Dec 2015 | B2 |
9241763 | Kim et al. | Jan 2016 | B2 |
9314301 | Ben-Haim et al. | Apr 2016 | B2 |
9427285 | Deem et al. | Aug 2016 | B2 |
10166072 | Deem et al. | Jan 2019 | B2 |
10321954 | Ben-Haim et al. | Jun 2019 | B2 |
20010005775 | Samson | Jun 2001 | A1 |
20010016761 | Rudie et al. | Aug 2001 | A1 |
20010050083 | Marchitto et al. | Dec 2001 | A1 |
20020062124 | Keane | May 2002 | A1 |
20020087151 | Mody et al. | Jul 2002 | A1 |
20020156471 | Stern et al. | Oct 2002 | A1 |
20020165529 | Danek | Nov 2002 | A1 |
20020193851 | Silverman et al. | Dec 2002 | A1 |
20030004082 | Masschelein et al. | Jan 2003 | A1 |
20030120269 | Bessette et al. | Jun 2003 | A1 |
20030130575 | Desai | Jul 2003 | A1 |
20030130711 | Pearson et al. | Jul 2003 | A1 |
20030158566 | Brett | Aug 2003 | A1 |
20030212393 | Knowlton et al. | Nov 2003 | A1 |
20030216728 | Stern et al. | Nov 2003 | A1 |
20030220639 | Chapelon et al. | Nov 2003 | A1 |
20040000316 | Knowlton et al. | Jan 2004 | A1 |
20040002705 | Knowlton et al. | Jan 2004 | A1 |
20040049251 | Knowlton | Mar 2004 | A1 |
20040073115 | Horzewski et al. | Apr 2004 | A1 |
20040092875 | Kochamba | May 2004 | A1 |
20040140028 | Clark et al. | Jul 2004 | A1 |
20040186535 | Knowlton | Sep 2004 | A1 |
20040206365 | Knowlton | Oct 2004 | A1 |
20040210214 | Knowlton | Oct 2004 | A1 |
20040230260 | Macfarland et al. | Nov 2004 | A1 |
20040243182 | Cohen et al. | Dec 2004 | A1 |
20040243200 | Turner et al. | Dec 2004 | A1 |
20040249426 | Hoenig et al. | Dec 2004 | A1 |
20050010271 | Merchant | Jan 2005 | A1 |
20050137654 | Hoenig et al. | Jun 2005 | A1 |
20050215901 | Anderson et al. | Sep 2005 | A1 |
20050215987 | Slatkine | Sep 2005 | A1 |
20050251117 | Anderson et al. | Nov 2005 | A1 |
20050251120 | Anderson et al. | Nov 2005 | A1 |
20050288666 | Bertolero et al. | Dec 2005 | A1 |
20060020309 | Altshuler et al. | Jan 2006 | A1 |
20060036300 | Kreindel | Feb 2006 | A1 |
20060111744 | Makin et al. | May 2006 | A1 |
20060112698 | Cazzini et al. | Jun 2006 | A1 |
20060129209 | McDaniel | Jun 2006 | A1 |
20060151485 | Cronin | Jul 2006 | A1 |
20060161228 | Lach | Jul 2006 | A1 |
20060167498 | Dilorenzo | Jul 2006 | A1 |
20060175842 | Saitoh et al. | Aug 2006 | A1 |
20060184205 | Schuler et al. | Aug 2006 | A1 |
20060189964 | Anderson et al. | Aug 2006 | A1 |
20060206110 | Knowlton et al. | Sep 2006 | A1 |
20060259102 | Slatkine | Nov 2006 | A1 |
20060264926 | Kochamba | Nov 2006 | A1 |
20060265034 | Aknine et al. | Nov 2006 | A1 |
20060271028 | Altshuler et al. | Nov 2006 | A1 |
20060276860 | Ferren et al. | Dec 2006 | A1 |
20070010810 | Kochamba | Jan 2007 | A1 |
20070016032 | Aknine | Jan 2007 | A1 |
20070020355 | Schlebusch et al. | Jan 2007 | A1 |
20070049918 | Van Der Weide et al. | Mar 2007 | A1 |
20070060989 | Deem et al. | Mar 2007 | A1 |
20070078290 | Esenaliev | Apr 2007 | A1 |
20070078502 | Weber et al. | Apr 2007 | A1 |
20070088413 | Weber et al. | Apr 2007 | A1 |
20070179482 | Anderson | Aug 2007 | A1 |
20070179535 | Morrissey et al. | Aug 2007 | A1 |
20070208399 | Turner et al. | Sep 2007 | A1 |
20070233226 | Kochamba et al. | Oct 2007 | A1 |
20070237620 | Muhlhoff et al. | Oct 2007 | A1 |
20070239140 | Chechelski et al. | Oct 2007 | A1 |
20070255355 | Altshuler et al. | Nov 2007 | A1 |
20070255362 | Levinson et al. | Nov 2007 | A1 |
20070265585 | Joshi et al. | Nov 2007 | A1 |
20070270925 | Levinson | Nov 2007 | A1 |
20080077201 | Levinson et al. | Mar 2008 | A1 |
20080077202 | Levinson | Mar 2008 | A1 |
20080077211 | Levinson et al. | Mar 2008 | A1 |
20080091183 | Knopp et al. | Apr 2008 | A1 |
20080119830 | Ramstad et al. | May 2008 | A1 |
20080154259 | Gough et al. | Jun 2008 | A1 |
20080167585 | Khen et al. | Jul 2008 | A1 |
20080195000 | Spooner et al. | Aug 2008 | A1 |
20080228526 | Locke et al. | Sep 2008 | A1 |
20080269851 | Deem | Oct 2008 | A1 |
20080294152 | Altshuler et al. | Nov 2008 | A1 |
20080319437 | Turner et al. | Dec 2008 | A1 |
20090221999 | Shahidi | Sep 2009 | A1 |
20090299361 | Flyash et al. | Dec 2009 | A1 |
20090299364 | Batchelor et al. | Dec 2009 | A1 |
20090306647 | Leyh et al. | Dec 2009 | A1 |
20090306659 | Buysse | Dec 2009 | A1 |
20090318917 | Leyh et al. | Dec 2009 | A1 |
20100010480 | Mehta et al. | Jan 2010 | A1 |
20100016782 | Oblong | Jan 2010 | A1 |
20100114086 | Deem et al. | May 2010 | A1 |
20100211059 | Deem et al. | Aug 2010 | A1 |
20100268220 | Johnson et al. | Oct 2010 | A1 |
20110015687 | Nebrigic et al. | Jan 2011 | A1 |
20110028898 | Clark, III et al. | Feb 2011 | A1 |
20110112520 | Kreindel | May 2011 | A1 |
20110196365 | Kim et al. | Aug 2011 | A1 |
20110313412 | Kim et al. | Dec 2011 | A1 |
20120078141 | Knowlton | Mar 2012 | A1 |
20120265277 | Unetich | Oct 2012 | A1 |
20130150844 | Deem et al. | Jun 2013 | A1 |
20140180271 | Johnson et al. | Jun 2014 | A1 |
20150148792 | Kim et al. | May 2015 | A1 |
20150351838 | Deem et al. | Dec 2015 | A1 |
20160045755 | Chun et al. | Feb 2016 | A1 |
