Approach for aftertreatment system modeling and model identification

Information

  • Patent Grant
  • 11687688
  • Patent Number
    11,687,688
  • Date Filed
    Thursday, March 19, 2020
    4 years ago
  • Date Issued
    Tuesday, June 27, 2023
    a year ago
Abstract
A system and approach for catalyst model parameter identification with modeling accomplished by an identification procedure that may incorporate a catalyst parameter identification procedure which may include determination of parameters for a catalyst device, specification of values for parameters and component level identification. Component level identification may be of a thermal model, adsorption and desorption, and chemistry. There may then be system level identification to get a final estimate of catalyst parameters.
Description
BACKGROUND

The present disclosure pertains to engines with aftertreatment mechanisms, and particularly to models of them


SUMMARY

The disclosure reveals a system and approach for catalyst model parameter identification with modeling accomplished by an identification procedure that may incorporate a catalyst parameter identification procedure which may include determination of parameters for a catalyst device, specification of values for parameters and component level identification. Component level identification may be of a thermal model, adsorption and desorption, and chemistry. There may then be system level identification to get a final estimate of catalyst parameters.





BRIEF DESCRIPTION OF THE DRAWING


FIG. 1 is a diagram of a basic workflow chart;



FIG. 1a is a diagram of a table listing of basic catalyst parameters and constants;



FIG. 1b is a diagram of a table that lists parameters pertinent to a thermal model;



FIG. 1c is a diagram of a table that lists parameters relevant for adsorption and desorption;



FIG. 1d is a diagram of a table of parameters pertaining to chemical reactions;



FIG. 2 is a diagram of a component catalyst tree for a selective catalytic reduction (SCR) catalyst



FIG. 3 is a diagram of a component catalyst tree for a diesel oxidation catalyst (DOC);



FIG. 4 is a diagram of a table listing parameters for a catalyst component;



FIG. 5 is a diagram of a table listing parameters for a thermal model;



FIG. 6 is a diagram of a plot of a thermal model having a transient response with manual calibration;



FIG. 7 is a diagram of a plot of a thermal model having a steady state response with automatic calibration;



FIG. 8 is a diagram of a plot of a thermal model having a transient response with automatic calibration;



FIG. 9 is a diagram of a table listing of adsorption and desorption with parameters for a particular adsorbent, relative to component level identification;



FIG. 10 shows diagrams of graphs revealing adsorption and desorption activity with manual calibration for component level identification;



FIG. 11 is a diagram of graphs for component level identification of adsorption and desorption with automatic calibration of storage capacity based on measured ammonia outlet;



FIG. 12 is a diagram of a graph for component level identification of adsorption and desorption with automatic calibration relative to transient behavior;



FIG. 13 is a diagram of a table showing parameters relative to separable reactions for component level identification;



FIG. 14 is a diagram of graphs of plots for separable reactions with manual calibration for component level identification;



FIG. 15 is a diagram of graphs of plots for separable reactions with automatic calibration for component level identification;



FIG. 16 is a diagram of a graph of a plot for separable reactions with manual calibration relative to outlet temperature;



FIG. 17 is a diagram of a table parameters for not separable reactions of component level identification;



FIGS. 18, 19 and 20 are diagrams of plots each group of not separable reactions with manual calibration for a component level identification involving conversion files for NO, NO2 and NH3, respectively;



FIGS. 21, 22 and 23 are diagrams of plots for each group of not separable reactions with automatic calibration for a component level identification involving conversion profiles for NO, NO2 and NH3;



FIG. 24 is a diagram of graphs for not separable reactions with automatic calibration relative to outlet temperature;



FIG. 25 is a diagram of a block layout for SCR;



FIG. 26 is a diagram of a block layout for DOC;



FIG. 27 is a diagram of a SCR block showing inputs and outputs;



FIG. 28 is a diagram of a DOC block showing inputs and outputs;



FIG. 29 is a diagram of a table showing parameters for a system level identification;



FIG. 30 is a diagram of a navigation tree, table and graphs for an SCR steady-state data fit;



FIG. 31 is a diagram of a navigation tree, table and graphs for an SCR transient data fit;



FIG. 32 is a diagram of a navigation tree, table and graphs for a DOC steady-state data fit; and



FIG. 33 is a diagram of a navigation tree, table and graphs for a DOC transient data fit.





DESCRIPTION

The present system and approach may incorporate one or more processors, computers, controllers, user interfaces, wireless and/or wire connections, and/or the like, in an implementation described and/or shown herein.


