This application is directed to applying optical energy to nanoparticles to produce a specified nanostructure.
The instant article of manufacture may be made by a method including applying optical energy to one or more layers of unfused nanoparticulate materials under predetermined conditions to produce a nanostructure having certain properties and characteristics. For example, the nanostructure may include layers having a predetermined pore density, a predetermined pore size, or both. The predetermined conditions used to apply the optical energy may include a predetermined voltage, a predetermined duration, a predetermined power density, or combinations thereof.
The one or more layers of unfused nanoparticulate materials may include at least one layer of nanoparticulate Cu disposed on a polyamide substrate. At least a portion of the Cu nanoparticles of the at least one layer of nanoparticulate Cu may be optically fused together to form a continuous film over the substrate. The at least one layer of nanoparticulate Cu may be applied to the substrate as an ink formulation and disposed on the substrate via a printing process, such as a drop down printing process or a screen printing process.
The one or more layers of unfused nanoparticulate material may also include at least one layer of nanoparticulate Si disposed on one or more layers of nanoparticulate Cu. At least a portion of the Si nanoparticles of the at least one layer of nanoparticulate Si may be optically fused together, such that the at least one layer of nanoparticulate Si has a predetermined pore density, a predetermined pore size, or both. The at least one nanoparticulate Si layer may be applied to the one or more layers of nanoparticulate Cu as an ink formulation and disposed on the one or more layers of nanoparticulate Cu via a printing process.
Further, the one or more layers of unfused nanoparticulate material may include at least one layer of nanoparticulate Cu including nanoparticulate MnO additives disposed therein. A Cu oxide layer may be formed from the at least one layer of nanoparticulate Cu including the nanoparticulate MnO additives.
The properties and characteristics of the nanostructure may be predetermined based on a particular application for the nanostructure. For example, the nanostructure may be used to form a Si anode of a Li ion battery. Thus, the optical energy is applied to a number of layers of unfused nanoparticulate material in such a way to produce a nanostructure with characteristics optimized to function as a Si anode of a Li ion battery.
In another implementation, the nanostructure may be used to form a supercapacitor. Accordingly, the optical energy is applied to a number of layers of unfused nanoparticulate material to produce a nanostructure having characteristics and properties designed to function as a supercapacitor.
The detailed description is described with reference to the accompanying figures. In the figures, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. The same numbers are used throughout the drawings to reference like features and elements.
As optical energy is applied to the nanoparticles 104, the nanoparticles 104 may optically fuse to form a nanostructure 106-110. The predetermined processing conditions of the optical energy source 102 may control the characteristics and properties of the nanostructures 106-110 based on the amount of optical energy applied to the nanoparticles 104. For example, the voltage, time, power density, or combinations thereof, may be varied to produce the nanostructures 106, 108, or 110.
In particular, the extent or degree to which the nanoparticles 104 are optically fused together may depend on the voltage, time (i.e. duration), and power density of the optical energy source 102 applied to the nanoparticles 104. Thus, predetermined and specified ranges of the voltage, time, and power density of the optical energy source 104 may produce the various nanostructures 106-110. In some cases, the predetermined voltage, time, and power density of the optical energy source 104 applied to produce a specified nanostructure also takes into account the chemical identify and composition of the nanoparticles 104. To illustrate, a respective set of conditions of the optical energy source 102 is applied to Cu nanoparticles to produce one of the nanostructures 106-110. In addition, a respective set of conditions of the optical energy source 102 is applied to Si nanoparticles to produce one of the nanostructures 106-110.
The nanostructures 106-110 may be characterized by the extent that the nanoparticles 104 are fused together when optical energy is applied to the nanoparticles 104. In other words, the degree of optical fusion is quantified to characterize the nanostructures. For example, predetermined voltage, time, (i.e. duration) and/or power density settings of the optical energy source 102 may produce a nanostructure with nanoparticles fused to a first extent or degree, such as the nanostructure 106.
In another implementation, different voltage, duration, and/or power density settings of the optical energy source 104 may yield a nanostructure with nanoparticles fused to a second extent or degree, such as the nanostructure 108. In a further implementation, other voltage, duration, and/or power density settings of the optical energy source 106 may produce a continuous film of fused nanoparticles, such as the nanostructure 110.
The degree or extent to which the nanoparticles 104 are fused together may be expressed in terms of the porosity. In particular, the degree of optical fusion is characterized in terms of pore size within the nanostructures 106-110, the number of pores of the nanostructures 106-110 (i.e. the pore density), or both depending upon the predetermined processing conditions utilized to apply optical energy to the nanoparticles 104. The extent to which the nanoparticles 104 are fused together may additionally, or alternatively, be expressed as the particle size of the optically fused nanoparticles.
In particular, the porosity of the nanostructures 106-110 progressively decreases from the nanostructure 106 to the nanostructure 110. Thus, the pore density of the nanostructure 106 is greater than the pore density of the nanostructure 108. The pore density of the nanostructure 108 is greater than the pore density of the nanostructure 110. Additionally, the pore size of the optically fused nanoparticles increases from the nanostructure 106 to the nanostructure 110. Thus, the pore size of the optically fused nanoparticles of the nanostructure 106 is less than the optically fused nanoparticles of the nanostructure 108 and the pore size of the optically fused nanoparticles of the nanostructure 108 is less than the pore size of the optically fused nanoparticles of the nanostructure 110.
By varying the predetermined process conditions by which optical energy is applied to the nanoparticles 104, the characteristics of the nanostructures 106-110 may be engineered for specific applications. For example, some applications may call for nanostructures having a particular predetermined pore size and/or pore density of fused nanoparticles of a particular composition. Thus, the settings of the optical energy source 104 may be controlled in a predetermined manner in order to generate a nanostructure having suitable characteristics for the intended application.
