Applied artificial intelligence technology for narrative generation using an invocable analysis service with analysis libraries

Information

  • Patent Grant
  • 11023689
  • Patent Number
    11,023,689
  • Date Filed
    Friday, December 28, 2018
    6 years ago
  • Date Issued
    Tuesday, June 1, 2021
    3 years ago
  • CPC
  • Field of Search
    • US
    • 704 009000
    • 704 257000
    • 704 270000
    • 704 270100
    • 707 661000
    • 707 706000
    • 707 827000
    • 707 999100
    • 707 999104
    • 705 319000
    • 705 050000
    • 709 223000
    • 709 229000
    • 709 246000
    • 715 255000
    • 726 026000
    • CPC
    • G06F16/24578
    • G06F16/248
    • G06F16/285
    • G06F16/9535
    • G06F40/30
    • G06F40/56
    • G06F16/334
    • G06F16/951
    • G06F40/154
    • G06F40/169
    • G06F40/40
    • G06F11/2094
    • G06F16/24575
    • G06F40/205
    • G06F40/216
    • G06F40/253
    • G06F40/289
    • G06F40/35
    • G06N20/10
    • G06N3/006
    • G06N5/003
    • G06N5/022
    • G06Q10/06
    • G06Q10/10
    • G06Q10/107
    • G06Q50/18
    • G06Q30/02
    • G06Q30/0281
  • International Classifications
    • G06F40/20
    • G06F40/56
    • G06F16/248
    • G06N7/00
    • G06F16/908
    • G06F16/28
    • G06F16/95
    • Disclaimer
      This patent is subject to a terminal disclaimer.
      Term Extension
      35
Abstract
Disclosed herein are example embodiments of an improved narrative generation system where an analysis service that executes data analysis logic that supports story generation is segregated from an authoring service that executes authoring logic for story generation through an interface. The analysis service may comprise a plurality of analysis applications and a plurality of analysis libraries, where the analysis applications can be segregated from the analysis libraries through another interface. Accordingly, when the authoring service needs analysis from the analysis service, the authoring service can invoke the analysis service through the interface; and when an analysis application needs analysis from an analysis library, the analysis application can invoke the analysis library through the another interface. By exposing the analysis service to the authoring service through the shared interface and by exposing the analysis libraries to the analysis applications through the shared another interface, the details of the logic underlying the analysis service and analysis libraries are shielded from the authoring service and analysis applications respectively (and vice versa).
Description
INTRODUCTION

There is an ever-growing need in the art for improved natural language generation (NLG) technology that harnesses computers to process data sets and automatically generate narrative stories about those data sets. NLG is a subfield of artificial intelligence (A) concerned with technology that produces language as output on the basis of some input information or structure, in the cases of most interest here, where that input constitutes data about some situation to be analyzed and expressed in natural language. Many NLG systems are known in the art that use template approaches to translate data into text. However, such conventional designs typically suffer from a variety of shortcomings such as constraints on how many data-driven ideas can be communicated per sentence, constraints on variability in word choice, and limited capabilities of analyzing data sets to determine the content that should be presented to a reader.


As technical solutions to these technical problems in the NLG arts, the inventors note that the assignee of the subject patent application has previously developed and commercialized pioneering technology that robustly generates narrative stories from data, of which a commercial embodiment is the QUILL™ narrative generation platform from Narrative Science Inc. of Chicago, Ill. Aspects of this technology are described in the following patents and patent applications: U.S. Pat. Nos. 8,374,848, 8,355,903, 8,630,844, 8,688,434, 8,775,161, 8,843,363, 8,886,520, 8,892,417, 9,208,147, 9,251,134, 9,396,168, 9,576,009, 9,697,198, 9,697,492, 9,720,884, 9,720,899, and 9,977,773; and U.S. patent application Ser. No. 14/211,444 (entitled “Method and System for Configuring Automatic Generation of Narratives from Data”, filed Mar. 14, 2014), Ser. No. 15/253,385 (entitled “Applied Artificial Intelligence Technology for Using Narrative Analytics to Automatically Generate Narratives from Visualization Data, filed Aug. 31, 2016), 62/382,063 (entitled “Applied Artificial Intelligence Technology for Interactively Using Narrative Analytics to Focus and Control Visualizations of Data”, filed Aug. 31, 2016), Ser. No. 15/666,151 (entitled “Applied Artificial Intelligence Technology for Interactively Using Narrative Analytics to Focus and Control Visualizations of Data”, filed Aug. 1, 2017), Ser. No. 15/666,168 (entitled “Applied Artificial Intelligence Technology for Evaluating Drivers of Data Presented in Visualizations”, filed Aug. 1, 2017), Ser. No. 15/666,192 (entitled “Applied Artificial Intelligence Technology for Selective Control over Narrative Generation from Visualizations of Data”, filed Aug. 1, 2017), 62/458,460 (entitled “Interactive and Conversational Data Exploration”, filed Feb. 13, 2017), Ser. No. 15/895,800 (entitled “Interactive and Conversational Data Exploration”, filed Feb. 13, 2018), 62/460,349 (entitled “Applied Artificial Intelligence Technology for Performing Natural Language Generation (NLG) Using Composable Communication Goals and Ontologies to Generate Narrative Stories”, filed Feb. 17, 2017), Ser. No. 15/897,331 (entitled “Applied Artificial Intelligence Technology for Performing Natural Language Generation (NLG) Using Composable Communication Goals and Ontologies to Generate Narrative Stories”, filed Feb. 15, 2018), Ser. No. 15/897,350 (entitled “Applied Artificial Intelligence Technology for Determining and Mapping Data Requirements for Narrative Stories to Support Natural Language Generation (NLG) Using Composable Communication Goals”, filed Feb. 15, 2018), Ser. No. 15/897,359 (entitled “Applied Artificial Intelligence Technology for Story Outline Formation Using Composable Communication Goals to Support Natural Language Generation (NLG)”, filed Feb. 15, 2018), Ser. No. 15/897,364 (entitled “Applied Artificial Intelligence Technology for Runtime Computation of Story Outlines to Support Natural Language Generation (NLG)”, filed Feb. 15, 2018), Ser. No. 15/897,373 (entitled “Applied Artificial Intelligence Technology for Ontology Building to Support Natural Language Generation (NLG) Using Composable Communication Goals”, filed Feb. 15, 2018), Ser. No. 15/897,381 (entitled “Applied Artificial Intelligence Technology for Interactive Story Editing to Support Natural Language Generation (NLG)”, filed Feb. 15, 2018), 62/539,832 (entitled “Applied Artificial Intelligence Technology for Narrative Generation Based on Analysis Communication Goals”, filed Aug. 1, 2017), Ser. No. 16/047,800 (entitled “Applied Artificial Intelligence Technology for Narrative Generation Based on Analysis Communication Goals”, filed Jul. 27, 2018), Ser. No. 16/047,837 (entitled “Applied Artificial Intelligence Technology for Narrative Generation Based on a Conditional Outcome Framework”, filed Jul. 27, 2018), 62/585,809 (entitled “Applied Artificial Intelligence Technology for Narrative Generation Based on Smart Attributes and Explanation Communication Goals”, filed Nov. 14, 2017), 62/632,017 (entitled “Applied Artificial Intelligence Technology for Conversational Inferencing and Interactive Natural Language Generation”, filed Feb. 19, 2018), and 62/691,197 (entitled “Applied Artificial Intelligence for Using Natural Language Processing to Train a Natural Language Generation System”, filed Jun. 28, 2018); the entire disclosures of each of which are incorporated herein by reference.


The inventors have further extended on this pioneering work with improvements in AI technology as described herein.


For example, the inventors disclose an improvement in narrative generation where an analysis service that executes data analysis logic that supports story generation is segregated from an authoring service that executes authoring logic for story generation through an interface. Accordingly, when the authoring service needs analysis from the analysis service, it can invoke the analysis service through the interface. By exposing the analysis service to the authoring service through the shared interface, the details of the logic underlying the analysis service are shielded from the authoring service (and vice versa where the details of the authoring service are shielded from the analysis service). Through parameterization of operating variables, the analysis service can thus be designed as a generalized data analysis service that can operate in a number of different content verticals with respect to a variety of different story types. This provides practitioners with more flexibility in building out new analytics as well as enabling dynamic, user-defined content.


The inventors further disclose that the analysis service can also be designed to further segregate generalized data analytics from higher level aspects of analysis via another interface. A plurality of analysis applications can be deployed by the analysis service, where the analysis applications are configured to selectively organize and invoke the execution of the lower level analytics. These analysis applications can be selected and instantiated as a function of a parameter in an analysis request from the authoring service and/or at least a portion of the structured data about which a narrative story is to be generated. The lower level analytics are then selectively parameterized and invoked by the selected analysis application. In this way, the lower level analytics can be further shielded from the particulars of a given story request and the higher level analysis applications can be tailored as a function of such particulars. This allows for further flexibility in using and re-using analytics across a variety of different use cases. For example, a practitioner can bundle different combinations analytics together for different story contexts, and the analysis applications can be the component that ties the analytics bundles to different story contexts.


For example, in an example embodiment where a narrative generation system is used to generate narrative stories about structured data from visualizations (e.g., chart data), a practitioner may want different types of narrative stories to be generated for different types of charts. As part of this, a practitioner might decide that, say, Analytics 1, 3, and 5 are useful when generating a narrative story from a line chart, that Analytics 1, 2, and 3 are useful when generating a narrative story from a bar chart, and that Analytics 2, 4, and 5 are useful when generating a narrative story from a histogram. The practitioner can tie different analysis applications to the different chart types (Analysis Application 1 for line charts, Analysis Application 2 for bar charts, and Analysis Application 3 for histograms). When the analysis service is invoked via an analysis request from the authoring service, the analysis service can instantiate and execute a particular analysis application based on the content of the analysis request (e.g., instantiating and executing Analysis Application 1 if the analysis request concerns analysis of line chart data). Analysis Application 1 will then organize and invoke, via the another interface, the analytics that are linked to Analysis Application 1. Parameters and data that are needed by the linked analytics can be passed to the linked analytics via the another interface.


The inventors further note that the lower level analytics can be grouped into different analysis libraries, and these analysis libraries can then be linked to the analysis applications as noted above. These libraries can then further insulate the low level analytics from the higher level applications and thus simplify the design of the analysis applications.


The inventors further disclose that the analysis service can process the structured data to be analyzed to generate new views of that structured data. The analytics within the analysis service can then operate on these new views to improve ability of the system to analyze and call out different perspectives in the resulting narrative while still performing the analysis operations in an efficient manner. For example, aggregation views, filter views, and/or pivot views of the structured data may be helpful to improve the breadth and depth of perspectives revealed in a narrative story as a result of the analysis operations performed by the analytics.


Through these and other features, example embodiments of the invention provide significant technical advances in the NLG arts by separating the logic for narrative story generation from the analysis operations that support such narrative story generation. By structuring coordination between an authoring service and an analysis service via an interface, the modularization of the authoring service and the analysis service allows improvements to be made to one (or both) of these services without adversely affecting the other. Similarly, the use of analysis libraries within the analysis service also allows for specific implementations of individual analytics to be modified and improved without needing to update the interface as a whole.


These and other features and advantages of example embodiments will be discussed in greater detail below.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an example narrative generation computer system in accordance with an example embodiment.



FIG. 2A shows an example narrative generation computer system in accordance with another example embodiment.



FIG. 2B shows an example of how various analytics can be grouped into various analysis libraries.



FIG. 3 shows an example narrative generation computer system in accordance with yet another example embodiment.



FIG. 4 shows an example of how different buckets of analytics can be tied to different types of chart data.



FIG. 5 shows an example process flow for analysis operations within an example embodiment of the analysis service.



FIG. 6 shows an example analytic configuration for an analysis application.



FIG. 7A shows an example process flow for generating an aggregation view of chart data.



FIG. 7B shows example chart data and an example aggregation view produced from such chart data.



FIG. 7C shows an example process flow for generating a filter view of chart data.



FIG. 7D shows example chart data and an example filter view produced from such chart data.



FIG. 7E shows example chart data with example aggregation and filter views produced from such chart data.



