The present disclosure relates to providing protection for ink printing on sheet media, both on electrostatically printed sheets and on ink jet printed sheets in a photocopier/printer.
Heretofore, it has been desired to provide a fixative coating over the ink printing on the sheets discharged from digital printing on a print engine, particularly colored ink printing, to preserve the ink marking and prevent smudging or other damage to the inked surface of the print media. For example, it has been desired to protect the printing from abrasion in the transport of the printed sheets from the print engine. Attempts to protect the surface of ink printed media have attempted the use of aqueous flexovarnishing; however, the high water content of such aqueous mixtures have required substantial amounts of drying, thereby increasing the size and cost of the equipment and has delayed the speed of transport rendering the process unworkable for high speed printing applications.
The problem of providing a protective coating for inked print media has further been complicated by the need to accommodate print media of both plain paper and coated paper sheet stock in widespread use in digital print engines.
Known processes for applying an aqueous flexovarnish coating on inked print media have required relatively long equipment modules with prohibitively large space requirement and thus have not been practical for many digital printing installations. Furthermore, the requirement for changing the flexible plates and the necessity of cleanup operations each time the sheet format is changed have rendered such a process cumbersome and prohibitive for small print engine installations.
Thus, it has been desired to provide a way of applying a transparent protective coating to inked print media in digital printing operations in a manner which does not require large equipment installations and does not require a reduction in the speed of the copying/printing operation.
The present disclosure provides an improved way or means of applying a protective coating on inked print media in a manner which requires only a slight extension of existing print engine equipment installations. The disclosed method can accommodate the normal operating speed of the print engine without requiring reduction in the speed and loss of productivity. In addition the present disclosure provides a means of protecting the printed surface of both plain and coated papers.
The process of the present disclosure provides a vertically disposed array of horizontally discharging ink jet nozzles for coating a marked sheet of print media disposed on a transporter belt; and, a source of radiant energy is disposed vertically adjacent the ink jet array and effects curing of the coating as the belt transports the marked print media through the designated path in the print engine. For duplex printing, another array of horizontally discharging ink jet nozzles is disposed downstream in the direction of transport print media for discharging a protective coating on the reverse side of the printed media with a second source of radiant energy disposed adjacent thereto for effecting curing of the coating on the reverse side of the print media. The term “duplex” is used in the digital copying and duplicating industry as the term “pefecting” is used in the conventional printing industry. Both terms indicate printing on both sides of a sheet media. A source of vacuum is provided and a vacuum is drawn through the transporter belt to maintain the print media attached thereto during the curing by the source of radiant energy. The protective coating discharged through the ink jet nozzles is of the type sensitive to ultraviolet radiation. The source of radiant energy is of the type generating radiant energy in the ultraviolet spectrum by means of a UV lamp disposed adjacent the printed media, with a heat exchanger provided with water circulated therethrough provided for cooling the UV lamp. The present disclosure embodies the concept of horizontally discharging ink jet nozzles. This orientation is chosen in order to minimize the horizontal extent of the print engine. However, other functional orientations of the ink jets may be employed. A gel varnish is employed which enables applying a protective coating on plain paper; as, the gel will freeze when it hits the paper surface and not penetrate through the plain paper pores resulting in showthrough and incomplete cure, both of which are unacceptable. The gel varnish has been found to also be satisfactory for coating ink marked coated papers.
Referring to
Referring to
Duplex printing as aforementioned with the arrangement of
In the present practice, it has been found satisfactory to employ a transparent protective gelatinous coating comprising an initiator, and a vehicle, said vehicle comprising (a) at least one radically curable monomer compound, and (b) a compound of the formula
wherein R1 is an alkylene, arylene, arylalkylene, or alkylarylene group, R2 and R2′ each, independently of the other, are alkylene, arylene, arylalkylene, or alkylarylene groups, R3 and R3′ each, independently of the other, are either (a) photoinitiating groups, or (b) groups which are alkyl, aryl, arylalkyl, or alkylaryl groups, provided that at least one of R3 and R3′ is a photoinitiating group, and X and X′ each, independently of the other, is an oxygen atom or a group of the formula —NR4—, wherein R4 is a hydrogen atom, an alkyl group, an aryl group, an arylalkyl group, or an alkylaryl group.
U.S. Patent Publication No. 2007-0120910, published May 31, 2007, in the names of P. G. Odell et al., entitled “Phase Change Inks Containing Photoinitiator With Phase Change Properties And Gellant Affinity,” which is incorporated by reference herein, describes an ink composite as above which may be modified by omitting the colorant to provide a satisfactory transparent protective coating for ink marked print media.
