Applying a GUI display effect formula in a hidden column to a section of data

Information

  • Patent Grant
  • 10019138
  • Patent Number
    10,019,138
  • Date Filed
    Wednesday, February 8, 2017
    7 years ago
  • Date Issued
    Tuesday, July 10, 2018
    6 years ago
Abstract
Described are methods, systems and computer readable media for GUI display effect formatting.
Description

Embodiments relate generally to computer data systems, and more particularly, to methods, systems and computer readable media for providing GUI display effect formatting for the display of data based on the content of the data.


Graphical user interfaces (GUI) can display a multitude of data in many different formats including a table row and column format or a spreadsheet cell format. The larger the screen and the smaller the font size, the more rows and cells that can be simultaneously displayed on the GUI. Rows and cells can also be presented in a rolling screen format with the addition of fresh row or cell data causing older row or cell data to roll off the screen and out of sight. Under such conditions, important or crucial data can be missed or overlooked by a user. In addition to rolling screen data, data sources can also be dynamic. Dynamic data sources can have data added or modified frequently. A change to a dynamic data source that is being displayed and updated in real-time intervals on the screen can cause a change to an important or critical value used in decision making that might be overlooked by a user.


Embodiments were conceived in light of the above mentioned needs, problems and/or limitations, among other things.


Some implementations can include a system for formatting data for display on a computer display screen, the system comprising one or more hardware processors. The system can also include a computer display screen configured to display data via a graphical user interface (GUI). The system can further include a computer readable data storage device coupled to the one or more hardware processors, the computer readable data storage device having stored thereon software instructions that, when executed by the one or more hardware processors, cause the one or more hardware processors to perform operations. The operations can include receiving a digital signal containing a GUI display effect formatting command for data stored in a computer medium. The operations can also include creating a GUI display effect formula for a formatting column. The operations can include hiding the formatting column from being displayed by the graphical user interface on the computer display screen. The operations can also include dynamically computing a GUI display effect using the GUI display effect formula for a formatting column. The operations can further include choosing a section of data to be displayed on the computer display screen via the graphical user interface. The operations can include computing the GUI display effect for the section of data to be displayed on the the computer display screen via the graphical interface using the hidden formatting column. The operations can also include applying the computed GUI display effect to the section of data to be displayed. The operations can include displaying on the computer display screen the section of data with the applied computed GUI display effect.


The operations can further include applying the GUI display effect formatting by applying a formula to associated data in a same row of data.


The operations can include wherein applying the GUI display effect formatting includes applying a GUI display effect to at least one of an entire row of data, an entire column of data, an entire table, a tab, a browser, and a graphical user interface.


The operations can also include wherein the the section of data to be displayed on the graphical interface using the hidden formatting column is determined by scrolling.


The operations can also include receiving updates to the section of data to be displayed on the graphical user interface. The operations can include using a processor, dynamically computing a GUI display effect for the updates to the section of data using the GUI display effect formula for a formatting column. The operations can further include choosing a section of data to be displayed on the graphical user interface. The operations can include computing the GUI display effect for the section of data to be displayed on the graphical interface using the hidden formatting column. The operations can include applying the computed GUI display effect to the section of data to be displayed. The operations can also include displaying the section of data with the applied computed GUI display effect.


The operations can include wherein computing the GUI display effect occurs prior to displaying the section of data.


The operations can include wherein computing the GUI display effect occurs at the time of displaying the section of data.


Some implementations can include a method for formatting data displayed in a graphical user interface (GUI) comprising receiving a GUI display effect formatting command for data stored in a computer medium. The method can also include creating a GUI display effect formula for a formatting column. The method can further include hiding the formatting column from being displayed by the graphical user interface. The method can include using a processor, dynamically computing a GUI display effect using the GUI display effect formula for a formatting column. The method can also include choosing a section of data to be displayed on the graphical user interface. The method can include computing the GUI display effect for the section of data to be displayed on the graphical interface using the hidden formatting column. The method can also include applying the computed GUI display effect to the section of data to be displayed. The method can further include displaying the section of data with the applied computed GUI display effect.


The method can further include applying the GUI display effect formatting by applying a formula to associated data in a same row of data.


The method can include wherein applying the GUI display effect formatting includes applying a GUI display effect to at least one of an entire row of data, an entire column of data, an entire table, a tab, a browser, and a graphical user interface.


The method can also include wherein the the section of data to be displayed on the graphical interface using the hidden formatting column is determined by scrolling.


The method can include receiving updates to the section of data to be displayed on the graphical user interface. The method can also include using a processor, dynamically computing a GUI display effect for the updates to the section of data using the GUI display effect formula for a formatting column. The method can further include choosing a section of data to be displayed on the graphical user interface. The method can include computing the GUI display effect for the section of data to be displayed on the graphical interface using the hidden formatting column. The method can include applying the computed GUI display effect to the section of data to be displayed. The method can also include displaying the section of data with the applied computed GUI display effect.


The method can include wherein computing the GUI display effect occurs prior to displaying the section of data.


Some implementations can include a nontransitory computer readable medium having stored thereon software instructions that, when executed by one or more processors, cause the one or more processors to perform operations. The operations can include receiving a digital signal containing a GUI display effect formatting command for data stored in a computer medium. The operations can also include creating a GUI display effect formula for a formatting column. The operations can further include hiding the formatting column from being displayed by the graphical user interface on the computer display screen. The operations can include dynamically computing a GUI display effect using the GUI display effect formula for a formatting column. The operations can also include choosing a section of data to be displayed on the computer display screen via the graphical user interface. The operations can include computing the GUI display effect for the section of data to be displayed on the the computer display screen via the graphical interface using the hidden formatting column. The operations can also include applying the computed GUI display effect to the section of data to be displayed. The operations can include displaying on the computer display screen the section of data with the applied computed GUI display effect.


The operations can include applying the GUI display effect formatting by applying a formula to associated data in a same row of data.


The operations can include wherein applying the GUI display effect formatting includes applying a GUI display effect to at least one of an entire row of data, an entire column of data, an entire table, a tab, a browser, and a graphical user interface.


The operations can include wherein the the section of data to be displayed on the graphical interface using the hidden formatting column is determined by scrolling.


The operations can include receiving updates to the section of data to be displayed on the graphical user interface. The operations can also include using a processor, dynamically computing a GUI display effect for the updates to the section of data using the GUI display effect formula for a formatting column. The operations can further include choosing a section of data to be displayed on the graphical user interface. The operations can include computing the GUI display effect for the section of data to be displayed on the graphical interface using the hidden formatting column. The operations can also include applying the computed GUI display effect to the section of data to be displayed. The operations can include displaying the section of data with the applied computed GUI display effect.


The operations can include wherein computing the GUI display effect occurs prior to displaying the section of data.


The operations can also include wherein computing the GUI display effect occurs at the time of displaying the section of data.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagram of an example computer data system showing an example data distribution configuration in accordance with some implementations.



FIG. 2 is a diagram of an example computer data system showing an example administration/process control arrangement in accordance with some implementations.



FIG. 3 is a diagram of an example computing device configured for GUI display effect format processing in accordance with some implementations.



FIG. 4 is a diagram of an example of a GUI display with hidden GUI display effect column in accordance with some implementations.



FIG. 4A is a diagram of an example GUI visible content with a cell GUI display effect applied in accordance with some implementations.



FIG. 5 is a diagram of an example of a GUI display with hidden GUI display effect column in accordance with some implementations.



FIG. 5A is a diagram of an example GUI visible content with a row GUI display effect applied in accordance with some implementations.



FIG. 6 is a diagram of an example flow chart for determining and displaying a GUI display effect in accordance with some implementations.



FIG. 7 is a diagram of an example of a GUI display with hidden GUI display effect column in accordance with some implementations.



FIG. 7A is a diagram of an example GUI visible content with a cell GUI display effect applied in accordance with some implementations.



FIG. 8 is a diagram of an example of a GUI display with hidden GUI display effect column in accordance with some implementations.



FIG. 8A is a diagram of an example GUI visible content with a row GUI display effect applied in accordance with some implementations.



FIG. 9 is a diagram of an example flow chart for determining and displaying a GUI display effect in accordance with some implementations.





DETAILED DESCRIPTION

Reference is made herein to the Java programming language, Java classes, Java bytecode and the Java Virtual Machine (JVM) for purposes of illustrating example implementations. It will be appreciated that implementations can include other programming languages (e.g., groovy, Scala, R, Go, etc.), other programming language structures as an alternative to or in addition to Java classes (e.g., other language classes, objects, data structures, program units, code portions, script portions, etc.), other types of bytecode, object code and/or executable code, and/or other virtual machines or hardware implemented machines configured to execute a data system query.



FIG. 1 is a diagram of an example computer data system and network 100 showing an example data distribution configuration in accordance with some implementations. In particular, the system 100 includes an application host 102, a periodic data import host 104, a query server host 106, a long-term file server 108, and a user data import host 110. While tables are used as an example data object in the description below, it will be appreciated that the data system described herein can also process other data objects such as mathematical objects (e.g., a singular value decomposition of values in a given range of one or more rows and columns of a table), TableMap objects, etc. A TableMap object provides the ability to lookup a Table by some key. This key represents a unique value (or unique tuple of values) from the columns aggregated on in a byExternal( ) statement execution, for example. A TableMap object is can be the result of a byExternal( ) statement executed as part of a query. It will also be appreciated that the configurations shown in FIGS. 1 and 2 are for illustration purposes and in a given implementation each data pool (or data store) may be directly attached or may be managed by a file server.


The application host 102 can include one or more application processes 112, one or more log files 114 (e.g., sequential, row-oriented log files), one or more data log tailers 116 and a multicast key-value publisher 118. The periodic data import host 104 can include a local table data server, direct or remote connection to a periodic table data store 122 (e.g., a column-oriented table data store) and a data import server 120. The query server host 106 can include a multicast key-value subscriber 126, a performance table logger 128, local table data store 130 and one or more remote query processors (132, 134) each accessing one or more respective tables (136, 138). The long-term file server 108 can include a long-term data store 140. The user data import host 110 can include a remote user table server 142 and a user table data store 144. Row-oriented log files and column-oriented table data stores are discussed herein for illustration purposes and are not intended to be limiting. It will be appreciated that log files and/or data stores may be configured in other ways. In general, any data stores discussed herein could be configured in a manner suitable for a contemplated implementation.