20160135888 | Kim et al. | May 2016 | A1 |
20160157934 | Kim et al. | Jun 2016 | A1 |
20170245929 | Deem et al. | Aug 2017 | A1 |
20170252105 | Deem et al. | Sep 2017 | A1 |
20180199994 | Johnson et al. | Jul 2018 | A1 |
20190133684 | Deem et al. | May 2019 | A1 |
Number | Date | Country |
---|---|---|
297299 | Sep 1999 | AU |
1688363 | Oct 2005 | CN |
1781462 | Jun 2006 | CN |
0139607 | Apr 1990 | EP |
0370890 | Nov 1995 | EP |
1346753 | Sep 2003 | EP |
61-364 | Jan 1986 | JP |
62-149347 | Sep 1987 | JP |
63-177856 | Jul 1988 | JP |
07-503874 | Apr 1995 | JP |
H09-239040 | Sep 1997 | JP |
2001-514921 | Sep 2001 | JP |
2006-503618 | Feb 2006 | JP |
2006-289098 | Oct 2006 | JP |
2007-191192 | Aug 2007 | JP |
2010524587 | Jul 2010 | JP |
54-079994 | Nov 2013 | JP |
WO8902292 | Mar 1989 | WO |
WO9207622 | May 1992 | WO |
WO9623447 | Aug 1996 | WO |
WO9641579 | Dec 1996 | WO |
WO9946005 | Sep 1999 | WO |
WOOO24463 | May 2000 | WO |
WO0158361 | Aug 2001 | WO |
WO03039385 | May 2003 | WO |
WO2004034925 | Apr 2004 | WO |
WO2005060354 | Jul 2005 | WO |
WO2005099369 | Oct 2005 | WO |
WO2005112807 | Dec 2005 | WO |
WO2005120379 | Dec 2005 | WO |
WO2005122694 | Dec 2005 | WO |
WO2006089227 | Aug 2006 | WO |
WO2006090217 | Aug 2006 | WO |
WO2006117682 | Nov 2006 | WO |
WO2006122136 | Nov 2006 | WO |
WO2007015247 | Feb 2007 | WO |
WO2007030367 | Mar 2007 | WO |
WO2007038567 | Apr 2007 | WO |
WO2007050572 | May 2007 | WO |
WO2007093998 | Aug 2007 | WO |
WO2007106339 | Sep 2007 | WO |
WO2007108516 | Sep 2007 | WO |
WO2007131112 | Nov 2007 | WO |
WO2007140469 | Dec 2007 | WO |
WO2008068485 | Jun 2008 | WO |
WO2009072108 | Jun 2009 | WO |
WO2009075879 | Jun 2009 | WO |
WO2010047818 | Apr 2010 | WO |
WO2011087852 | Jul 2011 | WO |
WO2012072250 | Jun 2012 | WO |
WO2012138056 | Oct 2012 | WO |
WO2013074664 | May 2013 | WO |
Entry |
---|
An extended European search report issued by the European Patent Office dated Feb. 12, 2020 in connection with European application No. 19197057.3. |
Abraham et al.; Monopolar radiofrequency skin tightening; Facial Plast Surg Clin N Am; 15(2); pp. 169-177; May 2007. |
Absar et al.; Efficacy of botulinum toxin type A in the treatment of focal axillary hyperhidrosis; Dermatol Surg; 34(6); pp. 751-755; Jun. 2008. |
Acculis; Microwave Ablation for Healthcare Professionals; 2 pgs.; accessed Jun. 24, 2008; (http://www.acculis.com/mta). |
Aesthera US—How it Works; 2 pgs.; accessed Jul. 8, 2008 (http://www.aesthera.com/go/aestheralUS/patients/how_it_works/index.cfm). |
Allergan Pharmaceuticals; Botox® (product insert); 16 pgs.; Oct. 2006. |
Alster et al.; Improvement of neck and cheek laxity with a non-ablative radiofrequency device: a lifting experience; Dermatol Surg; 30(4); pp. 503-507; Apr. 2004. |
Ananthanarayanan et al.; 2.5 GHz microwave thermal ablation for performing thermosensitive polymer-chemotherapy for cancer; Antennas and Propagation Society Int. Symp. (APSURSI), 2010 IEEE; Toronto, ON, Canada; pp. 1-4; Jul. 11-17, 2010. |
Arneja et al.; Axillary hyperhidrosis: a 5-year review of treatment efficacy and recurrence rates using a new arthroscopic shaver technique; Plast. Reconstr. Surg.; vol. 119; pp. 562-567; Feb. 2007. |
Ashby et al.; Cryosurgery for Axillary Hyperhidrosis; British Medical Journal Short Reports; London; pp. 1173-1174; Nov. 13, 1976. |
Atkins et al.; Hyperhidrosis: A Review of Current Management; Plast Reconstr Surg; 110(1); pp. 222-228; Jul. 2002. |
Avedro; Keraflex KXL—A new treatment option in European clinical trials; 1 pg.; Sep. 2009; printed Jun. 18, 2012 from website (http://www.nkcf.org/research/research-update/139-kxl-clinical-trials.html). |
Ball, P.; Radio sweat gland—90 GHz; Nature; 452(7188); p. 676; Apr. 9, 2008; printed Jun. 18, 2012 from website (http://www.nature.com/news/2008/080409/full/452676a.html). |
Basra et al.; The dermatology life quality index 1994R2007: A comprehensive review of validation data and clinical results; Br J Dermatol; 159(5); pp. 997-1035; Nov. 2008. |
Bechara et al.; Histological and clinical findings in different surgical strategies for focal axillary hyperhidrosis; Dermatol Surg; vol. 34; pp. 1001-1009; Aug. 2008. |
Beer et al., Immunohistochemical Differentiation and Localization Analysis of Sweat Glands in the Adult Human Axilla, Plastic and Reconstructive Surgery, vol. 117, No. 6, pp. 2043-2049, May 2006. |
Bentel et al.; Variability of the depth of supraclavicular and axillary lymph nodes in patients with breast cancer: is a posterior axillary boost field necessary?; Int J Radiation Oncology Biol Phys; vol. 47(3); pp. 755-758; Jun. 2000. |
Bindu et al.; Microwave characterization of breast-phantom materials; Microwave and Optical Tech. Letters; 43(6); pp. 506-508; Dec. 20, 2004. |
Bioportfolio; Tenex Health Receives FDA clearance for innovative TX1} tissue removal system; 2 pgs.; release dated Mar. 9, 2011; printed on Jun. 18, 2012 from website (http://www.bioportfolio.com/news/article/519143/Tenex-Health-Receives-Fda-Clearance-For-lnnovative-Tx1-Tissue-Removal-System.html). |
