Applicator for skin treatment with automatic regulation of skin protrusion magnitude

Information

  • Patent Grant
  • 9295858
  • Patent Number
    9,295,858
  • Date Filed
    Wednesday, July 15, 2009
    15 years ago
  • Date Issued
    Tuesday, March 29, 2016
    8 years ago
Abstract
Described is an applicator for RF, ultrasound, and light skin treatment. The applicator allows a protrusion of skin to be formed within a cavity and maintained for a desired time, enables good coupling of the treatment energy with the skin and avoids negative pressure adversely affecting the skin.
Description
TECHNICAL FIELD

The method and apparatus relate to non-invasive aesthetic treatment procedures and in particular to body shaping, skin treatment and other aesthetic treatments.


BACKGROUND

Body shaping, skin tightening and rejuvenation, collagen fibers contraction, removal of wrinkles, and other aesthetic skin treatments are popular and widely used in the field of cosmetic and appearance improvement procedures. The treatments are typically provided through the application of electromagnetic or acoustic energy to a target section of skin. In these treatment procedures, an applicator having an inner cavity or vacuum chamber is typically applied to the skin of a subject such that the section of the skin to be treated is pulled up or drawn into the vacuum chamber forming a skin fold that will be termed as skin protrusion. The electromagnetic energy, such as Radio Frequency (RF), or acoustic energy, such as ultrasound, is applied to one or more sides of the protrusion to perform a desired skin/tissue effect in the skin/tissue between the electrodes or between ultrasound transducers. After the treatment, the skin is again straightened or the protrusion is relaxed and the desired skin effect such as, for example contraction of collagen fibers or destruction of adipose tissue by the electromagnetic or acoustic energy, is realized.


The generation of the skin protrusion includes multiple advantages, one such being that it allows all or portions of the skin to be treated by rapidly conforming to the shape of the applicator and preventing undesired movement of the applicator during the treatment. Formation of the protrusion and negative pressure in the cavity is also necessary to stabilize and temporarily attach energy emitting contact surfaces to the skin. Properly attached electrodes couple larger portions of RF or ultrasound and increase the desired treatment effects, reduce the number of treatments required to reach the desired effect, and improve the success confidence of the treated subject. However, to ensure proper contact with the skin, the vacuum that is applied to the skin should be strong enough to form and maintain the protrusion. However, the application of sufficient vacuum force to provide the desired contact has some negative effects on the skin. These negative effects can include, among other things, leaving endemic bruising spots on the skin, causing pain to the treated subject during the procedure and following, and requiring extended post-treatment recovery periods.


The vacuum chamber or cavity used for protrusion formation has a relatively large size but, the skin drawn inside may occupy only a section of the cavity. The pump that delivers vacuum or negative pressure into the chamber should be a relatively large pump enabling rapid air evacuation from the cavity, protrusion formation and maintaining of the protrusion for at least the time of treatment. These requirements unfortunately increase the cost of the equipment used for different skin treatment procedures because, there is variability in the skin properties between different subjects. In addition, because of this, low-level vacuum pressure or force is sufficient for generation of the required protrusion for some treated subjects. However, other subjects may require a substantially higher level of vacuum force. It is a common practice of the caregiver or operator to manually adjust or vary the vacuum level, until he or she finds the optimal level, which is sufficient for the treatment of the skin and does not cause painful sensations. This optimal vacuum level varies from one subject to the other, sometimes there is no such optimal level, and the treatment is either painful or inefficient.


It would be desirable to have an applicator that would allow a protrusion to be formed and maintained for a desired time with good coupling to the energy emitting surfaces, without adversely affecting the skin or causing pain to the treated subject.


BRIEF SUMMARY

Described is an applicator for RF, ultrasound, and light skin treatment. The applicator includes a cavity operatively configured to receive into it a segment of skin to be configured as a protrusion and a valve. The cavity communicates with a source of negative pressure. The protrusion applies pressure to the valve and displaces the valve in the cavity. The valve displacement regulates the negative pressure in the cavity.


RF energy, ultrasound or light energy may be applied to the skin protrusion at different overlapping and none overlapping periods to cause the desired treatment effect.


The applicator allows a protrusion to be formed and maintained for a desired time, enables good coupling of the treatment energy with the skin and avoids negative pressure adversely affecting the skin.





BRIEF DESCRIPTION OF THE DRAWINGS

The applicator and method of the applicator use are particularly indicated and distinctly claimed in the concluding portion of the specification. The applicator and the method, however, both as to organization and method of operation, may best be understood by reference to the following detailed description when read with the accompanied drawings, in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the method.



FIG. 1 is a schematic illustration of an exemplary embodiment of the present applicator.



FIGS. 2A and 2B, collectively referred to as FIG. 2, are schematic illustrations showing the operation of an exemplary embodiment of the present applicator.



FIGS. 3A and 3B, collectively referred to as FIG. 3, are schematic illustrations showing operation of another exemplary embodiment of the present applicator.



FIG. 4 is a schematic illustration of an exemplary embodiment of the present applicator configured to apply RF energy to a section of the skin formed as a protrusion.



FIG. 5 is a schematic illustration of the protrusion formation time for tissues with different laxities.



FIGS. 6A and 6B, collectively referred to as FIG. 6, are schematic illustrations of an exemplary embodiment of the present applicator configured to apply RF and ultrasound energy to a section of the skin formed as a protrusion.





DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

In the following detailed description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present applicator, principles of the applicator operation and method of using the applicator. It will be apparent, however, that the present applicator and method may be practiced without these specific details. In this regard, directional terminology, such as “up,” “down,” “front,” “back,” etc., is used with reference to the orientation of the Figure(s) being described. Because components of embodiments of the present invention can be positioned in a number of different orientations, the directional terminology is used for purposes of illustration and is in no way limiting.


Reference is made to FIG. 1, which is a schematic illustration of an exemplary embodiment of the present applicator. Applicator 100 represents a housing 104 made of metal or plastic material with a hollow cavity 108 formed inside of housing 104. Cavity 108 communicates through first end 112 with a source of negative pressure 116 and a valve 120 located in the interior of cavity 108 and controlling communication between the cavity and the source of negative pressure. A flexible hose (not shown) may connect between first end 112 of applicator 100 and source of negative pressure such as for example, a vacuum pump 116.


A rim 124 terminates the second end of applicator 100. Rim 124 may have a thickness similar to the walls 128 of applicator 100 housing 104; it may terminate by a gasket, or have a surface (FIG. 3) substantially larger than walls 128. Valve 120 is an assembly of a plate 140, guide 144, O-ring type gasket 148, spring 152 and a stopper disk 156. Other valve structures such as two mated conical or spherical surfaces are possible. Valve 120 has a freedom of linear movement in the axial direction as indicated by arrow 160. The clearance between guide 144 and applicator housing 104 should be selected such as to enable easy evacuation of air from cavity 108 and would typically be about 0.2 cm2.