In operation, the input data application process 112 can be configured to receive input data from a source (e.g., a securities trading data source), apply schema-specified, generated code to format the logged data as it's being prepared for output to the log file 114 and store the received data in the sequential, row-oriented log file 114 via an optional data logging process. In some implementations, the data logging process can include a daemon, or background process task, that is configured to log raw input data received from the application process 112 to the sequential, row-oriented log files on disk and/or a shared memory queue (e.g., for sending data to the multicast publisher 118). Logging raw input data to log files can additionally serve to provide a backup copy of data that can be used in the event that downstream processing of the input data is halted or interrupted or otherwise becomes unreliable.


A data log tailer 116 can be configured to access the sequential, row-oriented log file(s) 114 to retrieve input data logged by the data logging process. In some implementations, the data log tailer 116 can be configured to perform strict byte reading and transmission (e.g., to the data import server 120). The data import server 120 can be configured to store the input data into one or more corresponding data stores such as the periodic table data store 122 in a column-oriented configuration. The periodic table data store 122 can be used to store data that is being received within a time period (e.g., a minute, an hour, a day, etc.) and which may be later processed and stored in a data store of the long-term file server 108. For example, the periodic table data store 122 can include a plurality of data servers configured to store periodic securities trading data according to one or more characteristics of the data (e.g., a data value such as security symbol, the data source such as a given trading exchange, etc.).


The data import server 120 can be configured to receive and store data into the periodic table data store 122 in such a way as to provide a consistent data presentation to other parts of the system. Providing/ensuring consistent data in this context can include, for example, recording logged data to a disk or memory, ensuring rows presented externally are available for consistent reading (e.g., to help ensure that if the system has part of a record, the system has all of the record without any errors), and preserving the order of records from a given data source. If data is presented to clients, such as a remote query processor (132, 134), then the data may be persisted in some fashion (e.g., written to disk).


The local table data server 124 can be configured to retrieve data stored in the periodic table data store 122 and provide the retrieved data to one or more remote query processors (132, 134) via an optional proxy.


The remote user table server (RUTS) 142 can include a centralized consistent data writer, as well as a data server that provides processors with consistent access to the data that it is responsible for managing. For example, users can provide input to the system by writing table data that is then consumed by query processors.


The remote query processors (132, 134) can use data from the data import server 120, local table data server 124 and/or from the long-term file server 108 to perform queries. The remote query processors (132, 134) can also receive data from the multicast key-value subscriber 126, which receives data from the multicast key-value publisher 118 in the application host 102. The performance table logger 128 can log performance information about each remote query processor and its respective queries into a local table data store 130. Further, the remote query processors can also read data from the RUTS, from local table data written by the performance logger, or from user table data read over NFS.


It will be appreciated that the configuration shown in FIG. 1 is a typical example configuration that may be somewhat idealized for illustration purposes. An actual configuration may include one or more of each server and/or host type. The hosts/servers shown in FIG. 1 (e.g., 102-110, 120, 124 and 142) may each be separate or two or more servers may be combined into one or more combined server systems. Data stores can include local/remote, shared/isolated and/or redundant. Any table data may flow through optional proxies indicated by an asterisk on certain connections to the remote query processors. Also, it will be appreciated that the term “periodic” is being used for illustration purposes and can include, but is not limited to, data that has been received within a given time period (e.g., millisecond, second, minute, hour, day, week, month, year, etc.) and which has not yet been stored to a long-term data store (e.g., 140).



FIG. 2 is a diagram of an example computer data system 200 showing an example administration/process control arrangement in accordance with some implementations. The system 200 includes a production client host 202, a controller host 204, a GUI host or workstation 206, and query server hosts 208 and 210. It will be appreciated that there may be one or more of each of 202-210 in a given implementation.


The production client host 202 can include a batch query application 212 (e.g., a query that is executed from a command line interface or the like) and a real time query data consumer process 214 (e.g., an application that connects to and listens to tables created from the execution of a separate query). The batch query application 212 and the real time query data consumer 214 can connect to a remote query dispatcher 222 and one or more remote query processors (224, 226) within the query server host 1208.


The controller host 204 can include a persistent query controller 216 configured to connect to a remote query dispatcher 232 and one or more remote query processors 228-230. In some implementations, the persistent query controller 216 can serve as the “primary client” for persistent queries and can request remote query processors from dispatchers, and send instructions to start persistent queries. For example, a user can submit a query to 216, and 216 starts and runs the query every day. In another example, a securities trading strategy could be a persistent query. The persistent query controller can start the trading strategy query every morning before the market opened, for instance. It will be appreciated that 216 can work on times other than days. In some implementations, the controller may require its own clients to request that queries be started, stopped, etc. This can be done manually, or by scheduled (e.g., cron) jobs. Some implementations can include “advanced scheduling” (e.g., auto-start/stop/restart, time-based repeat, etc.) within the controller.


The GUI/host workstation can include a user console 218 and a user query application 220. The user console 218 can be configured to connect to the persistent query controller 216. The user query application 220 can be configured to connect to one or more remote query dispatchers (e.g., 232) and one or more remote query processors (228, 230).



FIG. 3 is a diagram of an example computing device 300 in accordance with at least one implementation. The computing device 300 includes one or more processors 302, operating system 304, computer readable medium 306 and network interface 308. The memory 306 can include a GUI display effect formatting application 310 and a data section 312 (e.g., for storing ASTs, precompiled code, etc.).


In operation, the processor 302 may execute the application 310 stored in the memory 306. The application 310 can include software instructions that, when executed by the processor, cause the processor to perform operations for executing and updating queries in accordance with the present disclosure (e.g., performing one or more of 602-614, 902-914 described below).


The application program 310 can operate in conjunction with the data section 312 and the operating system 304.


In general, some implementations can provide a system for determining GUI display effect for displaying data based on the content of the data to be displayed. The system described herein may determine whether a data row or cell should have a particular GUI display effect applied for that data row or cell when displayed if the data content satisfies certain criteria. For example, one criterion could be whether data content includes a value equal to, above, or below a certain threshold value or within or outside of a range of values. Another criterion could be how recently the data content has changed, how it has changed, or to what extent it has changed. The GUI display effect may be applied to data being displayed or to the background area of a cell, row, column, or area of the GUI containing the data content, for example. In other implementations, the GUI display effect can be applied to table columns or a combination of rows and columns.


It will be appreciated that thresholds and ranges are only exemplary methods for determining display effects. Arbitrary formulas within a data system can be used for computing GUI display effects. Additionally, other columns or rows than the column to be formatted can be used as input to the computation of GUI display effects.


The GUI display effect may use different colors, shading, brightness, flashing, motion, sizing, and/or other visual effect to call attention to or differentiate an area of a display, a browser page or data contained therein. While certain exemplary embodiments are described herein using different colors as a GUI display effect, it is understood that any GUI display effect may supplement or substitute for coloring as a GUI display effect.


The GUI display effect may be applied to a computer screen or monitor such as a CRT, projector, LCD, LED, e-ink display, or OLED screen, for example.


It will be appreciated that the GUI display effect can be applied to any computing device that contains a viewable screen, or projections, such as tablets, smart phones, glasses, heads-up-displays, or the like.


In some implementations, the data source can be a dynamic data source in which the data being displayed on a graphical user interface screen can change as the data source content changes. The system described herein can modify the applied GUI display effect according to dynamic changes to the underlying data used to determine and apply the initial GUI display effect.



FIG. 4 is a diagram of an example Graphical User Interface (GUI) display with an example hidden color GUI display effect column 400 in accordance with some implementations. The display 400 can display content before the application of a color GUI display effect produced by color formula for average prices less than $90 designated as red and for average prices greater than $100 designated as green 402. The content 402 displayed in the GUI display 400 can contain a table with columns for “SYMBOL”, “MONTH”, and “AVGPRICE.” The GUI display can also contain a hidden column 404 that is hidden from being displayed on the GUI display. For example, the hidden column 404 can contain color GUI display effect rows for “AVGPRICE CELL COLOR.” In the example, a processor can receive a format command to apply a red color GUI display effect when AvgPrice is less than $90 and to apply a green color GUI display effect when the AvgPrice is greater than $100. The color GUI display effect outcome of the format application can be stored in the hidden column 404. For example, the hidden column 404 format color GUI display effect for row (AAPL, JAN, $99.83) is NULL because $99.83 is greater than $90 but less than $100 and no color GUI display effect is provided for this range. In the row (AAPL, FEB, $101.96), the format color GUI display effect stored in the AVGPRICE CELL COLOR column is GREEN because the AVGPRICE for this row is greater than $100. In another example row (AAPL, JUN, $89.13), the format color GUI display effect stored in the AVGPRICE CELL COLOR column is RED because the AVGPRICE for this row is less than $90.



FIG. 4A is a diagram of an example GUI visible content with a cell color GUI display effect applied 450 in accordance with some implementations. For example, applying the color GUI display effect contained in the hidden column 404 from the example in FIG. 4, the green (452, 454, 460, 462, 464) color GUI display effect from hidden column 404 can be applied to the adjacent cells to the hidden column 404 in the GUI display 450. Continuing with the example, the red (456, 458) color GUI display effect from 404 can be applied to the adjacent cells to the hidden column 404 in the GUI display 450.


It will be appreciated that the example NULL color GUI display effect values from the hidden column 404 can have no effect on the corresponding cells in 450 and a default format can be rendered.


It will be appreciated that data sources can be static or dynamic. Dynamic data sources can have data added, modified, re-indexed, reordered, or deleted. For example, a dynamic table can have one or more rows added, one or more rows modified, or one or more rows deleted. If a dynamic table has one or more rows added, a GUI display effect will be added for those rows in the hidden column 404. If a dynamic table has one or more rows modified, the GUI display effect in the hidden column 404 for those rows can change if the data used to determine the GUI display effect is modified enough to move it beyond the existing GUI display effect threshold in the format command. As the dynamic table data is updated on the GUI display screen, the GUI display effect can also be updated on the GUI display screen.


Computer instructions for selecting a possible GUI display effect may be hidden. For example, in a database, the instructions may be in a hidden column or columns. The hidden column or columns may be unavailable to a viewer observing a display showing the GUI display effect on visible columns of the same data source. Alternatively, the hidden column may be available to a user taking a certain action to unhide the column. In that case, the instructions may be configurable by a user of the display. While embodiments are described herein as employing a hidden column, it is understood that multiple hidden columns may be used.