Blanchard et al.; Relapse and morbidity in patients undergoing sentinel lymph node biopsy alone or with axillary dissection for breast cancer; Arch Surg; vol. 138; pp. 482-488; May 2003. |
Brace et al., Microwave Ablation with a Trixial Antenna: Results in ex vivo Bovine Liver, IEEE transactions on Microwave Theory and Techniques, vol. 53, No. 1, pp. 215-220 (Jan. 2005). |
BSD Medical Corporation; Hyperthermia therapy contributes to 85 percent survival rate from childhood cancers; 2 pgs.; Jan. 13, 2009; printed Jun. 18, 2009 from website (http://www.irconnect.com/noc/press/pages/news_releases.html?d=157551). |
Bu-Lin et al.; A polyacrylamide gel phantom for radiofrequency ablation; Int. J. Hyperthermia; 24(7); pp. 568-576; Nov. 2008. |
Burns, Jay A.; Thermage: monopolar radiofrequency; Aesthetic Surg J; 25 (6); pp. 638-642; Nov./Dec. 2005. |
Business Wire; miraDry by Miramar Labs Receives FDA 510(k) Clearance; 2pgs.; Feb. 8, 2011; printed Jun. 18, 2012 from website (http://www.businesswire.com/news/home/20110208005595/en/miraDry-Miramar-Labs-Receives-FDA-510-Clearance). |
Campbell et al.; Dielectric properties of female human breast tissue measured in vitro at 3.2 GHz; Phys. Med. Biol.; 37(1); pp. 193-210; Jan. 1992. |
Candela Corp.; The Candela SeleroPLUS Laser with Dynamic Cooling Device: The Benefits of Anesthesia without the Risks; Nov. 1998. |
Chang et al.; A conductive plastic for simulating biological tissue at microwave frequencies; IEEE Trans on Electromagnetic Compatibility; 42(1); pp. 76-81; Feb. 2000. |
Christ et al., Characterization of the Electromagnetic Near-Field Absorption in Layered Biological Tissue in the Frequency Range from 30 MHz to 6000 MHz, Phys. Med. Biol. 51, pp. 4951-4965; Oct. 2006. |
Christ et al., The Dependence of Electromagnetic Far-Field Absorption on Body Tissue Composition in the Frequency Range from 300 MHz to 6 GHz, IEEE Transactions on Microwave Theory and Techniques, vol. 54, No. 5, pp. 2188-2195 (May 2006). |
CK Electronic GmbH; Scientific Measurements of Skin and Hair (product information); 15 pgs.; published after Sep. 2006. |
Cobham; Antenna & Radome Design Aids (product list); 1 pg.; Aug. 2001. |
Commons et al.; Treatment of axillary hyperhidrosis/bromidrosis using VASER ultrasound; Aesth Plast Surg; vol. 33(3); pp. 312-323; May 2009 (pub'd online Jan. 3, 2009). |
Copty et al., Low-power near-field microwave applicator for localized heating of soft matter, Applied Physics Letters, vol. 84, No. 25, pp. 5109-5111 (Jun. 21, 2004). |
Covidien; FDA clears Covidien's Evident} microwave ablation system for use in nonresectable liver tumor ablation; 2 pgs.; Dec. 28, 2008; printed Jun. 18, 2012 from website (http://www.medicalnewstoday.com/releases/133800.php). |
Darabaneanu et al.; Long-term efficacy of subcutaneous sweat gland suction curettage for axillary hyperhidrosis: a prospective gravimetrically controlled study; Dermatol Surg; 34(9); pp. 1170-1177; Sep. 2008. |
De Bruijne et al., Effects of waterbolus size, shape and configuration on the SAR distribution pattern of the Lucite cone applicator, International Journal of Hyperthermia, 22(1): 15-28 (Feb. 2006). |
Dewey; Arrhenius relationships from the molecule and cell to the clinic; Int. J. Hyperthermia; 25(1); pp. 3-20; Feb. 2009. |
Diederich et al.; Pre-clinical Evaluation of a Microwave Planar Array Applicator for Superficial Hyperthermia; International Journal of Hyperthermia; vol. 9, No. 2; pp. 227-246; Jan. 1993. |
Drozd et al.; Comparison of Coaxial Dipole Antennas for Applications in the Near-Field and Far-Field Regions; MW Journal, vol. 47, No. 5 (May 2004), http://www.mwjournal.com/Journal, accessed Dec. 10, 2007. |
Duparc et al.; Anatomical basis of the variable aspects of injuries of the axillary nerve (excluding the terminal branches in the deltoid muscle); Surg Radiol Anat; vol. 19(3); pp. 127-132; May 1997. |
Eleiwa et al.; Accurate FDTD simulation of biological tissues for bio-electromagnetic applications; IEEE Proc. SoutheastCon 2001; Clemson, SC; Mar. 30-Apr. 1, 2001; pp. 174-178. |
Farace et al.; An automated method for mapping human tissue permittivities by MRI in hyperthermia treatment planning; Phys. Med. Biol.; 42(11); pp. 2159-2174; Nov. 1997. |
Fitzpatrick et al.; Multicenter study of noninvasive radiofrequency for periorbital tissue tightening; Lasers Surg Med; 33(4); pp. 232-242; Mar. 2003. |
Gabriel et al.; Dielectric parameters relevant to microwave dielectric heating; Chem Soc Rev; 27(3); pp. 213-224; May-Jun. 1998. |
Gabriel et al.; The dielectric properties of biological tissues: I. Literature survey; Phys Med Biol; 41(11); pp. 2231-2249; Nov. 1996. |
Gabriel et al.; The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz; Phys Med Biol; 41(11); pp. 2251-2269; Nov. 1996. |
Gabriel et al.; The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues; Phys Med Biol; 41(11); pp. 2271-2293; Nov. 1996. |