FIG. 7F shows an example process flow for generating a pivot view of chart data.



FIG. 7G shows example chart data and an example pivot view produced from such chart data.



FIG. 8A shows an example configuration for a segments analytic.



FIG. 8B shows an example configuration for a peaks analytic.



FIG. 9 shows an example process flow for an example embodiment of an authoring service.



FIG. 10 shows an example process flow for a ranking analytic.



FIG. 11 shows an example process flow for an interactions analytic.



FIG. 12 shows an example process flow for a peaks analytic.



FIG. 13 shows an example process flow for a jumps analytic.



FIG. 14 shows an example process flow for a runs analytic.



FIG. 15 shows an example process flow for a streaks analytic.





DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS


FIG. 1 shows an example narrative generation computer system 100 that employs an authoring service 104 and an analysis service 106 that are separated via an interface 120. The narrative generation computer system 100 can generate a narrative story 144 for a client 140 in response to a story request 142 from the client 140. Client 140 can be a client computer that communicates with the narrative generation computer system 100 via a network such as the Internet, although this need not necessarily be the case. For example, client 140 could also be a client application that is executed by the same computer system that executes the authoring service 104 and analysis service 106


The client 140 can provide a story request 142 to the narrative generation computer system 100 to trigger the generation of a narrative story about a data set such as a set of structured data. The story request 142 can include the structured data. It should also be understood that the structured data need not be included in the story request 142. For example, the story request 142 could alternatively identify a location where the narrative generation computer system 100 can access the structured data. The story request 142 can also include metadata about the structured data that will aid the narrative generation computer system 100 with respect to the type of narrative story that is to be generated. For example, if the structured data is chart data, the story request 142 can include metadata that identifies a chart type for the chart data (e.g., a line chart, bar chart, etc.).


The computer system 100 can execute the authoring service 104 to control the generation of narrative story 144 in response to the story request 142. The authoring service 104 can employ techniques such as those described in the above-referenced and incorporated patents and patent applications to generate narrative stories from data. In these examples, the narrative generation computer system 100 can employ one or more story configurations that specify a narrative structure for desired narrative stories while also specifying parameters that address how the content for such narrative stories is determined.


To support narrative generation in this fashion, the narrative generation computer system 100 will have a need for processing the structured data to generate metadata about the structured data, where such metadata provides the system with further insights about the structured data. As examples, the above-referenced and incorporated patents and patent applications describe various embodiments wherein elements such as derived features, angles, and data characterizations are generated from structured data to support intelligent story generation. For example, if the structured data is a line chart of product sales by month over time, some items of metadata that may be desired to support narrative generation may include (1) the average of product sales per month, (2) the peak value of monthly product sales, (3) an indication as to the direction of product sales over the time period in question (e.g., steadily rising, steadily declining, relatively consistent, highly volatile, etc.) This information serves as metadata about the structured data, and the narrative generation computer system 100 can employ the analysis service 106 to generate such metadata.


Interface 120 serves to modularize the analysis service 106 relative to the authoring service 104, which provides a benefit of shielding the details of the analysis service from the authoring service and vice versa. The authoring service 104 can invoke the analysis service by sending an analysis request 130 to the analysis service 106 via interface 120. This analysis request 130 can be a structured message that includes parameters used to focus and control the analysis operations that are to be performed on the structured data by the analysis service 106. The analysis service 106 then processes the structured data based on parameters in the analysis request 130 to generate desired metadata about the structured data. This metadata can then be returned to the authoring service 104 through interface 120 as analysis results 132.


The authoring service 104 can the use the metadata within the analysis results 132 to support narrative generation in a manner such that the narrative story 144 includes one or more insights about the structured data based on the metadata from the analysis service 106. The analysis service 106 can also be a multi-layered service where a plurality of analysis applications can selectively invoke any of a plurality of analytics 110 via interface 122. Interface 122 serves to modularize the analytics 110 relative to analysis applications 108, which provides a benefit of shielding the details of the analysis applications from the analytics and vice versa. For example, the analysis applications 108 that are selected and executed with respect to a given analysis request 130 can be context-dependent on the nature of the structured data. By contrast, the analytics 110 can be parameterized so that the logic for the analytics is independent of any specific context with respect to the structured data.


Thus, in an example embodiment, a practitioner may want a first set of analytics 110 to be performed when the structured data is of a first type (e.g., if the structured data corresponds to a line chart) and also want a second set of analytics 110 to be performed when the structured data is of a second type (e.g., if the structured data corresponds to a bar chart). The analysis applications 108 can shield the analytics from such context. With reference to the example of FIG. 1, a first analysis application 108a can be linked to first analytic 110a, and another analytic, a second analysis application 108b can be linked to second analytic 110b, and so on until an mth analysis application 108m is linked to the first analytic 110a, the second analytic 110b, and an nth analytic 110n. In this way, the analysis applications selectively invoke and parameterize the desired analytics as a function of the analysis request, and the analytics 110 themselves need not have any conception of the higher level aspects of narrative generation beyond the parameters that are passed to them via interface 122.


Furthermore, if desired by a practitioner, analytics 110 can be linked to analysis applications indirectly via analysis libraries 200 as shown in FIGS. 2A and 2B. An analysis library 200 can be a grouping of one or more analytics 110, and the analysis applications can selectively invoke and parameterize the analysis libraries 200 via interface 122. With reference to the example of FIG. 2A, a first analysis application 108a can be linked to first analysis library 200a, and another analysis library, a second analysis application 108b can be linked to second analysis library 200b, and so on until an mth analysis application 108m is linked to the first analysis library 200a, the second analysis library 200b, and an zth analysis library 200z. The various analysis libraries 200 can then group different analytics 110 together in any of a number of combinations. For example, FIG. 2B shows that a first analysis library 200a can be linked to first analytic 110a, and another analytic, a second analysis library 200b can be linked to second analytic 110b, and so on until a zth analysis library 200z is linked to the first analytic 110a, the second analytic 110b, and an nth analytic 110n.



FIG. 3 shows an example embodiment of FIG. 2A where the analysis service 106 includes analysis applications 108 that are tailored to different chart types with respect to the structured data. For example, (1) line charts can trigger the analysis service to select a line chart analysis application which is linked to specific analysis libraries such as a time series analysis library and a regression analysis library, (2) bar charts can trigger the analysis service to select a bar chart analysis application which is linked to a specific analysis library such as a cohort analysis library, and (3) histograms can trigger the analysis service to select a histogram analysis application which is linked to specific analysis libraries such as the time series analysis library and the cohort analysis library. As an example, FIG. 4 shows examples of different analytics that a practitioner may want to link to different chart types, together with a description for those analytics. A practitioner can then bundle these different analytics into different analysis libraries as shown by FIG. 2B to define a desired set of analytics to be run when certain chart types are found in the structured data.



FIG. 5 shows an example process flow for an analysis service 106 with respect to the examples of FIGS. 2A and 2B as well as FIG. 3. At step 500, the analysis service 106 processes an analysis request 130 received from the authoring service 104 via interface 120. In an example embodiment, the analysis service 106 can be configured as a web service that responds to analysis requests 130 that, for example, can take the form of HTTP requests from authoring service 104. Such an analysis request 130 can include an unmodified JSON payload that was sent by client 140 to the system 100 as a story request 142. This JSON payload can contain all of the structured data to be considered by system 100. For example, if the system 100 is being used to generate narrative stories about data visualizations, the payload can include all of the data that supports the subject visualization (which may include visualization metadata such as an identification of a visualization type, e.g., line chart, bar chart, etc.). The JSON payload can also include configuration data used for story writing and analytics (e.g., authoring, analytics, drivers, relationships, etc.).


At step 502, the analysis service 106 selects and instantiates an analysis application 108 based on one or more parameters and/or one or more items of structured data in the processed request 130. For example, the analysis service 106 may map a parameter of the request 130 (such as chart type) to a particular analysis application 108. In doing so, the analysis service can build and resolve an analytic configuration based on parameters in the request 130 and any defaults defined by the relevant analysis application 108. This analytic configuration can specify which analytics are to be run and which parameters are to be used in the running of those analytics. In the context of FIGS. 2A and 3, this analytic configuration can specify which analysis libraries 200 are to be invoked, and the analytic configuration may also specify an order of precedence for the analysis libraries that are to be invoked.



FIG. 6 shows an example analytic configuration 600 that can be resolved by the analysis service at step 502 In this example, with reference to FIG. 4, the analysis request 130 will include a parameter that identifies the subject structured data as comprising line chart data. Accordingly, analysis libraries will be invoked that include analytic buckets for segments analysis, trendline analysis, correlation analysis, and volatility analysis. It should be understood that the analytic buckets may include more than one underlying analytic. Accordingly, the analytic configuration 600 will include configurations for specific analyses such as a correlation configuration 602a, a trendline configuration 602b, a volatility configuration 602c, and a segments configuration 602d. Each specific analysis configuration can include a parameter that identifies the corresponding analytic or analytic bucket as enabled as well as an index parameter 604 that identifies an order of precedence for the corresponding analytic or analytic bucket relative to the other enabled analytics or analytic buckets. In this example, it can be seen that index parameter 604d identifies the segments analytic bucket as having the highest order of precedence, followed by the trendline analytic bucket (see index parameter 604b), followed by the volatility analytic bucket (see index parameter 604c), followed by the correlation analytic bucket (see index parameter 604a). The order of precedence associated with an analytic can identify an order in which the results of running that analytic are to be expressed in an output narrative. For example, if a streaks configuration has a lower order of precedence than a peaks configuration (and there are valid streaks in the data), then the output narrative would mention streaks-related content before that of peaks (presuming there are peaks in the data).


The analytic configuration 600 can also include specific parameters and/or thresholds to consider for the different specified analytics. For example, to control the trendline analytic bucket, the trendline configuration 604b can include a parameter 606 that specifies how many prediction periods are to be used in the trendline analysis. The value for this parameter can be passed through via analysis request 130 or it can be defined as a default setting by the analysis service. Thus, it should be understood that user or author preferences for thresholds and the like can be included in the analysis request 130 and applied directly by the analysis service 106 to each of the underlying analytic buckets via a mapping of parameters. This means that when a user or author selects, for example, an inclusion threshold of 0.4 for the segments analysis, any streaks or peaks (which are specific analytics that can be performed as part of segments analytic bucket) that do not exceed a 40% change will be disregarded and not returned in the analysis results 132.


By separating the underlying analytics from the user-driven and/or author-driven configuration in this way, significant flexibility is provided to practitioners for building out new analytics as well as enabling a dynamic and user-defined and/or author-defined content. Engineers can easily prototype as well as selectively enable/disable analytics by updating how analytic buckets are mapped to specific analytics without disrupting user workflows or modifying extensions.


Returning to FIG. 5, at step 504, the selected and instantiated analysis application is executed. The analysis applications 108 can be Python classes which coordinate the ingestion, manipulation and analysis of the structured data. With respect the example of FIG. 4, roughly one analysis application 108 can exist for each chart type supported by system 100, although it should be understood that a practitioner might choose to employ alternate arrangements. For example, a practitioner might choose to have pie charts and bar charts share the same analysis application 108. As another example, a practitioner may want to run different analytics for a single dimensional line chart as compared to a multi-dimensional line chart, in which case the mapping of analysis applications 108 to chart types can take into consideration more than just the high level chart type. The analysis application classes can be configured with knowledge of how to ingest data as well as call out to the generalized analysis libraries 200 that will perform the actual analysis (see steps 510-512). The analysis application 108 will also receive the analysis result(s) 132 from the analysis libraries 200 (step 514) as well as assemble and return the analysis results (step 516) for ultimate delivery to the authoring service 104 (step 506). Steps 516 and/or 506 can include serializing the results and performing transforms on the results to make them understandable to the authoring service 104. As an example, the transforms may convert references in the results from being index-based (e.g., the streak starts at the third dimension value) to being identifier-based (e.g., the third dimension value has an identifier of “d3”). Such a transform can make it easier for the authoring service to find and cache certain values (rather than forcing the authoring service to look through a list of values each time that the value is needed). Such a conversion transformation can be performed by looking through each of the analytic result objects for certain field names (e.g., ‘start_index’ or ‘index’) and replacing the value on that field with the associated dimension value's identifier (e.g., ‘d3’ or “dimnension_val_10’).