FIGS. 2A and 2B, collectively referred to as FIG. 2 are schematic illustrations showing the operation of an exemplary embodiment of the present applicator. In operation, applicator 100 is placed on the section of the skin to be treated such that rim 124 contacts skin 200 and cavity 108 becomes enclosed between skin 200, applicator walls 128 and plate 140 of valve 120. (As used in the present disclosure the terms “skin” and “tissue” have the same meaning.) In some embodiments, a gasket-improving rim 124 with skin 200 contacts may be used. Source of negative pressure 116 evacuates air from cavity 108. The negative pressure in cavity 108 pulls or draws skin 200 into the cavity and forms a skin protrusion 208 (FIG. 2A).


Pump 116 continues to operate and protrusion 208 expands further occupying almost all volume of cavity 108. As protrusion 208 expands it contacts plate 140 of valve 120, displaces or pushes the plate, and components of valve 120 associated with it in the direction indicated by arrow 212 (FIG. 2B) such that gasket 148 contacts the inner surface 216 of applicator housing 104. Additional increase in the magnitude or volume of protrusion 208 increases the positive pressure applied to plate 140 and O-ring type gasket 148 mounted on it. This pressure further displaces plate 140 and attaches gasket 148 to the surface 216 of cavity 108. Gasket 148 temporarily seals cavity 108 and establishes the volume or magnitude of protrusion 208 that fills-in cavity 108. Different skin treatments, aesthetic and non-aesthetic, may be applied to protrusion 208.


As the time passes, air gradually leaks into cavity 108 of applicator 100. The value of the negative pressure diminishes, and protrusion 208 reduces its magnitude or volume and recedes. Forces generated by spring 152 maintain permanent contact of plate 140 with protrusion 208 and return plate 140 and associated with plate 140, parts of valve 120 to the original location or to a section of the stroke. Spring 152 develops relatively gentle force that pushes down plate 140. For example, if the pump 116 generates a negative pressure of 0.6 Bar and the cross section of the valve is 0.2 cm2, the force would be 1.2N. Such gentle pressure required for formation of the protrusion is relatively low and does not generate adverse effects in or on the skin.


Valve 120 operated by positive pressure developed by skin protrusion 208 and spring 152 forces, acts like an ON-OFF switch enabling or disabling communication with pump 116. Actually, protrusion 208 automatically regulates its magnitude by regulating the level of the negative pressure developed by pump 116, forcing protrusion shape and volume optimally for the desired treatment, and enabling firm contact to the surfaces of cavity walls. Excessive negative pressure values are automatically avoided and no damage, pain or other adverse effects are inflicted to the treated skin section. Spring 152 ensures the return path of valve 120 when the action of pump 116 is discontinued, locating valve 120 into a position suitable for the next treatment cycle and/or translation to a new skin section. Thus, the valve operates as a protrusion magnitude detector by switching off the negative pressure when the protrusion reaches a desired or threshold value, which moves the valve to a position to throw the switch.



FIGS. 3A and 3B, collectively referred to as FIG. 3 are schematic illustrations showing operation of another exemplary embodiment of the present applicator for skin treatment. The size of the applicator, among others, depends on the desired size of the skin segment to be treated and the ability to generate and maintain a proper skin protrusion magnitude. Accordingly, the applicator may have a larger plate 314 or a number of guides 322 included in the valve assembly. FIG. 3A illustrates an applicator 300 having valve 310 consisting of plate 314, flat or other suitable type gasket 318, guides 322, a pusher 324, and springs 326. In an alternative embodiment, gasket 318 may be mounted on surface 338. Channel 330 enables communication with a negative pressure source (not shown). Two or more guides 322 may be required to avoid plate 314 skew and enable rapid and uniform contact of gasket 318 with surface 338 of housing 320 of applicator 300 or channel 330. Operation of applicator 300 is similar to the operation of applicator 100. When the source of negative pressure (not shown) is operative, it forms in cavity 304 a skin protrusion shown by phantom line 334.


Protrusion 334 pushes up plate 314 of valve 310 regulating the level of vacuum in the cavity and the protrusion 334 magnitude.



FIG. 3B illustrates applicator 300 in a state where protrusion 334 has reached the desired magnitude. Gasket 318 closes vacuum passage 330. Protrusion 334 maintains its magnitude for a certain time until air leakage into cavity 304 enables forces generated by springs 326 that maintain a permanent contact of plate 314 with protrusion 334 to push down plate 314 and parts of valve 310 associated with it. This enables communication of cavity 304 with the source of vacuum (not shown). Applicator 300 possesses a relatively large rim 342 enabling easy applicator over the surface of skin/tissue 332 displacement and firm contact with the skin/tissue.


It is known that aesthetic and medical skin treatments are usually accompanied by application of gel to the treated skin surface. The purpose of the gel application may be for the improvement of electrical contact with the skin, improvement of ultrasound to skin coupling, and easier translation of the applicator over the skin. The application of the vacuum force may result in sucking the applied skin gel into the vacuum system. The gel may become an obstacle to proper vacuum system operation it may deposit the gel in undesired places and applicator components. The gel hardens with time, and even may damage the vacuum pump. Applicator 300 is equipped by a gel guard 390 with dimensions tightly fitted to the applicator 300 inner cross section dimensions. In one embodiment, gel guard 390 is a reusable part that should be cleaned from time to time as gel accumulates on it. In another embodiment, gel guard 390 is an easily exchangeable disposable part. The disposable gel guard 390 may include guides 322 and pusher 324 with stopper disk 318, further simplifying gel guard replacement. It should be clear that other applicator constructions are possible, including more than two guides, different valve and gasket locations and structures.


One of the applications of the present applicator is for RF skin treatment. FIG. 4 is a schematic illustration of an exemplary embodiment of the present applicator configured to apply RF energy to a skin protrusion. Applicator 400 includes one or more RF electrodes 404 that are built-in to walls 408 of housing 412, or located close to walls 408 of the housing 412. An RF energy generator 416 provides RF energy to electrodes 404. The RF energy would typically have a frequency of 0.5-10 MHz and energy of 0.5-50.0 J/cm2 and it may be introduced into the skin in a pulsed or continuous mode.


Safety of the application of RF to a subject's skin is aparamount requirement in every aesthetic and medical RF based treatment. Firm contact between electrodes 404 and protrusion 334 ensure good energy to skin transfer, avoids formation of hot spots on the electrodes, and other adverse effects. Such contact conditions exist only when skin protrusion 334 completely fills cavity 424. Sensing of protrusion magnitude (or status) may provide feedback to controller 462 that controls RF generator 416 supplying RF to electrodes 404. Such “protrusion detector (or sensor)” sends the control system 462 a signal when the tissue fills the cavity into the tissue as required for safe energy application. In one embodiment, shown in FIG. 4, the protrusion sensor is based on an optical path between an LED 446 and light detector 448 with the continuity of the pass being interrupted by pin 444 when plate 314 is pushed up by protrusion 334. There is also a possibility of using a mechanical, resistive, capacitive, inductive sensor or any other type of sensor that is suitable for the direct or auxiliary detection of the protrusion magnitude. An optical sensor may be placed inside cavity 424 as well as a skin laxity sensor.