One or more unfused nanoparticulate layers may be applied to the substrate 202, such as a layer of unfused nanoparticulate Cu 204 and one or more layers of unfused nanoparticulate Si 206. The one or more layers of nanoparticles may be applied to the substrate 202 via a printing process. For example, the one or more layers of nanoparticulate Cu 204 may be applied to the substrate 202 by a conventional drawdown printing method. In addition, one or more layers of nanoparticulate Si 206 may be applied to the one or more layers of nanoparticulate Cu 204 via a conventional drawdown printing process. The printing process utilized to apply the one or more nanoparticulate layers 204, 206 to the substrate 202 may also include a known conventional screen printing process. The one or more nanoparticulate layers 202, 204 may also be applied to the substrate 202 via a known ink deposition process. Additionally, the one or more nanoparticulate layers 204, 206 may be applied to the substrate 202 in a pattern, such as a grid pattern, or as a continuous layer.
The one of more unfused layers of nanoparticulate Cu 204 and/or the one or more unfused layers of nanoparticulate Si 206 may be ink formulations including nanoparticulate Cu and/or nanoparticulate Si. The ink formulations of nanoparticulate Cu and nanoparticulate Si may be prepared according to techniques described in U.S. Pat. Nos. 7,514,369; 7,531,155; and 7,244,513; which are incorporated by reference herein in their entirety. In a particular implementation, the ink formulation of nanoparticulate Si may be derived from Si nanoparticles as received from a vendor, crystalline silicon powder that has been mechanically milled to nano-size particles, wet acid etched silicon nanoparticles, or combinations thereof. A size of the Si nanoparticles may be less than 100 nm Additionally, the Si nanoparticles may include p-type Si nanoparticles, n-type Si nanoparticles, or mixtures thereof.
In an illustrative example, to prepare an ink formulation including nanoparticulate Si, micron sized Si powders or fragments are ball milled followed by chemical etching followed by a size separation of the Si nanoparticles. The Si nanoparticles are then transferred to an inert atmosphere glove box, such as a VACCUM ATMOSPHERERS NEXUS® glove box, and formulated with a low boiling point solvent, such as benzyl alcohol and a dispersant. Si3N4 beads may also be added for further sonication. The mixture is then transferred to a glass bottle, sealed, and maintained in an inert N2 atmosphere. The resultant nanoparticle slurry is sonicated in an ultrasonication bath for at least about 30 minutes and then ball milled using a rotary tumbler machine. The Si3N4 beads are removed via centrifugation and particles remaining in suspension may be decanted to obtain the ink formulation including nanoparticulate Si. The volume of the ink formulation containing nanoparticulate Si may be adjusted using a functional solvent to obtain the targeted Si loading.
After each application of a respective nanoparticulate layer to the substrate 202, the layer may be baked. For example, after one or more of the layers of nanoparticulate Si 206 is applied to the substrate 202, the layer of nanoparticulate Si 206 may be baked at a temperature of about 100° C. for a duration of about 10 minutes.
Optical energy 208 is applied to the one or more layers of nanoparticles, such as the layers 204 and 206, and the substrate 202. The optical energy 208 may be derived from a high intensity, broad spectrum source, such as a Xe lamp. The optical energy 208 may be applied for a predetermined duration and with a predetermined voltage, and/or predetermined power density depending on a desired amount or degree of fusion, pore size, and/or pore density of each of the one or more layers 204, 206. In a particular example, the power density of the optical energy source is in the range of 5.50 kW/cm2 to 6.50 kW/cm2. In this example, the optical energy 208 may be applied at a voltage in the range of 1075 V to 1175V and the optical energy 208 may be applied for about 800 microseconds. The optical energy 208 may also be applied in air and/or at about 25° C.
The optical energy 208 absorbed by the nanoparticles of the layers 204, 206 is converted into thermal energy and increases the temperature of the nanoparticles. Since nanoparticles tend to melt at lower temperatures than their corresponding bulk material, the nanoparticles of the layers 204, 206 may be fused together to a certain extent. Some of the thermal energy from the nanoparticles dissipates into the substrate 202 and ambient air. Since the optical energy is applied for a relatively quick duration, the temperature of the substrate 202 is less than 100° C., which advantageously prevents or minimizes thermal damage to the substrate 202.
After applying the optical energy 208, a conductive optically fused Cu layer 210 may be formed. Additionally, an optically fused Si nanoparticulate structure 212 may also be formed. The properties and characteristics of the conductive Cu layer 210 and/or the Si nanoparticulate structure 212 may be controlled or otherwise predetermined by the settings of an optical energy source utilized to apply the optical energy 208. In some cases, the Si nanoparticles of the layer of nanoparticulate Si 206 may be optically fused together to form optically fused nanoparticulate Si balls 214 (i.e. aggregates). The size and/or density of the optically fused nanoparticulate Si balls 214 are controlled or otherwise predetermined by the conditions that the optical energy 208 is applied to the unfused layer of Si nanoparticles 204. In addition to optically fusing nanoparticles of the one or more layers 204, 206, the one or more of the layers of nanoparticles 204, 206 may also be cured. Upon curing, the one or more layers of nanoparticulate Cu 204 may have a conductivity greater than about 105 S/cm.
Other layers of elemental nanoparticles may be applied to the substrate 202, such as Li, B, Zn, Ag, Al, Ni, Pd, Sn, Ga, or the like. Additionally, nanoparticulate alloys may be disposed on the substrate 202, such as Cu—Zn, Al—Zn, Li—Pd, Al—Mg, Mg—Al—Zn, or the like. Further, nanoparticulate compounds may be disposed on the substrate 202, such as ITO, SnO2, NaCl, MgO, Si3N4, GaN, ZnO, ZnS, or the like.