Each of the analysis application classes can inherit from a base class and thus share a significant amount of logic, particularly with respect to ingestion and high level aspects of the workflow. An area where the analysis application classes may differ is with respect to transform logic as well as in the decisions around which analysis libraries 200 they call out to with which subsets of the structured data.


Which analysis library 200 gets chosen at step 510 can depend on the types of structured data to be analyzed as well as the analytics specified by analytic configuration 600. Some analytics do not lend themselves to analyzing data that does not meet certain criteria. For example, continuity criteria can play a role in deciding whether a peaks analytic should be performed. If the subject data is organized along some form of a continuity basis (e.g., by time), then it may make sense to look for peaks in the data. However, if the data is completely unordered, then the peaks may be deemed arbitrary since the order in the data is arbitrary. Also, some data types and visualizations may have an assumed intent that indicates whether a given analytic would be helpful. An example of this would be where the act of making a line chart implies there is a desire to look at or see trends in the data; hence it makes sense to call out to a time series analysis library if the structured data to be analyzed includes a line chart. Continuing with the examples of FIGS. 3-4, if a line chart story is requested, the time series analysis library 200 can be used to find segments, perform trendline analysis, etc. If drivers are configured for this run, then in addition to the time series analysis library, the regression analysis library 200 can also be called on to run a multivariate regression and assess the model's validity. Similarly, if a histogram story is requested, the cohort analysis library can be called to find outliers/clusters while the time series analysis library will determine the largest jump between histogram bins.


In the case of multi-dimensional structured data, the analysis application 108 can also decide how to split up the multi-dimensional data into new organizations of data which are more amenable to analysis by the specified analytics. These new organizations of the data can help the system find and express more relevant information in a narrative in an efficient manner. By breaking up source multi-dimensional data and analyzing the various pieces independently, the system has a greater ability to efficiently compare and contrast the results to develop a richer and more nuanced story.


For example, the specified analytics may operate to provide more relevant information in a narrative in an efficient manner if they are provided with an aggregated view (or aggregated views) of multi-dimensional chart data. FIG. 7A depicts an example process flow that can be executed to create such an aggregated view of multi-dimensional chart data. Step 700 checks the chart data to see if it is multi-dimensional. If so, step 702 checks to see if a specified analytic would benefit from receiving an aggregated view of the multi-dimensional chart data. If so, step 704 selects the chart dimension(s) to be aggregated. Then, step 706 computes aggregated values with respect to the selected dimension(s). The computed aggregated values are then used to populate a table with an aggregated view of the subject chart data (see step 708). FIG. 7B shows an example of an aggregated view created from a multi-dimensional table with a region dimension, a product dimension, and a monetary sales amount dimension. In this example, the product group dimension is aggregated to produce a regional sales aggregated view where the sales amounts for different product groups in the same regions are aggregated together as shown in FIG. 7B.


As another example, the specified analytics may operate to provide more relevant information in a narrative in an efficient manner if they are provided with a filtered view (or filtered views) of multi-dimensional chart data. This filtered view can also be referred to as a drilldown view. FIG. 7C depicts an example process flow that can be executed to create such a filtered view of multi-dimensional chart data. Step 710 checks the chart data to see if it is multi-dimensional. If so, step 712 checks to see if a specified analytic would benefit from receiving a filtered view of the multi-dimensional chart data. If so, step 704 selects the chart dimension(s) to be filtered, and data is then removed from the chart based on the selected dimension(s) (step 716). Then, step 718 returns a table with the filtered view of the subject chart data. FIG. 7D shows an example of a filtered view created from a multi-dimensional table with a region dimension, a product dimension, and a monetary sales amount dimension. In this example, a filter view of central region sales is desired, which results in the removal of the chart rows corresponding to the western and southern regions as well as removal of the region column given that all of the data in the filtered chart view pertains to the central region.


It should also be understood that the process flows of FIGS. 7A and 7C could be performed in tandem if desired. For example, in a multi-dimensional bar chart run, the analytics application 108 can specify performance of cohort analysis on both a top-level aggregated view of the bar chart data as well as each of a plurality of drilldown views (e.g., sales by region as well as the sales by product in each region). If so, the analysis application can produce both an aggregated view and a filtered view of the chart data for use by the analytics, as shown in FIG. 7E. This would allow analytics to process both the region aggregated view as well as the central region filtered view.


As yet another example, the specified analytics may operate to provide more relevant information in a narrative in an efficient manner if they are provided with a pivoted view (or pivoted views) of multi-dimensional chart data. FIG. 7F depicts an example process flow that can be executed to create such a pivot view of multi-dimensional chart data. Step 720 checks the chart data to see if it is multi-dimensional. If so, step 722 checks to see if a specified analytic would benefit from receiving a pivot view of the multi-dimensional chart data. If so, step 724 selects the measure, primary dimension, and the pivot dimension to be used as part of the pivot operation. Then, step 726 creates a new chart dimension for each unique value in the selected pivot dimension. Next, step 728 populates the values of the selected measure with respect to the selected primary measure into the new chart dimensions. Then, step 730 returns the populated table as the pivot view of the chart data. FIG. 7G shows an example of a pivot view created from a multi-dimensional table with columns for year/month, division, revenue, and sales. In this example, the year month column is used as the primary dimension, the division column is used as the pivot dimension, and the sales column is used as the measure. This results in the pivot view having columns for the two unique values in the pivot dimension (domestic and international) such that the pivot view of sales by division over time appears as shown in FIG. 7G.


Returning to FIG. 5, at step 510, the selected analysis application 108 invokes an analysis library 200 specified by the analytic configuration 600 via interface 122. As previously mentioned, the underlying analytics that power the analysis service 106 can make use of generalized analysis libraries 200 that group together several categories of analytics to achieve a desired purpose. Whereas analysis applications 108 have a notion of chart types and or other higher level aspects relating to the narrative purpose of the narrative generation process, the analysis libraries 200 can be designed to provide a configuration-driven framework for performing computations regardless of a particular context.


At step 520, an invoked analysis library 200 instantiates the one or more analytics within the subject library 200 based on a configuration passed to the library 200 through interface 122. Through the interface 122, the invoked analysis library 200 can receive a data structure (such as a Pandas dataframe) that includes the structured data to be analyzed as well as configuration data for the subject analytics. At step 522, the structured data is processed using the one or more analytics that were instantiated at step 520 to generate analytics-based metadata about the structured data. This metadata is then returned to the analysis application (step 524).


While, for ease of illustration, FIG. 5 shows steps 520-524 being sequentially invoked via a loop between steps 510 and 512, the inventors note that steps 520-524 can be performed in parallel for the different linked analysis libraries if desired by a practitioner. For example, if a processor on which the analysis service runs has multi-processing capabilities, different compute resources can perform steps 520-524 for different linked analysis libraries in parallel with each other (e.g., Compute Resource 1 performs steps 520-524 for linked Analysis Library 1 while Compute Resource 2 performs steps 520-524 for linked Analysis Library 2).



FIG. 8A shows an example of configuration data 800 that can be passed to an analysis library 200 via interface 122. This example configuration 800 is for the segments analysis bucket identified in FIG. 4. The segments analysis specifies three underlying analytics, each with their own configuration 802; namely a configuration 802a for a Positive Runs analytic, a configuration 802b for a Peaks analytic, and a configuration 802c for a Streaks analytic. The configurations 802 specify a parameter mapping for various analytic parameters. The “name” and “calculation_type” parameters control where and under what field name on the analysis result model (see 132 in FIG. 1) the calculation results are placed. This can be used by authoring to, for example, discuss all of the “features” in one section, or alternatively by an application developer making use of the analysis service API to have finer-grained control on the output model. The “analytic_name” parameter can be the name of the actual Python class that is to be invoked for the subject analytic (e.g., 110a in FIG. 1). The configurations 802 can also specify option parameters 804 that influence the results returned by the subject analytic. For example, option parameters 804a with respect to the Positive Runs analytic specifies a direction to be referenced for measuring runs and also a name for the calculations produced by the positive runs analytic. The direction field can tell the analytic whether to search for always increasing values (positive), always decreasing values (negative), or values that are flat and not change period-over-period. As another example, option parameters 804b with respect to the Peaks analytic specifies a name for the calculations produced by the peaks analytic. This parameter controls the name of the field to use on the output model for the results of running the “PeaksFeatureFinder” analytic. This could also be used by the authoring service to know where to find that information. As another example, option parameters 804c with respect to the Streaks analytic specifies a minimum streak length to be used for assessing streaks in the structured data. The minimum streak length parameter can have a value that is expressed as a percentage of the total series length. As mentioned, the specified parameters in configuration 800 can be passed into the analysis service via request 130 or defined as a setting by the analysis service 106 (e.g., analysis application 108 having logic that sets a parameter value as a function of content in the analysis request 130).


With reference to the example of FIG. 3, the time series analysis library 200 can be configured to process structured data that is ordered in some way, and the time series analysis library 200 can bundle analytics that lend themselves to describing the relationship of the values in this structured data with respect to such order. The order can be a time order (such as revenue by month), but the order need not necessarily be a time order. Accordingly, it should be understood that a practitioner might find it useful to apply the time series analysis library 200 to structure that is ordered by some criteria other than time (such as cell phone signal strength by distance from cell tower).


A cohort analysis library 200 can be configured to process unordered data. A practitioner may find it useful to bundle statistical analysis tools in a cohort analysis library (such as analytics that find the skew, mean, etc. with respect to unordered data). Also, analytics that find outliers and clusters of values in a data set may be useful to include in a cohort analysis library.


A regression analysis library 200 enables the performance of regressions on data to create and characterize models. As such, a regression analysis library can unify various stages or steps of regression analysis, including data transformation, model fitting, model evaluation, outlier detection, and prediction. A practitioner might find it useful to permit one or more of these stages to be selectively enabled and disabled via configuration settings passed through interface 122.


Analysis libraries 200 can also specify a workflow of underlying analytics that are to be performed. This allows a number of underlying analytics to be considered as a single atomic unit from a developer's perspective by combining several operations together according to a workflow. Such workflows can take what are typically iterative processes and turns them into a linear operation. For example, the 4 operations outlined below (model fitting/sampling, diagnostic testing, model evaluation, and prediction) are conventionally performed by data scientists until the resulting model (which can take the form of a mathematical expression of relationships associated with certain weights) is sufficient. With an example embodiment, the system can perform this series of steps once in that order, obtaining metadata about how the processed proceeded (e.g., which diagnostic tests were performed, how valid the model is, etc.). The results of these workflows can then expose information about what steps were taken and provide additional information that can contribute to describing the output. For example, the information and the resulting model itself can then be used to report on the results of the process in the narrative (an example of which can be seen in the customer service narrative paragraph below). At each of the 4 operations, the system can accumulate metadata about the process for that operation as well as the results of the operation itself. For diagnostic testing, the system can know which tests were performed for that particular analysis as well as the results of those tests. In such an example, and with reference to the customer service narrative paragraph below, the “there may be other factors contributing the Trip Advisor Score” comment may arise from the fact that one of the diagnostic tests indicated as such, and the statement about “evidence of a very strong relationship” can arise from the model evaluation step. By doing a single pass through the 4 operations described below and reporting out data that indicates how well the models worked out, the system can speed up the analysis processed and lower the bar for performing more advanced analysis without having to understand every underlying detail.


As examples, the times series analysis library and the region analysis library may expose a workflow of underlying analytics to developers as a single atomic unit. For example, a trendline analytic in the time series analysis library and a single/multivariate regression analytic in the regression analysis library can bundle a host of checks and statistics by following a process such as (1) model fitting and sampling, (2) diagnostic testing, (3) model evaluation, and (4) prediction (which may include confidence indicators). Information from each step can be expressed in the analysis results 132, which enables the authoring service 104 to produce a narrative story that expresses insights such as the following:

    • “As Customer Service increased, TripAdvisor Score increased based on the data provided. Specifically, when Customer Service increased by 10, Trip Advisor Score increased by 3.27. There may be other factors contributing to Trip Advisor Score, but there is evidence of a very strong relationship”.