Gabriel, et al.; Comparison of the Dielectric Properties of Normal and Wounded Human Skin Material; Bioelectromagnetics; 8; pp. 23-27; Jan. 1987. |
Gabriel; Compilation of the dielectric properties of body tissues at RF and microwave frequencies (Technical Report); Armstrong Laboratory; Doc. No. AL/OE-TR-1996-004; pp. 1-16; Jan. 1996. |
Galloway et al.; Ultrasound imaging of the axillary vein—anatomical basis for central venous access; British ournal of Anaesthesia; 90(5); pp. 589-595; May 2003. |
Gandhi et al.; Electromagnetic Absorption in the Human Head and Neck for Mobile Telephones at 835 and 1900 MHz; IEEE Transactions on Microwave Theory and Techniques; 44(10); pp. 1884-1897; Oct. 1996. |
Gandhi et al.; Electromagnetic Absorption in the Human Head from Experimental 6-GHz Handheld Transceivers; IEEE Trans. on Electromagnetic Compatibility; 37(4); pp. 547-558; Nov. 1995. |
Garber, B. B.; Office microwave treatment of enlarged prostate symptoms; 2 pgs.; printed from website (http://www.garber-online.com/microwave-treatment.htm) on Jun. 18, 2012. |
Glaser et al.; A randomized, blinded clinical evaluation of a novel microwave device for treating axillary hyperhidrosis: the dermatologic reduction in underarm perspiration study; Dermatol Surg; 38(2); pp. 185-191; Feb. 2012. |
Glaser et al.; A randomized, blinded clinical evaluation of a novel microwave device for treatinment of axillary hyperhidrosis; 2010 ASDS/ASCDAS Joint Annual Meeting; Late Breaking Abstract (GD413); Oct. 2010. |
Gold et al.; Treatment of Wrinkles and Skin Tightening Using Aluma(TM) Skin Renewal System with FACES (TM)(Functional Aspiration Controlled Electrothermal Stimulation) Technology; Lumens, Inc. (Oct. 2005). |
Goldman et al.; Subdermal Nd-YAG laser for axillary hyperhidrosis; Dermatol Surg; 34(6); pp. 756-762; Jun. 2008. |
Guidant Corp.; Guidant microwave surgical ablation system; 1 pg.; ©2004; printed Jun. 18, 2012 from website (http://web.archive.org/web/20070306031424/http://www.ctsnet.org/file/vendors/872/pdf/MicrowaveAblationIFU.pdf). |
Guy, Arthur; History of Biological Effects and Medical Applications of Microwave Energy; IEEE Transactions on Microwave Theory and Techniques; 32(9); pp. 1182-1200; Sep. 1984. |
Guy, Arthur; Therapeutic Heat and Cold, Fourth Ed.; Chapter 5: Biophysics of High-Frequency Currents and Electromagnetic Radiation; pp. 179-236. Williams and Wilkins (publishers); Apr. 1990. |
Guy; Analyses of electromagnetic fields induced in biological tissues by thermographic studies on equivalent phantom models; IEEE Trans on Microwave Theory and Techniques; MTT-19(2); pp. 205-214; Feb. 1971. |
Haedersdal et al.; Evidence-based review of hair removal using lasers and light sources; JEADV; vol. 20; pp. 9-20; Jan. 2006. |
Hey-Shipton, et al.; The Complex Permittivity of Human Tissue at Microwave Frequencies; Phys. Med. Biol.; 27(8); pp. 1067-1071; Aug. 1982. |
Hisada et al.; Hereditary Hemorrhagic Telangiectasia Showing Severe Anemia which was successfully treated with estrogen; International Medicine; vol. 34; No. 6; pp. 589-592; Jun. 1995. |
Hodgkinson, D. J.; Clinical applications of radiofrequency: nonsurgical skin tightening (thermage); Clin Plastic Surg; 36(2); pp. 261-268; Apr. 2009. |
Hong et al.; Clinical evaluation of a microwave device for treating axillary hyperdrosis; Dermatol Sug; 38(5); pp. 728-735; May 2012. |
Hornberger et al.; Recognition, diagnosis, and treatment of primary focal hyperhidrosis; J Am Acad Dermatol; vol. 51; pp. 274-286; Aug. 2004. |
Houzen et al.; Implanted antenna for an artificial cardiac pacemaker system; Progress in Electromagnetics Research Symposium 2007; Prague, CZ; pp. 51-54; Aug. 27-30, 2007. |
Hu, Da Zhang, Electromagnetic Field in Organism of Skin-Fat-Muscle, China Research Institute of Radiowave Propagation IEEE, pp. 807-812 (Aug. 1998). |
Jacobsen et al.; Characteristics of microstrip muscle-loaded single-arm archimedean spiral antennas as investigated by FDTD numerical computations; IEEE Trans. on Biomedical Engineering; 52(2); pp. 321-330; Feb. 2005. |
Jacobsen et al.; Characterization of a tranceiving antenna concept for microwave heating and thermometry of superficial tumors; PIER; vol. 18; pp. 105-125; 1998. |
Jacobsen et al.; Dual-mode antenna design for microwave heating and noninvasive thermometry of superficial tissue disease; IEEE Trans. on Biomedical Engineering; 47(11); pp. 1500-1509; Nov. 2000. |
Jacobsen et al.; Multifrequency radiometric determination of temperature profiles in a lossy homogeneous phantom using a dual-mode antenna with integral water bolus; IEEE Trans. on Microwave Theory and Techniques; 50(7); pp. 1737-1746; Jul. 2002. |
Jacobsen et al.; Nonparametric 1-D temperature restoration in lossy media using tikhonov regularization on sparse radiometry data; IEEE Trans. on Biomedical Engineering; 50(2); pp. 178-188; Feb. 2003. |
Jacobsen et al.; Transceiving antenna for homogenious heating and radiometric thermometry during hyperthermia; Electronic Letters; 36(6); pp. 496-497; Mar. 16, 2000. |