In an illustrative implementation, the nanoparticulate structure 212, the conductive Cu layer 210, and the substrate 202 may be utilized to construct an anode for a battery, such as a Li ion battery anode. In particular, Si can be a candidate for use as an anode for a Li ion battery with a theoretical discharge capacity of about 4200 mAh/g. However, the capacity of many Si anodes fades during cycling. For example, Si may form an intermetallic alloy with Li according to the equation:
44Li+10Si=10Li4.4Si (Eq. 1)
Since the atomic radius of Li is higher than that of Si (about 2.05 Angstroms for Li vs. about 1.46 Angstroms for Si), a volume expansion of the Si lattice may take place. Such volume expansion of the Si lattice may cause internal stress of the Si lattice leading to internal pulverization and cracks of the Si particles. As a result, Li ion diffusion pathways collapse trapping the Li ions. The collapse of Li diffusion pathways causes a loss of current and leads to capacity fade as cycling of a Li ion battery proceeds or otherwise increases.
In some instances, amorphous silicon, silicon composites, silicon alloys and nanosized silicon have been engineered in an attempt to improve cycle performance for Si anodes of Li ion batteries. However, in some cases, such as with respect to nanosize Si powders, the Si may aggregate during cycling which limits the Li conduction pathways. In other cases, such as amorphous Si and Si alloys, performance of the Si anodes formed from these materials may be improved. Further, in the case of Si nanowires on stainless steel substrates with a gold seed catalyst, the cost of the catalyst and the complicated nature of the process may be limiting.
Accordingly, fusing together nanoparticulate Si by applying optical energy to one or more layers of nanoparticulate Si to form the optically fused nanoparticulate structure 212 advantageously increases the mechanical strength of the nanoparticulate structure 212 and Li conduction pathways are maintained or otherwise improved. Additionally, the simplicity and cost effectiveness of the instant optical fusing process provide a superior alternative to existing Si battery anode manufacturing processes.
The nanoparticulate Si of
One or more unfused nanoparticulate layers may be applied to the substrate 1102, such as one or more layers of unfused nanoparticulate Cu 1104. The one or more layers of unfused nanoparticles may be applied to the substrate 1102 via a printing process. For example, the one or more layers of unfused nanoparticulate Cu 1104 may be applied to the substrate 1102 by a known and conventional drawdown printing method. In addition, the printing process utilized to apply the one or more layers to the substrate 1102 may also include a known conventional screen printing process. The one or more layers of unfused nanoparticles may also be applied to the substrate 1102 via a known ink deposition process.
The layer of unfused nanoparticulate Cu 1104 may be an ink formulation including nanoparticulate Cu. The ink formulation may also include additives disposed therein, such as nanoparticulate MnO additives 1106. An ink formulation including nanoparticulate Cu and nanoparticulate MnO additives may be prepared according to techniques described in U.S. Pat. Nos. 7,514,369; 7,531,155; and 7,244,513; which are incorporated by reference herein in their entirety. In a particular example, nanoparticulate Cu and nanoparticulate MnO may be combined in a MicroCer Ball-Mill from NETZSCH® at an agitation speed between 2000-2500 rpm and ground via sonication for a duration of about 30 minutes. The ink formulation containing nanoparticulate Cu and nanoparticulate MnO additives may have a viscosity between 5 cp to 15 cp, a surface tension between 20 mN/m and 30 mN/m, and an average particle size less than about 100 nm. In addition, the loading of the nanoparticulate MnO additives may be between 10% to 40% by weight.
Optical energy 1108 is applied to the one or more layers of unfused nanoparticles, such as the layer 1104, and the substrate 1102. The optical energy 1108 may be derived from a high intensity, broad spectrum lamp. In particular, the optical energy source may be a Xe lamp. The optical energy 1108 may be applied for a predetermined duration and at a predetermined voltage, and/or predetermined power density to achieve a predetermined amount or degree of fusion, pore size, and/or pore density of each of the one or more layers 1104. The total energy density applied to the one or more layers of nanoparticulate Cu 1104 and the substrate 1102 may be up to about 12 J/cm2 at a duration between 0.2 milliseconds to 1.0 milliseconds.
After applying the optical energy 1108, an optically fused conductive Cu layer 1110 may be formed. The properties and characteristics of the optically fused conductive Cu layer 1110 may be controlled or otherwise predetermined by the settings of an optical energy source utilized to apply the optical energy 1108. The optically fused conductive Cu layer 1110 may have a resistance less than 1 Ω/cm2.
Further, a Cu oxidation layer 1112 may be formed on the optically fused conductive Cu layer 1110. For example, the optically fused conductive Cu layer 1110 may be heated in air or in an O2 environment at a temperature between 200° C. and 300° C. for a duration of between 3 minutes and 5 minutes.
In an illustrative implementation, a nanostructure including the substrate 1102, the optically fused conductive Cu layer 1110, and the Cu oxidation layer 1112 may be utilized as an electrode of a supercapacitor. In particular, copper oxide electrodes may store energy via the equation:
Cu2++e−Cu−(−0.08 V/SCE) (Eq. 2)
Supercapacitors may be applied in wireless components and mobile devices, such as PCMCIA cards, compact flash memory, mobile handsets, smart phones, personal digital assistants (PDAs), digital cameras, netbooks, digital media players, toys, eBook readers, and so on. The advantages of supercapacitors can include a fast charging/discharging rate, long cycle life, high cycle efficiency, and broad operating temperature range. However, supercapacitors may have a low specific energy density.