As another example, a periodicity analytic in the time series analysis library, which can be used to find and describe any cyclical behaviors in the structured data, can bundle a series of steps by following a process such as (1) data detrending, (2) periodogram, and (3) white noise bootstrapping (to determine a confidence level). Because the periodicity analytic wants to understand the cyclic nature of values, the bundled steps can help the system understand how often the subject values vary as a function of how often they occur (their frequency). A periodogram, which essentially operates as a histogram here, provides the system with this information by looking at all the values and performing a Fourier Transform on them. The resulting periodogram is then inspected to see at what frequencies the values change the most. As an example, consider a data set that describes ridership of public transportation over time. The frequency information in this would then be to what degree the ridership changes daily, monthly, yearly, etc. The maximum of the transformed data gives the frequency for which the ridership changed the most. The system can then report on those frequencies in the story (saying, for example that the ridership shows cyclicity, adjusting at regular weekly and monthly intervals).


Also, a practitioner may find it useful to include various design patterns and data models within analytics as aids to the story writing process.


For example, rankings are a type of analytic that can be included as part of analysis library, and a ranking analytic can be configured to find the most interesting or important of previously computed analytics. An example process flow for a ranking analytic is shown by FIG. 10. Such ranking calculations can be performed after such other analytics. For example, a rankings analytic could be employed to find a series with the largest positive peak. Similar to the other analytics, a rankings analytic can be configuration-based, where the configuration describes how to find the relevant analytic (e.g., choosing by “compare_calculation_name”) as well as which attribute to look at and compare against (e.g., “compare_attribute” and “compare_strategy”, respectively. An example analytic configuration 802b for a peaks analytic that includes a ranking analytic configuration 820 is shown by FIG. 8B. The rankings configuration 820 specifies two types of rankings that are to be produced from the results of the peak finding analytic across the various subject series (e.g., measures) in the data. Configuration 822a specifies how the ranking analytic is to be applied to find the peak within the peak values with the largest positive value. Configuration 822b specifies how the ranking analytic is to be applied to find the peak within the peak values with the largest negative value. Parameters within these configurations 822 specify control values for the ranking process.


For example, the “as_series” parameter describes how to format that ranking's result. If the “as_series” parameter is set to true, it will link to the entire measure that the peak is associated with (which is what this example wants—the series with the largest positive peak). In other cases, the ranking may want a single value (such as if one wanted to know just the information of the largest positive streak). In that case, the “as_series” parameter would be set to false.


The “filter_attribute” and “filter_value” parameters allow the rankings analytic to have greater control for searching through the various analytic results. The filter attribute and value can restrict the search for all analytic results to those that match the specified criteria. As such, rather than having the ranking analytic look at all the various peaks across all series, it will only rank the ones whose “sign” value is equal to “Positive” as specified by the filter attribute and filter value parameters.


The source data under analysis can be tabular data, where the columns are either dimensions or measures. The series in this data can refer to the various measures in the source tabular data. For example, a source chart may be a line chart that plots sales and revenue over time. The source tabular data in this example includes a time dimension, a sales measure, and a revenue measure. Thus, the sales and revenue values over time can be series data for analysis.


As another example, interactions are another type of analytic that can be included as part of analysis library, and an interactions analytic can be configured to find intersections between data sets. However, it should be understood that the interactions analytic can do more than just find intersections. The interactions analytic can operate on multiple measures, which in practice may include operations such as calculating correlations, finding the intersections between the measure values for continuous data sets, and performing calculations on the series themselves (for example, subtracting one series from another to find the difference). An example process flow for an interactions analytic is shown by FIG. 11. Interactions can be applied to those analytics which use two or more data sets to compute, such as correlation. An interactions analytic can perform steps such as (1) choosing combinations of entities, (2) performing comparisons (e.g., finding intersections, getting correlations, getting differences, etc.), (3) updating compares with reference to analytic results, and (4) trimming/ranking. As an example of an interactions analytic, it may be desirable to find the locations, if any, where three series (A, B, C) converge. The analytic can be configured to by default iterate through pairwise combinations of the series (AB, BC, and AC) and find the intersections within those pairs. If any of these pairs fails to find an intersection (e.g., no intersections are found in the pair AC), then the analytic can stop because the analytic will then know that there are no intersections between all three of the series. This strategy for resolving intersections can greatly reduce computational complexity. Moreover, if desired, such settings could be configurable/over-written.


The inputs for the interactions analytic can be an analysis results container object and a list of groups of measure objects (e.g., pairwise measures A-B, B-C, A-C). As shown by FIG. 11, this process flow creates an interaction result container object which will get populated with results of the interactions analysis. The process flow then loops through the groups, and for each group, it performs comparisons on elements in each group to find intersections, compute correlations, compute differences, etc. and collects results. This operation can have knowledge of the current state of the interactions, and thus has the freedom to abort operations depending on certain conditions (e.g., if no interactions exist for A-C, do not perform the A-B-C intersection comparison operation). Then, the process flow updates the interactions result object with the results of the comparisons.


Some examples of underlying analytics 110 that can be included as part of the analysis service include peaks analytics, jumps analytics, runs analytics, and streaks analytics.


A peaks analytic can be configured to find peaks and troughs within a data set. An example process flow for a peaks analytic is shown by FIG. 12. Peaks and troughs are those features which start at some baseline, move either up or down to some local maxima/minima, then return to that previous baseline. A peaks analytic can identify (1) a baseline value for the data set, (2) absolute and percentage change between the baseline and the peak, (3) locations of the start and end of the peak, (4) the start and end derivatives (which can be the slope of the line made by the values at the first part of the peak and the last part of the peak), and (5) directions of movement between peaks and troughs.


The inputs for the peaks analytic can be the measure values that are to be analyzed to find peaks and the configuration data for the peaks analytic. As shown by FIG. 12, this configuration data can include (1) a min/max width for a peak, (2) a threshold, (3) a percent threshold, (4) a derivative threshold, (5) a sign (or direction, where positive can denote a peak and negative can denote a trough), and (6) a peak report rule (e.g., “nearest real maxima” or “smooth local max value”). As operational steps, the peaks analytic can smooth the series according to the exponentially weighted moving average of the series. Then, the process finds the local maxima/minima of the smoothed data (the points where the derivative is zero). For these local maxima/minima, the analytic gathers information such as their (1) start/end index value, (2) start/end value, (3) width, (4) value at peak (according to configured peak report rule), (5) index value at peak (according to configured peak report rule), (6) start derivative (the slope of the line starting from the start and ending at the center), (7) end derivative (the slope of the line starting from the center and ending at the end), (8) overall derivative (the average of the start derivative and the end derivative), (9) baseline value (the average of the start and end values), (10) change (which can be the height of the peak or the absolute value of the difference between the value at peak and the baseline value), (11) percent change (change divided by baseline value), and (12) score (which can be defined via a function used to give a numeric value to the size of the peak, where the value gets larger for larger changes/percentage changes/derivatives). Next, the analytic can review this information and remove the maxima/minima that do not meet the configuration conditions for the peaks analytic. For example, this step can check that each candidate peak has at least the minimum width, no more than the maximum width/percent change, etc. After this filtering/removal, the remaining peaks and their corresponding data can be returned as information objects.


Jumps are similar to peaks except that instead of returning to the baseline at the start of the peak, the series settles at a new baseline. A jump is a region where the value changes relatively quickly to a new value and then (unlike a peak) stays near the new value for a while. An example process flow for a jumps analytic is shown by FIG. 13. The attributes of a jumps analytic can be similar to those for the peaks analytic except includes the finish baseline value and only the one slope.


The inputs for the jumps analytic can be the measure values that are to be analyzed to find jumps and the configuration data for the jumps analytic. As shown by FIG. 13, this configuration data can include (1) a threshold percent, (2) a minimum series length, (3) window percents (which can be a list of percentages to use for searching for jumps, which corresponds to resolutions of jumps, and which by default can include 50 percentages between 0.2 and 0.75), and (4) retain percents (which specify how long the values must stay relatively similar after the jump and which can be expressed as a percent of the total series length). As operational steps, the jumps analytic can first compare the measure values to the minimum series length configuration. If there are too few values in the data, then the analytic would return no jumps and exit execution. Next, the process creates an absolute threshold based on the threshold percent configuration applied to the difference between the min and max of the data values. Then, the process instantiates an empty list of jumps objects in which the process will accumulate results.


Thereafter, the process attempts to find jumps for each window size. It can identify start/end indices of the center (increasing/decreasing) portion of the candidate jump. This can be done by creating a cuts series by applying a rolling function to the values which (1) splits the values into three portions, (2) compares the average of the first third to the average of the second third, and (3) if the difference between those averages is greater than the threshold percent, mark this region as containing a candidate jump. This step can also find the absolute starts/ends of these regions by noting where the cuts difference between one value and the next is not zero.


The process then adds information to each candidate jump result object. Such information can include (1) a window size, (2) a direction, (3) region information for each of the first/middle/last (i) start/end index, (ii) start/end value, (iii) standard deviation, (iv) mean, and (v) volatility, (4) absolute start/end index (start of first region, end of last region), (5) score (which can be computed via a function used to give a numeric value to the size of the jump, where the value gets larger for larger absolute/percentage changes and jump derivative), and (6) retain length (which can be number of contiguous data points that fall into the retain band, counting from the end of the last region).


Thereafter, the process flow merges jumps across windows. It can look through each jump and build up to larger and larger jumps by combining the jump information if the locations of the starts and ends overlap. Next, the analytic can filter out jumps according to the configured stay time (retain percent). From there, the remaining jumps can be returned as jump objects according to scores.


A runs analytic can be configured to find a sub-array within a series (single region) whose summed values gives the largest amount. A positive/negative run can be defined as a contiguous subarray of numbers whose forward differences sum to a global positive/negative maximum. Such a sub-array can be referred to as the maximum value sub-array, and this type of analysis can be useful for describing regions which impacted net growth/decline. For example, for the array [2, 1, 2, 4, 3, 5, 4, 3, 4], the maximum net positive run is [1, 2, 4, 3, 5], and the maximum net negative run is [5, 4, 3] (where the run length is greater than or equal to 2). An example of a narrative story that can express an insight derived from a runs analytic can be:

    • “Contrasting with the overall decrease, the largest net growth was from March 7 to October 7, when Central Revenue rose by 1.6 million (135%).”



FIG. 14 shows an example process flow for a runs analytic. The inputs for the runs analytic can be the measure values that are to be analyzed to find runs and a configured run direction. If the run direction is negative, the analytic multiplies all values by −1. Next, the analytic finds the maximum value subarray. To do so, it can (1) instantiate current sum, start index/end index for subarray to 0, (2) instantiate final max sum, start/end index for the best subarray to 0, (3) and iterate through the measure values. As part of these iterations, the analytic can (1) if the current value plus the current sum is greater than 0, add the current value to the current sum, (2) otherwise, reset the current sum start location to the current index, and (3) if the current sum is greater than the final sum, overwrite the final sum with the current sum and the current start/end index. After completing the iterations, the analytic returns the final maximum subarray. It then collects additional information about this subarray, such as percent and absolute difference between the start and end of the run, the run length, etc.


A streaks analytic can be configured to find streaks within a data set, where streaks can be defined as consecutively increasing/decreasing/unchanging regions of the data set. For example, given the series [3, 3, 3, 4, 5, 2, −1], there are three streaks present −[3, 3, 3] which is a flat streak, [3, 4, 5] which is a positive streak, and [5, 2, −1] which is a negative streak (where the streak length is greater than or equal to 2). Similar to peaks, a streaks analytic can identify (1) the start/end locations for streaks, (2) absolute and percentage change for start to finish for each streak, (3) the direction of movement for each streak, and (4) the length for each streak. Unlike runs, streaks are consistently increasing/decreasing/unchanging with respect to defined thresholds. Streaks can be thought of in a sports context as being, for example, when a basketball player has made all of his shots taken in a quarter. Runs, on the other hand, would be used to describe the period where the winning team pulled ahead the most.



