The invention relates generally to an agricultural product delivery applicator for applying particulate material such as seed, fertilizer, herbicide, or insecticide to a field, and more particularly an agricultural product delivery applicator with multiple offset booms and a method of controlling the particulate material to the multiple offset booms.
Agricultural product delivery systems are known to utilize various mechanisms, including mechanical and pneumatic systems, to assist in the movement and delivery of particulate material or product. Example product that can be delivered include fertilizer, seed, insecticide, or herbicide, The product can move from a product bin through an interior passage provided by a series of elongate tubes, which extend from the product supply chamber to a product applicator. The applicator places the product on or in growing medium, such as soil. Such agricultural product delivery systems are commonly employed in planters, air drills, fertilizer and pesticide applicators, and a variety of other agricultural implements.
Agricultural application implements that employ an agricultural product delivery applicator are known to have the product supply bin associated with a metering system. The product is metered from the bin into a set of distribution channels for application to the soil. A pneumatic source, such as a fan or blower, provides air to convey and distribute material through the distribution channels. Once the metering of product is done and the mix of air and particulates is in the distribution channels, the product should remain nearly constant and in a diluted phase. US Patent Application Publication No. 2018/0343792 A1, the content of which is incorporated herein by reference, discloses such an exemplary agricultural product delivery system.
An agricultural vehicle, such as disclosed US Patent Application Publication No. 2018/0343792 A1, may have a boom construction with left and right boom arms attached to a mid-implement location. Due to the mid-implement mounting, product may not be dispersed at that center location, directly behind the vehicle. To compensate, a secondary offset boom may be added to account for additional coverage directly behind the vehicle. Prior systems had delivery of the product to the secondary boom in tandem with the primary boom, resulting in either loss in area (if a boom turned “off” too soon when entering a previously applied area) or loss in product (if a boom turned “on” too soon when exiting a previously applied area into uncovered area). An improved method for delivery of product is desired.
In one aspect, the invention provides an agricultural product delivery applicator for delivering particulate product to a field. The applicator includes a supply compartment to hold the product, a pneumatic conveying system, a metering system, and a controller. The pneumatic conveying system includes an airflow source to provide an airflow, a first delivery line operably connected to the airflow source and to the supply compartment, the first delivery line including a first plurality of outlets, and a second delivery line operably connected to the airflow source and to the supply compartment, the second delivery line including a second plurality of outlets. The metering system is operably connected between the supply compartment and the pneumatic conveying system. The metering system includes a first metering device associated with the first delivery line and a second metering device associate with the second delivery line. The controller controls the air flow source, the first metering device to meter product with the airflow to result in a first mixed flow of airflow and product for the first delivery line, and the second metering device to meter product with the airflow to result in a second mixed flow of airflow and product for the second delivery line. The control of the first metering device and the second metering device is individual.
In another aspect, the invention provides a method of the delivering of particulate product by an agricultural product delivery applicator. The method includes activating an airflow source to provide an airflow of a pneumatic conveying system, controlling a first air pressure control valve to allow an airflow through a first delivery line, controlling a second air pressure control valve to allow an airflow through a second delivery line, controlling a first metering device associated with the first delivery line at a first time to provide product to the first delivery line resulting in a first mixed flow of airflow and product, and controlling a second metering device associated with the second delivery line at a second time to provide product to the first delivery line resulting in a second mixed flow of airflow and product. The second time is after the first time.
Numerous additional objects, aspects, and advantages of the present invention will be made apparent from the following detailed description taken together with the drawing figures.
Preferred exemplary embodiments of the invention are illustrated in the accompanying drawings in which like reference numerals represent like parts throughout. In the drawings:
An agricultural application implement 10 (or simply implement 10) incorporating aspects of the invention is shown in
The applicator 15 includes left and right laterally extending booms 30 and 35, respectively, extending at a mid-implement location 40. Left and right are referred to herein as viewed by the operator housed in the operator cab 45. The mid-implement location 40 refers to a mounting of the booms 30 and 35 between the front and rear axles 50 and 55, respectively, of the transport unit 20. The laterally extending booms 30 and 35 include a support structure (not shown for simplicity) and can be pivoted to a stowed position close to the implement 10 for storage or transport. Each boom 30 and 35 includes a plurality of boom conduits or tubes (discussed further below) terminating at respective outboard ends in in the applicator 15. The outboard ends of the booms 30 and 35 include a spreading outlet or nozzle. In the exemplary embodiment shown, boom 35 includes ten outlets 60.