In particular, the nanostructure including the substrate 1102, the optically fused conductive Cu layer 1110, and the Cu oxidation layer 1112 may be utilized to construct a pseudocapacitor. Pseudocapacitors exhibit characteristics of both electrochemical double layer capacitors and batteries, such as electron transfer reactions and bulk and interfacial processes. Pseudocapacitors store energy on the surface and/or subsurface. Thus, pseudocapacitors having a larger surface area may have greater energy densities. Due to the porous nature of the nanostructure of
At 1204, settings of an optical energy source are predetermined to produce the nanostructure having the predetermined characteristics. For example, a voltage, a duration, and/or a power density related to the operation of an optical energy source may be predetermined such that when the optical energy source is applied to a nanoparticulate starting material, a nanostructure having the predetermined characteristics is produced.
At 1206, one or more layers of unfused nanoparticles are applied to a substrate. The composition of the layers of unfused nanoparticles may depend on the predetermined characteristics and properties of the resultant nanostructure. For example, the composition of the one or more layers of unfused nanoparticles may depend on a predetermined amount of resistivity of the nanostructure. In another example, the composition of the one or more layers of unfused nanoparticles applied to the substrate may depend on a predetermined mechanical stability of the nanostructure. In a further example, the one or more layers of unfused nanoparticles applied to the substrate may depend on a predetermined thermal conductivity of the nanostructure. In some cases, the composition of the one or more layers of nanoparticles may include elemental nanoparticles, such as nanoparticulate Cu or nanoparticulate Si, elemental nanoparticles containing nanoparticulate additives disposed therein, nanoparticulate compounds, nanoparticulate alloys, or combinations thereof.
At 1208, optical energy is applied to the one or more layers of unfused nanoparticles that have been applied to the substrate. The optical energy is applied at the predetermined duration, voltage, and/or power density settings in order to produce the nanostructure with the predetermined characteristics. At 1210, the nanostructure may be further processed. For example, one or more layers of the nanostructure may be thermally cured. In another example, an oxidation process may be applied to one or more layers of the nanostructure.
At 1212, the nanostructure is utilized in a specified application. To illustrate, the nanostructure may be utilized as an anode of a battery, such as a Li-ion battery anode. In other cases, the nanostructure may be utilized as a supercapacitor.
Although, the operations 1202-1212 are described as occurring in a particular order, the order in which the operations 1202-1212 are described is not intended to be construed as a limitation, and any number of the described operations can be combined in any order and/or in parallel to implement the process 1200.
Optical energy was applied to a KAPTON® substrate having a layer of nanoparticulate Cu and a layer of nanoparticulate Si. The layer of nanoparticulate Si was comprised of a Si ink formulation that was prepared from Si nanoparticles as purchased from a vendor having a viscosity of 5 cp at 10 rpm and a loading concentration of 9 weight %. The optical energy was applied at a voltage of about 800V for about 800 microseconds with a power density of about 3.00 kW/cm2. The layer of nanoparticulate Si was not cured and there was little to no fusing of nanoparticulate Si. Additionally, the layer of nanoparticulate Cu was not cured.
Optical energy was applied to a KAPTON® substrate having a layer of nanoparticulate Cu and a layer of nanoparticulate Si. The layer of nanoparticulate Si was comprised of a Si ink formulation that was prepared from Si nanoparticles as purchased from a vendor having a viscosity of 5 cp at 10 rpm and a loading concentration of 9 weight %. The optical energy was applied at a voltage of about 1000V for about 800 microseconds with a power density of about 4.69 kW/cm2. The layer of nanoparticulate Si was not cured and there was little to no fusing of nanoparticulate Si. Additionally, the layer of nanoparticulate Cu was cured and was conductive.
Optical energy was applied to a KAPTON® substrate having a layer of nanoparticulate Cu and a layer of nanoparticulate Si. The layer of nanoparticulate Si was comprised of a Si ink formulation that was prepared from Si nanoparticles as purchased from a vendor having a viscosity of 5 cp at 10 rpm and a loading concentration of 9 weight %. The optical energy was applied at a voltage of about 110V for about 800 microseconds with a power density of about 5.67 kW/cm2. The layer of nanoparticulate Si was cured and there was fusing of nanoparticulate Si. Additionally, the layer of nanoparticulate Cu was cured and was conductive.
Optical energy was applied to a KAPTON® substrate having a layer of nanoparticulate Cu and a layer of nanoparticulate Si. The layer of nanoparticulate Si was comprised of a Si ink formulation that was prepared from Si nanoparticles as purchased from a vendor having a viscosity of 5 cp at 10 rpm and a loading concentration of 9 weight %. The optical energy was applied at a voltage of about 1150V for about 800 microseconds with a power density of about 6.20 kW/cm2. The layer of nanoparticulate Si was cured and there was fusing of nanoparticulate Si. Additionally, the layer of nanoparticulate Cu was cured and was conductive.
Optical energy was applied to a KAPTON® substrate having a layer of nanoparticulate Cu and a layer of nanoparticulate Si. The layer of nanoparticulate Si was comprised of a Si ink formulation that was prepared from Si nanoparticles as purchased from a vendor having a viscosity of 5 cp at 10 rpm and a loading concentration of 9 weight %. The optical energy was applied at a voltage of about 1200V for about 800 microseconds with a power density of about 6.75 kW/cm2. The layer of nanoparticulate Si partially separated from the layer of nanoparticulate Cu. Additionally, the layer of nanoparticulate Cu was cured and was conductive.