This description may provide one or more illustrative and specific examples or ways of implementing the present system and approach. There may be numerous other examples or ways of implementing the system and approach.


Internal combustion engines appear as a significant source of exhaust pollutants and there appears a trend to reduce the emissions as much as possible. The limits may be prescribed by various emission standards, e.g., in Europe known as EURO. To achieve the emission limits, there appears a need to introduce new technologies and innovations. Typical monitored pollutants may include nitric oxide (NO), nitric dioxide (NO2), hydrocarbons (HC), carbon monoxide (CO), particulate matter (PM), and so forth. Various technologies may be used to reduce these pollutants, for example, exhaust gas recirculation (EGR) may have been introduced to significantly reduce NOx for diesel engines. In general, there may be some approaches in how to influence the pollutants that 1) incorporate preventing a forming of the pollutants beyond a set amount, and 2) reduce the already produced pollutants.


The first approach may mean that the engine produces less than or equal to an allowed amount of monitored emissions. This appears possible to a certain threshold only and it is not free as a cost is decreased fuel economy. Limitations for further reduction by this approach may incorporate technological and physical limits of the combustion process and overall engine efficiency. On the other hand, this approach may require slight modification of the engine only (exhaust gas recirculation) without extra hardware.


The second approach may require additional equipment to reduce the engine out pollutants. An idea may be to let an engine produce certain amount of pollutants, but the pollutants might be immediately reduced by an aftertreatment line. The advantage may be an improvement of fuel economy of the engine itself. On the other hand, aftertreatment systems may be required, which means additional costs for the engine applications. Furthermore, some aftertreatment systems (e.g., selective catalytic reduction (SCR), diesel oxidation catalyst (DOC) or selective catalytic reduction on-filter (SCRF)) may need to use a reduction agent (e.g., ammonia or urea), and this can imply an additional cost that should be considered when computing an overall engine fuel (or fluid) economy.


An introduction of SCR to reduce NOx may be a challenge from a control point of view and can be a candidate for an advanced control system approach. An engine together with an aftertreatment system may be a system which needs precise control. Engine overall optimization may be achieved by using an advanced control system approach and various optimization approaches, e.g., model based predictive control (MPC). The advanced control system may be model based and thus may appear necessary to deal with engine and aftertreatment system modeling.


Mathematical modeling of a catalyst (e.g., SCR, SCRF, LNT or DOC) for automotive applications may also cover a parameter identification procedure. An existence of an automatic parameter identification procedure of a catalyst model may be important for a practical mathematical model. The procedure should be as simple as possible, be robust and need to provide results with required accuracy for a given application. Practical identification procedures may be obtained by formulating the identification procedure as a mathematical optimization problem. The present approach may provide for a catalyst parameter identification.


A catalyst for automotive applications may be a device with highly nonlinear behavior. A modeling and model identification approach may be used. The model may have a number of parameters. An approach to identify these parameters may use some nonlinear optimization approach, and to identify virtually all the parameters at once. Such approach is not necessarily suitable for several reasons. Namely, there may be a possibility of existence of local extreme points. Nonlinearity may cause numerical instabilities or the optimization problem could be too large and therefore it may take much time to get some reasonable solution.


In addition, if measured data for the model fitting is taken just from on-engine experiments, certain key behaviors of the device may be difficult to observe due to the interdependencies of the input properties to the catalyst.


The following present approach may be used. The identification procedure may be broken into several smaller and better defined identification sub-issues. The present approach for a catalyst parameter identification may have main phases. Phase 1 may be a specification of initial values of parameters. Phase 2 may be a so-called component level identification. Phase 3 may be seen as a system level identification. Furthermore, the latter two phases may be divided into a steady state identification and a transient identification.


Component level identification of phase 2 may be performed by collecting data from a chemical flow bench or by other suitable approach. The flow bench may enable one to prepare an exhaust gas composition as needed by the experiment, and thus appear suitable for the component level identification. System level identification of phase 3 may be achieved by using exhaust gas engine out data.


Phase 1 may involve initial values of parameters (without data). Phase 1 may be where a user is asked to prepare the initial values of virtually all parameters for the catalyst. This phase may be a significant part as it could influence performance of the automatic tuning procedure. The automatic tuning procedure may be a numerical solution of an optimization task. It may start from some initial conditions and then iterate to a local optimal solution which is close to the starting point. If the starting point is close to the global optimal solution, then the optimization procedure may find the global optimal solution. The initial values specified by a user during this phase may be a starting point for Phase 2.