Pump 420 generates negative pressure of about −0.1 bar to −0.9 bars, in cavity 424. The negative pressure or vacuum draws skin or tissue 332 into cavity 424 forming a skin protrusion 334. As skin protrusion 334 growths, it occupies a larger volume of cavity 424, and spreads in a uniform way inside the cavity. The protrusion spreading enables firm contact of skin 332 with electrodes 404. Protrusion 334 pushes plate 314 up such that gasket 318 contacts surface 338 of the vacuum communication channel disabling vacuum communication with pump 420. When the negative pressure in cavity 424 drops down, for example, because of air leakage, protrusion 334 recedes or diminishes. Springs 326 push plate 314 and gasket 318 down, away from surface 338 and enable vacuum pump 420 to communicate once again with cavity 424 and evacuate the air from it.


When firm contact between skin protrusion 334 and electrodes 404 is established, controller 462 switches ON RF generator 416 and RF energy is supplied to target volume 452 of skin 332. Phantom lines 456 illustrate schematically RF induced current flow in skin protrusion 334. This current heats target tissue volume 452 and enables the desired treatment effect, which may be body shaping, skin tightening and rejuvenation, contraction of collagen fibers, removal of wrinkles and other aesthetic skin treatment effects. Proper contact between electrodes 404 and skin protrusion 334 may be detected during the treatment by monitoring skin impedance between electrodes 404 as disclosed in the U.S. Pat. No. 6,889,090 to the same assignee. The lower the skin impedance at the beginning of treatment, the better is the contact between electrodes 404 and skin 432 forming protrusion 334.


Increasing skin temperature by RF induced currents, leads to a change in impedance. Monitoring the skin impedance allows the temperature distribution in the skin to be followed so that the parameters of the treatment may be determined, enabling treatment optimization. Such parameters may include, for example, the time RF is applied to the skin, the pulse duration of the RF energy, the frequency of the RF energy, the power of the RF energy, the delay time between cooling the skin and the application of the RF energy.


Other known impedance monitoring methods may also be applied. Applicator 400 may contain additional devices for temperature monitoring, skin and electrodes cooling, illumination devices for illuminating the treated skin section, and others, as may be required by a particular skin treatment. RF generator 416, vacuum pump 420 and other control and auxiliary units such as a cooling fluid pump, impedance measurement circuit, wiring and tubing not shown for the simplicity of explanation, may be placed in a common controller 462 packaging.


It should be noted that the protrusion sensor can be for other purposes rather then simply as a safety feature preventing undesired energy application to a partial protrusion. For instance, the sensor, as will be explained below, can be used to establish tissue properties and in particular tissue laxity, by measuring the time between the start of vacuum and the time when protrusion reaches its desired magnitude. (The terms “tissue flexibility” and “tissue laxity” occasionally used through the disclosure have the same meaning.)


It has been experimentally discovered that the time of protrusion formation is a function of the treated subject tissue laxity and structure. FIG. 5 is a schematic illustration of the protrusion formation time for tissues with different laxities. Numeral 500 marks the protrusion magnitude desired for a particular treatment. Under all other equal condition, line 504 and time t1 mark protrusion formation for a relatively high laxity tissue. Lines 508 and 512 mark protrusion formation times t2 and t3 for stiffer (more rigid) tissues than line 504 mark, with line 512 and t3 marking the stiffest tissue. For example, protrusion formation time for high laxity tissue is about 20 milliseconds to 200 milliseconds. Protrusion formation time for stiff (rigid) tissue is about 1200 millisecond to 2000 millisecond. Knowledge of the protrusion formation time enables selection of the appropriate tissue treatment parameters for each type. The treatment parameters may be set manually, based on the protrusion formation time, or automatically by including in the controller a feedback loop reading the time from LED 446 and sensor 448 (FIG. 4) and using at least part of the feedback to establish the type of tissue and the tissue treatment parameters.


Tissue laxity may be a good indicator of the need to perform a tissue pretreatment procedure. Such procedure may be a massage or heat application to soften the treated tissue and make it more suitable for the treatment itself. Thus the method disclosed provides a diagnostic tool for determination of tissue stiffness and indication of the treatment parameters most suitable for the particular tissue.



FIGS. 6A and 6B, collectively referred to as FIG. 6, are schematic illustrations of an exemplary embodiment of the present applicator configured to apply RF and ultrasound energy to a section of the skin. Applicator 600 (FIG. 6A) is similar to applicator 400 and includes, in addition, one or more ultrasound transducers 604.


Transducers 604 may be of conventional type or phased array transducers. Transducers 604 may be located on one or both sides of applicator 600 and typically, as disclosed in United States Patent Publication No. 2007/0038156 to the same assignee, incorporated here in its entirety and are focused to emit energy into the same target treatment volume 452 (FIG. 6B) located between RF electrodes 404 and affected by the US energy. Applicator 600 includes a LED 446 and skin protrusion detector 448 and may contain devices for temperature monitoring, skin and electrode cooling, illumination devices for illuminating the treated skin section, and others, as may be required by a particular skin treatment.


RF generator 420 and ultrasound generator 628 provide energy to respective electrodes and transducers. Vacuum pump 416 generates negative pressure forming skin protrusion 334. Sensing of skin protrusion magnitude (or status) may provide feedback to controller 632 that controls RF generator 420 supplying RF to electrodes 404 and ultrasound generator 628 supplying ultrasound energy to transducers 604. In operation such “protrusion detector (or sensor)” sends the control system 632 a signal when the tissue fills-in the cavity as required for safe energy application into the tissue. The protrusion sensor signal may be used to switch ON and OFF the RF generator 420 and ultrasound generator 628. These and other control and auxiliary units such as a cooling fluid pump, wiring and tubing not shown for the simplicity of explanation, may be placed in a common controller packaging 632.



FIG. 6B is a cross section of applicator 600 illustrating location of RF electrodes 404, ultrasound transducers 604, and acoustic field lines 620 generated by transducers 604 and RF induced current lines 624. Circle 630 schematically shows the target volume heated by the ultrasound and RF.


The RF and ultrasound energy are applied for short time duration, as a pulse or a train of pulses (or several pulses), in order to reduce loss of heat from the ultrasound heated focal tissue volumes by conduction or convection. RF and ultrasound energies may be applied simultaneously or one delayed with respect to the other.


The temperature generated at the focal volumes by the RF and ultrasound energy sources and the time of heating are selected such that adequate heating of the focal volumes is obtained, while heating of surrounding tissues is minimal. Increased temperature of the focal volumes facilitated the mechanical action of ultrasound applied to the same volume and helps in achieving a substantial treatment effect.