The protective gelatinous coating may also comprise an initiator, and a phase change carrier, said carrier comprising at least one radically curable monomer compound and a compound of the formula
U.S. Patent Publication No. 2007-0120925, published May 31, 2007, in the names of J. L. Belelie et al., entitled “Radiation Curable Ink Containing A Curable Wax,” which is incorporated by reference herein, describes a radiation curable ink, which, in accordance with the above, may be modified by eliminating the colorant to provide a satisfactory transparent protective coating for ink marked print media.
Although a gelatinous coating has been described herein, it is contemplated that other non-gelatinous coating materials may be employed in the present method.
On completion of the coating by the nozzle array 30, the print media sheet is moved downwardly past a de-tacking unit 42 which reverses the electrostatic charge on the print media to allow traverse of the print media to a second endless belt 44 which passes over a porous stationary platen 46. The platen 46 is connected through conduit 48 to a vacuum pump 50 which, through the porosity of the platen 46 and the belt 44, causes the sheet stock to adhere to the platen and remain in the vertical position thereon.
A radiant energy source 52 is disposed proximate the platen 46 and is operable upon electrical energization through leads 54, 56 to emit suitable radiant energy to effect curing of the coating on the print media adjacent thereto. The source of radiant energy 52 is in the present practice a lamp radiating energy in the ultraviolet spectrum; and, the lamp is water-cooled through tubes 58, 60 which are adapted for connection to an external source of coolant (not shown) to be circulated therethrough. On completion of curing of the coating by the source of radiant energy 52, the coated print media is moved downwardly along path 62 and routed upwardly either for re-circulating through path 64 for recoating or outwardly along path 66 through the output station 18.
Referring to
Referring to
For applying a protective coating in duplex printing, the sheet stock is diverted from the path 74 downwardly along the path 78 past a sensor 86 which outputs an electrical signal along leads 82, 84 to a controller (not shown) and, upon passing sensor 86, the media sheet passes over stacking roller 88 and is disposed onto the surface of an endless belt 90. The belt 90 passes the printed media sheet over a stationary platen 92 which is disposed vertically closely spaced from a coating unit 94. The coating unit 94 may be similar to the unit 30 described in
Upon completion of the coating by the printheads in the unit 94, the belt 90 moves the media sheet downwardly past a de-tacking unit 96, to remove the electrostatic charge applied by the tacking roller 88, and onto a second endless belt 98 which is porous. Belt 98 passes the sheet over a stationary platen 100, which is also porous and subjected to a vacuum by pump 102 through conduit 104, which vacuum retains the media sheet in position over platen 100. A first source of radiant energy 106 is disposed proximate the platen 100 and which may be similar to the radiant source 52 for emitting ultraviolet radiation and curing the coating on the print media. The ultraviolet energy source 106 is cooled by circulation of water through tubes 108, 110 connected thereto. Upon completion of the curing of the coating on the print media by unit 106, the print media is moved downwardly by belt 98 and from the belt 98 transported separately along path 112 and then upwardly along path 114 to a second tacking roller 116. The presence of the sheet stock is sensed at the tacking roller 116 by a sensor 117 which provides an electrical signal along the electrical leads 118, 120 to a controller (not shown) indicating media sheet presence.
The print media is subsequently moved from the tacking roller 116 onto a second endless belt 122 and is electrostatically adhered thereto for passage over and positioning adjacent a stationary platen 124. The print media then has a protective coating applied by the coating unit 126 which, it will be understood, is similar to the coating applied to the marking on reverse side of the printed media by unit 94. Upon application of the coating onto the reverse side of the print media, the media is moved by belt 122 past the de-tacking unit 128 and from there transported onto a second endless belt 130 positioned vertically above the coating unit 126. The belt 130 is passed over a stationary porous platen 132, which is connected via conduit 134 to a vacuum pump 136; and, the print media is adhered to the belt by the suction applied through the porous platen and through the porosity of the material of the belt 130. A source of radiant energy 138 is disposed proximate the platen 132 and comprises an ultraviolet source similar to the source 52 of
The present disclosure thus describes a unique and novel way of rapidly applying a protective coating over printed media in a digital print engine by a minimal addition to an existing print engine that is relatively compact and permits the print engine to operate at normal speeds without any reduction of productivity.
It will be appreciated that various of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Also that various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.