Phase 2 may be component level identification (using, e.g., data from a flow bench). The catalyst model may have a few basic components which can be seen as individual components since their parameters may be identified independently on the other components. The basic individual components may incorporate a 1) thermal subsystem or thermal model, 2) adsorption and desorption, and 3) chemical reactions.


The thermal subsystem may cover namely heat transfer in the catalyst. Assume an SCR system. In the SCR, the influence of chemical reactions to the thermal behavior may be negligible and therefore the parameters of this subsystem can be identified separately on other subsystems. The parameters may be, namely, heat transfer coefficients between gas, monolith, housing and ambient, and other parameters that influence the thermal behavior.


Adsorption and desorption may be of, for example, ammonia (a reductant) in the catalyst washcoat for various temperatures. To collect needed data, flow bench equipment may have to be used.


A few chemical reactions with a few parameters may need to be estimated. The parameters may be, namely, related to the reaction rates, e.g., pre-exponential factors, activation energy, reaction order, reaction rate exponents, heat of reaction, and so forth. Reactions considered in the SCR catalyst may be referred to as a standard SCR reaction, fast SCR reaction, slow SCR reaction, urea decomposition and ammonia oxidation. If there is just one pollutant in a reaction, e.g., a standard SCR reaction NO, then the reaction may be seen as one component and its parameters can be identified independently on other components, e.g., by using the flow bench data. Phase 2 results may be used as a starting point for phase 3. Phase 3 may be for system level identification.


To reiterate, the present approach may be implemented as a series of steps with some executed in an engine laboratory and others executed by a computer program The steps may be used as in the following: 1) Prepare and configure the catalyst mathematical model with virtually all needed components for an engine application; 2) (Phase 1) Estimate the initial values of virtually all needed parameters based on literature and the user's experiences; 3) Select the individual catalyst model components (thermal subsystems, adsorption and desorption subsystem, chemical reactions, and so forth), and design the identification experiments for the flow bench to get virtually all needed data for component level identification; 4) Set up the flow bench with the real catalyst for the experiments, perform the experiments and collect the needed data; 5) (Phase 2) Perform the component level identification based on the flow bench data; 6) Design the identification experiment for the catalyst model system level identification where the experiment may be based on the real catalyst connected with the engine; 7) Set up the engine with the catalyst device on the test bench and perform the experiments to collect required data; 8) (Phase 3) Perform the system level identification of the catalyst model to get a final set of catalyst model parameters.


An objective may be to sketch a high overview of an identification procedure for aftertreatment systems, namely, DOC, SCR and SCRF catalysts. A catalyst model structure may be noted. A catalyst model may have several parts that can be handled as individual components. One component may incorporate a thermal model that includes, namely, heat transfer from gas to monolith, from monolith to housing and from housing to ambient. Another component may incorporate adsorption and desorption that includes storage of chemical species for reaction, for instance, ammonia for SCR and oxygen for DOC. This component may be also used to model hydrocarbon storage for a DOC cold start. An additional component may incorporate a chemistry that includes chemical reactions and a reaction mechanism.


An identification concept may be noted. Identification should be simple, user friendly and an amount of needed data should be minimized. Several possible sets of data may incorporate information provided by a catalyst producer, flow bench data and on-engine data. A basic workflow chart 10 is shown in FIG. 1.


Geometric parameters and constants may be noted. Fixed physical parameters may be such parameters that are known or can be directly measured. The basic needed parameters may be catalyst length, catalyst diameter, housing wall thickness, frontal flow area and molar weight of gas, as listed in a table of FIG. 1a.


Initial values of parameters may be noted. This step in workflow chart 10 may represent a specification of initial values for virtually all parameters. One may see that there should be defined some default values for a case where a user is unable to specify any value.


The thermal model may be noted. The thermal model may include namely heat transfer from exhaust gas to monolith and from monolith to ambient through catalyst housing. This may be a first step where the parameters are estimated from data automatically. The data may be on-engine or flow bench. One may note that reactions with significant reaction heat need to be suppressed relative to virtually all data for this step. The pertinent parameters may be gas/monolith surface, hydraulic diameter, specific heat of monolith, monolith mass and thermal conductivity to ambient, as listed in a table of FIG. 1b.


Adsorption and desorption may be noted. Adsorption and desorption may be estimated independently just when the flow bench data are available, otherwise they may need to be estimated together with (virtually all) chemical reactions. The parameters such as adsorption rate coefficient, desorption pre-exponential factor, desorption activation energy and catalyst capacity (sites), as shown in a table of FIG. 1c, may be relevant for adsorption and desorption.