FIG. 15 shows an example process flow for a streaks analytic. The inputs for the streaks analytic can be the measure values that are to be analyzed to find streaks and configuration data for the streaks analytic. The configuration data can be used to control the streaks analytic to only expose streaks of certain types or longer than a certain length. The streaks configuration data can include (1) a streak type (positive, negative, and/or flat), (2) a minimum streak length, and (3) a sort configuration (e.g., sort on streak length then on streak type).


As an operational step, the analytic finds the streak ends/starts using the measure values. This can include (1) creating an array of values corresponding to the difference between consecutive measure values (deriv), (2) finding the regions where the difference is positive (pos_deriv), (3) finding the regions where the difference is zero (flat_deriv), and (4) identifying the starts of the regions by comparing the positive/flat derivative to shifted values (so 1, 1, 1, 2, 2, =>True, False, False, True, False).


As a next operational step, the analytic determines streak direction for each streak by taking the difference of the start and end value for each of the streaks (diff >0=>positive, etc.).


As another operational step, the analytic creates streak result objects. These objects can get populated with information such as start/end index, start/end value, direction, and length. Thereafter, the analytic can filter out invalid streaks based on the streak configuration data. For remaining streaks, the analytic can add additional information to the streak objects such as absolute/percent difference information, and then return all streak objects, as sorted according to the sort configuration.



FIG. 9 depicts an example process flow for the authoring service 104. At step 900, the authoring service receives structured data with respect to a story request 142. This structured data is the data to be described by the narrative story. Optionally, this structured data may be included as part of the story request 142. At step 902, the authoring service parameterizes a story configuration based on the structured data and the story request 142. Examples of such configurations are described in the above-referenced and incorporated patents and patent applications. For example, the '844 and '178 patents describe a configuration-based approach for narrative generation that employs story specifications and content blocks. As another example, patent application Ser. No. 15/253,385, 15/666,151, 15/666,168 and 15/666,192 describe a configuration-based narrative generation technique in connection with generating narratives from visualization data. As yet another example, the '899, '492, '197, and '009 patents and patent applications 62/460,349, 62/539,832, and 62/585,809 describe a configuration-based approach for narrative generation that employs explicit representations of communication goals to help drive narrative generation.


The authoring service can then process the story configuration to determine that analytics are needed to compute additional data needed for the story generation process, and a call can be made to analysis service 106 via interface 120 for this purpose (step 904). As discussed above, the authoring service can communicate, via interface 120, an analysis request 130 to the analysis service 106, where such an analysis request 130 can includes configuration information for the analysis operations. At step 906, the authoring service receives the analysis results 132 from the analysis service 106 via interface 120. These analysis results are ingested into the story configuration at step 908, and a determination is made as to whether more analysis is needed (step 910). If more analysis is needed, the process flow returns to step 904. Otherwise, the process flow proceeds to step 912. At step 912, a narrative story 144 about the structured data is generated based on the story configuration, and this narrative story 144 can express insights about the structured data that results from the analysis results returned by the analysis service 106. For example, the narrative story might identify the values of the largest peaks in a data set. The above-referenced patents and patent applications describe how narrative stories can be generated from story configurations in this fashion. Lastly, at step 914, the authoring service returns the narrative story 144 to the client 140 in response to the request. This step may involve encoding the narrative story as an HTML document or the like to facilitate presentation via a web page.


Returning to FIGS. 1-3, the computer system 100 may comprise a processor and a memory that are operatively coupled with each other. The computer system may also include additional components such as a network interface. The computer system components can be interconnected with each other in any of a variety of manners (e.g., via a bus, via a network, etc.). The processor may comprise one or more processors such as general-purpose processors (e.g., a single-core or multi-core microprocessor) etc. that are suitable for carrying out the operations described herein. The memory may comprise one or more non-transitory computer-readable storage mediums, such as volatile storage mediums (e.g., random access memory, registers, and/or cache) and/or non-volatile storage mediums (e.g., read-only memory, a hard-disk drive, a solid-state drive, flash memory, and/or an optical-storage device). The memory may also be integrated in whole or in part with other components of the system 100. Further, the memory may be local to the processor, but it should be understood that the memory (or portions of the memory) could be remote from the processor (in which case the processor may access such remote memory through a component such as a network interface). The memory may store software programs or instructions that are executed by the processor during operation of the system 100. For example, the memory may store the authoring service 104 and the analysis service 106. Furthermore, it should be understood that the computer system 100 could include multiple processors and memories arranged as a distributed computing architecture. With such an arrangement, analytics that are amenable to parallel execution can be executed in parallel by different compute resources within the distributed computing architecture. Furthermore, if the system 100 is handling a large load of story requests 142, the narrative generation tasks performed by the authoring service and analysis service with respect to the various story requests 142 can be distributed across different processors within the distributed computing architecture. Such an approach can yield lower latency with respect to story production.


While the invention has been described above in relation to its example embodiments, various modifications may be made thereto that still fall within the invention's scope. Such modifications to the invention will be recognizable upon review of the teachings herein.