A number of embodiments have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the method. Accordingly, other embodiments are within the scope of the following claims:

Claims
  • 1. An applicator for forming a skin protrusion, said applicator comprising: a housing with a hollow cavity formed inside of the housing for receiving into it a section of skin to be configured as a protrusion, said cavity featuring: a first end communicating with a source of negative pressure and a valve located in the interior of the cavity and controlling communication between the cavity and the source of negative pressure, wherein the valve comprises a plate coupled with at least one guide; anda second end terminated by a rim configured to contact skin; andwherein the plate is configured to be displaced in a first direction by positive pressure developed by the section of skin configured as a protrusion when in contact with the plate; andwherein the valve further comprises a spring configured to assert a force in the opposite direction as the first direction to encourage the return of the displaced plate towards its non-displaced position when the protrusion recedes and wherein the valve further comprises a gasket attached to a pusher, said gasket configured to temporarily seal said cavity when the valve is displaced to a closed position; andwherein there is a decrease in vacuum force within the cavity when the skin protrusion is in contact with the plate and the volume of skin protrusion within the cavity exceeds an upper threshold; and there is an increase in the vacuum force within the cavity when the skin protrusion is in contact with the plate and the volume of skin protrusion within the cavity decreases towards a lower threshold; wherein a portion of the plate is, at least in part, configured to be displaced in a first direction such that the plate decreases the vacuum force within the cavity.
  • 2. The applicator according to claim 1, wherein the housing is configured, under the application of the negative pressure, to draw the skin into said cavity.
  • 3. The applicator according to claim 1, further comprising a protrusion magnitude sensor and where the sensor is at least one of a group consisting of optical sensors, mechanical sensors, resistive sensors, capacitive sensors or inductive sensors.
  • 4. The applicator according to claim 3, wherein the protrusion magnitude sensor is a skin laxity sensor.
  • 5. The applicator according to claim 3, wherein the protrusion magnitude sensor is a switch.
  • 6. The applicator according to claim 1, further comprising a disposable gel guard or a reusable gel guard.
  • 7. A method of forming a skin protrusion, said method comprising: applying to a segment of skin an applicator, the applicator includes a housing with a hollow cavity formed inside of the housing, the cavity has an end communicating with a source of negative pressure, the applicator also includes a valve located in the interior of the cavity, wherein the valve further comprises a gasket attached to a pusher, and wherein said gasket configured to temporarily seal said cavity when the valve is displaced to a closed position; and wherein the valve is configured to control communication between the cavity and the source of the negative pressure; andoperating the source of negative pressure to draw a portion of the segment of skin into the cavity and form a skin protrusion;
  • 8. The method according to claim 7, wherein the magnitude of said negative pressure is limited to a value that will not result in the generation of adverse effects on the skin.
  • 9. The method according to claim 7, further comprising: applying a gel to the treated section of the skin; and preventing the gel from penetrating into cavity by attaching a disposable gel guard to the applicator.
  • 10. The applicator according to claim 1, wherein the source of negative pressure is a vacuum pump.
  • 11. An applicator for forming and therapeutically treating a skin protrusion, the applicator comprising: a housing defining a cavity;a source of negative pressure configured to create a vacuum force to draw into the cavity a skin protrusion; anda valve situated within the cavity and configured to: contact the skin protrusion when drawn into the cavity;decrease the vacuum force within the cavity when the skin protrusion is in contact with the valve and the volume of the skin protrusion within the cavity exceeds an upper threshold; andincrease the vacuum force within the cavity when the skin protrusion is in contact with the valve and the volume of the skin protrusion within the cavity decreases towards a lower threshold;wherein a portion of the valve is, at least in part, configured to be displaced in a first direction such that the valve decreases the vacuum force within the cavity; andwherein the valve comprises a plate coupled with at least one guide, the plate configured to be displaced in the first direction by the force exerted by the skin protrusion when the volume of the skin protrusion within the cavity exceeds the upper threshold; and a spring configured to exert a force in the opposite direction as the force exerted by the skin protrusion such that if the force of the spring exceeds the force of the skin protrusion, when the volume of the skin protrusion within the cavity exceeds the upper threshold, the plate is displaced in a second direction opposite to the first direction and wherein the valve comprises a gasket attached to a pusher, the gasket configured to decrease the vacuum force within the cavity when the valve is displaced in the first direction.
  • 12. The applicator according to claim 11, further comprising a protrusion magnitude sensor that is at least one of a group consisting of an optical sensor, a mechanical sensor, a resistive sensor, a capacitive sensor and an inductive sensor.
  • 13. The applicator according to claim 12, wherein the protrusion magnitude sensor is a skin laxity sensor.
CROSS-REFERENCE TO RELATED APPLICATIONS

This is a U.S. Non-provisional application for patent being filed under 35 USC 111 and claiming the priority to the U.S. Provisional application for patent that was filed on Jul. 16, 2008 and assigned Ser. No. 61/081,110. This application incorporates by reference U.S. Pat. No. 6,889,090 and United States Patent Publication No. 2007/0038156.