FIG. 5 is a diagram of an example GUI display with a hidden color column 500 in accordance with some implementations. The GUI display 500 can display content before the application of a color GUI display effect produced by color formula for average prices less than $90 designated as red and for average prices greater than $100 designated as green 502. The content 502 displayed in the GUI display 500 can contain a table with columns for “SYMBOL”, “MONTH”, and “AVGPRICE.” The GUI display can also contain one or more hidden columns 504 that is hidden from being displayed on the GUI display. For example, the hidden column 504 can contain color GUI display effect rows for “AVGPRICE ROW COLOR.” In the example, a processor can receive a format command to apply a red color GUI display effect when AvgPrice is less than $90 and to apply a green color GUI display effect when the AvgPrice is greater than $100. The color GUI display effect outcome of the format application can be stored in the hidden column 504. For example, the hidden column 504 format color GUI display effect for row (AAPL, JAN, $99.83) is NULL because $99.83 is greater than $90 but less than $100 and no color GUI display effect is provided for this range. In the row (AAPL, FEB, $101.96), the format color GUI display effect stored in the AVGPRICE ROW COLOR column is GREEN because the AVGPRICE for this row is greater than $100. In another example row (AAPL, JUN, $89.13), the format color GUI display effect stored in the AVGPRICE ROW COLOR column is RED because the AVGPRICE for this row is less than $90.



FIG. 5A is a diagram of an example GUI with visible content with a row color GUI display effect applied 550 in accordance with some implementations. For example, applying the color GUI display effect contained in the hidden column 504 from the example in FIG. 5, the green (552, 554, 560, 562, 564) color GUI display effect from hidden column 504 can be applied to the corresponding rows in 550. Continuing with the example, the red (556, 558) color GUI display effect from 504 can be applied to the adjacent rows in 550.


It will be appreciated that the example NULL color GUI display effect values from the hidden column 504 can use the default formatting on the corresponding rows in 550.


It will be appreciated that data sources can be static or dynamic. Dynamic data sources can have data added, modified, re-indexed, reordered, or deleted. For example, a dynamic table can have one or more rows added, one or more rows modified, or one or more rows deleted. If a dynamic table has one or more rows added, a GUI display effect will be added for those rows in the hidden column 504. If a dynamic table has one or more rows modified, the color GUI display effect in the hidden column 504 for those rows can change if the data used to determine the color GUI display effect is modified enough to move it beyond the existing color GUI display effect threshold in the format command. As the dynamic table data is updated on the GUI display screen, the GUI display effect can also be updated on the GUI display screen.



FIG. 6 is a diagram of an example flow chart for determining and displaying a GUI display effect in accordance with some implementations. Processing begins at 602, when the system receives a format command, for example, t3=t1.formatColumns(“Price=(Price<90) ? BRIGHT_RED:BRIGHT_GREEN”)) to color format cells in the Price column bright red if Price is less than 90 and bright green for Price column cells greater than or equal to 90.


It will be appreciated the GUI display effect is not limited to coloring. The GUI display effect may use different colors, shading, brightness, flashing, motion, sizing, and/or other visual effect to call attention to or differentiate an area of a display, a browser page or data contained therein. While certain exemplary embodiments are described herein using different colors as a GUI display effect, it is understood that any GUI display effect may supplement or substitute for coloring as a GUI display effect. Processing continues to 604.


At 604, a GUI display effect formula for a formatting column is created. Processing continues to 606.


At 606, the GUI display effect formula for a formatting column is hidden from being displayed by the graphical user interface. Processing continues to 608.


At 608, the GUI display effect is dynamically computed using the formula in the formula for formatting column. Processing continues to 610.


At 610, the GUI display effect for the section of data to be displayed is computed from the hidden GUI display effect formatting column. Processing continues to 612.


At 612, the GUI display effect is applied to a section of data to be displayed. Processing continues to 614.


At 614, the section of data with the applied GUI display effect is displayed in a graphical user interface.



FIG. 7 is a diagram of an example Graphical User Interface (GUI) display with an example hidden font GUI display effect column 700 in accordance with some implementations. The display 700 can display content before the application of a font GUI display effect produced by font formula for average prices greater than $100 designated as being in italics 702. The content 702 displayed in the GUI display 700 can contain a table with columns for “SYMBOL”, “MONTH”, and “AVGPRICE.” The GUI display can also contain a hidden column 704 that is hidden from being displayed on the GUI display. For example, the hidden column 704 can contain font GUI display effect rows for “AVGPRICE CELL FONT.” In the example, a processor can receive a format command to apply a font GUI display effect when AvgPrice is greater than $100. The font GUI display effect outcome of the format application can be stored in the hidden column 704. For example, the hidden column 704 format font GUI display effect for row (AAPL, JAN, $99.83) is NULL because $99.83 is less than $100 and no font GUI display effect is provided for this range. In the row (AAPL, FEB, $101.96), the format font GUI display effect stored in the AVGPRICE CELL FONT column is ITALICS because the AVGPRICE for this row is greater than $100.



FIG. 7A is a diagram of an example GUI visible content with a cell font GUI display effect applied 450 in accordance with some implementations. For example, applying the font GUI display effect contained in the hidden column 704 from the example in FIG. 7, the font GUI display effect from hidden column 704 can be applied to the adjacent cells to the hidden column 704 in the GUI display 750.


It will be appreciated that the example NULL font GUI display effect values from the hidden column 704 can have no effect on the corresponding cells in 750 and a default format can be rendered.


It will be appreciated that data sources can be static or dynamic. Dynamic data sources can have data added, modified, re-indexed, reordered, or deleted. For example, a dynamic table can have one or more rows added, one or more rows modified, or one or more rows deleted. If a dynamic table has one or more rows added, a GUI display effect will be added for those rows in the hidden column 704. If a dynamic table has one or more rows modified, the GUI display effect in the hidden column 704 for those rows can change if the data used to determine the GUI display effect is modified enough to move it beyond the existing GUI display effect threshold in the format command. As the dynamic table data is updated on the GUI display screen, the GUI display effect can also be updated on the GUI display screen.


Computer instructions for selecting a possible GUI display effect may be hidden. For example, in a database, the instructions may be in a hidden column or columns. The hidden column or columns may be unavailable to a viewer observing a display showing the GUI display effect on visible columns of the same data source. Alternatively, the hidden column may be available to a user taking a certain action to unhide the column. In that case, the instructions may be configurable by a user of the display. While embodiments are described herein as employing a hidden column, it is understood that multiple hidden columns may be used.



FIG. 8 is a diagram of an example GUI display with a hidden font column 800 in accordance with some implementations. The GUI display 800 can display content before the application of a font GUI display effect produced by font formula for average prices greater than $100 designated as requiring italics. The content 802 displayed in the GUI display 800 can contain a table with columns for “SYMBOL”, “MONTH”, and “AVGPRICE.” The GUI display can also contain one or more hidden columns 804 that is hidden from being displayed on the GUI display. For example, the hidden column 804 can contain font GUI display effect rows for “AVGPRICE ROW FONT.” In the example, a processor can receive a format command to apply an italics font GUI display effect when AvgPrice is greater than $100. The font GUI display effect outcome of the format application can be stored in the hidden column 804. For example, the hidden column 804 format font GUI display effect for row (AAPL, JAN, $99.83) is NULL because $99.83 is less than $100 and no font GUI display effect is provided for this value. In the row (AAPL, FEB, $101.96), the format font GUI display effect stored in the AVGPRICE ROW FONT column is italics because the AVGPRICE for this row is greater than $100.



FIG. 8A is a diagram of an example GUI with visible content with a row font GUI display effect applied 850 in accordance with some implementations. For example, applying the font GUI display effect contained in the hidden column 804 from the example in FIG. 8, the font GUI display effect from hidden column 804 can be applied to the corresponding rows in 850.


It will be appreciated that the example NULL font GUI display effect values from the hidden column 804 can use the default formatting on the corresponding rows in 850.


It will be appreciated that data sources can be static or dynamic. Dynamic data sources can have data added, modified, re-indexed, reordered, or deleted. For example, a dynamic table can have one or more rows added, one or more rows modified, or one or more rows deleted. If a dynamic table has one or more rows added, a GUI display effect will be added for those rows in the hidden column 804. If a dynamic table has one or more rows modified, the font GUI display effect in the hidden column 804 for those rows can change if the data used to determine the font GUI display effect is modified enough to move it beyond the existing font GUI display effect threshold in the format command. As the dynamic table data is updated on the GUI display screen, the GUI display effect can also be updated on the GUI display screen.



FIG. 9 is a diagram of an example flow chart for determining and displaying a GUI display effect in accordance with some implementations. Processing begins at 902, when the system receives a format command, for example, t3=t1.formatColumns(“Price=(Price>100) ? ITALICS:NULL”)) to font format cells in the Price column in italics if Price is greater than 100.


It will be appreciated the GUI display effect is not limited to fonts. The GUI display effect may use different colors, shading, brightness, flashing, motion, sizing, and/or other visual effect to call attention to or differentiate an area of a display, a browser page or data contained therein. While certain exemplary embodiments are described herein using italics as a GUI display effect, it is understood that any GUI display effect may supplement or substitute for italics as a GUI display effect. Processing continues to 904.


At 904, a GUI display effect formula for a formatting column is created. Processing continues to 906.


At 906, the GUI display effect formula for a formatting column is hidden from being displayed by the graphical user interface. Processing continues to 908.


At 908, the GUI display effect is dynamically computed using the formula in the formula for formatting column.


It will be appreciated that GUI display effects can be pre-computed before determining that a region of a table is displayed. Processing continues to 910.


At 910, the GUI display effect for the section of data to be displayed is computed from the hidden GUI display effect formatting column. Processing continues to 912.


At 912, the GUI display effect is applied to a section of data to be displayed. Processing continues to 914.


At 914, the section of data with the applied GUI display effect is displayed in a graphical user interface.


It will be appreciated that the modules, processes, systems, and sections described above can be implemented in hardware, hardware programmed by software, software instructions stored on a nontransitory computer readable medium or a combination of the above. A system as described above, for example, can include a processor configured to execute a sequence of programmed instructions stored on a nontransitory computer readable medium. For example, the processor can include, but not be limited to, a personal computer or workstation or other such computing system that includes a processor, microprocessor, microcontroller device, or is comprised of control logic including integrated circuits such as, for example, an Application Specific Integrated Circuit (ASIC), a field programmable gate array (FPGA), or graphics processing unit (GPU), or the like. The instructions can be compiled from source code instructions provided in accordance with a programming language such as Java, C, C++, C#.net, assembly or the like. The instructions can also comprise code and data objects provided in accordance with, for example, the Visual Basic™ language, a specialized database query language, or another structured or object-oriented programming language. The sequence of programmed instructions, or programmable logic device configuration software, and data associated therewith can be stored in a nontransitory computer-readable medium such as a computer memory or storage device which may be any suitable memory apparatus, such as, but not limited to ROM, PROM, EEPROM, RAM, flash memory, disk drive and the like.