Separable chemical reactions may be noted. Separable chemical reactions may be such reactions that can be isolated from the others during the identification experiment (only one reaction takes place). An example of separable chemical reaction in SCR catalyst may be:

4-N1:1.3+41VO.+O2-4iV+6H;s.O


Parameters for each chemical reaction, such as pre-exponential factor, activation energy, reaction rate exponents and heat of reaction, may be listed in a table of FIG. 1d.


Remaining chemical reactions may be noted. This step may include identification of chemical reactions that cannot be separated, or corresponding flow bench data that are unavailable. The parameters for each remaining chemical reaction may be the same as for separable chemical reactions, as listed in the table of FIG. 1d.


Scaling catalyst parameters may be noted. This may be an optional step that is used to scale the catalyst. It may be a usual practice that just one block of catalyst is used on the flow bench and then that the model is scaled by using appropriate catalyst parameters (e.g., catalyst length, diameter, volume, housing wall thickness, frontal flow area, molar weight of gas, and so on).


All or selected parameters may be noted. This step may be used whenever the flow bench data are unavailable, or to improve a fit by using the particular engine data. It may be assumed that any subset of parameters for identification can be selected by a user. This part may be the most flexible one in a sense of degrees of freedom


Identification by using steady state data may be noted. Steady state identification may be used in any step in the identification procedure. It may be fast and provide a good initial estimate for a transient identification part.


Identification by using transient data may be noted. Transient identification may be used in any step of the identification procedure. Transient identification should follow the steady state identification as the steady state identification may provide a good initial estimate for a transient identification.


A catalyst identification workflow may be noted in a chart 10 of FIG. 1. From start 11, geometric parameters and constants at block 12 may obtained from vendor data 13. The parameters and constants may be a priori knowledge. Initial values of parameters may be obtained at block 14 from optional vendor data 15. The values may be raw estimates.


Component level identification (ID) of a thermal model 311 may be determined. A thermal model (excluding reaction heat) may be obtained at block 16 from on engine data and/or flow bench data 17.


As component level identification of adsorption/desorption 312 approaches, a question at symbol 18 may be asked as to whether flow bench data is to be used. If an answer is yes, then adsorption/desorption reactions may be noted at block 19 from flow bench data 21. As component level identification of chemistry 313 approaches, separable chemical reactions (including reaction heat) may be noted at block 22 from flow bench data 23 along with vendor data 24 with conversion efficiency. Remaining chemical reactions (including reaction heat may be noted at block 25 from flow bench data 26 along with vendor data 27 with conversion efficiency. Optionally, at block 28, catalyst parameters may be scaled.


At symbol 29, a question may be asked concerning whether engine data is to be used. If an answer is yes, then system level identification 314 of a steady state or transient nature can be proceeded to with all chemical reactions at once, or a selected subset of parameters may be used as noted at block 31. On engine data 32, and vendor data 32 with conversion efficiency 33 may be provided to block 31. Then the workflow may be finished at symbol 34.


If the answer to the question at symbol 29 is no, then the workflow may be finished at symbol 34.


If the answer to the question at symbol 18 is no relative to use of flow bench data, then a question whether a user is to use manual calibration at symbol 35. If the answer to the question is no, then proceeding to block 31 may be done. If the answer to the question is yes, then adsorption/desorption component level identification may be attained at block 36 with simulation only. Component level identification of chemistry may achieved with separable chemical reactions including reaction heat by simulation only at block 37 and the remaining chemical reactions including reaction heat at block 38 by simulation only at block 38. Then the catalyst parameters may be optionally scaled at block 28. The procedure may continue at symbol 29 and beyond as indicated herein.


The order of steps for a component level identification is needed for the catalyst identification workflow.


Data set types for the component level identification may incorporate global steady state/transient data and flow bench data. The global steady state data may incorporate that of all reactions and on-engine experiments. The flow bench data may incorporate only some set of reactions in progress for each individual separable reaction and for each adsorption/desorption reaction. Conversion efficiency may be noted for a particular reaction.


A component catalyst tree 41 for an SCR catalyst may be shown in FIG. 2. Tree 41 may indicate the thermal model, adsorption/desorption reactions of ammonia, separable reactions of ammonia oxidation, SCR NO2 reaction and a standard SCR reaction. Not separable reactions may incorporate a fast SCR reaction.


A component catalyst tree 42 for DOC may be shown in FIG. 3. Tree 42 may indicate the thermal model, adsorption/desorption reactions of oxygen and hydrogen-carbon, and separable reaction of NO oxidation, CO oxidation and HC oxidation. There are not necessarily any separable reactions.