US Referenced Citations (312)
Number Name Date Kind
1430354 Burdick Sep 1922 A
2088780 Follese Aug 1937 A
2183726 Sommer et al. Feb 1939 A
2231095 Sommer et al. Feb 1941 A
2727132 Hills Dec 1955 A
2824308 Duncan Feb 1958 A
3088205 Ellis May 1963 A
D196532 Facci Oct 1963 S
4016886 Doss et al. Apr 1977 A
4131021 Mezrich et al. Dec 1978 A
4182329 Smit et al. Jan 1980 A
4211230 Woltosz Jul 1980 A
4228931 Ruscitti et al. Oct 1980 A
4321926 Roge Mar 1982 A
D269294 Rakocy et al. Jun 1983 S
D271015 Geraets Oct 1983 S
D271199 Geraets Nov 1983 S
4444190 Mutzhas Apr 1984 A
D274462 Rakocy et al. Jun 1984 S
4532924 Auth et al. Aug 1985 A
4550728 Runyon et al. Nov 1985 A
4553936 Wang Nov 1985 A
4686986 Fenyo et al. Aug 1987 A
4753958 Weinstein et al. Jun 1988 A
4784135 Blum et al. Nov 1988 A
4787886 Cosman Nov 1988 A
4844063 Clark Jul 1989 A
4867682 Hammesfahr et al. Sep 1989 A
4869584 Dion Sep 1989 A
5016999 Williams May 1991 A
5071418 Rosenbaum Dec 1991 A
5169384 Bosniak et al. Dec 1992 A
5195977 Pollitt Mar 1993 A
5286479 Garlich et al. Feb 1994 A
5316473 Hare May 1994 A
5348554 Imran et al. Sep 1994 A
5353798 Sieben Oct 1994 A
5381067 Greenstein et al. Jan 1995 A
5402697 Brooks Apr 1995 A
5406340 Hoff Apr 1995 A
5418130 Platz et al. May 1995 A
5443070 Mniece Aug 1995 A
5487662 Kipke et al. Jan 1996 A
5509916 Taylor Apr 1996 A
5521392 Kennedy et al. May 1996 A
5564851 Connely et al. Oct 1996 A
5582476 Hansen Dec 1996 A
5601526 Chapelon et al. Feb 1997 A
5611793 Wilson et al. Mar 1997 A
5628771 Mizukawa et al. May 1997 A
5642997 Gregg et al. Jul 1997 A
5658148 Neuberger et al. Aug 1997 A
5693052 Weaver Dec 1997 A
5698866 Doiron et al. Dec 1997 A
5704935 Pahl et al. Jan 1998 A
5707403 Grove et al. Jan 1998 A
5722411 Suzuki et al. Mar 1998 A
5731582 West Mar 1998 A
5735844 Anderson et al. Apr 1998 A
5755753 Knowlton May 1998 A
5769880 Truckai et al. Jun 1998 A
5814008 Chen et al. Sep 1998 A
5824023 Anderson Oct 1998 A
5836999 Eckhouse et al. Nov 1998 A
5843143 Whitehurst Dec 1998 A
5868744 Willmen Feb 1999 A
5871524 Knowlton Feb 1999 A
5885211 Eppstein et al. Mar 1999 A
5888198 Eggers et al. Mar 1999 A
5919219 Knowlton Jul 1999 A
5949514 Wargon Sep 1999 A
5954710 Paolini et al. Sep 1999 A
5961543 Waldmann Oct 1999 A
5984915 Loeb et al. Nov 1999 A
5993180 Westerhof et al. Nov 1999 A
6022316 Eppstein et al. Feb 2000 A
6024733 Eggers et al. Feb 2000 A
6030384 Nezhat Feb 2000 A
6053172 Hovda et al. Apr 2000 A
6056548 Neuberger et al. May 2000 A
6063108 Salansky et al. May 2000 A
6066134 Eggers et al. May 2000 A
6078830 Levin et al. Jun 2000 A
6080127 Li et al. Jun 2000 A
6080391 Tsuchiya et al. Jun 2000 A
6081934 Stefanovsky et al. Jul 2000 A
6097976 Yang et al. Aug 2000 A
6107326 Jori Aug 2000 A
6113558 Rosenschein et al. Sep 2000 A
6132701 Perez et al. Oct 2000 A
6142939 Eppstein et al. Nov 2000 A
6148232 Avrahami Nov 2000 A
6186960 Tripp et al. Feb 2001 B1
6188407 Smith et al. Feb 2001 B1
6190609 Chapman et al. Feb 2001 B1
6191110 Jaynes et al. Feb 2001 B1
6208881 Champeau Mar 2001 B1
6210402 Olsen et al. Apr 2001 B1
6221095 Van Zuylen et al. Apr 2001 B1
6228078 Eggers et al. May 2001 B1
6231571 Ellman et al. May 2001 B1
6231593 Meserol May 2001 B1
6251127 Biel Jun 2001 B1
6256525 Yang et al. Jul 2001 B1
6258319 Hearst et al. Jul 2001 B1
6273884 Altshuler et al. Aug 2001 B1
6277116 Utely et al. Aug 2001 B1
6288498 Cheng Sep 2001 B1
6308413 Westerhof et al. Oct 2001 B1
6309352 Oraevsky et al. Oct 2001 B1
6309387 Eggers et al. Oct 2001 B1
6325797 Stewart et al. Dec 2001 B1
6343400 Massholder et al. Feb 2002 B1
6343933 Montgomery et al. Feb 2002 B1
6352535 Lewis et al. Mar 2002 B1
6353763 George et al. Mar 2002 B1
6360116 Jackson et al. Mar 2002 B1
6391023 Weber et al. May 2002 B1
6400976 Champeau Jun 2002 B1
6406157 Audet Jun 2002 B1
6413255 Stern Jul 2002 B1
6413268 Hartman Jul 2002 B1
6425912 Knowlton Jul 2002 B1
6433343 Cimino et al. Aug 2002 B1
6436051 Morris et al. Aug 2002 B1
6461567 Hearst et al. Oct 2002 B1
6462070 Hasan et al. Oct 2002 B1
6471716 Pecukonis Oct 2002 B1
6482204 Lax et al. Nov 2002 B1
6487447 Weimann et al. Nov 2002 B1
6493940 Westerhof et al. Dec 2002 B2
6494900 Salansky et al. Dec 2002 B1
6497702 Bernaz Dec 2002 B1
6500141 Irion et al. Dec 2002 B1
6508813 Altshuler Jan 2003 B1
6511475 Altshuler et al. Jan 2003 B1
6514243 Eckhouse et al. Feb 2003 B1
6517532 Altshuler et al. Feb 2003 B1
6533775 Rizoiu et al. Mar 2003 B1
6558653 Andersen et al. May 2003 B2
6572637 Yamazaki et al. Jun 2003 B1
6594905 Furst et al. Jul 2003 B2
6602245 Thiberg Aug 2003 B1
6612819 Furst et al. Sep 2003 B1
6618620 Freundlich et al. Sep 2003 B1
6623430 Slayton et al. Sep 2003 B1
6632002 Chubb et al. Oct 2003 B1
6637877 Hartley et al. Oct 2003 B1
6662054 Kreindel et al. Dec 2003 B2
6663620 Altshuler et al. Dec 2003 B2
6676655 McDaniel Jan 2004 B2
6702808 Kreindel Mar 2004 B1
6704587 Kumar et al. Mar 2004 B1
6708060 Avrahami et al. Mar 2004 B1
6723092 Brown et al. Apr 2004 B2
D490156 Fischer et al. May 2004 S
D490526 Jonsen May 2004 S
6743211 Prausnitz et al. Jun 2004 B1
6758845 Weckwerth et al. Jul 2004 B1
6761729 Babaev Jul 2004 B2
6770069 Hobart et al. Aug 2004 B1
6780838 Lipton et al. Aug 2004 B2
6795728 Chornenky Sep 2004 B2
RE38634 Westerhof et al. Oct 2004 E
6887260 McDaniel May 2005 B1
6889090 Kreindel May 2005 B2
6918907 Kelly et al. Jul 2005 B2
6997923 Anderson et al. Feb 2006 B2
7006874 Knowlton et al. Feb 2006 B2
7013179 Carter et al. Mar 2006 B2
7022121 Stern et al. Apr 2006 B2
7052493 Vaska et al. May 2006 B2
7077840 Altshuler et al. Jul 2006 B2
7115123 Knowlton et al. Oct 2006 B2
7115124 Xiao Oct 2006 B1
7153298 Cohen Dec 2006 B1
7204832 Altshuler et al. Apr 2007 B2
7234239 Saito et al. Jun 2007 B2
7266414 Cornelius et al. Sep 2007 B2
7275819 Bleau Oct 2007 B2
7278991 Morris et al. Oct 2007 B2
7416550 Protsenko et al. Aug 2008 B2
7601149 DiCarlo et al. Oct 2009 B2
7771419 Carmel et al. Aug 2010 B2
7824394 Manstein Nov 2010 B2