The pneumatic conveying system 25 also includes a laterally extending offset boom 80. The offset boom 80, which may also be referred to as a secondary boom, is mounted at a rearward location 85. The rearward location 85 refers to a mount of the offset boom 80 behind the rear axis 55. The offset boom includes six rear outlets 90. The offset boom 80 in combination with the booms 30 and 35 provide complete coverage across the width of applicator 15.
The shown transport unit 20 is self-propelled by an engine in an engine compartment 100 and includes the operator cab 45. For the shown construction, an uncovered tank 105 includes compartments 110 and 115 for carrying particulate material to be distributed to and disbursed by the outlets 60 and 90. One of the compartments, e.g., compartment 115, can be provided to supply micro-nutrients or other materials. The supply of particulate material in compartments 110 and 115 can be replenished periodically.
Before proceeding, some aspects of the applicator 15 can be a matter of design choice to someone skilled in the art. For example, the number, arrangement, and design of the compartments 110 and 115, delivery lines (discussed below), and outlets 60 and 90 can vary. The applicator 15 is illustrative of the types of equipment on which the pneumatic conveying system 100 can be used; however, it should be understood that the pneumatic conveying system 100 may, of course, be employed in conjunction with other agricultural equipment such as tillage, seeding, or planting devices and is useful in distributing particulate material other than fertilizer.
The shown construction includes compartments 110 and 115 of the tank 105 being disposed above portions of the pneumatic conveying system 25.
To collect and drive the particulate material along the delivery lines 120, 125 and 127, are one or more pressurized air flow sources. For the shown construction, blowers 170 and 175 are operably connected to the plenums 130 and 135. The air flow from the blowers 170 and 175 is directed from the blowers 170 and 175 into the plenums 130 and 135, then the supply lines 150, 155, and 157, through the distributor assemblies 140, 145, and 147, into the distribution lines 160, 165, and 167, and out the outlets 60 and 90. As the airflow passes through the supply lines 150, 155, and 127, a metering system 180 (
Referring now to
The distributor assembly 140, as shown in
Opposite the supply line 150, the elongate portion 225 is connected to or integrally formed with a conical portion 235. The conical portion 235 expands radially outwardly from the elongate portion 225 to allow the particulate material entering the conical portion 235 from the elongate portion 225 to move radially outwardly from the center axis A-A of the housing 205. The conical portion 235 is connected to a distributor 240. For the construction shown, the distributor 240 includes the housings 210, The housings 210 surround outlet channels 255. The housings 210 are spaced from one another on the rearward section 220 and extend outwardly at slight angles with regard to the center axis A-A.
The housings 210 surround a space 260 outside the exterior of the distributor 240 in the rearward section. A motor 262 is disposed in the space. The motor 262 can be an electric motor, hydraulic motor, or other suitable type of motor. The motor 262 includes a shaft assembly 205 (or simply “shaft” 205) aligned with or at least positioned parallel to the center axis A-A. Further discussion regarding the distribution assembly can be found in US Patent Application Publication No. 2018/0343792 A1.
Referring now to
In the exemplary embodiment of
Each controller 310-330 also includes a conditioning circuit 365 that interfaces sensor signals and/or other input (e.g., external communication) to bus 370. Conditioning circuit 365 filters and buffers the signals to eliminate noise, and may include sample-and-bold sub-circuits as well as analog-to-digital converters for processing analog sensor signals.
In addition, each controller 310-330 includes a driver circuit 375 that controls the application of power to actuators and/or other output (e.g., external communication). The processor 350, memory 355, conditioning circuit 365, driver circuit 375, and communications processor are all coupled together by control/data/address bus 370 within each controller 310-330.
The memory 355 can include a RAM and a ROM. The RAM is used to store working variables required by the processor 350. The ROM contains programmed instructions that control the operation of the processor 350. It is envisioned that one or more elements (e.g., the processor 350 and the memory 355) can be combined as is well known in the art.