Furthermore, the modules, processes systems, and sections can be implemented as a single processor or as a distributed processor. Further, it should be appreciated that the steps mentioned above may be performed on a single or distributed processor (single and/or multi-core, or cloud computing system). Also, the processes, system components, modules, and sub-modules described in the various figures of and for embodiments above may be distributed across multiple computers or systems or may be co-located in a single processor or system. Example structural embodiment alternatives suitable for implementing the modules, sections, systems, means, or processes described herein are provided below.


The modules, processors or systems described above can be implemented as a programmed general purpose computer, an electronic device programmed with microcode, a hard-wired analog logic circuit, software stored on a computer-readable medium or signal, an optical computing device, a networked system of electronic and/or optical devices, a special purpose computing device, an integrated circuit device, a semiconductor chip, and/or a software module or object stored on a computer-readable medium or signal, for example.


Embodiments of the method and system (or their sub-components or modules), may be implemented on a general-purpose computer, a special-purpose computer, a programmed microprocessor or microcontroller and peripheral integrated circuit element, an ASIC or other integrated circuit, a digital signal processor, a hardwired electronic or logic circuit such as a discrete element circuit, a programmed logic circuit such as a PLD, PLA, FPGA, PAL, or the like. In general, any processor capable of implementing the functions or steps described herein can be used to implement embodiments of the method, system, or a computer program product (software program stored on a nontransitory computer readable medium).


Furthermore, embodiments of the disclosed method, system, and computer program product (or software instructions stored on a nontransitory computer readable medium) may be readily implemented, fully or partially, in software using, for example, object or object-oriented software development environments that provide portable source code that can be used on a variety of computer platforms. Alternatively, embodiments of the disclosed method, system, and computer program product can be implemented partially or fully in hardware using, for example, standard logic circuits or a VLSI design. Other hardware or software can be used to implement embodiments depending on the speed and/or efficiency requirements of the systems, the particular function, and/or particular software or hardware system, microprocessor, or microcomputer being utilized. Embodiments of the method, system, and computer program product can be implemented in hardware and/or software using any known or later developed systems or structures, devices and/or software by those of ordinary skill in the applicable art from the function description provided herein and with a general basic knowledge of the software engineering and computer networking arts.


Moreover, embodiments of the disclosed method, system, and computer readable media (or computer program product) can be implemented in software executed on a programmed general purpose computer, a special purpose computer, a microprocessor, or the like.


It is, therefore, apparent that there is provided, in accordance with the various embodiments disclosed herein, methods, systems and computer readable media for GUI display effect formatting.


Application Ser. No. 15/154,974, entitled “DATA PARTITIONING AND ORDERING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,975, entitled “COMPUTER DATA SYSTEM DATA SOURCE REFRESHING USING AN UPDATE PROPAGATION GRAPH” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,979, entitled “COMPUTER DATA SYSTEM POSITION-INDEX MAPPING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,980, entitled “SYSTEM PERFORMANCE LOGGING OF COMPLEX REMOTE QUERY PROCESSOR QUERY OPERATIONS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,983, entitled “DISTRIBUTED AND OPTIMIZED GARBAGE COLLECTION OF REMOTE AND EXPORTED TABLE HANDLE LINKS TO UPDATE PROPAGATION GRAPH NODES” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,984, entitled “COMPUTER DATA SYSTEM CURRENT ROW POSITION QUERY LANGUAGE CONSTRUCT AND ARRAY PROCESSING QUERY LANGUAGE CONSTRUCTS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,985, entitled “PARSING AND COMPILING DATA SYSTEM QUERIES” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,987, entitled “DYNAMIC FILTER PROCESSING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,988, entitled “DYNAMIC JOIN PROCESSING USING REAL-TIME MERGED NOTIFICATION LISTENER” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,990, entitled “DYNAMIC TABLE INDEX MAPPING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,991, entitled “QUERY TASK PROCESSING BASED ON MEMORY ALLOCATION AND PERFORMANCE CRITERIA” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,993, entitled “A MEMORY-EFFICIENT COMPUTER SYSTEM FOR DYNAMIC UPDATING OF JOIN PROCESSING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,995, entitled “QUERY DISPATCH AND EXECUTION ARCHITECTURE” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,996, entitled “COMPUTER DATA DISTRIBUTION ARCHITECTURE” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,997, entitled “DYNAMIC UPDATING OF QUERY RESULT DISPLAYS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,998, entitled “DYNAMIC CODE LOADING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/154,999, entitled “IMPORTATION, PRESENTATION, AND PERSISTENT STORAGE OF DATA” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,001, entitled “COMPUTER DATA DISTRIBUTION ARCHITECTURE” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,005, entitled “PERSISTENT QUERY DISPATCH AND EXECUTION ARCHITECTURE” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,006, entitled “SINGLE INPUT GRAPHICAL USER INTERFACE CONTROL ELEMENT AND METHOD” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,007, entitled “GRAPHICAL USER INTERFACE DISPLAY EFFECTS FOR A COMPUTER DISPLAY SCREEN” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,009, entitled “COMPUTER ASSISTED COMPLETION OF HYPERLINK COMMAND SEGMENTS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,010, entitled “HISTORICAL DATA REPLAY UTILIZING A COMPUTER SYSTEM” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,011, entitled “DATA STORE ACCESS PERMISSION SYSTEM WITH INTERLEAVED APPLICATION OF DEFERRED ACCESS CONTROL FILTERS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


Application Ser. No. 15/155,012, entitled “REMOTE DATA OBJECT PUBLISHING/SUBSCRIBING SYSTEM HAVING A MULTICAST KEY-VALUE PROTOCOL” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.


While the disclosed subject matter has been described in conjunction with a number of embodiments, it is evident that many alternatives, modifications and variations would be, or are, apparent to those of ordinary skill in the applicable arts. Accordingly, Applicants intend to embrace all such alternatives, modifications, equivalents and variations that are within the spirit and scope of the disclosed subject matter.

Claims
  • 1. A system for formatting data for display on a computer display screen, the system comprising: one or more hardware processors;a computer display screen configured to display data via a graphical user interface (GUI);a computer readable data storage device coupled to the one or more hardware processors, the computer readable data storage device having stored thereon software instructions that, when executed by the one or more hardware processors, cause the one or more hardware processors to perform operations including:creating a GUI display effect formula for a formatting column;hiding the formatting column from being displayed by the graphical user interface on the computer display screen;dynamically computing a GUI display effect using the GUI display effect formula for a formatting column;choosing a section of data to be displayed on the computer display screen via the graphical user interface;computing the GUI display effect for the section of data to be displayed on the computer display screen via the graphical interface using the hidden formatting column;applying the computed GUI display effect to the section of data to be displayed;displaying on the computer display screen the section of data with the applied computed GUI display effect.
  • 2. The system of claim 1, wherein the operations further comprise applying the GUI display effect formatting by applying a formula to associated data in a same row of data.
  • 3. The system of claim 1, wherein applying the GUI display effect formatting includes applying a GUI display effect to at least one of an entire row of data, an entire column of data, an entire table, a tab, a browser, and a graphical user interface.
  • 4. The system of claim 1, wherein the section of data to be displayed on the graphical interface using the hidden formatting column is determined by scrolling.
  • 5. The system of claim 1, wherein the operations further comprise: receiving updates to the section of data to be displayed on the graphical user interface;using a processor, dynamically computing a GUI display effect for the updates to the section of data using the GUI display effect formula for a formatting column;choosing a section of data to be displayed on the graphical user interface;computing the GUI display effect for the section of data to be displayed on the graphical interface using the hidden formatting column;applying the computed GUI display effect to the section of data to be displayed;displaying the section of data with the applied computed GUI display effect.
  • 6. The system of claim 1, wherein computing the GUI display effect occurs prior to displaying the section of data.
  • 7. The system of claim 1, wherein computing the GUI display effect occurs at the time of displaying the section of data.
  • 8. A method for formatting data displayed in a graphical user interface (GUI), the method comprising: creating a GUI display effect formula for a formatting column;hiding the formatting column from being displayed by the graphical user interface;using a processor, dynamically computing a GUI display effect using the GUI display effect formula for a formatting column;choosing a section of data to be displayed on the graphical user interface;computing the GUI display effect for the section of data to be displayed on the graphical interface using the hidden formatting column;applying the computed GUI display effect to the section of data to be displayed;displaying the section of data with the applied computed GUI display effect.
  • 9. The method of claim 8, further comprising applying the GUI display effect formatting by applying a formula to associated data in a same row of data.
  • 10. The method of claim 8, wherein applying the GUI display effect formatting includes applying a GUI display effect to at least one of an entire row of data, an entire column of data, an entire table, a tab, a browser, and a graphical user interface.
  • 11. The method of claim 8, wherein the section of data to be displayed on the graphical interface using the hidden formatting column is determined by scrolling.
  • 12. The method of claim 8, further comprising: receiving updates to the section of data to be displayed on the graphical user interface;using a processor, dynamically computing a GUI display effect for the updates to the section of data using the GUI display effect formula for a formatting column;choosing a section of data to be displayed on the graphical user interface;computing the GUI display effect for the section of data to be displayed on the graphical interface using the hidden formatting column;applying the computed GUI display effect to the section of data to be displayed;displaying the section of data with the applied computed GUI display effect.
  • 13. The method of claim 8, wherein computing the GUI display effect occurs prior to displaying the section of data.
  • 14. A nontransitory computer readable medium having stored thereon software instructions that, when executed by one or more processors, cause the one or more processors to perform operations including: creating a GUI display effect formula for a formatting column;hiding the formatting column from being displayed by the graphical user interface on the computer display screen;dynamically computing a GUI display effect using the GUI display effect formula for a formatting column;choosing a section of data to be displayed on the computer display screen via the graphical user interface;computing the GUI display effect for the section of data to be displayed on the computer display screen via the graphical interface using the hidden formatting column;applying the computed GUI display effect to the section of data to be displayed;displaying on the computer display screen the section of data with the applied computed GUI display effect.
  • 15. The nontransitory computer readable medium of claim 14, wherein the operations further comprise applying the GUI display effect formatting by applying a formula to associated data in a same row of data.
  • 16. The nontransitory computer readable medium of claim 14, wherein applying the GUI display effect formatting includes applying a GUI display effect to at least one of an entire row of data, an entire column of data, an entire table, a tab, a browser, and a graphical user interface.
  • 17. The nontransitory computer readable medium of claim 14, wherein the section of data to be displayed on the graphical interface using the hidden formatting column is determined by scrolling.
  • 18. The nontransitory computer readable medium of claim 14, wherein the operations further comprise: receiving updates to the section of data to be displayed on the graphical user interface;using a processor, dynamically computing a GUI display effect for the updates to the section of data using the GUI display effect formula for a formatting column;choosing a section of data to be displayed on the graphical user interface;computing the GUI display effect for the section of data to be displayed on the graphical interface using the hidden formatting column;applying the computed GUI display effect to the section of data to be displayed;displaying the section of data with the applied computed GUI display effect.
  • 19. The nontransitory computer readable medium of claim 14, wherein computing the GUI display effect occurs prior to displaying the section of data.
  • 20. The nontransitory computer readable medium of claim 14, wherein computing the GUI display effect occurs at the time of displaying the section of data.
Parent Case Info

This application claims the benefit of U.S. Provisional Application No. 62/161,813, entitled “Computer Data System” and filed on May 14, 2015, which is incorporated herein by reference in its entirety.