7935107 Altshuler et al. May 2011 B2
7963985 Minamoto et al. Jun 2011 B2
8021360 Dunning et al. Sep 2011 B2
8109927 Kelly et al. Feb 2012 B2
8135475 Kreindel et al. Mar 2012 B2
8157807 Ferren et al. Apr 2012 B2
8202268 Wells et al. Jun 2012 B1
8206381 Lischinsky et al. Jun 2012 B2
8235989 Palanker et al. Aug 2012 B2
8506564 Long et al. Aug 2013 B2
20010007068 Ota et al. Jul 2001 A1
20020058936 Avrahami et al. May 2002 A1
20020104543 Hollander et al. Aug 2002 A1
20020120256 Furuno et al. Aug 2002 A1
20020120260 Morris et al. Aug 2002 A1
20020120261 Morris et al. Aug 2002 A1
20020128641 Underwood et al. Sep 2002 A1
20020143373 Courtnage et al. Oct 2002 A1
20020147384 Uchikubo Oct 2002 A1
20020183245 Hasan et al. Dec 2002 A1
20020190337 House et al. Dec 2002 A1
20020198575 Sullivan Dec 2002 A1
20030018255 Martin et al. Jan 2003 A1
20030032900 Ella Feb 2003 A1
20030032950 Altshuler et al. Feb 2003 A1
20030055414 Altshuler et al. Mar 2003 A1
20030097162 Kreindel May 2003 A1
20030109871 Johnson et al. Jun 2003 A1
20030135250 Lauman et al. Jul 2003 A1
20030139790 Ingle et al. Jul 2003 A1
20030195494 Altshuler et al. Oct 2003 A1
20030199946 Gutwein Oct 2003 A1
20040010250 Manna et al. Jan 2004 A1
20040010298 Altshuler et al. Jan 2004 A1
20040030227 Littrup et al. Feb 2004 A1
20040064167 Berry et al. Apr 2004 A1
20040127793 Mendlein et al. Jul 2004 A1
20040133251 Altshuler et al. Jul 2004 A1
20040143308 Lundahl et al. Jul 2004 A1
20040147984 Altshuler et al. Jul 2004 A1
20040167501 Island et al. Aug 2004 A1
20040181216 Kelly et al. Sep 2004 A1
20040186466 Chornenky Sep 2004 A1
20040193234 Butler Sep 2004 A1
20040210214 Knowlton Oct 2004 A1
20040236320 Protsenko et al. Nov 2004 A1
20040260210 Ella et al. Dec 2004 A1
20040267252 Washington et al. Dec 2004 A1
20050015042 Sun et al. Jan 2005 A1
20050043653 Trimmer et al. Feb 2005 A1
20050049543 Anderson et al. Mar 2005 A1
20050075573 Park et al. Apr 2005 A1
20050137654 Hoenig et al. Jun 2005 A1
20050137655 MacFarland et al. Jun 2005 A1
20050143793 Korman et al. Jun 2005 A1
20050147137 Slatkine Jul 2005 A1
20050177139 Yamazaki et al. Aug 2005 A1
20050288680 Ingle et al. Dec 2005 A1
20060036300 Kreindel Feb 2006 A1
20060095096 DeBenedictis et al. May 2006 A1
20060122509 Desilets Jun 2006 A1
20060149343 Altshuler et al. Jul 2006 A1
20060184024 Da Silva et al. Aug 2006 A1
20060200213 McDaniel Sep 2006 A1
20060206173 Gertner et al. Sep 2006 A1
20060224217 Burgmann et al. Oct 2006 A1
20060231568 Lynn et al. Oct 2006 A1
20060247741 Hsu et al. Nov 2006 A1
20060259102 Slatkine Nov 2006 A1
20060271028 Altshuler et al. Nov 2006 A1
20070016117 Sliwa et al. Jan 2007 A1
20070038206 Altshuler et al. Feb 2007 A1
20070088348 Kochamba Apr 2007 A1
20070093798 Debenedictis et al. Apr 2007 A1
20070106349 Karni et al. May 2007 A1
20070129771 Kurtz et al. Jun 2007 A1
20070142881 Hennings Jun 2007 A1
20070179482 Anderson Aug 2007 A1
20070191821 Boxer Wachler Aug 2007 A1
20070197895 Nycz et al. Aug 2007 A1
20070198004 Altshuler et al. Aug 2007 A1
20070206275 Hemmer et al. Sep 2007 A1
20070213696 Altshuler et al. Sep 2007 A1
20070232962 Zumeris et al. Oct 2007 A1
20070239077 Azhari et al. Oct 2007 A1
20070239142 Altshuler et al. Oct 2007 A1
20070239143 Altshuler et al. Oct 2007 A1
20070271714 Adam et al. Nov 2007 A1
20080051680 Luebcke Feb 2008 A1
20080071334 Hoenig et al. Mar 2008 A1
20080082090 Manstein Apr 2008 A1
20080114255 Schwartz et al. May 2008 A1
20080123238 Campos et al. May 2008 A1
20080125658 Lee et al. May 2008 A1
20080139901 Altshuler et al. Jun 2008 A1
20080154247 Dallarosa et al. Jun 2008 A1
20080183167 Britva et al. Jul 2008 A1
20080215124 Wagenaar Cacciola et al. Sep 2008 A1
20080221504 Aghion Sep 2008 A1
20080294153 Allshuler et al. Nov 2008 A1
20080306476 Hennings et al. Dec 2008 A1
20090036953 Gustavsson Feb 2009 A1
20090043293 Pankratov et al. Feb 2009 A1
20090048514 Azhari et al. Feb 2009 A1
20090112205 McGill et al. Apr 2009 A1
20090119834 Kneale et al. May 2009 A1
20090143673 Drost et al. Jun 2009 A1
20090171341 Pope et al. Jul 2009 A1
20090182315 Zigan et al. Jul 2009 A1
20090192503 Epshtein et al. Jul 2009 A1
20090234341 Roth Sep 2009 A1
20090234342 Ely et al. Sep 2009 A1
20090240310 Kennedy Sep 2009 A1
20090275865 Zhao et al. Nov 2009 A1
20090299361 Flyash et al. Dec 2009 A1
20100063565 Beerwerth et al. Mar 2010 A1
20100185193 Kreindel Jul 2010 A1
20100185194 Kreindel Jul 2010 A1
20100198134 Eckhouse Aug 2010 A1
20100274329 Bradley et al. Oct 2010 A1
20110112405 Barthe et al. May 2011 A1
20110137386 Kreindel Jun 2011 A1
20110166559 Eckhouse et al. Jul 2011 A1
20110196363 Kreindel Aug 2011 A1
20120143270 Mehta Jun 2012 A1
20120290023 Boyden et al. Nov 2012 A1
20130289679 Eckhouse et al. Oct 2013 A1
Foreign Referenced Citations (21)
Number Date Country
2495005 Feb 2004 CA
1078383 Nov 1993 CN
0528055 Feb 1993 EP
0743029 Jul 2002 EP
0824019 Nov 2002 EP
2125986 Aug 1982 GB
2202442 Sep 1988 GB
04299998 Oct 1992 JP
06113920 Apr 1994 JP
11132843 Dec 1999 JP
2003034630 Feb 2003 JP
WO-8302389 Jul 1983 WO
WO-9321992 Nov 1993 WO
WO-9909143 Feb 1999 WO
WO-9909143 Feb 1999 WO
WO-9934867 Jul 1999 WO
WO-02078644 Oct 2002 WO
WO-02078644 Oct 2002 WO
WO-03039367 May 2003 WO
WO-03039367 May 2003 WO
WO-2006128034 Nov 2006 WO
Non-Patent Literature Citations (81)
Entry
Acne Clearance, LHE Clinical Casebook, Radiancy: Lighting the Future of Skin Care, © 2002.
Acne Star web page, describing “How to use get rid of Acne Treatment”, printed May 5, 2005.
Acne Star web page, describing Clinical Studies, “The Treatment of acne vulgaris with a novel device that uses Gallium—Nitride diode”, printed May 5, 2005.
Acne Star web page, describing Clinical Studies, “The Treatment of acne vulgaris with a novel device that uses Gallium—Nitride diode light”, printed May 5, 2005.
Aesthetic Buyers Guide: The Leading Cosmetic Practice Resource, Jan./Feb. 2004, vol. 7, No. I.