An improved implement control system 305, including the product delivery controller 315, allows for greater control of product to the mid-implement booms 30 and 35 and offset boom 80. The shown construction has five product metering devices 270, allowing for improved section control. One advantage of mid-implement mounted booms 30 and 35 is that, because booms 30 and 35 are mounted between the front and rear axles 50 and 55 of the implement 10, the stability of the booms 30 and 35 is significantly improved, resulting in a more consistent application. The advantages include improved delivery control, improved loss of product, and decrease of waste.
When apertures 280 are open and the metering wheels 290 are rotating, gravity allows the product to go through the metering wheels 290 and drop into the airflow of the pneumatic conveying system 25. Control of the motors 295 of the metering wheels 290, the motors of the blowers 170 and 175, and pressure control valves (discussed below), are used for delivering product into and through the delivery lines 120, 125, and 127. The five metering devices 270 in each set 275 correspond to five boom sections, and the product delivery controller 315 can deactivate a particular line if overlap is going to occur. For example, the product delivery controller 315 can stop the motor 295 from rotating the metering wheel 290 associated with the line to be deactivated, and can close a pressure valve associated with the line to be deactivated.
With respect to the product delivery controller 315, the conditioning circuit(s) 365 can receive sensor/inputs from meter speed sensors, fan speed sensors, meter pump pressure sensor, fan pump pressure sensor, aperture 280 actuator position, and distributor motor speed sensors. The driver circuit(s) 375 can drive or control fan speed control, air pressure control, meter speed control, meter pump output pressure control, fan pump output pressure control, aperture 280 position control, and distributor motor speed control (if present). The communications processor 360 can communicate with other controllers 310 and 320-330 to receive and transmit communication from/to the operator (e.g., via the I/O controller 310), location information (e.g., Global Positioning System (GPS) information) from the positioning controller 330, and implement speed (e.g., from the I/O controller 310). Other inputs, outputs, and communication are possible depending on the operation of the product delivery controller 315. Further, while the product delivery controller 315 is described herein as a distinct controller, the controls, functions, and operations can be incorporated in other controllers.
An example operation of overlap control for the implement 10 is represented in
First, the product deliver controller 340 activates two fans 1, 2—this provides a start of an airflow. The control of the fans can be constant or variable. In one implementation, the fans' speed are variable and the revolutions-per-minute (RPM) of the fans 1-2 can be controlled between zero and a maximum (e.g., 6750) RPM.
Next, the product deliver controller 340 controls five air pressure control valves 1-5. The air pressure control valves 1-5 determine whether the air flow is present within a particular delivery line. The control of the air pressure control valves 1-5 can be constant or variable. In one implementation, the air pressures are variable and can be between zero and a maximum (e.g., 70 inches of water) pressure.
Then, the product deliver controller 340 controls five metering motors 1-5 associated with respective metering devices. The metering motors 1-5 determine whether product enters the airstream of a delivery line. Further, with variable speed control of the metering motors 1-5, the metering motors 1-5 determine the rate of product being delivered into the airstream of the delivery line. The control of the metering motors 1-5 can be constant or variable. In one implementation, the rotation of the metering motors 1-5 is variable and can be between minimum and maximum RPMs (e.g., between 5-100 RPM).
To provide a linear distribution control, the control of the metering motors 1-5, and consequently the metering wheels and metering devices, occur over multiple time periods. In the operation shown, the outer boom sections (i.e., application section 1 & 5) start at time T0, and is based on when the implement 10 desires to deliver product to the field. The inner boom sections (i.e., application section 2 & 4) start at a time of X seconds delay to offset the difference in lengths between the outer and inner booms. The offset boom section (i.e., application section 3) starts at a time of Y seconds delay to offset the difference between the difference in lengths between the outer and center booms. Each meter and air pressure control valve can be switched ON/Off independent of each other in order to achieve desired overlap control. A similar methodology can be used to end distribution in a linear spread.
Various relations can be used to determine the desired fan speed control, air pressure control, motor speed control, and time delays. Some of the parameters and various relations are listed below.
Although the best mode contemplated by the inventors of carrying out the present invention is disclosed above, practice of the above invention is not limited thereto. It will be manifest that various additions, modifications, and rearrangements of the features of the present invention may be made without deviating from the spirit and the scope of the underlying inventive concept.