Optical energy was applied to a KAPTON® substrate having a layer of nanoparticulate Cu and a layer of nanoparticulate Si. The layer of nanoparticulate Si was comprised of a Si ink formulation that was prepared from Si nanoparticles as purchased from a vendor having a viscosity of 5 cp at 10 rpm and a loading concentration of 9 weight %. The optical energy was applied at a voltage of about 1600V for about 500 microseconds with a power density of about 19.20 kW/cm2. The layer of nanoparticulate Si was separated from the layer of nanoparticulate Cu. Additionally, the layer of nanoparticulate Cu was partially separated from the substrate.
Optical energy was applied to a KAPTON® substrate having a layer of nanoparticulate Cu and a layer of nanoparticulate Si. The layer of nanoparticulate Si was comprised of a Si ink formulation that was prepared from Si nanoparticles as purchased from a vendor having a viscosity of 5 cp at 10 rpm and a loading concentration of 9 weight %. The optical energy was applied at a voltage of about 2000V for about 200 microseconds with a power density of about 5.00 kW/cm2. The layer of nanoparticulate Si was cured and there was some fusing of nanoparticulate Si, but the curing and fusing of nanoparticulate Si was not uniform. Additionally, the layer of nanoparticulate Cu was cured and was conductive.
In an electrochemical characterization of a sample Si anode, the specific capacity of the end product of example 3 was measured using a Princeton Applied ResearchVMP3-CHAS 16 channel analyzer. The testing conditions were:
Half Cell
Working Electrode: Si based thin film
Reference Electrode Li
Counter Electrode Li
Electrolyte: FC-130
Separator: Polypropylene
Voltage Window 0.02 V-1.5 V
Current: 100 mA/g
The specific capacity for the first cycle was 6000 mAh/g and the specific capacity of the second cycle was 1700 mAh/g.
This application claims the benefit under 35 U.S.C. §119(e)(1) of U.S. Provisional Application No. 61/225,797, filed Jul. 15, 2009, which is hereby incorporated by reference.
The U.S. Government has a paid-up license in this invention and the right in limited circumstances to require the patent owner to license others on reasonable terms as provided for by the terms of Contract No. W911-QX-10-C-0044 awarded by The Department of Defense.
Number | Name | Date | Kind |
---|---|---|---|
3239597 | Flynn | Mar 1966 | A |
3580731 | Milewski et al. | May 1971 | A |
3796598 | Gejyo et al. | Mar 1974 | A |
3950605 | Hori et al. | Apr 1976 | A |
4093466 | Davis | Jun 1978 | A |
4194913 | Davis | Mar 1980 | A |
RE30434 | Davis | Nov 1980 | E |
4234631 | Davis | Nov 1980 | A |
4331518 | Wilson | May 1982 | A |
4591951 | Iwamoto et al. | May 1986 | A |
4640746 | Nobel et al. | Feb 1987 | A |
4681670 | Nobel et al. | Jul 1987 | A |
4749626 | Kadija et al. | Jun 1988 | A |
4756791 | D'Angelo et al. | Jul 1988 | A |
4922322 | Mathew | May 1990 | A |
4935312 | Nakayama et al. | Jun 1990 | A |
4959278 | Shimauch et al. | Sep 1990 | A |
4997516 | Adler | Mar 1991 | A |
4997722 | Adler | Mar 1991 | A |
5008997 | Phy | Apr 1991 | A |
5039576 | Wilson | Aug 1991 | A |
5049718 | Spletter et al. | Sep 1991 | A |
5130275 | Dion | Jul 1992 | A |
5160422 | Nishimura et al. | Nov 1992 | A |
5202179 | Kasahara | Apr 1993 | A |
5234513 | Inoue et al. | Aug 1993 | A |
5260849 | Kasahara | Nov 1993 | A |
5277756 | Dion | Jan 1994 | A |
5320737 | Chao et al. | Jun 1994 | A |
5322823 | Ueda et al. | Jun 1994 | A |
5384204 | Yumoto et al. | Jan 1995 | A |
5393573 | MacKay | Feb 1995 | A |
5439639 | Vianco et al. | Aug 1995 | A |
5492595 | Carano et al. | Feb 1996 | A |
5698087 | Bokisa | Dec 1997 | A |
5724727 | Chopra et al. | Mar 1998 | A |
5730851 | Arrowsmith et al. | Mar 1998 | A |
5750017 | Zhang | May 1998 | A |
5798286 | Faraci et al. | Aug 1998 | A |
5807519 | Suzuki et al. | Sep 1998 | A |
5861076 | Adlam | Jan 1999 | A |
5879568 | Urasaki et al. | Mar 1999 | A |
5889083 | Zhu et al. | Mar 1999 | A |
5990197 | Escano et al. | Nov 1999 | A |
6010771 | Isen et al. | Jan 2000 | A |
6093503 | Isoyama et al. | Jul 2000 | A |
6099713 | Yanada et al. | Aug 2000 | A |
6139777 | Kazunori | Oct 2000 | A |
6147400 | Faraci et al. | Nov 2000 | A |
6165386 | Endo et al. | Dec 2000 | A |
6200732 | Tamura et al. | Mar 2001 | B1 |
6238847 | Axtell et al. | May 2001 | B1 |
6248455 | Adams et al. | Jun 2001 | B1 |