Bollen, CM. et al., “Full- versus partial-mouth disinfection in the treatment of periodontal infections. A pilot study: long-tenn microbiological observations”, J Clin Periodontol Oct. 1996;23(10):960-70 (Abstract).
Bollen, CM. et al., “Full- versus partial-mouth disinfection in the treatment of periodontal infections. A pilot study: long-term microbiological obervations”. J Clin Periodontol Oct. 1996;23(10):960-70 (Abstract).
Bollen, CM. et al., The effect of a one-stage full-mouth disinfection on different intra—0ral niches Clinical and microbiological observations•. J Clin Periodontol Jan. 1998;25(1 ):56-66 (Abstract).
Bollen, CM. et al., “The effect of a one-stage full-mouth disinfection on different intra-oral niches. Clinical and microbiological observations”, J Clin Periodontol Jan. 1998;25(1 ):56-66 (Abstract).
Calderhead, R. Glen, “The Photobiology of LED Phototherapy”.
Calder1-lead R. Glen, “The Photobiology of LED Photothcrapy”.
Charakida et al., “Phototherapy in the Treatment of Acne Vulgaris, What is the Role'?”, Am. J. Clin Dermatol 2004: 5(4):211-216.
Cohen L.R., “What causes bad breath?”, University of Toronto; webpage (printed before Nov. 2, 2004).
Cohen LR., “What causes bad breath?”, University of Toronto; webpage (printed before Nov. 2, 2004).
Coventry et al. (2000) “ABC of oral health: Periodontal disease” British Medical Journal, 321, 36-39.
De Soete, M. et al .. One-stage full-mouth disinfection. Long-term microbiological results analyzed by checker board DNA-DNA hybridization•, J Periodontol Mar. 2001; 72(3):374-82 (Abstract).
De Soete, M. et al., “One-stage full-mouth disinfection. Long-term microbiological results analyzed by checker board DNA-DNA bybridization”, J Periodontol Mar. 2001; 72(3):674-82 (Abstract).
Elman M. et al., “The effective treatment of acne vulgaris by a high-intensity, narrow bank 405-420 nm light source”, Cosmetic & Laser Ther 2003; 5: 111-116.
Elman M. et al., The effective treatment of acne vulgaris by a high-intensity, narrow bank 405-420 nm light source•, Cosmetic & Laser Ther 2003; 5: 111-116.
Flow Control Network web page, “Mini Diaphragm Pumps for Precision Dispensing” by Ping Lin, printed Aug. 2, 2005.
Friedberg J.S. et al., “Antibody-Targeted Photolysis Bacteriocidal Effects of Sn (IV) Chlorin e6- 0extran-Monoclonal Antibody Conjugates”, Annals New York Academy of Sciences 618:383-393, 1991.
Friedberg JS et al., “Antibody-Targeted Photolysis Bacteriocidal Effects of Sn (IV) Chlonn e6-Dextran-Monoclonal Antibody Conjugates”, Annals New York Academy of Sciences 618:383-393, 1991.
Greenstein G., Full-mouth therapy versus individual quadrant root planning: a critical commentary, J Periodontol Jul. 2002;73(7):797-812 (Abstract).
Greenstein G., Full-mouth therapy versus individual quadrant root planning: a critical commentary, JPeriodontol Jul. 2002;73(7):797-812 (Abstract).
Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields (Up to 300 GHz), International Commission on Non-Ionizing Radiation Protection, ICNIRP Guidelines, Apr. 1998, vol. 7 4, No. 4, pp. 494-522.
Hamblin, M. et al., “Rapid Control of Wound Infections by Targeted Photodynamic Therapy Monitored by In Vivo Bioluminescence Imagining”, Photochemistry and Photobiology, 2002, 75(1 ): 51-57.
Hamblin, M. et al., Rapid Control of Wound Infections by Targeted Photodynamic Therapy Monitored by In Vivo Bioluminescence Imagining•, Photochemistry and Photobiology, 2002, 75(1): 51-57.
Komerik et al. (2003) “In vivo killing of Porphyromonas gingivalis by toluidine blue-mediated photosensitization in an animal model” Antimicrobial Agents and Chemotherapy, 47(3), 932-940.
Krespi, et al. (2005) “Lethal photosensitization of oral pathogens via red-filtered halogen lamp” Oral Diseases, 11(S1), 92-95.
Krespi, et al. (2005) “Lethal photosensitization of oral pathogens via red-filtered halogen larnp” Oral Diseases, 11(S1 ), 92-95.
Malik, Z. et al., “New Trends in Photobiology (Invited Review) Bactericidal Effects of Photoactivated Porphyrins—An Alternative Approach to Antimicrobial Drugs”, Journal of Photochemistry and Photobiology, B: Biology, 5—1—1990}—281-293.
Malik, Z. et al., “New Trends in Photobiology (Invited Review) Bactericidal Effects of Photoactivated Porphyrins • An Alternative Approach to Antimicrobial Drugs”, Journal of Photochemistry and Photobiology, B: Biology, 5 J.19901—281-293.
Matevski D. et al., “Lethal photosensitization of periodontal pathogens by a red-filtered Xenon lamp in invitro”, J. Periodont. Res. 2003, 38:428-435.
Matevski D. et al., “Lethal photosensitization of periodontal pathogens by a red-filtered Xenon lamp in invitro”, JPeriodont. Res. 2003. 38:428-435.
Matevski D. et al., Sensitivity of Porphyromonas gingivalis to Light-Activated Toluidine Blue o•. University of Toronto, Faculty of Dentistry; Slide presentation (presented before Nov. 15, 2002).
Matevski D. et al., “Sensitivity of Porphyromonas gingivalis to Light-Activated Toluidine Blue O”, University of Toronto, Faculty of Dentistry; Slide presentation (presented before Nov. 15, 2002).
Meisel et al. (2005) Photodynamic therapy for periodontal diseases: State of the are• J. Photochem. Photobiol., 79, 159-170.
Meisel etal. (2005) “Photodynamic therapy for periodontal diseases: State of the are” J. Photochem. Photobiol., 79, 159-170.
Mongardini, C. et al., One stage full—versus partial-mouth disinfection in the treatment of chronic adult or generalized early—0nset periodontitis. I. Long-tenn clinical observations•, J Periodontol Jun. 1999;70(6):632-45—[Abstrac!).
Mongardini, C. et al., “One stage full- versus partial-mouth disinfection in the treatment of chronic adult or generalized early-onset periodontitis. I. Long-term clinical observations”, J Periodontol Jun. 1999;70(6):632-45 1Abstrac!2.
Morton C.A. et al., An open study to determine the efficacy of blue light in the treatment of mild to moderate acne: preliminary data (publication status unknown).