Claims
  • 1. An apparatus for applying artificial intelligence to generate a narrative story from structured data, the apparatus comprising: a processor and a memory that are operatively coupled with each other and comprise (1) an authoring service and (2) an analysis service;wherein the authoring service is segregated from the analysis service through an interface;wherein the analysis service is (1) invocable by the authoring service through the interface and (2) configured, in response to invocation by the authoring service through the interface, to (i) generate metadata about the structured data and (ii) communicate the metadata to the authoring service;wherein the authoring service is configured to (1) receive the structured data, (2) communicate a structured message to the analysis service through the interface to invoke the analysis service at runtime based on the structured data, and (3) process the structured data and the communicated metadata in accordance with a story configuration to generate a narrative story that expresses an insight about the structured data based on the communicated metadata;wherein the analysis service is further configured to selectively perform a plurality of different analysis operations, and wherein the authoring service is further configured to selectively invoke a subset of the analysis operations based on a parameter in the structured message;wherein the analysis service comprises (1) a plurality of analysis applications and (2) a plurality of analysis libraries;wherein the analysis applications are segregated from the analysis libraries through another interface;wherein each analysis library comprises at least one analytic that is invocable by at least one of the analysis applications through the another interface; andwherein each analysis application is configured to selectively invoke at least one of the analysis libraries through the another interface based on the structured message parameter.
  • 2. The apparatus of claim 1 wherein the structured message parameter comprises a plurality of parameters in the structured message.
  • 3. The apparatus of claim 1 wherein the structured message further comprises at least a portion of the structured data from which the narrative story is generated; and wherein the authoring service is further configured to selectively invoke a subset of the analysis operations based on (1) the structured message parameter and (2) structured data within the structured message.
  • 4. The apparatus of claim 1 wherein each of a plurality of the analytics is configured to perform an analysis operation on structured data to generate metadata about the structured data.
  • 5. The apparatus of claim 4 wherein the analytics comprise at least two of (1) a peaks analytic, (2) a jumps analytic, (3) a runs analytic, (4) a streaks analytic, (5) a segments analytic, (6) a trendline analytic, (7) a correlation analytic, (8) a volatility analytic, (9) a distribution analytic, (10) a clustering analytic, (11) an aggregation analytic, (12) a ranking analytic, (13) an interaction analytic, and (14) a periodicity analytic.
  • 6. The apparatus of claim 1 wherein at least one of the analysis libraries is exposed to the analysis applications via the another interface through which the at least one analysis library is configured to receive (1) data and (2) at least one configuration parameter from an analysis application; and wherein the at least one analytic of the invoked analysis library is configured to perform an analysis operation on data received through the another interface in accordance with configuration parameters received through the another interface.
  • 7. The apparatus of claim 1 wherein at least one of the analysis libraries (1) comprises a plurality of analytics that are configured to perform different analysis operations and (2) is configured to specify an execution of the analytics in a sequence according to a workflow.
  • 8. The apparatus of claim 7 wherein the analysis libraries include a time series analysis library, and wherein the time series analysis library comprises, as a workflow sequence of trendline analytics, operations for model fitting and sampling, then diagnostic testing, then model evaluation, and then prediction.
  • 9. The apparatus of claim 7 wherein the analysis libraries include a regression library, and wherein the regression library comprises, as a workflow sequence of regression analytics, operations for model fitting and sampling, then diagnostic testing, then model evaluation, and then prediction.
  • 10. The apparatus of claim 7 wherein the analysis libraries include a time series analysis library, and wherein the time series analysis library comprises, as a workflow sequence of periodicity analytics, operations for data detrending, then periodogram generation, and then white noise bootstrapping.
  • 11. The apparatus of claim 1 wherein each of a plurality of the analysis applications is configured to communicate an analytic configuration through the another interface, wherein the analytic configuration specifies a mapping between a plurality of parameters of the structured data and a plurality of parameters of the at least one analytic of the invoked analysis library.
  • 12. The apparatus of claim 1 wherein the analysis applications comprise Python classes which coordinate an ingestion, manipulation, and analysis of the structured data.
  • 13. The apparatus of claim 1 wherein the analysis applications comprise a line chart analysis application; wherein the analysis libraries comprise a time series analysis library;wherein the analysis service is configured to (1) determine whether the structured message includes a parameter that indicates the structured data corresponds to line chart data and (2) in response to a determination that the structured data includes the parameter that indicates the structured data corresponds to line chart data, select and execute the line chart analysis application; andwherein the line chart analysis application is configured to selectively invoke the time series analysis library to generate metadata about the line chart data.
  • 14. The apparatus of claim 13 wherein the time series analysis library includes a segments analytic that is configured to find one or more segments in the line chart data that satisfy a defined condition.
  • 15. The apparatus of claim 13 wherein the time series analysis library includes a trendline analytic that is configured to find one or more trends in the line chart data based on a defined condition.
  • 16. The apparatus of claim 13 wherein the time series analysis library includes a correlation analytic that is configured to measure a correlation between a plurality of data series within the line chart data.
  • 17. The apparatus of claim 13 wherein the time series analysis library includes a volatility analytic that is configured to measure a volatility between a plurality of data series within the line chart data.
  • 18. The apparatus of claim 1 wherein the analysis applications comprise a line chart analysis application; wherein the analysis libraries comprise a regression analysis library;wherein the analysis service is configured to (1) determine whether the structured message includes a parameter that indicates the structured data corresponds to line chart data and (2) in response to a determination that the structured data includes the parameter that indicates the structured data corresponds to line chart data, select and execute the line chart analysis application; andwherein the line chart analysis application is configured to selectively invoke the regression analysis library to generate metadata about the line chart data.
  • 19. The apparatus of claim 1 wherein the analysis applications comprise a bar chart analysis application; wherein the analysis libraries comprise a cohort analysis library;wherein the analysis service is configured to (1) determine whether the structured message includes a parameter that indicates the structured data corresponds to bar chart data and (2) in response to a determination that the structured data includes the parameter that indicates the structured data corresponds to bar chart data, select and execute the bar chart analysis application; andwherein the bar chart analysis application is configured to selectively invoke the cohort analysis library to generate metadata about the bar chart data.
  • 20. The apparatus of claim 19 wherein the cohort analysis library includes a correlation analytic that is configured to measure a correlation between a plurality of data series within the bar chart data.
  • 21. The apparatus of claim 19 wherein the cohort analysis library includes a distribution analytic that is configured to evaluate a frequency of entities in a collection within the bar chart data.
  • 22. The apparatus of claim 19 wherein the cohort analysis library includes a clustering analytic that is configured to identify one or more clusters or outliers in the bar chart data based on a defined condition.
  • 23. The apparatus of claim 1 wherein the analysis applications comprise a histogram analysis application; wherein the analysis libraries comprise a time series analysis library;wherein the analysis service is configured to (1) determine whether the structured message includes a parameter that indicates the structured data corresponds to histogram data and (2) in response to a determination that the structured data includes the parameter that indicates the structured data corresponds to histogram data, select and execute the histogram analysis application; andwherein the histogram analysis application is configured to selectively invoke the time series analysis library to generate metadata about the histogram data.
  • 24. The apparatus of claim 23 wherein the time series analysis library includes a segments analytic that is configured to find one or more segments in the histogram data that satisfy a defined condition.
  • 25. The apparatus of claim 23 wherein the time series analysis library includes a trendline analytic that is configured to find one or more trends in the histogram data based on a defined condition.
  • 26. The apparatus of claim 23 wherein the time series analysis library includes a correlation analytic that is configured to measure a correlation between a plurality of data series within the histogram data.
  • 27. The apparatus of claim 23 wherein the time series analysis library includes a volatility analytic that is configured to measure a volatility between a plurality of data series within the histogram data.
  • 28. The apparatus of claim 1 wherein the analysis applications comprise a histogram analysis application; wherein the analysis libraries comprise a cohort analysis library;wherein the analysis service is configured to (1) determine whether the structured message includes a parameter that indicates the structured data corresponds to histogram data and (2) in response to a determination that the structured data includes the parameter that indicates the structured data corresponds to histogram data, select and execute the histogram analysis application; andwherein the histogram analysis application is configured to selectively invoke the cohort analysis library to generate metadata about the histogram data.
  • 29. The apparatus of claim 28 wherein the cohort analysis library includes a correlation analytic that is configured to measure a correlation between a plurality of data series within the histogram data.
  • 30. The apparatus of claim 28 wherein the cohort analysis library includes a distribution analytic that is configured to evaluate a frequency of entities in a collection within the histogram data.
  • 31. The apparatus of claim 28 wherein the cohort analysis library includes a clustering analytic that is configured to identify one or more clusters or outliers in the histogram data based on a defined condition.
  • 32. The apparatus of claim 1 wherein the analysis applications comprise a pie chart analysis application; wherein the analysis libraries comprise a cohort analysis library;wherein the analysis service is configured to (1) determine whether the structured message includes a parameter that indicates the structured data corresponds to pie chart data and (2) in response to a determination that the structured data includes the parameter that indicates the structured data corresponds to pie chart data, select and execute the pie chart analysis application; andwherein the pie chart analysis application is configured to selectively invoke the cohort analysis library to generate metadata about the pie chart data.
  • 33. The apparatus of claim 32 wherein the cohort analysis library includes a correlation analytic that is configured to measure a correlation between a plurality of data series within the pie chart data.
  • 34. The apparatus of claim 32 wherein the cohort analysis library includes a distribution analytic that is configured to evaluate a frequency of entities in a collection within the pie chart data.
  • 35. The apparatus of claim 32 wherein the cohort analysis library includes a clustering analytic that is configured to identify one or more clusters or outliers in the pie chart data based on a defined condition.
  • 36. The apparatus of claim 1 wherein the analysis service is further configured to (1) resolve an analytics configuration based on the structured message, (2) instantiate an analytics application based on the analytics configuration, (3) execute the instantiated analytics application to selectively invoke a subset of the analysis operations, and (4) receive and serialize a plurality of results from the selectively invoked subset of analysis operations.
  • 37. The apparatus of claim 36 wherein the analytics configuration specifies an order of precedence for the subset of analysis operations.
  • 38. The apparatus of claim 36 wherein the analytics configuration specifies a parameter value for use in controlling at least one of the subset of analysis operations.
  • 39. The apparatus of claim 38 wherein the parameter value comprises a threshold value.
  • 40. The apparatus of claim 38 wherein the structured message includes the parameter value.
  • 41. The apparatus of claim 1 wherein the analysis service is further configured to (1) generate a new organization of the structured data and (2) process the new organization of structured data to generate the metadata.
  • 42. The apparatus of claim 41 wherein the analysis service is further configured to generate a new organization of the structured data by performing a pivot operation on the structured data that is arranged in a plurality of rows and columns.
  • 43. The apparatus of claim 42 wherein the structured data comprises multi-dimensional line chart data.
  • 44. The apparatus of claim 41 wherein the analysis service is further configured to generate a new organization of the structured data by performing an aggregation operation on the structured data that is arranged in a plurality of rows and columns.
  • 45. The apparatus of claim 44 wherein the structured data comprises multi-dimensional bar chart data.
  • 46. The apparatus of claim 41 wherein the analysis service is further configured to generate a new organization of the structured data by performing a filter operation on the structured data that is arranged in a plurality of rows and columns.
  • 47. The apparatus of claim 46 wherein the structured data comprises multi-dimensional bar chart data.
  • 48. The apparatus of claim 1 wherein the structured data comprises visualization data.
  • 49. The apparatus of claim 48 wherein the visualization data comprises at least one of line chart data, bar chart data, histogram data, pie chart data, and/or scatterplot data.
  • 50. The apparatus of claim 1 wherein the analysis service is configured as a web service.
  • 51. The apparatus of claim 1 wherein the processor and memory comprise a plurality of processors and memories.
  • 52. The apparatus of claim 51 wherein the processors and memories are arranged as a distributed computing architecture.
  • 53. A method for applying artificial intelligence to generate a narrative story from structured data, the method comprising: separating, via an interface, an authoring service for narrative story generation from an analysis service that supports the authoring service;a processor executing the authoring service with respect to a data set of structured data about which a narrative story is to be generated, wherein the authoring service executing step includes communicating a structured message to the analysis service through the interface to invoke the analysis service; andin response to the invocation, a processor executing the analysis service to generate metadata about the structured data and communicate the metadata to the authoring service, wherein the analysis service comprises (1) a plurality of analysis applications and (2) a plurality of analysis libraries, wherein the analysis applications are segregated from the analysis libraries through another interface, and wherein each analysis library comprises at least one analytic that is invocable by at least one of the analysis applications through the another interface;wherein the analysis service executing step comprises each of a plurality of the analysis applications selectively invoking at least one of the analysis libraries through the another interface based on the structured message parameter; andwherein the authoring service executing step further comprises processing the structured data and the communicated metadata in accordance with a story configuration to generate a narrative story that expresses an insight about the structured data based on the communicated metadata.
  • 54. A computer program product for applying artificial intelligence to generate a narrative story from structured data, the computer program product comprising: a plurality of processor-executable instructions that are resident on a non-transitory computer-readable storage medium, the instructions comprising (1) a first plurality of the instructions arranged as an analysis service and (2) a second plurality of the instructions arranged as an authoring service;wherein the analysis service is segregated from the authoring through an interface;wherein the analysis service is (1) invocable by the authoring service through the interface and (2) configured, in response to invocation by the authoring service through the interface, to (i) generate metadata about the structured data and (ii) communicate the metadata to the authoring service;wherein the authoring service is configured to (1) receive the structured data, (2) communicate a structured message to the analysis service through the interface to invoke the analysis service at runtime based on the structured data, and (3) process the structured data and the communicated metadata in accordance with a story configuration to generate a narrative story that expresses an insight about the structured data based on the communicated metadata;wherein the analysis service is further configured to selectively perform a plurality of different analysis operations, and wherein the authoring service is further configured to selectively invoke a subset of the analysis operations based on a parameter in the structured message;wherein the analysis service comprises (1) a plurality of analysis applications and (2) a plurality of analysis libraries;wherein the analysis applications are segregated from the analysis libraries through another interface;wherein each analysis library comprises at least one analytic that is invocable by at least one of the analysis applications through the another interface; andwherein each analysis application is configured to selectively invoke at least one of the analysis libraries through the another interface based on the structured message parameter.
CROSS-REFERENCE AND PRIORITY CLAIM TO RELATED PATENT APPLICATIONS

This patent application claims priority to U.S. provisional patent application Ser. No. 62/618,249, filed Jan. 17, 2018, and entitled “Applied Artificial Intelligence Technology for Narrative Generation Using an Invocable Analysis Service”, the entire disclosure of which is incorporated herein by reference. This patent application is also related to (1) U.S. patent application Ser. No. 16/235,594, filed this same day, and entitled “Applied Artificial Intelligence Technology for Narrative Generation Using an Invocable Analysis Service”, (2) U.S. patent application Ser. No. 16/235,662, filed this same day, and entitled “Applied Artificial Intelligence Technology for Narrative Generation Using an Invocable Analysis Service and Data Re-Organization”, and (3) U.S. patent application Ser. No. 16/235,705, filed this same day, and entitled “Applied Artificial Intelligence Technology for Narrative Generation Using an Invocable Analysis Service and Configuration-Driven Analytics”, the entire disclosures of each of which are incorporated herein by reference.