US Referenced Citations (426)
Number Name Date Kind
5335202 Manning et al. Aug 1994 A
5452434 Macdonald Sep 1995 A
5469567 Okada Nov 1995 A
5504885 Alashqur Apr 1996 A
5530939 Mansfield et al. Jun 1996 A
5568632 Nelson Oct 1996 A
5673369 Kim Sep 1997 A
5701461 Dalal et al. Dec 1997 A
5701467 Freeston Dec 1997 A
5764953 Collins et al. Jun 1998 A
5787428 Hart Jul 1998 A
5806059 Tsuchida et al. Sep 1998 A
5859972 Subramaniam et al. Jan 1999 A
5875334 Chow et al. Feb 1999 A
5878415 Olds Mar 1999 A
5890167 Bridge et al. Mar 1999 A
5899990 Maritzen et al. May 1999 A
5920860 Maheshwari et al. Jul 1999 A
5943672 Yoshida Aug 1999 A
5960087 Tribble et al. Sep 1999 A
5991810 Shapiro et al. Nov 1999 A
5999918 Williams et al. Dec 1999 A
6006220 Haderle et al. Dec 1999 A
6032144 Srivastava et al. Feb 2000 A
6032148 Wilkes Feb 2000 A
6038563 Bapat et al. Mar 2000 A
6058394 Bakow et al. May 2000 A
6061684 Glasser et al. May 2000 A
6138112 Slutz Oct 2000 A
6266669 Brodersen et al. Jul 2001 B1
6289357 Parker Sep 2001 B1
6292803 Richardson et al. Sep 2001 B1
6304876 Isip Oct 2001 B1
6317728 Kane Nov 2001 B1
6327702 Sauntry et al. Dec 2001 B1
6336114 Garrison Jan 2002 B1
6353819 Edwards et al. Mar 2002 B1
6367068 Vaidyanathan et al. Apr 2002 B1
6389414 Delo et al. May 2002 B1
6389462 Cohen et al. May 2002 B1
6438537 Netz et al. Aug 2002 B1
6446069 Yaung et al. Sep 2002 B1
6460037 Weiss et al. Oct 2002 B1
6473750 Petculescu et al. Oct 2002 B1
6487552 Lei et al. Nov 2002 B1
6496833 Goldberg et al. Dec 2002 B1
6505189 Au et al. Jan 2003 B1
6505241 Pitts Jan 2003 B2
6510551 Miller Jan 2003 B1
6530075 Beadle et al. Mar 2003 B1
6538651 Hayman et al. Mar 2003 B1
6546402 Beyer et al. Apr 2003 B1
6553375 Huang et al. Apr 2003 B1
6584474 Pereira Jun 2003 B1
6604104 Smith Aug 2003 B1
6618720 Au et al. Sep 2003 B1
6631374 Klein et al. Oct 2003 B1
6640234 Coffen et al. Oct 2003 B1
6697880 Dougherty Feb 2004 B1
6701415 Hendren Mar 2004 B1
6714962 Helland et al. Mar 2004 B1
6725243 Snapp Apr 2004 B2
6732100 Brodersen et al. May 2004 B1
6745332 Wong et al. Jun 2004 B1
6748374 Madan et al. Jun 2004 B1
6748455 Hinson et al. Jun 2004 B1
6760719 Hanson et al. Jul 2004 B1
6775660 Lin et al. Aug 2004 B2
6785668 Polo et al. Aug 2004 B1
6795851 Noy Sep 2004 B1
6816855 Hartel et al. Nov 2004 B2
6820082 Cook et al. Nov 2004 B1
6829620 Michael et al. Dec 2004 B2
6832229 Reed Dec 2004 B2
6851088 Conner et al. Feb 2005 B1
6882994 Yoshimura et al. Apr 2005 B2
6925472 Kong Aug 2005 B2
6934717 James Aug 2005 B1
6947928 Dettinger et al. Sep 2005 B2
6983291 Cochrane et al. Jan 2006 B1
6985895 Witkowski et al. Jan 2006 B2
6985899 Chan et al. Jan 2006 B2
6985904 Kaluskar et al. Jan 2006 B1
7020649 Cochrane et al. Mar 2006 B2
7024414 Sah et al. Apr 2006 B2
7031962 Moses Apr 2006 B2
7058657 Berno Jun 2006 B1
7089228 Arnold et al. Aug 2006 B2
7089245 George et al. Aug 2006 B1
7096216 Anonsen Aug 2006 B2
7103608 Ozbutun et al. Sep 2006 B1
7110997 Turkel et al. Sep 2006 B1
7127462 Hiraga et al. Oct 2006 B2
7146357 Suzuki et al. Dec 2006 B2
7149742 Eastham et al. Dec 2006 B1
7167870 Avvari et al. Jan 2007 B2
7171469 Ackaouy et al. Jan 2007 B2
7174341 Ghukasyan et al. Feb 2007 B2
7181686 Bahrs Feb 2007 B1
7188105 Dettinger et al. Mar 2007 B2
7200620 Gupta Apr 2007 B2
7216115 Walters et al. May 2007 B1
7216116 Nilsson et al. May 2007 B1
7219302 O'Shaughnessy et al. May 2007 B1
7225189 McCormack et al. May 2007 B1
7254808 Trappen et al. Aug 2007 B2
7257689 Baird Aug 2007 B1
7272605 Hinshaw et al. Sep 2007 B1
7308580 Nelson et al. Dec 2007 B2
7316003 Dulepet et al. Jan 2008 B1
7330969 Harrison et al. Feb 2008 B2
7333941 Choi Feb 2008 B1
7343585 Lau et al. Mar 2008 B1
7350237 Vogel et al. Mar 2008 B2
7380242 Alaluf May 2008 B2
7401088 Chintakayala et al. Jul 2008 B2
7426521 Harter Sep 2008 B2
7430549 Zane et al. Sep 2008 B2
7433863 Zane et al. Oct 2008 B2
7447865 Uppala et al. Nov 2008 B2
7478094 Ho et al. Jan 2009 B2
7484096 Garg et al. Jan 2009 B1
7493311 Cutsinger et al. Feb 2009 B1
7529734 Dirisala May 2009 B2
7529750 Bair May 2009 B2
7542958 Warren et al. Jun 2009 B1
7610351 Gollapudi et al. Oct 2009 B1
7620687 Chen et al. Nov 2009 B2
7624126 Pizzo et al. Nov 2009 B2
7627603 Rosenblum et al. Dec 2009 B2
7661141 Dutta et al. Feb 2010 B2
7664778 Yagoub et al. Feb 2010 B2
7672275 Yajnik et al. Mar 2010 B2
7680782 Chen et al. Mar 2010 B2
7711716 Stonecipher May 2010 B2
7711740 Minore et al. May 2010 B2
7761444 Zhang et al. Jul 2010 B2
7797356 Iyer et al. Sep 2010 B2
7827204 Heinzel et al. Nov 2010 B2
7827403 Wong et al. Nov 2010 B2
7827523 Ahmed et al. Nov 2010 B2
7882121 Bruno et al. Feb 2011 B2
7882132 Ghatare Feb 2011 B2
7904487 Ghatare Mar 2011 B2
7908259 Branscome et al. Mar 2011 B2
7908266 Zeringue et al. Mar 2011 B2
7930412 Yeap et al. Apr 2011 B2
7966311 Haase Jun 2011 B2
7966312 Nolan et al. Jun 2011 B2
7966343 Yang et al. Jun 2011 B2
7970777 Saxena et al. Jun 2011 B2
7979431 Qazi et al. Jul 2011 B2
7984043 Waas Jul 2011 B1
8019795 Anderson et al. Sep 2011 B2
8027293 Spaur et al. Sep 2011 B2
8032525 Bowers et al. Oct 2011 B2
8037542 Taylor et al. Oct 2011 B2
8046394 Shatdal Oct 2011 B1
8046749 Owen et al. Oct 2011 B1
8055672 Djugash et al. Nov 2011 B2
8060484 Bandera et al. Nov 2011 B2
8171018 Zane et al. May 2012 B2
8180789 Wasserman et al. May 2012 B1
8196121 Peshansky et al. Jun 2012 B2
8209356 Roesler Jun 2012 B1
8286189 Kukreja et al. Oct 2012 B2
8321833 Langworthy et al. Nov 2012 B2
8332435 Ballard et al. Dec 2012 B2
8359305 Burke et al. Jan 2013 B1
8375127 Lita Feb 2013 B1
8380757 Bailey et al. Feb 2013 B1
8418142 Ao et al. Apr 2013 B2
8433701 Sargeant et al. Apr 2013 B2
8458218 Wildermuth Jun 2013 B2
8473897 Box et al. Jun 2013 B2
8478713 Cotner et al. Jul 2013 B2
8515942 Marum et al. Aug 2013 B2
8543620 Ching Sep 2013 B2
8553028 Urbach Oct 2013 B1
8555263 Allen et al. Oct 2013 B2
8560502 Vora Oct 2013 B2
8595151 Hao et al. Nov 2013 B2
8601016 Briggs et al. Dec 2013 B2
8631034 Peloski Jan 2014 B1
8650182 Murthy Feb 2014 B2
8660869 Macintyre et al. Feb 2014 B2
8676863 Connell et al. Mar 2014 B1
8683488 Kukreja et al. Mar 2014 B2
8713518 Pointer et al. Apr 2014 B2
8719252 Miranker et al. May 2014 B2
8725707 Chen et al. May 2014 B2
8726254 Rohde et al. May 2014 B2
8745014 Travis Jun 2014 B2
8745510 D'Alo' et al. Jun 2014 B2
8751823 Myles et al. Jun 2014 B2
8768961 Krishnamurthy Jul 2014 B2
8788254 Peloski Jul 2014 B2
8793243 Weyerhaeuser et al. Jul 2014 B2
8805947 Kuzkin et al. Aug 2014 B1
8806133 Hay et al. Aug 2014 B2
8812625 Chitilian et al. Aug 2014 B1
8838656 Cheriton Sep 2014 B1
8855999 Elliot Oct 2014 B1
8863156 Lepanto et al. Oct 2014 B1
8874512 Jin et al. Oct 2014 B2
8880569 Draper et al. Nov 2014 B2
8880787 Kimmel et al. Nov 2014 B1
8881121 Ali Nov 2014 B2
8886631 Abadi et al. Nov 2014 B2
8903717 Elliot Dec 2014 B2
8903842 Bloesch et al. Dec 2014 B2
8922579 Mi et al. Dec 2014 B2
8924384 Driesen et al. Dec 2014 B2
8930892 Pointer et al. Jan 2015 B2
8954418 Faerber et al. Feb 2015 B2
8959495 Chafi et al. Feb 2015 B2
8996864 Maigne et al. Mar 2015 B2
9031930 Valentin May 2015 B2
9077611 Cordray et al. Jul 2015 B2
9122765 Chen Sep 2015 B1
9195712 Freedman et al. Nov 2015 B2
9298768 Varakin et al. Mar 2016 B2
9311357 Ramesh et al. Apr 2016 B2
9372671 Balan et al. Jun 2016 B2
9384184 Cervantes et al. Jul 2016 B2
9633060 Caudy et al. Apr 2017 B2
9679006 Wright et al. Jun 2017 B2
9805084 Wright et al. Oct 2017 B2
9832068 McSherry et al. Nov 2017 B2
20020002576 Wollrath et al. Jan 2002 A1
20020007331 Lo et al. Jan 2002 A1
20020054587 Baker et al. May 2002 A1
20020065981 Jenne et al. May 2002 A1
20020156722 Greenwood Oct 2002 A1
20030004952 Nixon et al. Jan 2003 A1
20030061216 Moses Mar 2003 A1
20030074400 Brooks et al. Apr 2003 A1
20030110416 Morrison et al. Jun 2003 A1