Johnson et al.; Automatic temperature controller for multielement array hyperthermia systems; IEEE Trans. on Biomedical Engineering; 53(6); pp. 1006-1015; Jun. 2006. |
Johnson et al.; Evaluation of a dual-arm Archimedean spiral array for microwave hyperthermia; Int J Hyperthermia; 22(6); pp. 475-490; Sep. 2006. |
Johnson et al.; Microwave thermolysis of sweat glands; Lasers in Surgery and Medicine; 44(1); pp. 20-25; Jan. 2012. |
Juang et al.; Construction of a conformal water bolus vest applicator for hyperthermia treatment of superficial skin cancer; Proc. of the 26th Ann. Int. Conf. of the IEEE EMBS; San Francisco, CA, USA; Sep. 1-5, 2004; pp. 3467-3470. |
Kaminer et al.; First clinical use of a novel microwave device for treatment of axillary hyperhidrosis; 2010 ASDS Annual Meeting; Poster #12; Oct. 2010. |
Kawoos et al., Issues in Wireless Intracranial Pressure Monitoring at Microwave Frequencies, PIERS Online, vol. 3, No. 6, pp. 927-931; 2007. |
Kilmer et al.; A randomized, blinded clinical study of a microwave device for treatment of axillary hyperhidrosis; 31st ASLMS Annual Conference; Late-Breaking Abstract; Apr. 1-3, 2011. |
Kim et al.; Implanted antennas inside a human body: Simulations, designs, and characterizations; IEEE Trans on Microwave Theory and Techniques; 52(8); pp. 1934-1943; Aug. 2004. |
Kirn, T. F.; Researchers seek to quantify thermage efficacy; Dermatologic Surgery; p. 36; Jan. 2007. |
Kirsch et al.; Ultrastructure of collagen thermally denatured by microsecond domain pulsed carbon dioxide laser; Arch Dermatol; 134; pp. 1255-1259; Oct. 1998. |
Klemm et al.; EM energy absorption in the human body tissues due to UWB antennas; Progress in Electromagnetics Research; PIER; 62; pp. 261-280; 2006. |
Kobayashi, T.; Electrosurgery Using Insulated Needles: Treatment of Axillary Bromhidrosis and Hyperhidrosis; Journal of Dermatologic Surgery & Oncology; 14(7) pp. 749-752; Jul. 1988. |
Krusen, Frank (M.D.); Samuel Hyde Memorial Lecture: Medical Applications of Microwave Diathermy: Laboratory and Clinical Studies. Proceedings of the Royal Society of Medicine; 43(8); pp. 641-658, May 10, 1950. |
Kumaradas et al.; Optimization of a beam shaping bolus for superficial microwave hyperthermia waveguide applicators using a finite element method; Phys. Med. Biol.; 48(1); pp. 1-18; Jan. 7, 2003. |
Kushikata, Nobuharu, Histological Assessment of Biopsy Samples Taken Before and After the mireDry Procedure Performed on a Patient with Axillary Hyperhidrosis; Case Report; pp. 1-3; Oct. 2011. |
Lagendijk et al.; Hyperthermia dough: a fat and bone equivalent phantom to test microwave/radiofrequency hyperthermia heating systems; Phys. Med. Biol.; 30(7); pp. 709-712; Jul. 1985. |
Land et al.; A quick accurate method for measuring the microwave dielectric properties of small tissue samples; Phys. Med. Biol.; 37(1); pp. 183-192; Jan. 1992. |
Lane et al.; Pressure-Induced Bullae and Sweat Gland Necrosis Following Chemotherapy Induction; The American Journal of Medicine; vol. 117; pp. 441-443; Sep. 15, 2004. |
Larson et al.; Microwave treatments for enlarged prostate cause blood pressure surges, study shows; 2 pgs.; Apr. 11, 2008; printed on Jun. 18, 2012 from website (http://web.archive.org/web/20080415000815/http://www.sciencedaily.com/releases/2008/04/080408105820.htm). |
Lawrence et al.; Selective Sweat Gland Removal with Minimal Skin Excision in the Treatment of Axillary Hyperhidrosis: A Retrospective Clinical and Histological Review of 15 Patients; British Journal of Dermatology; British Association of Dermatologists; 155(1), pp. 115-118; Jul. 2006. |
Lehmann et al.; Therapeutic Heat; Therapeutic Heat and Cold, Fourth Ed.; Chapter 9; pp. 417-581; Williams & Wilkins (publishers), Baltimore, MD; Apr. 1990. |
Lowe et al.; Botulinum toxin type A in the treatment of primary axillary hyperhidrosis: A 52-week multicenter double-blind, randomized, placebo-controlled study of efficacy and safety; J Am Acad Dermatol; vol. 56; pp. 604-611; Apr. 2007. |
Lowe et al.; Microwave delivery system for lower leg telangiectasia; Journal of Cutaneous Laser Therapy; 2(1); pp. 3-7; Mar. 2000. |
Lumenis Inc.; Aluma RF Skin Renewal System (product information); copyright 2007 (PB-1013670); 8 pgs.; Oct. 2007 (printed version). |
Lupin et al.; A Multi-Center Evaluation of the miraDry System to Treat Subjects with Axillary Hyperhidrosis; 31st ASLMS Annual Conference; Abstract # 79; Apr. 1-3, 2011. |
Lupin et al.; Long-term evaluation of microwave treatment for axillary hyperhidrosis; 2012 ASLMS Annual Meeting; pp. 6-7; Abstract #19; Apr. 2012. |
Lupin et al.; Microwave-based treatment for primary axillary hyperhidrosis: Six months of follow-up; J Am Acad Dermatol; 66(4), supp. 1; p. AB215; Poster #5300; Apr. 2012. |
Maccarini et al.; Advances in microwave hyperthermia of large superficial tumors; Microwave Symposium Digest, IEEE MTT-S International; pp. 1797-1800; Jun. 2005. |