6297142 | Mita et al. | Oct 2001 | B1 |
6306947 | Morishima et al. | Oct 2001 | B1 |
6361823 | Bokisa et al. | Mar 2002 | B1 |
6426548 | Mita et al. | Jul 2002 | B1 |
6433409 | Mita et al. | Aug 2002 | B2 |
6472459 | Morales et al. | Oct 2002 | B2 |
6530944 | West et al. | Mar 2003 | B2 |
6554914 | Rozbicki et al. | Apr 2003 | B1 |
6583500 | Abbott et al. | Jun 2003 | B1 |
6603205 | Miura | Aug 2003 | B2 |
6638847 | Cheung et al. | Oct 2003 | B1 |
6646330 | Kubara et al. | Nov 2003 | B2 |
6651521 | Carbone et al. | Nov 2003 | B2 |
6664492 | Babb et al. | Dec 2003 | B1 |
6679937 | Kodas et al. | Jan 2004 | B1 |
6682584 | Pozarnsky et al. | Jan 2004 | B2 |
6720499 | Bokisa et al. | Apr 2004 | B2 |
6773827 | Higuchi | Aug 2004 | B2 |
6773828 | Ooi et al. | Aug 2004 | B1 |
6774036 | Goldstein | Aug 2004 | B2 |
6783569 | Cheon et al. | Aug 2004 | B2 |
6828660 | Abbott | Dec 2004 | B2 |
6860981 | Schetty, III et al. | Mar 2005 | B2 |
6899775 | Hill et al. | May 2005 | B2 |
6917098 | Yamunan | Jul 2005 | B1 |
6951666 | Kodas et al. | Oct 2005 | B2 |
7019391 | Tran | Mar 2006 | B2 |
7062848 | Pan et al. | Jun 2006 | B2 |
7084067 | Geusic et al. | Aug 2006 | B2 |
7087523 | Grigoropoulos et al. | Aug 2006 | B2 |
7153775 | Geusic | Dec 2006 | B2 |
7160629 | Crosby | Jan 2007 | B2 |
7179362 | Dietterle et al. | Feb 2007 | B2 |
7195702 | Bokisa, Sr. et al. | Mar 2007 | B2 |
7215014 | Su et al. | May 2007 | B2 |
7252699 | Perry et al. | Aug 2007 | B2 |
7262603 | Benton et al. | Aug 2007 | B1 |
7294366 | Renn et al. | Nov 2007 | B2 |
7297902 | Weiss | Nov 2007 | B2 |
7316725 | Kodas et al. | Jan 2008 | B2 |
7357681 | Yamagami et al. | Apr 2008 | B2 |
7391116 | Chen et al. | Jun 2008 | B2 |
7482540 | Shukushima et al. | Jan 2009 | B2 |
7507618 | Dunbar | Mar 2009 | B2 |
7547479 | Wessling | Jun 2009 | B2 |
7776196 | Fujimoto et al. | Aug 2010 | B2 |
7786024 | Stumbo et al. | Aug 2010 | B2 |
7867413 | Lee et al. | Jan 2011 | B2 |
7879131 | Yaniv et al. | Feb 2011 | B2 |
20020148386 | Woosman et al. | Oct 2002 | A1 |
20020158342 | Tuominen et al. | Oct 2002 | A1 |
20020185716 | Abys et al. | Dec 2002 | A1 |
20020187364 | Heber et al. | Dec 2002 | A1 |
20020192492 | Abys | Dec 2002 | A1 |
20030025182 | Abys et al. | Feb 2003 | A1 |
20030151030 | Gurin | Aug 2003 | A1 |
20030168639 | Cheon et al. | Sep 2003 | A1 |
20030226758 | Egli | Dec 2003 | A1 |
20040026256 | Lindgren | Feb 2004 | A1 |
20040026684 | Empedocies | Feb 2004 | A1 |
20040118696 | Zhang et al. | Jun 2004 | A1 |
20040131934 | Sugnaux et al. | Jul 2004 | A1 |
20040132299 | Matsuda et al. | Jul 2004 | A1 |
20040134379 | Wong et al. | Jul 2004 | A1 |
20040147618 | Lee et al. | Jul 2004 | A1 |
20040175631 | Crocker et al. | Sep 2004 | A1 |
20040192042 | Sirringhaus et al. | Sep 2004 | A1 |
20040232000 | Crosby | Nov 2004 | A1 |
20040241532 | Kim | Dec 2004 | A1 |
20040256239 | Whitlaw et al. | Dec 2004 | A1 |
20050019543 | Lyles | Jan 2005 | A1 |
20050078158 | Magdassi et al. | Apr 2005 | A1 |
20050097987 | Kodas et al. | May 2005 | A1 |
20050145502 | Schetty, III et al. | Jul 2005 | A1 |
20050148164 | Casey et al. | Jul 2005 | A1 |
20050183768 | Roscheisen et al. | Aug 2005 | A1 |
20050218398 | Tran | Oct 2005 | A1 |
20050230042 | Hasimoto | Oct 2005 | A1 |
20050249967 | Egli | Nov 2005 | A1 |
20050249968 | Xu et al. | Nov 2005 | A1 |
20050249969 | Xu et al. | Nov 2005 | A1 |
20050274480 | Barsoum et al. | Dec 2005 | A1 |
20060011267 | Kay et al. | Jan 2006 | A1 |
20060054668 | Severin | Mar 2006 | A1 |
20060057502 | Okada et al. | Mar 2006 | A1 |
20060062701 | Nakamura et al. | Mar 2006 | A1 |
20060068218 | Hooghan | Mar 2006 | A1 |
20060073680 | Han et al. | Apr 2006 | A1 |
20060082952 | Toshiaki | Apr 2006 | A1 |
20060090819 | Egli | May 2006 | A1 |
20060091121 | Zanolli et al. | May 2006 | A1 |
20060096867 | Bokisa et al. | May 2006 | A1 |
20060110424 | Lyles | May 2006 | A1 |
20060111467 | Reinhardt et al. | May 2006 | A1 |
20060141268 | Kalkan et al. | Jun 2006 | A1 |
20060159838 | Kowalski et al. | Jul 2006 | A1 |
20060163744 | Vanheusden et al. | Jul 2006 | A1 |
20060183055 | O'Neill et al. | Aug 2006 | A1 |
20060189113 | Vanheusden et al. | Aug 2006 | A1 |
20060234519 | Pan et al. | Oct 2006 | A1 |
20060240591 | Grier et al. | Oct 2006 | A1 |
20060286301 | Murata et al. | Dec 2006 | A1 |
20070007144 | Schetty, III | Jan 2007 | A1 |
20070040191 | Bezryadin et al. | Feb 2007 | A1 |