20030167261 Grust et al. Sep 2003 A1
20030182261 Patterson Sep 2003 A1
20030208484 Chang et al. Nov 2003 A1
20030208505 Mullins et al. Nov 2003 A1
20030233632 Aigen et al. Dec 2003 A1
20040002961 Dettinger et al. Jan 2004 A1
20040076155 Yajnik et al. Apr 2004 A1
20040111492 Nakahara et al. Jun 2004 A1
20040148630 Choi Jul 2004 A1
20040186813 Tedesco et al. Sep 2004 A1
20040216150 Scheifler et al. Oct 2004 A1
20040220923 Nica Nov 2004 A1
20040254876 Coval et al. Dec 2004 A1
20050015490 Saare et al. Jan 2005 A1
20050060693 Robison et al. Mar 2005 A1
20050097447 Serra et al. May 2005 A1
20050102284 Srinivasan et al. May 2005 A1
20050102636 McKeon et al. May 2005 A1
20050131893 Glan Jun 2005 A1
20050132384 Morrison et al. Jun 2005 A1
20050138624 Morrison et al. Jun 2005 A1
20050165866 Bohannon et al. Jul 2005 A1
20050198001 Cunningham et al. Sep 2005 A1
20060059253 Goodman et al. Mar 2006 A1
20060074901 Pirahesh et al. Apr 2006 A1
20060085490 Baron et al. Apr 2006 A1
20060100989 Chinchwadkar et al. May 2006 A1
20060101019 Nelson et al. May 2006 A1
20060116983 Dettinger et al. Jun 2006 A1
20060116999 Dettinger et al. Jun 2006 A1
20060136361 Peri et al. Jun 2006 A1
20060173693 Arazi et al. Aug 2006 A1
20060195460 Nori et al. Aug 2006 A1
20060212847 Tarditi et al. Sep 2006 A1
20060218123 Chowdhuri et al. Sep 2006 A1
20060218200 Factor et al. Sep 2006 A1
20060230016 Cunningham et al. Oct 2006 A1
20060253311 Yin et al. Nov 2006 A1
20060271510 Harvard et al. Nov 2006 A1
20060277162 Smith Dec 2006 A1
20070011211 Reeves et al. Jan 2007 A1
20070027884 Heger et al. Feb 2007 A1
20070033518 Kenna et al. Feb 2007 A1
20070073765 Chen Mar 2007 A1
20070101252 Chamberlain et al. May 2007 A1
20070169003 Branda et al. Jul 2007 A1
20070256060 Ryu et al. Nov 2007 A1
20070258508 Werb et al. Nov 2007 A1
20070271280 Chandasekaran Nov 2007 A1
20070299822 Jopp et al. Dec 2007 A1
20080022136 Mattsson et al. Jan 2008 A1
20080033907 Woehler et al. Feb 2008 A1
20080046804 Rui et al. Feb 2008 A1
20080072150 Chan et al. Mar 2008 A1
20080120283 Liu et al. May 2008 A1
20080155565 Poduri Jun 2008 A1
20080168135 Redlich et al. Jul 2008 A1
20080235238 Jalobeanu et al. Sep 2008 A1
20080263179 Buttner et al. Oct 2008 A1
20080276241 Bajpai et al. Nov 2008 A1
20080319951 Ueno et al. Dec 2008 A1
20090019029 Tommaney et al. Jan 2009 A1
20090022095 Spaur et al. Jan 2009 A1
20090024615 Pedro et al. Jan 2009 A1
20090037391 Agrawal et al. Feb 2009 A1
20090055370 Dagum et al. Feb 2009 A1
20090083215 Burger Mar 2009 A1
20090089312 Chi et al. Apr 2009 A1
20090248902 Blue Oct 2009 A1
20090254516 Meiyyappan et al. Oct 2009 A1
20090300770 Rowney et al. Dec 2009 A1
20090319058 Rovaglio et al. Dec 2009 A1
20090319484 Golbandi et al. Dec 2009 A1
20090327242 Brown et al. Dec 2009 A1
20100036801 Pirvali et al. Feb 2010 A1
20100042587 Johnson et al. Feb 2010 A1
20100047760 Best et al. Feb 2010 A1
20100049715 Jacobsen et al. Feb 2010 A1
20100161555 Nica et al. Jun 2010 A1
20100186082 Ladki et al. Jul 2010 A1
20100199161 Aureglia et al. Aug 2010 A1
20100205017 Sichelman et al. Aug 2010 A1
20100205351 Wiener et al. Aug 2010 A1
20100281005 Carlin et al. Nov 2010 A1
20100281071 Ben-Zvi et al. Nov 2010 A1
20110126110 Vilke et al. May 2011 A1
20110126154 Boehler et al. May 2011 A1
20110153603 Adiba et al. Jun 2011 A1
20110161378 Williamson Jun 2011 A1
20110167020 Yang et al. Jul 2011 A1
20110178984 Talius et al. Jul 2011 A1
20110194563 Shen et al. Aug 2011 A1
20110219020 Oks et al. Sep 2011 A1
20110314019 Peris Dec 2011 A1
20120110030 Pomponio May 2012 A1
20120144234 Clark et al. Jun 2012 A1
20120159303 Friedrich et al. Jun 2012 A1
20120191446 Binsztok et al. Jul 2012 A1
20120192096 Bowman et al. Jul 2012 A1
20120197868 Fauser et al. Aug 2012 A1
20120209886 Henderson Aug 2012 A1
20120215741 Poole et al. Aug 2012 A1
20120221528 Renkes Aug 2012 A1
20120246052 Taylor et al. Sep 2012 A1
20120254143 Varma et al. Oct 2012 A1
20120259759 Crist et al. Oct 2012 A1
20120296846 Teeter Nov 2012 A1
20130041946 Joel et al. Feb 2013 A1
20130080514 Gupta et al. Mar 2013 A1
20130086107 Genochio et al. Apr 2013 A1
20130166556 Baeumges et al. Jun 2013 A1
20130173667 Soderberg et al. Jul 2013 A1
20130179460 Cervantes et al. Jul 2013 A1
20130185619 Ludwig Jul 2013 A1
20130191370 Chen et al. Jul 2013 A1
20130198232 Shamgunov et al. Aug 2013 A1
20130226959 Dittrich et al. Aug 2013 A1
20130246560 Feng et al. Sep 2013 A1
20130263123 Zhou et al. Oct 2013 A1
20130290243 Hazel et al. Oct 2013 A1
20130304725 Nee et al. Nov 2013 A1
20130304744 McSherry et al. Nov 2013 A1
20130311352 Kayanuma et al. Nov 2013 A1
20130311488 Erdogan et al. Nov 2013 A1
20130318129 Vingralek et al. Nov 2013 A1
20130346365 Kan et al. Dec 2013 A1
20140019494 Tang Jan 2014 A1
20140040203 Lu et al. Feb 2014 A1
20140059646 Hannel et al. Feb 2014 A1
20140082724 Pearson et al. Mar 2014 A1
20140136521 Pappas May 2014 A1
20140143123 Banke et al. May 2014 A1
20140149997 Kukreja et al. May 2014 A1
20140156618 Castellano Jun 2014 A1
20140173023 Varney et al. Jun 2014 A1
20140181036 Dhamankar et al. Jun 2014 A1
20140181081 Veldhuizen Jun 2014 A1
20140188924 Ma et al. Jul 2014 A1
20140195558 Murthy et al. Jul 2014 A1
20140201194 Reddy et al. Jul 2014 A1
20140215446 Araya et al. Jul 2014 A1
20140222768 Rambo et al. Aug 2014 A1
20140229506 Lee Aug 2014 A1
20140229874 Strauss Aug 2014 A1
20140244687 Shmueli et al. Aug 2014 A1
20140279810 Mann et al. Sep 2014 A1
20140280522 Watte Sep 2014 A1
20140282227 Nixon et al. Sep 2014 A1
20140282444 Araya et al. Sep 2014 A1
20140282540 Bonnet et al. Sep 2014 A1
20140297611 Abbour et al. Oct 2014 A1
20140317084 Chaudhry et al. Oct 2014 A1
20140324821 Meiyyappan et al. Oct 2014 A1
20140330700 Studnitzer et al. Nov 2014 A1
20140330807 Weyerhaeuser et al. Nov 2014 A1
20140344186 Nadler Nov 2014 A1
20140344391 Varney et al. Nov 2014 A1
20140359574 Beckwith et al. Dec 2014 A1
20140372482 Martin et al. Dec 2014 A1
20140380051 Edward et al. Dec 2014 A1
20150019516 Wein et al. Jan 2015 A1
20150026155 Martin Jan 2015 A1
20150067640 Booker et al. Mar 2015 A1
20150074066 Li et al. Mar 2015 A1
20150082218 Affoneh et al. Mar 2015 A1
20150088894 Czarlinska et al. Mar 2015 A1
20150095381 Chen et al. Apr 2015 A1
20150120261 Giannacopoulos et al. Apr 2015 A1
20150127599 Schiebeler May 2015 A1
20150154262 Yang et al. Jun 2015 A1
20150172117 Dolinsky et al. Jun 2015 A1
20150188778 Asayag et al. Jul 2015 A1
20150205588 Bates et al. Jul 2015 A1
20150205589 Daily Jul 2015 A1
20150254298 Bourbonnais et al. Sep 2015 A1
20150304182 Brodsky et al. Oct 2015 A1
20150317359 Tran et al. Nov 2015 A1
20160026442 Chhaparia Jan 2016 A1
20160065670 Kimmel et al. Mar 2016 A1
20160092599 Barsness et al. Mar 2016 A1
20160125018 Tomoda et al. May 2016 A1
20160171070 Hrle et al. Jun 2016 A1
20160253294 Allen et al. Sep 2016 A1
20160316038 Jolfaei Oct 2016 A1
20160335330 Teodorescu et al. Nov 2016 A1
20160335361 Teodorescu et al. Nov 2016 A1
20170161514 Dettinger et al. Jun 2017 A1
20170235794 Wright et al. Aug 2017 A1
Foreign Referenced Citations (13)
Number Date Country
2309462 Dec 2000 CA
1406463 Apr 2004 EP
1198769 Jun 2008 EP
2199961 Jun 2010 EP
2423816 Feb 2012 EP
2743839 Jun 2014 EP
2421798 Jun 2011 RU
2000000879 Jan 2000 WO
2001079964 Oct 2001 WO
2011120161 Oct 2011 WO
2012136627 Oct 2012 WO
2014026220 Feb 2014 WO
2014143208 Sep 2014 WO
Non-Patent Literature Citations (143)
Entry
“About Entering Commands in the Command Window”, dated Dec. 16, 2015. Retrieved from https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/AutoCAD-Core/files/GUID-BB0C3E79-66AF-4557-9140-D31B4CF3C9CF-htm.html (last accessed Jun. 16, 2016).