US Referenced Citations (307)
Number Name Date Kind
4992939 Tyler Feb 1991 A
5619631 Schott Apr 1997 A
5734916 Greenfield et al. Mar 1998 A
5794050 Dahlgren et al. Aug 1998 A
5802495 Goltra Sep 1998 A
6006175 Holzrichter Dec 1999 A
6144938 Surace et al. Nov 2000 A
6278967 Akers et al. Aug 2001 B1
6289363 Consolatti et al. Sep 2001 B1
6665666 Brown et al. Dec 2003 B1
6757362 Cooper et al. Jun 2004 B1
6771290 Hoyle Aug 2004 B1
6917936 Cancedda Jul 2005 B2
6968316 Hamilton Nov 2005 B1
6976031 Toupal et al. Dec 2005 B1
7027974 Busch et al. Apr 2006 B1
7246315 Andrieu et al. Jul 2007 B1
7324936 Saldanha et al. Jan 2008 B2
7333967 Bringsjord et al. Feb 2008 B1
7496621 Pan et al. Feb 2009 B2
7577634 Ryan et al. Aug 2009 B2
7610279 Budzik et al. Oct 2009 B2
7617199 Budzik et al. Nov 2009 B2
7617200 Budzik et al. Nov 2009 B2
7627565 Budzik et al. Dec 2009 B2
7644072 Budzik et al. Jan 2010 B2
7657518 Budzik et al. Feb 2010 B2
7716116 Schiller May 2010 B2
7778895 Baxter et al. Aug 2010 B1
7825929 Kincaid Nov 2010 B2
7836010 Hammond et al. Nov 2010 B2
7840448 Musgrove et al. Nov 2010 B2
7856390 Schiller Dec 2010 B2
7865496 Schiller Jan 2011 B1
7930169 Billerey-Mosier Apr 2011 B2
8046226 Soble et al. Oct 2011 B2
8311863 Kemp Nov 2012 B1
8355903 Birnbaum et al. Jan 2013 B1
8374848 Birnbaum et al. Feb 2013 B1
8442940 Faletti et al. May 2013 B1
8447604 Chang May 2013 B1
8463695 Schiller Jun 2013 B2
8468244 Redlich Jun 2013 B2
8494944 Schiller Jul 2013 B2
8515737 Allen Aug 2013 B2
8612208 Cooper et al. Dec 2013 B2
8630844 Nichols et al. Jan 2014 B1
8630912 Seki et al. Jan 2014 B2
8630919 Baran et al. Jan 2014 B2
8676691 Schiller Mar 2014 B2
8688434 Birnbaum et al. Apr 2014 B1
8752134 Ma Jun 2014 B2
8762133 Reiter Jun 2014 B2
8762285 Davis Jun 2014 B2
8775161 Nichols et al. Jul 2014 B1
8812311 Weber Aug 2014 B2
8843363 Birnbaum et al. Sep 2014 B2
8886520 Nichols et al. Nov 2014 B1
8892417 Nichols et al. Nov 2014 B1
8892419 Lundberg et al. Nov 2014 B2
8903711 Lundberg et al. Dec 2014 B2
8977953 Pierre et al. Mar 2015 B1
9135244 Reiter Sep 2015 B2
9164982 Kaeser Oct 2015 B1
9208147 Nichols et al. Dec 2015 B1
9244894 Dale et al. Jan 2016 B1
9251134 Birnbaum et al. Feb 2016 B2
9323743 Reiter Apr 2016 B2
9336193 Logan et al. May 2016 B2
9348815 Estes et al. May 2016 B1
9355093 Reiter May 2016 B2
9396168 Birnbaum et al. Jul 2016 B2
9396181 Sripada et al. Jul 2016 B1
9396758 Oz et al. Jul 2016 B2
9405448 Reiter Aug 2016 B2
9424254 Howald et al. Aug 2016 B2
9430557 Bhat et al. Aug 2016 B2
9460075 Mungi et al. Oct 2016 B2
9529795 Kondadadi et al. Dec 2016 B2
9535902 Michalak et al. Jan 2017 B1
9576009 Hammond et al. Feb 2017 B1
9665259 Lee et al. May 2017 B2
9697178 Nichols et al. Jul 2017 B1
9697192 Estes et al. Jul 2017 B1
9697197 Birnbaum et al. Jul 2017 B1
9697492 Birnbaum et al. Jul 2017 B1
9720884 Birnbaum et al. Aug 2017 B2
9720899 Birnbaum et al. Aug 2017 B1
9741151 Breedvelt-Schouten et al. Aug 2017 B2
9767145 Prophete et al. Sep 2017 B2
9870362 Lee et al. Jan 2018 B2
9870629 Cardno et al. Jan 2018 B2
9946711 Reiter Apr 2018 B2
9971967 Bufe, III et al. May 2018 B2
9977773 Birnbaum et al. May 2018 B1
9990337 Birnbaum et al. Jun 2018 B2
10019512 Boyle et al. Jul 2018 B2
10037377 Boyle et al. Jul 2018 B2
10049152 Ajmera et al. Aug 2018 B2
10073861 Shamir et al. Sep 2018 B2
10101889 Prophete et al. Oct 2018 B2
10115108 Gendelev et al. Oct 2018 B1
10162900 Chatterjee Dec 2018 B1
10185477 Paley et al. Jan 2019 B1
10332297 Vadodaria Jun 2019 B1
10387970 Wang et al. Aug 2019 B1
10489488 Birnbaum et al. Nov 2019 B2
10565308 Reiter Feb 2020 B2
10621183 Chatterjee et al. Apr 2020 B1
10679011 Galitsky Jun 2020 B2
10699079 Paley et al. Jun 2020 B1
10706236 Platt et al. Jul 2020 B1
10747823 Birnbaum et al. Aug 2020 B1
10853583 Platt et al. Dec 2020 B1
20020046018 Marcu et al. Apr 2002 A1
20020083025 Robarts et al. Jun 2002 A1
20020107721 Darwent et al. Aug 2002 A1
20030004706 Yale et al. Jan 2003 A1
20030061029 Shaket Mar 2003 A1
20030182102 Corston-Oliver et al. Sep 2003 A1
20030216905 Chelba et al. Nov 2003 A1
20040015342 Garst Jan 2004 A1
20040034520 Langkilde-Geary et al. Feb 2004 A1
20040138899 Birnbaum et al. Jul 2004 A1
20040174397 Cereghini et al. Sep 2004 A1
20040225651 Musgrove et al. Nov 2004 A1
20040255232 Hammond et al. Dec 2004 A1
20050027704 Hammond et al. Feb 2005 A1
20050028156 Hammond et al. Feb 2005 A1
20050033582 Gadd et al. Feb 2005 A1
20050049852 Chao Mar 2005 A1
20050125213 Chen et al. Jun 2005 A1
20050137854 Cancedda et al. Jun 2005 A1
20050273362 Harris et al. Dec 2005 A1
20060031182 Ryan et al. Feb 2006 A1
20060101335 Pisciottano May 2006 A1
20060181531 Goldschmidt Aug 2006 A1
20060212446 Hammond et al. Sep 2006 A1
20060218485 Blumenthal Sep 2006 A1
20060224570 Quiroga et al. Oct 2006 A1
20060271535 Hammond et al. Nov 2006 A1
20060277168 Hammond et al. Dec 2006 A1
20070132767 Wright et al. Jun 2007 A1
20070136657 Blumenthal et al. Jun 2007 A1
20070185846 Budzik et al. Aug 2007 A1
20070185847 Budzik et al. Aug 2007 A1
20070185861 Budzik et al. Aug 2007 A1
20070185862 Budzik et al. Aug 2007 A1
20070185863 Budzik et al. Aug 2007 A1
20070185864 Budzik et al. Aug 2007 A1
20070185865 Budzik et al. Aug 2007 A1
20070250479 Lunt et al. Oct 2007 A1
20070250826 O'Brien Oct 2007 A1
20080005677 Thompson Jan 2008 A1
20080140696 Mathuria Jun 2008 A1
20080198156 Jou et al. Aug 2008 A1
20080250070 Abdulla et al. Oct 2008 A1
20080256066 Zuckerman et al. Oct 2008 A1
20080304808 Newell et al. Dec 2008 A1
20080306882 Schiller Dec 2008 A1
20080313130 Hammond et al. Dec 2008 A1
20090019013 Tareen et al. Jan 2009 A1
20090030899 Tareen et al. Jan 2009 A1
20090049041 Tareen et al. Feb 2009 A1
20090083288 LeDain et al. Mar 2009 A1
20090119584 Herbst May 2009 A1
20090144608 Oisel et al. Jun 2009 A1
20090144609 Liang et al. Jun 2009 A1
20090175545 Cancedda et al. Jul 2009 A1
20090248399 Au Oct 2009 A1
20090254572 Redlich Oct 2009 A1
20100146393 Land et al. Jun 2010 A1
20100161541 Covannon et al. Jun 2010 A1
20100185984 Wright et al. Jul 2010 A1
20100241620 Manister et al. Sep 2010 A1
20100250497 Redlich Sep 2010 A1
20100325107 Kenton et al. Dec 2010 A1
20110022941 Osborne et al. Jan 2011 A1
20110044447 Morris et al. Feb 2011 A1
20110077958 Breitenstein et al. Mar 2011 A1
20110078105 Wallace Mar 2011 A1
20110087486 Schiller Apr 2011 A1
20110099184 Symington Apr 2011 A1
20110113315 Datha et al. May 2011 A1
20110113334 Joy et al. May 2011 A1
20110213642 Makar et al. Sep 2011 A1
20110246182 Allen Oct 2011 A1
20110249953 Suri et al. Oct 2011 A1
20110261049 Cardno et al. Oct 2011 A1
20110288852 Dymetman et al. Nov 2011 A1
20110295903 Chen Dec 2011 A1
20110307435 Overell et al. Dec 2011 A1
20110311144 Tardif Dec 2011 A1
20110314381 Fuller et al. Dec 2011 A1
20120011428 Chisholm Jan 2012 A1
20120041903 Beilby et al. Feb 2012 A1
20120069131 Abelow Mar 2012 A1
20120109637 Merugu et al. May 2012 A1
20120143849 Wong et al. Jun 2012 A1
20120158850 Harrison et al. Jun 2012 A1
20120166180 Au Jun 2012 A1
20120265531 Bennett Oct 2012 A1
20120310699 McKenna et al. Dec 2012 A1
20130041677 Nusimow et al. Feb 2013 A1
20130091031 Baran et al. Apr 2013 A1
20130096947 Shah et al. Apr 2013 A1
20130144605 Brager et al. Jun 2013 A1
20130145242 Birnbaum et al. Jun 2013 A1
20130173285 Hyde et al. Jul 2013 A1
20130174026 Locke Jul 2013 A1
20130185049 Zhao et al. Jul 2013 A1
20130187926 Silverstein et al. Jul 2013 A1
20130211855 Eberle et al. Aug 2013 A1
20130238330 Casella dos Santos Sep 2013 A1
20130246934 Wade et al. Sep 2013 A1
20130253910 Turner et al. Sep 2013 A1
20130262092 Wasick Oct 2013 A1
20130275121 Tunstall-Pedoe Oct 2013 A1
20130304507 Dail et al. Nov 2013 A1
20130316834 Vogel et al. Nov 2013 A1
20140006012 Zhou et al. Jan 2014 A1
20140040312 Gorman et al. Feb 2014 A1
20140062712 Reiter Mar 2014 A1
20140075004 Van Dusen et al. Mar 2014 A1
20140129942 Rathod May 2014 A1
20140134590 Hiscock, Jr. May 2014 A1
20140163962 Castelli et al. Jun 2014 A1
20140200878 Mylonakis et al. Jul 2014 A1
20140201202 Jones et al. Jul 2014 A1
20140208215 Deshpande Jul 2014 A1
20140314225 Riahi et al. Oct 2014 A1
20140351281 Tunstall-Pedoe Nov 2014 A1
20140356833 Sabczynski et al. Dec 2014 A1
20140372850 Campbell et al. Dec 2014 A1
20140375466 Reiter Dec 2014 A1
20150032730 Cialdea, Jr. et al. Jan 2015 A1
20150049951 Chaturvedi et al. Feb 2015 A1
20150078232 Djinki et al. Mar 2015 A1
20150134694 Burke et al. May 2015 A1
20150142704 London May 2015 A1
20150161997 Wetsel et al. Jun 2015 A1
20150169548 Reiter Jun 2015 A1
20150178386 Oberkampf et al. Jun 2015 A1
20150186504 Gorman et al. Jul 2015 A1
20150199339 Mirkin et al. Jul 2015 A1
20150227508 Howald et al. Aug 2015 A1
20150227588 Shapira et al. Aug 2015 A1
20150242384 Reiter Aug 2015 A1
20150261745 Song et al. Sep 2015 A1
20150268930 Lee et al. Sep 2015 A1
20150324347 Bradshaw et al. Nov 2015 A1
20150324351 Sripada et al. Nov 2015 A1
20150324374 Sripada et al. Nov 2015 A1
20150325000 Sripada Nov 2015 A1
20150331846 Guggilla et al. Nov 2015 A1
20150331850 Ramish Nov 2015 A1
20150332665 Mishra et al. Nov 2015 A1
20150347400 Sripada Dec 2015 A1
20150347901 Cama et al. Dec 2015 A1
20150356967 Byron et al. Dec 2015 A1
20150363364 Sripada Dec 2015 A1
20150370778 Tremblay et al. Dec 2015 A1
20160019200 Allen Jan 2016 A1
20160026253 Bradski et al. Jan 2016 A1
20160027125 Bryce Jan 2016 A1
20160054889 Hadley et al. Feb 2016 A1
20160103559 Maheshwari et al. Apr 2016 A1
20160132489 Reiter May 2016 A1
20160140090 Dale et al. May 2016 A1
20160162582 Chatterjee Jun 2016 A1
20160196491 Chandrasekaran et al. Jul 2016 A1
20160217133 Reiter et al. Jul 2016 A1
20160232152 Mahamood Aug 2016 A1
20160232221 McCloskey et al. Aug 2016 A1
20160314121 Arroyo et al. Oct 2016 A1
20170004415 Moretti et al. Jan 2017 A1
20170006135 Siebel et al. Jan 2017 A1
20170017897 Bugay et al. Jan 2017 A1
20170024465 Yeh et al. Jan 2017 A1
20170026705 Yeh et al. Jan 2017 A1
20170060857 Imbruce et al. Mar 2017 A1
20170061093 Amarasingham et al. Mar 2017 A1
20170068551 Vadodaria Mar 2017 A1
20170116327 Gorelick et al. Apr 2017 A1
20170140405 Gottemukkala et al. May 2017 A1
20170185674 Tonkin et al. Jun 2017 A1
20170199928 Zhao et al. Jul 2017 A1
20170212671 Sathish et al. Jul 2017 A1
20170213157 Bugay et al. Jul 2017 A1
20170228372 Moreno et al. Aug 2017 A1
20170242886 Jolley et al. Aug 2017 A1
20170270105 Ninan et al. Sep 2017 A1
20170293864 Oh et al. Oct 2017 A1
20170358295 Roux et al. Dec 2017 A1
20170371856 Can et al. Dec 2017 A1
20180025726 Gatti de Bayser et al. Jan 2018 A1
20180082184 Guo et al. Mar 2018 A1
20180114158 Foubert et al. Apr 2018 A1
20180232443 Delgo et al. Aug 2018 A1
20180260380 Birnbaum et al. Sep 2018 A1
20180261203 Zoller et al. Sep 2018 A1
20180285324 Birnbaum et al. Oct 2018 A1
20180314689 Wang et al. Nov 2018 A1
20190042559 Allen et al. Feb 2019 A1
20190138615 Huh et al. May 2019 A1
20200074310 Li et al. Mar 2020 A1
20200089735 Birnbaum et al. Mar 2020 A1
Foreign Referenced Citations (16)