20070051927 | Itoh et al. | Mar 2007 | A1 |
20070074316 | Alden et al. | Mar 2007 | A1 |
20070095879 | Holmes | May 2007 | A1 |
20070105395 | Kinzel et al. | May 2007 | A1 |
20070117475 | Tu | May 2007 | A1 |
20070144305 | Jablonski et al. | Jun 2007 | A1 |
20070145375 | Cho | Jun 2007 | A1 |
20070148972 | Hara et al. | Jun 2007 | A1 |
20070158204 | Taylor et al. | Jul 2007 | A1 |
20070163643 | Van Duren | Jul 2007 | A1 |
20070166453 | Van Duren et al. | Jul 2007 | A1 |
20070175296 | Subramanian et al. | Aug 2007 | A1 |
20070176991 | Arai et al. | Aug 2007 | A1 |
20070190326 | Perry et al. | Aug 2007 | A1 |
20070218312 | Sakuyama et al. | Sep 2007 | A1 |
20070275262 | Lin et al. | Nov 2007 | A1 |
20070281136 | Hampden-Smith et al. | Dec 2007 | A1 |
20070281249 | Tutt et al. | Dec 2007 | A1 |
20070284700 | Jackson et al. | Dec 2007 | A1 |
20070287022 | Jackson et al. | Dec 2007 | A1 |
20070287023 | Jackson et al. | Dec 2007 | A1 |
20070287024 | Jackson et al. | Dec 2007 | A1 |
20070289483 | Cho et al. | Dec 2007 | A1 |
20070295530 | Jackson et al. | Dec 2007 | A1 |
20080020304 | Schroder et al. | Jan 2008 | A1 |
20080083950 | Pan et al. | Apr 2008 | A1 |
20080143906 | Allemand et al. | Jun 2008 | A1 |
20080169122 | Shiraishi et al. | Jul 2008 | A1 |
20080193667 | Garbar et al. | Aug 2008 | A1 |
20080286488 | Li et al. | Nov 2008 | A1 |
20080305268 | Norman et al. | Dec 2008 | A1 |
20090142481 | Chopra et al. | Jun 2009 | A1 |
20090286383 | Jiang et al. | Nov 2009 | A1 |
20100000762 | Yang et al. | Jan 2010 | A1 |
20100035375 | Grigoropoulos et al. | Feb 2010 | A1 |
20110043965 | Yaniv et al. | Feb 2011 | A1 |
Number | Date | Country |
---|---|---|
1509206 | Jun 2004 | CN |
62124084 | Jun 1987 | JP |
10-308119 | Nov 1998 | JP |
11-319538 | Nov 1999 | JP |
2001-325831 | Nov 2001 | JP |
2008006513 | Jan 2008 | JP |
03106573 | Dec 2003 | WO |
2004005413 | Jan 2004 | WO |
2006072959 | Jul 2006 | WO |
Entry |
---|
European Patent Office, Examination Report, Application No. 08 755 692.4, Apr. 13, 2012. |
Champion et al., “Sintering of copper nanopowders under hydrogen: an in situ X-ray diffraction analysis”, Materials Science and Engineering A, vol. 360, No. 1-2, Nov. 1, 2003, pp. 258-263. |
The State Intellectual Property Office of the People's Republic of China, Notice on Grant of Patent Right For Invention, Application No. 200880021733.6, Apr. 20, 2012. |
The State Intellectual Property Office of the People's Republic of China, Notice on the First Office Action, Application No. 200980125925.6, Mar. 31, 2012, 8 pages, CN. |
Korean Intellectual Property Office, Chemistry & Biotechnology Examination Bureau, Notice to File a Response, Patent Application No. 10-2010-7022240, May 8, 2012, KR. |
Schroder et al., “Broadcast Photonic Curing of Metallic Nanoparticle Films,” Nanotechnologies, Inc. publication, 2006 NSTI Nanotechnology Conference and Trade Show, May 7-11, 2006, 4 pages. |
Lu et al., “Ultrahigh Strength and High Electrical Conductivity in Copper,” Science Magazine, Apr. 2004, vol. 304, 6 pages. |
Volkman et al., “Ink-jetted Silver/Copper Conductors for printed RFID Applications,” Materials Research Society Magazine, 2004, vol. 814, 6 pages. |
Wu et al., “One-Step Green Route to Narrowly Dispersed Copper Nanocrystals,” Journal Of Nanoparticle Research, 2006, pp. 965-969, 5 pages. |
Curtis et al., “Spray and inkjet Printing of Hybrid Nanoparticle-Metal-Organic Inks for Ag and Chu Metallizations,” Materials Research Society Magazine, 2001, vol. 676, 6 pages. |
Shacham-Diamond, “Electroless Copper Deposition Using Glyoxylic Acid as Reducing Agent for Ultralarge Scale Integration Metallization,” manuscript published by Electrochemical And Solid-State Letters, Apr. 2000, pp. 279-282, 4 pages. |
Yeshchenko et al., “Size-Dependent Melting of Spherical Copper Nanoparticles,” article published by National Turas Shevchenko Kyiv University, Jan. 2007, 16 pages. |
Virang G. Shah, “Trimming and Printing of Embedded Resistors Using Demand-Mode Ink-Jet Technology and Conductive Polymer,” IPC Printed Circuit Expo Mar. 24-28, 2002, pp. 1-5. |
International Search Report for PCT/US08/63890, Aug. 6, 2008, 9 pages. |
International Search Report and Written Opinion for Application No. PCT/US/09/35717, May 5, 2009, 7 pages. |
Niizeki et al., “Laser Sintering of Ag Nanopaste Film and Its Application to Bond-Pad Formation,” 2008 Electronic Components and Technology Conference, May 27-30, 2008, IEEE, pp. 1745-1750. |