“Change Data Capture”, Oracle Database Online Documentation 11g Release 1 (11.1), dated Apr. 5, 2016. Retreived from https://web.archive.org/web/20160405032625/http://docs.oracle.com/cd/B28359_01/server.111/b28313/cdc.htm.
“Chapter 24. Query access plans”, Tuning Database Performance, DB2 Version 9.5 for Linux, UNIX, and Windows, pp. 301-462, dated Dec. 2010. Retreived from http://public.dhe.ibm.com/ps/products/db2/info/vr95/pdf/en_US/DB2PerfTuneTroubleshoot-db2d3e953.pdf.
“GNU Emacs Manual”, dated Apr. 15, 2016, pp. 43-47. Retrieved from https://web.archive.org/web/20160415175915/http://www.gnu.org/software/emacs/manual/html_mono/emacs.html.
“Google Protocol RPC Library Overview”, dated Apr. 27, 2016. Retrieved from https://cloud.google.com/appengine/docs/python/tools/protorpc/ (last accessed Jun. 16, 2016).
“IBM—What is HBase?”, dated Sep. 6, 2015. Retrieved from https://web.archive.org/web/20150906022050/http://www-01.ibm.com/software/data/infosphere/hadoop/hbase/.
“IBM Informix TimeSeries data management”, dated Jan. 18, 2016. Retrieved from https://web.archive.org/web/20160118072141/http://www-01.ibm.com/software/data/informix/timeseries/.
“IBM InfoSphere BigInsights 3.0.0—Importing data from and exporting data to DB2 by using Sqoop”, dated Jan. 15, 2015. Retrieved from https://web.archive.org/web/20150115034058/http://www-01.ibm.com/support/knowledgecenter/SSPT3X_3.0.0/com.ibm.swg.im.infosphere.biginsights.import.doc/doc/data_warehouse_sqoop.html.
“Maximize Data Value with Very Large Database Management by SAP Sybase IQ”, dated 2013. Retrieved from http://www.sap.com/bin/sapcom/en_us/downloadasset.2013-06-jun-11-11.maximize-data-value-with-very-large-database-management-by-sap-sybase-iq-pdf.html.
“Microsoft Azure—Managing Access Control Lists (ACLs) for Endpoints by using PowerShell”, dated Nov. 12, 2014. Retrieved from https://web.archive.org/web/20150110170715/http://msdn. microsoft.com/en-us/library/azure/dn376543.aspx.
“Oracle Big Data Appliance—Perfect Balance Java API”, dated Sep. 20, 2015. Retrieved from https://web.archive.org/web/20131220040005/http://docs.oracle.com/cd/E41604_01/doc.22/e41667/toc.htm.
“Oracle Big Data Appliance—X5-2”, dated Sep. 6, 2015. Retrieved from https://web.archive.org/web/20150906185409/http://www.oracle.com/technetwork/database/bigdata-appliance/overview/bigdataappliance-datasheet-1883358.pdf.
“Oracle Big Data Appliance Software User's Guide”, dated Feb. 2015. Retrieved from https://docs.oracle.com/cd/E55905_01/doc.40/e55814.pdf.
“SAP HANA Administration Guide”, dated Mar. 29, 2016, pp. 290-294. Retrieved from https://web.archive.org/web/20160417053656/http://help.sap.com/hana/SAP_HANA_Administration_Guide_en.pdf.
“Sophia Database—Architecture”, dated Jan. 18, 2016. Retrieved from https://web.archive.org/web/20160118052919/http://sphia.org/architecture.html.
“Tracking Data Changes”, SQL Server 2008 R2, dated Sep. 22, 2015. Retreived from https://web.archive.org/web/20150922000614/https://technet.microsoft.com/en-us/library/bb933994(v=sql.105).aspx.
“Use Formula AutoComplete”, dated 2010. Retrieved from https://supportoffice.com/en-us/article/Use-Formula-AutoComplete-c7c46fa6-3a94-4150-a2f7-34140c1ee4d9 (last accessed Jun. 16, 2016).
Adelfio et al. “Schema Extraction for Tabular Data on the Web”, Proceedings of the VLDB Endowment, vol. 6, No. 6. Apr. 2013. Retrieved from http://www.cs.umd.edu/˜hjs/pubs/spreadsheets-vldb13.pdf.
Advisory Action dated Apr. 19, 2017, in U.S. Appl. No. 15/154,999.
Advisory Action dated Apr. 20, 2017, in U.S. Appl. No. 15/154,980.
Advisory Action dated Apr. 6, 2017, in U.S. Appl. No. 15/154,995.
Advisory Action dated Mar. 31, 2017, in U.S. Appl. No. 15/154,996.
Advisory Action dated May 3, 2017, in U.S. Appl. No. 15/154,993.
Borror, Jefferey A. “Q for Mortals 2.0”, dated Nov. 1, 2011. Retreived from http://code.kx.com/wiki/JB:QforMortals2/contents.
Cheusheva, Svetlana. “How to change the row color based on a cell's value in Excel”, dated Oct. 29, 2013. Retrieved from https://www.ablebits.com/office-addins-blog/2013/10/29/excel-change-row-background-color/ (last accessed Jun. 16, 2016).
Corrected Notice of Allowability dated Aug. 9, 2017, in U.S. Appl. No. 15/154,980.
Corrected Notice of Allowability dated Jul. 31, 2017, in U.S. Appl. No. 15/154,999.
Corrected Notice of Allowability dated Mar. 10, 2017, in U.S. Appl. No. 15/154,979.
Corrected Notice of Allowability dated Oct. 26, 2017, in U.S. Appl. No. 15/610,162.
Decision on Pre-Appeal Conference Request dated Nov. 20, 2017, in U.S. Appl. No. 15/154,997.
Ex Parte Quayle Action dated Aug. 8, 2016, in U.S. Appl. No. 15/154,999.
Final Office Action dated Apr. 10, 2017, in U.S. Appl. No. 15/155,006.
Final Office Action dated Dec. 19, 2016, in U.S. Appl. No. 15/154,995.
Final Office Action dated Feb. 24, 2017, in U.S. Appl. No. 15/154,993.
Final Office Action dated Jan. 27, 2017, in U.S. Appl. No. 15/154,980.
Final Office Action dated Jan. 31, 2017, in U.S. Appl. No. 15/154,996.
Final Office Action dated Jul. 27, 2017, in U.S. Appl. No. 15/154,993.
Final Office Action dated Jun. 23, 2017, in U.S. Appl. No. 15/154,997.
Final Office Action dated Mar. 1, 2017, in U.S. Appl. No. 15/154,975.
Final Office Action dated Mar. 13, 2017, in U.S. Appl. No. 15/155,012.
Final Office Action dated Mar. 31, 2017, in U.S. Appl. No. 15/155,005.
Final Office Action dated May 15, 2017, in U.S. Appl. No. 15/155,010.
Final Office Action dated May 4, 2017, in U.S. Appl. No. 15/155,009.
Gai, Lei et al. “An Efficient Summary Graph Driven Method for RDF Query Processing”, dated Oct. 27, 2015. Retreived from http://arxiv.org/pdf/1510.07749.pdf.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032582 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032584 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032588 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032593 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032597 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032599 filed May 14, 2016.
Non-final Office Action dated Sep. 26, 2016, in U.S. Appl. No. 15/155,005.
Non-final Office Action dated Sep. 29, 2016, in U.S. Appl. No. 15/154,990.
Non-final Office Action dated Sep. 8, 2016, in U.S. Appl. No. 15/154,975.
Non-final Office Action dated Sep. 9, 2016, in U.S. Appl. No. 15/154,996.
Non-final Office Action dated Sep. 9, 2016, in U.S. Appl. No. 15/155,010.
Notice of Allowance dated Dec. 19, 2016, in U.S. Appl. No. 15/155,001.
Notice of Allowance dated Dec. 22, 2016, in U.S. Appl. No. 15/155,011.
Notice of Allowance dated Dec. 7, 2016, in U.S. Appl. No. 15/154,985.
Notice of Allowance dated Feb. 1, 2017, in U.S. Appl. No. 15/154,988.
Notice of Allowance dated Feb. 14, 2017, in U.S. Appl. No. 15/154,979.
Notice of Allowance dated Feb. 28, 2017, in U.S. Appl. No. 15/154,990.
Notice of Allowance dated Jan. 30, 2017, in U.S. Appl. No. 15/154,987.
Notice of Allowance dated Jul. 28, 2017, in U.S. Appl. No. 15/155,009.
Notice of Allowance dated Jun. 19, 2017, in U.S. Appl. No. 15/154,980.
Notice of Allowance dated Jun. 20, 2017, in U.S. Appl. No. 15/154,975.
Notice of Allowance dated Mar. 2, 2017, in U.S. Appl. No. 15/154,998.
Notice of Allowance dated Mar. 31, 2017, in U.S. Appl. No. 15/154,998.
Notice of Allowance dated May 10, 2017, in U.S. Appl. No. 15/154,988.
Notice of Allowance dated Nov. 17, 2016, in U.S. Appl. No. 15/154,991.
Notice of Allowance dated Nov. 17, 2017, in U.S. Appl. No. 15/154,993.
Notice of Allowance dated Nov. 21, 2016, in U.S. Appl. No. 15/154,983.
Notice of Allowance dated Nov. 8, 2016, in U.S. Appl. No. 15/155,007.
Notice of Allowance dated Oct. 11, 2016, in U.S. Appl. No. 15/155,007.
Notice of Allowance dated Oct. 21, 2016, in U.S. Appl. No. 15/154,999.
Notice of Allowance dated Oct. 6, 2017, in U.S. Appl. No. 15/610,162.