Number Date Country
9630844 Oct 1996 WO
2006122329 Nov 2006 WO
2014035400 Mar 2014 WO
2014035402 Mar 2014 WO
2014035403 Mar 2014 WO
2014035406 Mar 2014 WO
2014035407 Mar 2014 WO
2014035447 Mar 2014 WO
2014070197 May 2014 WO
2014076524 May 2014 WO
2014076525 May 2014 WO
2014102568 Jul 2014 WO
2014102569 Jul 2014 WO
2014111753 Jul 2014 WO
2015028844 Mar 2015 WO
2015159133 Oct 2015 WO
Non-Patent Literature Citations (60)
Entry
Allen et al., “StatsMonkey: A Data-Driven Sports Narrative Writer”, Computational Models of Narrative: Papers from the AAAI Fall Symposium, Nov. 2010, 2 pages.
Andersen, P., Hayes, P., Huettner, A., Schmandt, L., Nirenburg, I., and Weinstein, S. (1992). Automatic extraction of facts from press releases to generate news stones. In Proceedings of the third conference on Applied natural language processing. (Trento, Italy). ACM Press, New York, NY, 170-177.
Andre, E., Herzog, G., & Rist, T. (1988). On the simultaneous interpretation of real world image sequences and their natural language description: the system SOCCER. Paper presented at Proceedings of the 8th. European Conference on Artificial Intelligence (ECAI), Munich.
Bailey, P. (1999). Searching for Storiness: Story-Generation from a Reader's Perspective. AAAI Technical Report FS-99-01.
Bethem, T., Burton, J., Caldwell, T., Evans, M., Kittredge, R., Lavoie, B., and Werner, J. (2005). Generation of Real-time Narrative Summaries for Real-time Water Levels and Meteorological Observations in PORTS®. In Proceedings of the Fourth Conference on Artificial Intelligence Applications to Environmental Sciences (AMS-2005), San Diego, California.
Bourbeau, L., Carcagno, D., Goldberg, E., Kittredge, R., & Polguere, A. (1990). Bilingual generation of weather forecasts in an operations environment. Paper presented at Proceedings of the 13th International Conference on Computational Linguistics (COLING), Helsinki, Finland, pp. 318-320.
Boyd, S. (1998). TREND: a system for generating intelligent descriptions of time series data. Paper presented at Proceedings of the IEEE international conference on intelligent processing systems (ICIPS-1998).
Character Writer Version 3.1, Typing Chimp Software LLC, 2012, screenshots from working program, pp. 1-19.
Cyganiak et al., “RDF 1.1 Concepts and Abstract Syntax”, W3C Recommendation, 2014, vol. 25, No. 2.
Dehn, N. (1981). Story generation after TALE-SPIN. In Proceedings of the Seventh International Joint Conference on Artificial Intelligence. (Vancouver, Canada).
Dramatica Pro version 4, Write Brothers, 1993-2006, user manual.
EnglisheFormus, “Direct Objects, Indirect Objects, Obliques, Dative Movement?”, [online] https://www.englishforums.com, published 2007. (Year: 2007).
Gatt, A., and Portet, F. (2009). Text content and task performance in the evaluation of a Natural Language Generation System. Proceedings of the Conference on Recent Advances in Natural Language Processing (RANLP-09).
Gatt, A., Portet, F., Reiter, E., Hunter, J., Mahamood, S., Moncur, W., and Sripada, S. (2009). From data to text in the Neonatal Intensive Care Unit: Using NLG technology for decision support and information management. AI Communications 22, pp. 153-186.
Glahn, H. (1970). Computer-produced worded forecasts. Bulletin of the American Meteorological Society, 51(12), 1126-1131.
Goldberg, E., Driedger, N., & Kittredge, R. (1994). Using Natural-Language Processing to Produce Weather Forecasts. IEEE Expert, 9 (2), 45.
Hargood, C., Millard, D. and Weal, M. (2009) Exploring the Importance of Themes in Narrative Systems.
Hargood, C., Millard, D. and Weal, M. (2009). Investigating a Thematic Approach to Narrative Generation, 2009.
Hunter, J., Freer, Y., Gatt, A., Logie, R., McIntosh, N., van der Meulen, M., Portet, F., Reiter, E., Sripada, S., and Sykes, C. (2008). Summarising Complex ICU Data in Natural Language. AMIA 2008 Annual Symposium Proceedings, pp. 323-327.
Hunter, J., Gatt, A., Portet, F., Reiter, E., and Sripada, S. (2008). Using natural language generation technology to improve information flows in intensive care units. Proceedings of the 5th Conference on Prestigious Applications of Intelligent Systems, PAIS-08.
Kittredge, R., and Lavoie, B. (1998). MeteoCogent: A Knowledge-Based Tool for Generating Weather Forecast Texts. In Proceedings of the American Meteorological Society AI Conference (AMS-98), Phoenix, Arizona.
Kittredge, R., Polguere, A., & Goldberg, E. (1986). Synthesizing weather reports from formatted data. Paper presented at Proceedings of the 11th International Conference on Computational Linguistics, Bonn, Germany, pp. 563-565.
Kukich, K. (1983). Design of a Knowledge-Based Report Generator. Proceedings of the 21st Conference of the Association for Computational Linguistics, Cambridge, MA, pp. 145-150.
Kukich, K. (1983). Knowledge-Based Report Generation: A Technique for Automatically Generating Natural Language Reports from Databases. Paper presented at Proceedings of the Sixth International ACM SIGIR Conference, Washington, DC.
Mack et al., “A Framework for Metrics in Large Complex Systems”, IEEE Aerospace Conference Proceedings, 2004, pp. 3217-3228, vol. 5, doi: 10.1109/AERO .2004.1368127.
Mahamood et al., “Generating Annotated Graphs Using the NLG Pipeline Architecture”, Proceedings of the 8th International Natural Language Generation Conference (INLG), 2014.
McKeown, K., Kukich, K., & Shaw, J. (1994). Practical issues in automatic documentation generation. 4th Conference on Applied Natural Language Processing, Stuttgart, Germany, pp. 7-14.
Meehan, James R., TALE-SPIN. (1977). An Interactive Program that Writes Stories. In Proceedings of the Fifth International Joint Conference on Artificial Intelligence.
Memorandum Opinion and Order for O2 Media, LLC v. Narrative Science Inc., Case 1:15-cv-05129 (N.D. IL), Feb. 25, 2016, 25 pages (invalidating claims of U.S. Pat. Nos. 7,856,390, 8,494,944, and 8,676,691 owned by O2 Media, LLC.
Moncur, W., and Reiter, E. (2007). How Much to Tell? Disseminating Affective Information across a Social Network. Proceedings of Second International Workshop on Personalisation for e-Health.
Moncur, W., Masthoff, J., Reiter, E. (2008) What Do You Want to Know? Investigating the Information Requirements of Patient Supporters. 21st IEEE International Symposium on Computer-Based Medical Systems (CBMS 2008), pp. 443-448.
Movie Magic Screenwriter, Write Brothers, 2009, user manual.
Office Action for U.S. Appl. No. 16/235,594 dated Jun. 12, 2020.
Office Action for U.S. Appl. No. 16/235,662 dated Jul. 6, 2020.
Office Action for U.S. Appl. No. 16/235,705 dated Jun. 18, 2020.
Portet, F., Reiter, E., Gatt, A., Hunter, J., Sripada, S., Freer, Y., and Sykes, C. (2009). Automatic Generation of Textual Summaries from Neonatal Intensive Care Data. Artificial Intelligence.
Portet, F., Reiter, E., Hunter, J., and Sripada, S. (2007). Automatic Generation of Textual Summaries from Neonatal Intensive Care Data. In: Bellazzi, Riccardo, Ameen Abu-Hanna and Jim Hunter (Ed.), 11th Conference on Artificial Intelligence in Medicine (AIME 07), pp. 227-236.
Reiter et al., “Building Applied Natural Generation Systems”, Cambridge University Press, 1995, pp. 1-32.
Reiter, E. (2007). An architecture for Data-to-Text systems. In: Busemann, Stephan (Ed.), Proceedings of the 11th European Workshop on Natural Language Generation, pp. 97-104.
Reiter, E., Gatt, A., Portet, F., and van der Meulen, M. (2008). The importance of narrative and other lessons from an evaluation of an NLG system that summarises clinical data. Proceedings of the 5th International Conference on Natural Language Generation.
Reiter, E., Sripada, S., Hunter, J., Yu, J., and Davy, I. (2005). Choosing words in computer-generated weather forecasts. Artificial Intelligence, 167:137-169.
Response to Office Action for U.S. Appl. No. 16/235,594 dated Jun. 12, 2020.
Response to Office Action for U.S. Appl. No. 16/235,705 dated Jun. 18, 2020.
Riedl et al., “From Linear Story Generation to Branching Story Graphs”, IEEE Computer Graphics and Applications, 2006, pp. 23-31.
Riedl et al., “Narrative Planning: Balancing Plot and Character”, Journal of Artificial Intelligence Research, 2010, pp. 217-268, vol. 39.
Roberts et al., “Lessons on Using Computationally Generated Influence for Shaping Narrative Experiences”, IEEE Transactions on Computational Intelligence and AI in Games, Jun. 2014, pp. 188-202, vol. 6, No. 2, doi: 10.1109/TCIAIG .2013.2287154.
Robin, J. (1996). Evaluating the portability of revision rules for incremental summary generation. Paper presented at Proceedings of the 34th. Annual Meeting of the Association for Computational Linguistics (ACL'96), Santa Cruz, CA.
Rui, Y., Gupta, A., and Acero, A. 2000. Automatically extracting highlights for TV Baseball programs. In Proceedings of the eighth ACM international conference on Multimedia. (Marina del Rey, California, United States). ACM Press, New York, NY 105-115.
Segel et al., “Narrative Visualization: Telling Stories with Data”, Stanford University, Oct. 2010, 10 pgs.
Smith, “The Multivariable Method in Singular Perturbation Analysis”, SIAM Review, 1975, pp. 221-273, vol. 17, No. 2.
Sripada, S., Reiter, E., and Davy, I. (2003). SumTime-Mousam: Configurable Marine Weather Forecast Generator. Expert Update 6(3):4-10.
Storyview, Screenplay Systems, 2000, user manual.
Theune, M., Klabbers, E., Odijk, J., dePijper, J., and Krahmer, E. (2001) “From Data to Speech: A General Approach”, Natural Language Engineering 7(1): 47-86.
Thomas, K., and Sripada, S. (2007). Atlas.txt: Linking Geo-referenced Data to Text for NLG. Paper presented at Proceedings of the 2007 European Natural Language Generation Workshop (ENLGO7).
Thomas, K., and Sripada, S. (2008). What's in a message? Interpreting Geo-referenced Data for the Visually-impaired. Proceedings of the Int. conference on NLG.
Thomas, K., Sumegi, L., Ferres, L., and Sripada, S. (2008). Enabling Access to Geo-referenced Information: Atlas.txt. Proceedings of the Cross-disciplinary Conference on Web Accessibility.
van der Meulen, M., Logie, R., Freer, Y., Sykes, C., McIntosh, N., and Hunter, J. (2008). When a Graph is Poorer than 100 Words: A Comparison of Computerised Natural Language Generation, Human Generated Descriptions and Graphical Displays in Neonatal Intensive Care. Applied Cognitive Psychology.
Yu, J., Reiter, E., Hunter, J., and Mellish, C. (2007). Choosing the content of textual summaries of large time-series data sets. Natural Language Engineering, 13:25-49.
Yu, J., Reiter, E., Hunter, J., and Sripada, S. (2003). SUMTIME-TURBINE: A Knowledge-Based System to Communicate Time Series Data in the Gas Turbine Domain. In P Chung et al. (Eds) Developments in Applied Artificial Intelligence: Proceedings of IEA/AIE-2003, pp. 379-384. Springer (LNAI 2718).
Response to Office Action for U.S. Appl. No. 16/235,662 dated Jul. 6, 2020.
Provisional Applications (1)
Number Date Country
62618249 Jan 2018 US