Lee et al., “Spontaneous Growth Mechanism of Tin Whiskers,” Acta mater. vol. 46, No. 10, pp. 3701-3714, 1998. |
Gaylon, “Annotated Tin Whisker Bibliography and Anthology,” IEEE Transactions on Electronics Packaging Manufacturing, vol. 28, No. 1, Jan. 2005, pp. 94-122. |
Lal et al., “Role of Intrinsic Stresses in the Phenomena of Tin Whiskers in Electrical Connectors,” IEEE Transactions on Electronics Packing Manufacturing, vol. 28, No. 1, Jan. 2005, pp. 63-74. |
Boettinger et al., “Whisker and Hillock Formation on Sn, Sn-Cu and Sn-Pb Electrodeposits,” Acta Materialia, 53, Sep. 8, 2005, pp. 5033-5050. |
Mitooka et al., “Effect of Laser Irradiation on Generation and Growth of Whiskers in Tin-Electroplated Film,” J. Japan Inst. Metals, vol. 73, No. 3, (2009), pp. 226-233. |
Osenbach et al., “Sn Corrosion and Its Influence on Whisker Growth,” IEEE Transactions on Electronic Packaging Manufacturing, vol. 30, No. 1, Jan. 2007, pp. 23-35. |
Osenbach et al., “Sn Whiskers: Material, Design, Processing, and Post-Plate Reflow Effects and Development of an Overall Phenomenological Theory,” IEEE Transactions on Electronics Packaging Manufacturing, vol. 28, No. 1, Jan. 2005, pp. 36-62. |
Osterman, “Mitigation Strategies for Tin Whiskers,” Release 1.0, Aug. 28, 2002, 11 pages. |
Schroeder et al., “Tin Whisker Test Method Development,” IEEE Transactions Electronics Packaging Manufacturing, vol. 29, No. 4, Oct. 2006, pp. 231-238. |
International Search Report and Written Opinion for International Application No. PCT/US09/44196, Jun. 30, 2009, 8 pages. |
International Search Report and Written Opinion for International Application No. PCT/US09/44195, Jun. 25, 2009, 7 pages. |
International Preliminary Report on Patentability, International Application No. PCT/US2009/044196, Nov. 25, 2010, 6 pages. |
International Preliminary Report on Patentability, International Application No. PCT/US2009/044195, Nov. 25, 2010, 5 pages. |
International Search Report and Written Opinion for International Application No. PCT/US09/49510, Oct. 19, 2009. |
International Preliminary Report on Patentability, PCT/US2008/063890, Dec. 3, 2009. |
International Search Report and Written Opinion of the International Searching Authority for PCT/US10/28799, May 19, 2010. |
International Search Report and the Written Opinion of the International Searching Authority for PCT/US10/28811, May 18, 2010. |
MSDS: Fluorad by 3M, Fluorosurfactant FC-4430, Mar. 2, 2002; www.3m.com/paintsandcoatings, 4 pages. |
Supplemental European Search Report; Application No. EP 09774505, Jun. 29, 2011. |
Notice of the First Office Action, Application No. 200880021733.6, Jun. 22, 2011. |
Supplementary European Search Report, Application No. EP08755692, Aug. 6, 2010. |
Kogelschatz, “Excimer Lamps: History, Discharge Physics, and Industrial Applications”, Proc. SPIE, vol. 5483, 2004, pp. 272-286. |
International Preliminary Report on Patentability, PCT/US2010/042169, Jan. 17, 2012. |
Notice on the First Office Action; Chinese Patent Application No. 200980108344.1, Jan. 21, 2012. |
Kim et al., “Cyclic Properties of Si-Cu/carbon Nanocomposite Anodes for Li-Ion Secondary Batteries” Journal of the Electrochemical Society, vol. 152, No. 3 , p. A-523-A526, published on Jan. 24, 2005, retrieved from the internet on Aug. 26, 2010. |
PCT International Search Report for Application No. PCT/US 10/42169, mailed on Sep. 7, 2010,4 pgs. |
Written Opinion for Application No. PCT/US 10/42169, mailed on Sep. 7, 2010,4 pgs. |
Yaniv, Z., “Novel Inkettable Copper Ink Utilizing Processing Temperatures under 100 Degrees C without the Need of Inert Atmosphere” Presentation at Printed Electronics Europe Conference, p. 1-25, Apr. 7-8, 2009, retrieved from the internet on Aug. 26, 2010. |
TEGO 425 Datasheet; http://evonik.tego.de/pdf/daten/amer/Flow—425.pdf. |
United States Patent & Trademark Office, Final Office Action Summary, U.S. Appl. No. 12/391,817, dated Aug. 27, 2012. |
United States Patent & Trademark Office, Non-Final Office Action Summary, U.S. Appl. No. 12/496,453, dated Jun. 13, 2012. |
European Patent Office, Examination Report, Application No. 09774505.3, dated Sep. 26, 2012. |
Number | Date | Country | |
---|---|---|---|
20110043965 A1 | Feb 2011 | US |
Number | Date | Country | |
---|---|---|---|
61225797 | Jul 2009 | US |