Palpanas, Themistoklis et al. “Incremental Maintenance for Non-Distributive Aggregate Functions”, Proceedings of the 28th VLDB Conference, 2002. Retreived from http://www.vldb.org/conf/2002/S22P04.pdf.
PowerShell Team, Intellisense in Windows PowerShell ISE 3.0, dated Jun. 12, 2012, Windows PowerShell Blog, pp. 1-6 Retrieved: https://biogs.msdn.microsoft.com/powershell/2012/06/12/intellisense-in-windows-powershell-ise-3-0/.
Smith, Ian. “Guide to Using SQL: Computed and Automatic Columns.” Rdb Jornal, dated Sep. 2008, retrieved Aug. 15, 2016, retrieved from the Internet <URL: http://www.oracle.com/technetwork/products/rdb/automatic-columns-132042.pdf>.
Wes McKinney & PyData Development Team. “pandas: powerful Python data analysis toolkit, Release 0.16.1” Dated May 11, 2015. Retrieved from: http://pandas.pydata.org/pandas-docs/version/0.16.1/index.html.
Wes McKinney & PyData Development Team. “pandas: powerful Python data analysis toolkit, Release 0.18.1” Dated May 3, 2016. Retrieved from: http://pandas.pydata.org/pandas-docs/version/0.18.1/index.html.
Wu, Buwen et al. “Scalable SPARQL Querying using Path Partitioning”, 31st IEEE International Conference on Data Engineering (ICDE 2015), Seoul, Korea, Apr. 13-17, 2015. Retreived from http://imada.sdu.dk/˜zhou/papers/icde2015.pdf.
Advisory Action dated Dec. 21, 2017, in U.S. Appl. No. 15/154,984.
Final Office Action dated Dec. 29, 2017, in U.S. Appl. No. 15/154,974.
Non-final Office Action dated Dec. 28, 2017, in U.S. Appl. No. 15/154,996.
Non-final Office Action dated Dec. 28, 2017, in U.S. Appl. No. 15/796,230.
Non-final Office Action dated Jan. 4, 2018, in U.S. Appl. No. 15/583,777.
Sobell, Mark G. “A Practical Guide to Linux, Commands, Editors and Shell Programming.” Third Edition, dated Sep. 14, 2012. Retrieved from: http://techbus.safaribooksonline.com/book/operating-systems-and-server-administration/linux/9780133085129.
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032605 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 25, 2016, in International Appln. No. PCT/US2016/032590 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 25, 2016, in International Appln. No. PCT/US2016/032592 filed May 14, 2016.
International Search Report and Written Opinion dated Aug. 4, 2016, in International Appln. No. PCT/US2016/032581 filed May 14, 2016.
International Search Report and Written Opinion dated Jul. 28, 2016, in International Appln. No. PCT/US2016/032586 filed May 14, 2016.
International Search Report and Written Opinion dated Jul. 28, 2016, in International Appln. No. PCT/US2016/032587 filed May 14, 2016.
International Search Report and Written Opinion dated Jul. 28, 2016, in International Appln. No. PCT/US2016/032589 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appln. No. PCT/US2016/032596 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appln. No. PCT/US2016/032598 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appln. No. PCT/US2016/032601 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appln. No. PCT/US2016/032602 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appln. No. PCT/US2016/032607 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 15, 2016, in International Appln. No. PCT/US2016/032591 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 15, 2016, in International Appln. No. PCT/US2016/032594 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 15, 2016, in International Appln. No. PCT/US2016/032600 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 29, 2016, in International Appln. No. PCT/US2016/032595 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 29, 2016, in International Appln. No. PCT/US2016/032606 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 8, 2016, in International Appln. No. PCT/US2016/032603 filed May 14, 2016.
International Search Report and Written Opinion dated Sep. 8, 2016, in International Appln. No. PCT/US2016/032604 filed May 14, 2016.
Jellema, Lucas. “Implementing Cell Highlighting in JSF-based Rich Enterprise Apps (Part 1)”, dated Nov. 2008. Retrieved from http://www.oracle.com/technetwork/articles/adf/jellema-adfcellhighlighting-087850.html (last accessed Jun. 16, 2016).
Lou, Yuan. “A Multi-Agent Decision Support System for Stock Trading”, IEEE Network, Jan./Feb. 2002. Retreived from http://www.reading.ac.uk/AcaDepts/si/sisweb13/ais/papers/journal12-A%20multi-agent%20Framework.pdf.
Mallet, “Relational Database Support for Spatio-Temporal Data”, Technical Report TR 04-21, Sep. 2004, University of Alberta, Department of Computing Science.
Mariyappan, Balakrishnan. “10 Useful Linux Bash_Completion Complete Command Examples (Bash Command Line Completion on Steroids)”, dated Dec. 2, 2013. Retrieved from http://www.thegeekstuff.com/2013/12/bash-completion-complete/ (last accessed Jun. 16, 2016).
Murray, Derek G. et al. “Naiad: a timely dataflow system.” SOSP '13 Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles. pp. 439-455. Nov. 2013.
Non-final Office Action dated Apr. 19, 2017, in U.S. Appl. No. 15/154,974.
Non-final Office Action dated Aug. 12, 2016, in U.S. Appl. No. 15/155,001.
Non-final Office Action dated Aug. 14, 2017, in U.S. Appl. No. 15/464,314.
Non-final Office Action dated Aug. 16, 2016, in U.S. Appl. No. 15/154,993.
Non-final Office Action dated Aug. 19, 2016, in U.S. Appl. No. 15/154,991.
Non-final Office Action dated Aug. 25, 2016, in U.S. Appl. No. 15/154,980.
Non-final Office Action dated Aug. 26, 2016, in U.S. Appl. No. 15/154,995.
Non-final Office Action dated Aug. 8, 2016, in U.S. Appl. No. 15/154,983.
Non-final Office Action dated Aug. 8, 2016, in U.S. Appl. No. 15/154,985.
Non-final Office Action dated Dec. 13, 2017, in U.S. Appl. No. 15/608,963.
Non-final Office Action dated Feb. 8, 2017, in U.S. Appl. No. 15/154,997.
Non-final Office Action dated Jul. 27, 2017, in U.S. Appl. No. 15/154,995.
Non-final Office Action dated Mar. 2, 2017, in U.S. Appl. No. 15/154,984.
Non-final Office Action dated Nov. 15, 2017, in U.S. Appl. No. 15/654,461.
Non-final Office Action dated Nov. 17, 2016, in U.S. Appl. No. 15/154,999.
Non-final Office Action dated Nov. 21, 2017, in U.S. Appl. No. 15/155,005.
Non-final Office Action dated Nov. 30, 2017, in U.S. Appl. No. 15/155,012.
Non-final Office Action dated Oct. 13, 2016, in U.S. Appl. No. 15/155,009.
Non-final Office Action dated Oct. 27, 2016, in U.S. Appl. No. 15/155,006.
Non-final Office Action dated Oct. 7, 2016, in U.S. Appl. No. 15/154,998.
Non-final Office Action dated Sep. 1, 2016, in U.S. Appl. No. 15/154,979.
Non-final Office Action dated Sep. 1, 2016, in U.S. Appl. No. 15/155,011.
Non-final Office Action dated Sep. 1, 2016, in U.S. Appl. No. 15/155,012.
Non-final Office Action dated Sep. 14, 2016, in U.S. Appl. No. 15/154,984.
Non-final Office Action dated Sep. 16, 2016, in U.S. Appl. No. 15/154,988.
Non-final Office Action dated Sep. 22, 2016, in U.S. Appl. No. 15/154,987.
Breitbart, Update Propagation Protocols For Replicated Databases, SIGMOD '99 Philadelphia PA, 1999, pp. 97-108.
Kramer, The Combining DAG: A Technique for Parallel Data Flow Analysis, IEEE Transactions on Parallel and Distributed Systems, vol. 5, No. 8, Aug. 1994, pp. 805-813.
Non-final Office Action dated Feb. 12, 2018, in U.S. Appl. No. 15/466,836.
Non-final Office Action dated Feb. 15, 2018, in U.S. Appl. No. 15/813,112.
Notice of Allowance dated Feb. 12, 2018, in U.S. Appl. No. 15/813,142.
Kramer, The Combining DAG: A Technique for Parallel Data Flow Analysis. IEEE Transactions on Parallel and Distributed Systems, vol. 5, No. 8, Aug. 1994, pp. 805-813.
Related Publications (1)
Number Date Country
20170249066 A1 Aug 2017 US
Provisional Applications (1)
Number Date Country
62161813 May 2015 US
Continuations (1)
Number Date Country
Parent 15155007 May 2016 US
Child 15428145 US