Maccarini et al.; Electromagnetic optimization of dual mode antennas for radiometry controlled heating of superficial tissue; Proceedings of SPIE; vol. 5698; Bellingham, WA; pp. 71-81; Jan. 2005. |
Maccarini et al.; Optimization of a dual concentric conductor antenna for superficial hyperthermia applications; Proc. of the 26th Ann. Int. Conf. of the IEEE EMBS; San Francisco, CA, USA; Sep. 1-5, 2004; pp. 2518-2521. |
Mazzurana et al.; A semi-automatic method for developing an anthropomorphic numerical model of dielectric anatomy by MRI; Phys. Med. Biol.; 48(19); pp. 3157-3170; Oct. 7, 2003. |
MEDGADGET; MedGadget's MedTech Monday: Treating excessive underarm sweat with microwaves; 1 pg.; Feb. 14, 2011; printed Jun. 18, 2012 from website (https://www.massdevice.com/blogs/massdevice/medgadgets-medtech-monday-treating-excessive-underarm-sweat-with-microwaves). |
Medwaves, Inc.; MedWaves, Inc. sponsors investigational studies to evaluate its patented microwave thermal coagulation-ablation system for treatment of tumors in liver and lung; 4 pgs.; Sep. 18, 2009; printed Jun. 18, 2012 from website (http://www.ereleases.com/pr/medwaves-sponsors-investigational-studies-evaluate-patented-microwave-thermal-coagulationablation-system-treatment-tumors-liver-lung-25870). |
Michel et al.; Design and Modeling of Microstrip—Microslot Applicators with Several Patches and Apertures for Microwave Hyperthermia; Microwave and Optical Technology Letters; vol. 14, No. 2; pp. 121-125; Feb. 5, 1997. |
Mrozowski et al.; Parameterization of media dispersive properties for FDTD; IEEE Trans on Antennas and Propagation; 45(9); pp. 1438-1439; Sep. 1997. |
Nagaoka et al.; Development of realistic high-resolution whole-body voxel models of Japanese adult males and females of average height and weight, and application of models to radio-frequency electromagnetic-field dosimetry; Phys. Med. Biol.; 49(1); pp. 1-15; Jan. 7, 2004. |
Neuman; SAR pattern perturbations from resonance effects in water bolus layers used with superficial microwave hyperthermia applicators; Int. J. Hyperthermia; 18(3); pp. 180-193; May-Jun. 2002. |
Park et al.; A Comparative Study of the Surgical Treatment of Axillary Osmidrosis by Instrument, Manual, and Combined Subcutaneous Shaving Procedures; 41(5); pp. 488-497; Nov. 1998. |
Paulides et al.; A Patch Antenna Design for Application in a Phased-Array Head and Neck Hyperthermia Applicator; IEEE Transactions on Biomedical Engineering; 54(11); pp. 2057-2063; Nov. 2007. |
Peyman et al.; Cole-cole parameters for the dielectric properties of porcine tissues as a function of age at microwave frequencies; Phys Med Biol; 55(15); pp. N413RN419; Jul. 2010. |
Popovic et al.; Dielectric spectroscopy of breast tissue—improved model of the precision open-ended coaxial probe; Proc of the 25th Ann Int Conf of the IEEE EMBS; Cancun, Mexico; pp. 3791-3793; Sep. 17-21, 2003. |
Popovic et al.; Response characterization of the precision open-ended coaxial probe for dielectric spectroscopy of breast tissue; 2003 IEEE—Anntennas and Propagation Soc. Int. Symp.; vol. 4; pp. 54-57; Jun. 22-27, 2003. |
Pozar, David M.; Electromagnetic Theory (Introduction); Microwave Engineering, Second Edition; John Wiley & Sons, Inc.; p. 1; Aug. 1997. |
Rappaport, C.; Treating Cardiac Disease with Catheter-Based Tissue Heating; IEEE Microwave Magazine; 3(1); pp. 57-64; Mar. 2002. |
Riddle et al.; Complex permittivity measurements of common plastics over variable temperatures; IEEE Trans on Microwave Theory and Techniques; vol. 51(3); pp. 727-733; Mar. 2003. |
Rolfsnes et al.; Design of spiral antennas for radiometric temperature measurement; Proc. of the 26th Ann. Int. Conf. of the IEEE EMBS; San Francisco, CA, USA; Sep. 1-5, 2004; pp. 2522-2525. |
Rosen et al.; Microwaves treat heart disease; IEEE Microw Mag; 8(1); pp. 70-75; Feb. 2007. |
Ross et al.; A pilot study of in vivo immediate tissue contraction with CO2 skin laser resurfacing in a live farm pig; Dermatol Surg; 25(11); pp. 851-856; Nov. 1999. |
Ross et al.; Comparison of carbon dioxide laser, erbium: Yag laser, dermabrasion, and dermatome A study of thermal damage, wound contraction, and woundhealing in a live pig model: Implications for skin, resurfacing; J Am Acad Dermatol; 42(1); pp. 92-105; Jan. 2000. |
Ross et al.; Use of a novel erbium laser in a yucatan minipig: A study of residual thermal damage, ablation, and wound healing as a function of pulse duration; Lasers Surg Med; 30(2); pp. 93-100; Feb. 2002. |
Rossetto et al.; Effect of complex bolus-tissue load configurations on SAR distributions from dual concentric conductor applicators; IEEE Trans. on Biomedical Engineering; 46(11); pp. 1310-1319; Nov. 1999. |
Saito et al.; Clinical Trials of Interstitual Microwave Hyperthermia by Use of Coaxial-Slot Antenna With Two Slots; IEEE Trans. on Microwave Theory and Techniques; vol. 52; No. 8; pp. 1987-1991; Aug. 2004. |