Nakano et al. (2002) “Correlation between oral malodor and periodontal bacteria” Microbes Infect., 4(6), 679-683.
Nakano et al. (2002) “Correlation between oral malodor and periodontal bacteria” Microbes Infect., 4(6). 679-683.
Ondine Biopharma web page—printed Oct. 15, 2002.
Papageorgiou ct al., “Phototherapy with blue (415 nm) and red (660 nm) light in the treatment of acne vulgaris”, British Journal of Dermatology 2000: 142: 973-978.
Pharmaceutical description, Levulan® Kerastick *aminolevulinic acid I-IC!) for Topical Solution, 20'X.
Pharmaceutical description, Levulan® Kerastick •aminolevulinic acid HCI) for Topical Solution, 20%.
Quirynen, M. et al. Fuli- vs. partial-mouth disinfection in the treatment of periodontal infections: short-tennclinical and microbiological observations•. J Dent Res Aug. 1995;74(8):1459-67 (Abstract).
Quirynen, M. et al. “Full- vs. partial-mouth disinfection in the treatment of periodontal infections: short-term clinical and microbiological observations”, J Dent Res Aug. 1995;74(8):1459-67 (Abstract).
Quirynen, M. et al., “One stage full- versus partial-mouth disinfection in the treatment of chronic adult or generalized early-onset periodontitis. II. Long-term impact on microbial load”, J Periodontol Jun. 1999;70(6):646-56 (Abstract).
Quirynen, M. et al., “The effect of a 1-stage full-mouth disinfection on oral malodor and microbial colonization of the tongue in periodontitis. A pilot study”, J Periodontol Mar. 1998;69(3):374-82 (Abstract).
Quirynen, M. et al., “The intra-oral translocation of periodontopathogens jeopardises the outcome of periodontal therapy”, Journal of Clincial Periodontology, Jun. 2001, vol. 28, Issue 6, p. 499 (Abstract).
Quirynen, M. et al., The role of chlorhexidine in the one-stage full-mouth disinfection treatment of patients with advanced adult periodontitis. Long-term clinical and microbiological observations•. J Clin Periodontol 2000 A1.IQ;27.{fil:579-89 J—Abstrac!).
Quirynen, M. et al., “The role of chlorhexidine in the one-stage full-mouth disinfection treatment of patients with advanced adult periodontitis. Long-term clinical and microbiological observations”, J Clin Periodontol 2000 AP!JL2˜579-89 J—Abstrac—!).
Quirynen. M. et al., “One stage full- versus partial-mouth disinfection in the treatment of chronic adult or generalized early-onset periodontitis. II. Long-term impact on microbial load”, J Periodontol Jun. 1999;70(6):646-56 J—Abstrac!2.
Sanz et al. (2001) “Fundamentals of breath malodour” Journal of Contemporary Dental Practice, 2(4 ), 1-13.
Sanz et al. (2001) “Fundamentals of breath malodour” Journal of Contemporary Dental Practice, 2(4), 1-13.
Sarkar et al. (1993) “Lethal photosensitization of bacteria in subgingival plaque from patients with chronic periodontitis” J. Periodont. Res , 28, 204-21 O.
Sarkar et al. (1993) “Lethal photosensitization of bacteria in subgingival plaque from patients with chronic periodontitis” J. Periodont. Res., 28, 204-210.
Search results from Delphion web site, dated Nov. 22, 2005.
Skin91 I .com web page regarding Peter Thomas Roth Clinical Acne Medication, acne treatment-Benzoyl Peroxide 5% pbp5, printed Apr. 19, 2005.
Skin91 I .corn web page regarding Peter Thomas Roth Clinical Acne Medication, acne treatment-Benzoyl Peroxide 5% pbp5, printed Apr. 19, 2005.
Soukos et al. (1998) “Targeted antimicrobial photochemotherapy”, Antimicrobial Agents and Chemotherapy 42( 10 ), 2595-2601.
Soukos et al. (1998) “Targeted antimicrobial photochemotherapy”, Antimicrobial Agents and Chemotherapy 42(10), 2595-2601.
Spire Awarded Contract for Ear Surgery Laser—Press Release Aug. 23, 2002.
Temperatures.com web page, “Thermistor Temperature Sensors,” printed Aug. 2, 200.
Temperatures.corn web page, “Thermistor Temperature Sensors,” printed Aug. 2, 200.
Vandekerckhove, BN. et al., “Full- versus partial-mouth disinfection in the treatment of periodontal infections. Long-term clinical observations of a pilot study”, J Periodontol Dec. 1996;67(12):1251-9 (Abstract).
Vandekerckhove, Bn. et al.. “Full—versus partial-mouth disinfection in the treatment of periodontal infections. Long-term clinical observations of a pilot study”, J Periodontol Dec. 1996;67(12):1251-9 (Abstract).
Wainwright M., Photodynamic antimicrobial chemotherapy (PACT), Journal of Antimicrobial Chemotherapy (1198) 42. 13-28.
Wilson (2005) “Lethal photosensitisation of oral bacteria and its potential application in the photodynamic therapy of oral infection” Photochem. Photobiol. Sci .. 3, 412-418.
Wilson (2005) “Lethal photosensitisation of oral bacteria and its potential application in the photodynamic therapy of oral infection” Phorochem. Photobiol. Sci., 3, 412-418.
Wilson et al. (1995) “Bacteria in supragingival plaque samples can be killed by low-power laser light in the presence of a photosensitizer” J. Appl. Bacteriol .. 78, 569-574.
Wilson et al. (1995) “Bacteria in supragingival plaque samples can be killed by low-power laser light in the presence of a photosensitizer” J. Appl. Bacteriol., 78, 569-574.
Wood, et al. (1999) “An in vitro study of the use of photodynamic therapy for the treatment of natural oral plaque biolfilms formed in vivo” J. Photochem. Photogiol. B: Biol .. 50, 1-7.
Wood, et al. (1999) “An in vitro study of the use of photodynamic therapy for the treatment of natural oral plaque biofilms formed in vivo” J. Photochem. Photogiol. B: Biol., 50, 1-7.
www.lightbioscience.com web page, Gentle Waves Cosmcceuticals, printed Jul. 29, 200.
www.lightbioscience.com web page, Gentle Waves LED Photomodulation Fact Sheet, printed Jul. 29, 2005.
www.lightbioscience.com web page, GentleWaves Cosmeceuticals, printed Jul. 29, 200.
www.lightbioscience.com web page, GentleWaves LED Photomodulation Fact Sheet, printed Jul. 29, 2005.
PCT/IL04/01119 International Search Report.
Related Publications (1)
Number Date Country
20100016761 A1 Jan 2010 US
Provisional Applications (1)
Number Date Country
61081110 Jul 2008 US