Sherar et al.; Helical antenna arrays for interstitial microwave thermal therapy for prostate cancer: tissue phantom testing and simulations for treatment; Physics in Medicine and Biology; 46(7); pp. 1905-1918; Jul. 2001. |
Shimm, D et al.; Hyperthermia in the Treatment of Malignancies; Therapeutic Heat and Cold Fourth Edition edited by Justin Lehmann M.D., Chapter 14, pp. 674-699, Williams & Wilkins Publishers, Baltimore, MD; Apr. 1990. |
Sipahioglu et al.; Dielectric properties of vegetables and fruits as a function of temperature, ash, and moisture content; Journal of Food Science; 68(1); pp. 234-239; Jan. 2003. |
Smith, Stacy; Evolution of a new treatment modality for primary focal hyperhidrosis(poster); Cosmetic Boot Camp 2011; Aspen, CO; Jul. 2011. |
Solish et al.; A comprehensive approach to the recognition, diagnosis, and severity-based treatment of focal hyperhidrosis: recommendations of the Canadian hyperhidrosis advisory committee; Dermatol Surg; vol. 33; pp. 908-923; Aug. 2007. |
Solish et al.; Prospective open-label study of botulinum toxin type A in patients with axillary hyperhodrosis: effects on functional impairment and quality of life; Dermatol Surg; vol. 31(4); pp. 405-413; Apr. 2005. |
Solta Medical, Inc.; Study Published in Facial Plastic Surgery Journal Finds Selective Heating of Fibrous Septae Key to Success and Safety of Thermage(R) ThermaCool(TM) System; Thermage® Press Release; 2 pgs.; Jun. 20, 2005. |
Soontornpipit et al.; Design of implantable microstrip antenna for communication with medical implants; IEEE Trans on Microwave Theory and Techniques; 52(8); pp. 1944-1951; Aug. 2004. |
Spertell et al.; Review of clinical data on hair removal using the MW 2000 microwave delivery system (promotional material); 2000; MW Medical, Inc.; printed from http://www.hairfacts.com/medpubs/mwave/spertell.html on Jun. 23, 2009; 5 pgs. |
Spertell; Presentation at the American Academy of Dermatology; MW Medical, Inc.; Mar. 10, 2000; 21 pgs. |
Spertell; The application of microwaves to the treatment of cosmetic skin conditions: a technical summary; MW Medical, Inc.; pp. 1-15; May 25, 1999. |
SRLI Technologies; BTC-2000} (product information); printed from website: http://www.srli.com/technologies/BTC2000.html on Nov. 16, 2009; 1 pg. |
Stauffer et al.; Combination applicator for simultaneous heat and radiation; Proc. of the 26th Ann. Int. Conf. of the IEEE EMBS; San Francisco, CA, USA; Sep. 1-5, 2004; pp. 2514-2517. |
Stauffer et al.; Dual mode antenna array for microwave heating and non-invasive thermometry of superficial tissue disease; SPIE Conf. on Thermal Treatment of Tissue with Image Guidance; San Jose, CA; Spie; vol. 3594; pp. 139-147; Jan. 1999. |
Stauffer et al.; Microwave array applicator for rediometry controlled superficial hyperthermia; Proc. of the SPIE; vol. 4247; pp. 19-29; Jun. 2001. |
Stauffer et al.; Phantom and animal tissues for modelling the electrical properties of human liver; Int. J. Hyperthermia; 19(1); pp. 89-101; Jan.-Feb. 2003. |
Stauffer et al.; Practical induction heating coil designs for clinical hyperthermia with ferromagnetic implants; IEEE Trans. on Biomedical Engineering; 41(1); pp. 17-28; Jan. 1994. |
Stauffer et al.; Progress on system for applying simultaneous heat and brachytherapy to large-area surface disease; Proceedings of SPIE; vol. 5698; Bellingham, WA; pp. 82-96; Jan. 2005. |
Stauffer et al.; Progress toward radiometry controlled conformal microwave array hyperthermia applicator; Proc. of the 22nd Ann. EMBS Int. Conf.; Chicago, IL; Jul. 23-28, 2000; pp. 1613-1616. |
Stauffer, Paul R.; Evolving technology for thermal therapy of cancer; International Journal of Hyperthermia; 21(8); pp. 731-744; Dec. 2005. |
Stauffer, Paul R.; Thermal Therapy Techniques for Skin and Superficial Tissue Disease; Critical Reviews; SPIE Optical Engineering Press (Bellingham, WA); vol. CR75; pp. 327-367; Jan. 2000. |
Sterzer, Fred, Microwave Medical Devices; IEEE Microwave Magazine, 3(1); pp. 65-70; Mar. 2002. |
Stoy et al.; Dielectric properties of mammalian tissues from 0.1 to 100 MHz: a summary of recent data; Phys. Med. Bil.; 27(4); pp. 501-513; Apr. 1982. |
Strutton et al.; US prevalence of hyperhidrosis and impact on individuals with axillary hyperhidrosis: Results from a national survey. J Am Acad Dermatol; 51(2); pp. 241-248; Feb. 2004. |
Stuchly et al.; Diathermy applicators with circular aperture and corrugated flange; IEEE Trans on Microwave Theory and Techniques; MTT-28(3); pp. 267-271; Mar. 1980. |
Stuchly et al.; Dielectric properties of animal tissues in vivo at frequencies 10 MHz-1 GHz; Bioelectromagnetics; 2(2); pp. 93-103; Apr. 1981. |
Stuchly et al.; Dielectric properties of animal tissues in vivo at radio and microwave frequencies: comparison between species; Phys. Med. Biol.; 27(7); pp. 927-936; Jul. 1982. |
Sullivan et al.; Comparison of measured and simulated data in an annular phased array using an inhomogeneous phantom; IEEE Trans on Microwave Theory and Techniques; 40(3); pp. 600-604; Mar. 1992. |
Sullivan et al.; The pig as a model for human wound healing; Wound Repair Regen; 9(2); pp. 66-76; Mar. 2001. |
Sunaga et al.; Development of a dielectric equivalent gel for better impedance matching for human skin; Bioelectromagnetics; 24; pp. 214-217; Apr. 2003. |
Surowiec et al.; Dielectric properties of breast carcinoma ind the surrounding tissues; IEEE Trans on Biomedical Engineering; 35(4); pp. 257-263; Apr. 1988. |
Tavernier et al.; Conductivity and dielectric permittivity of dermis and epidermis in nutrient liquid saturation; Engineering in Medicine and Biology Society; 1992 14th Annual Int. Conf of the IEEE; Paris, France; pp. 274-275; Oct. 29-Nov. 1, 1992. |
Thermolase Corp.; 510K Pre-Market Notification (No. K950019) and Product User Manual ThermoLase Model LT100 Q-Switched Nd: YAG, Laser Hair Removal System, Jan. 3, 1995. |
Trembly et al.; Combined Microwave Heating and Surface Cooling of the Cornea; IEEE Transactions on Biomedical Engineering; vol. 38; No. 1; pp. 85-91; Jan. 1991. |
Urolgix, Inc.; Cooled Thermotherapy + Prostiva RF = Durability + Versatility; 1 pg.; printed Jun. 18, 2012 from website (http://www.urologix.com/). |
Uzunoglu et al.; A 432-MHz Local Hyperthermia System Using an Indirectly Cooled, Water-Loaded Waveguide Applicator; IEEE Trans, on Microwave Theory and Techniques; vol. 35, No. 2; pp. 106-111; Feb. 1987. |
Valleylab; Cool-tip} RF Ablation System; (http://www.cool-tiprf.com/physics.html) accessed Jun. 24, 2008. |
Van Rhoon et al.; A 433 MHz Lucite Cone Waveguide Applicator for Superficial Hyperthermia; International Journal of Hyperthermia; vol. 14, No. 1; pp. 13-27; Jan.-Feb. 1998. |
Vander Vorst et al.; RF/microwave interaction with biological tissues; Hoboken, NJ; John Wiley & Sons, Inc.; pp. 264-305; Jan. 2006. |
Vardaxis et al.; Confocal laser scanning microscopy of porcine skin: Implications for human wound healing studies; J Anat; 190(04); pp. 601-611; May 1997. |
Virga et al.; Low-profile enhanced-bandwidth PIFA antennas for wireless communications packaging; IEEE Trans on Microwave Theory and Techniques; 45(10); pp. 1879-1888; Oct. 1997. |
Vrba, et al.; Evanescent-Mode Applicators (EMA) for Superficial and Subcutaneous Hyperthermia; IEEE Trans. on Biomedical Engineering; vol. 40; No. 5; pp. 397-407; May 1993. |
Warty et al.; Characterization of implantable antennas for intracranial pressure monitoring: reflection by and transmission through a scalp phantom; IEEE Trans on Mircrowave Theory and Techniques; 56(10); pp. 2366-2376; Oct. 2008. |
Weiss et al.; Monopolar radiofrequency facial tightening: a retrospective analysis of efficacy and safety in over 600 treatments; J Drugs Dermatol; 5(8); pp. 707-712; Sep. 2006. |
WIKIPEDIA; Bayonet mount; 6 pages; Dec. 18, 2014; retrieved from the internet (www.http://en.wikipedia.org/wiki/Bayonet mount). |
Wikipedia; ISM band; 5 pages; printed Jul. 22, 2014 from website (http://en.wikipedia.org/wiki/ISM_band). |
Wollina et al.; Tumescent suction curettage versus minimal skin resection with subcutaneous curettage of sweat glands in axillary hyperhidrosis; Dermatol Surg; 34(5); pp. 709-716; May 2008. |
Wong, G.; miraDry system: technology to help treat excessive underarm sweat; 1 pg.; Feb. 10, 2011; printed on Jun. 18, 2012 from website (http://www.ubergizmo.com/2011/02/miradry-system-treat-excessive-underarm-sweat/). |
Wonnell et al.; Evaluation of microwave and radio frequency catheter ablation in a myocardium-equivalent phantom model; IEEE Trans, on Biomedical engineering; 39(10); pp. 1086-1095; Oct. 1992. |
Wright et al.; Hepatic microwave ablation with multiple antennae results in synergistically larger zones of coagulation necrosis; Ann. Surg. Oncol.; 10(3); pp. 275-283; Apr. 2003. |
Yang et al.; A Floating Sleeve Antenna Yields Localized Hepatic Microwave Ablation; IEEE Transactions on Biomedical Engineering; 53(3); pp. 533-537; Mar. 2006. |
Zelickson et al.; Histological and ultrastructural evaluation of the effects of a radiofrequency-based nonablative dermal remodeling device; Arch Dermatol; 140; pp. 204-209; Feb. 2004. |
Zelickson et al.; Ultrastructural effects of an infrared handpiece on forehead and abdominal skin; Dermatol Surg; 32(7); pp. 897-901; Jul. 2006. |
Zhou et al.; Resection of Meningiomas with Implantable Microwave Coagualation; Bioelectromagnetics; vol. 17; No. 2; pp. 85-88; 1996. |
Deem et al.; U.S. Appl. No. 15/406,496 entitled “Systems and methods for creating an effect using microwave energy to specified tissue,” filed Jan. 13, 2017. |
Number | Date | Country | |
---|---|---|---|
20200100837 A1 | Apr 2020 | US |
Number | Date | Country | |
---|---|---|---|
61513834 | Aug 2011 | US | |
61555410 | Nov 2011 | US | |
61673697 | Jul 2012 | US | |
61676833 | Jul 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13563656 | Jul 2012 | US |
Child | 15090273 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15090273 | Apr 2016 | US |
Child | 16444831 | US |