FIG. 4 shows a table 44 of parameters for a catalyst component. Just general catalyst parameters are incorporated, such as catalyst length, diameter, housing wall thickness, molar weight of gas, channel cross section area, channel density, frontal area, catalyst effective volume and a number of cells. One star in the table means that frontal flow area and catalyst effective volume may be computed from the other parameters, or if they are not defined, a raw estimate may be set. Two stars mean that the number of cells may be set to a default value and set to be hidden.



FIG. 5 shows a table 45 of parameters for a thermal model. The parameters may incorporate monolith mass, heat transfer correction factor from monolith to ambient. Specific heat of the monolith is a parameter that influences only dynamic behavior. The parameters may also include thermal conductivity to ambient, hydraulic diameter and characteristic dimension of convection.


The component level identification of the thermal model may have data sets with no reaction heat, and can be steady state or transient. Signals that may be needed are, e.g., inlet/outlet temperature, inlet pressure, inlet flow and ambient temperature.


A steady state identification may incorporate a scatter plot and Coefficient of Determination (CoD). A transient identification may incorporate a plot with signal comparison such as catalyst dynamics.



FIG. 6 is a diagram of a plot 46 of a thermal model with manual calibration. A simulation may involve a random or predefined inlet temperature profile. Plot 46 shows gas inlet, ambient, monolith profile and gas outlet.



FIG. 7 is a diagram of a plot of the thermal model with automatic calibration. The identification may proceed automatically with a steady state and after that with a transient identification in a plot 48 in a diagram of FIG. 8. The parameters may incorporate gas inlet, ambient, monolith profile, gas outlet measured, and gas outlet simulated.



FIG. 9 shows a table 49 of adsorption/desorption with parameters for a particular adsorbent, relative to component level identification. The parameters may incorporate adsorption rate exponents. The adsorption rate exponents may be assumed virtually always as a fixed value. The parameters may also incorporate an adsorption pre-exponential factor, a desorption pre-exponential factor, a desorption activation energy, and a catalyst capacity (sites) that may be a parameter that influences only dynamic behavior.


The component level identification may involve an adsorption/desorption model having flow bench data sets. An only absorbent present in a flow may be some inert gas such as N2. The data sets may be that of flow bench steady state, flow bench transient, and a storage curve. Signals that may be needed involve inlet temperature, inlet pressure, inlet flow, inlet/outlet concentration of absorbent, and ambient temperature. The identification process may be a steady state identification and a transient identification. The transient identification may incorporate sensor dynamics and catalyst dynamics.



FIG. 10 is a diagram of graph 51 revealing adsorption/desorption activity with manual calibration for component level identification.



FIG. 11 is a diagram of graphs 52 for component level identification of adsorption/desorption with automatic calibration relative to maximum storage and ammonia outlet. FIG. 12 is a diagram of graph 53 for component level identification of adsorption/desorption with automatic calibration relative to transient behavior. In graphs 52 and 53, identification may proceed automatically with steady state and after that with transient identification. FIG. 13 is a diagram of a table 54 showing parameters relative to separable reactions for component level identification. The parameters may incorporate a pre-exponential factor, activation energy, reaction rate exponents, and heat of reaction. Also, the parameters may incorporate diffusion parameters for temperature and diffusion for velocity that are parameters related to species and not the reaction itself.


Separable reactions for component level identification may have data sets relating to steady-state (flow bench) and an efficiency curve for a particular reaction. Signals needed may incorporate inlet/outlet temperature, inlet pressure, inlet flow, inlet concentration of adsorbent, inlet/outlet concentration of species participating in reaction, and ambient temperature. An identification process may be of a steady state.



FIG. 14 is a diagram of graphs 55 of plots for separable reactions with manual calibration for a conversion profile of CO and O2, for component level identification.



FIG. 15 is a diagram of graphs 57 of plots for separable reactions with automatic calibration for a conversion profile of CO and O2, for component level identification.



FIG. 16 is a diagram of graph 59 of a plot for separable reactions with manual calibration relative to outlet temperature.



FIG. 17 is a diagram of a table 60 of parameters for not reactions of component level identification. They consist of groups of reactions that take place together. Parameters for identification may be just those that have not yet been identified. Parameters may incorporate pre-exponential factors, activation energies, reaction rate exponents, heat of reactions, diffusion parameters for velocity, and diffusion parameters for temperature. Parameters may also incorporate several possible custom functions inhibition parameters, which are parameters used just for DOC if the inhibition is on, or some selection if it should be used.


Component level identification may be pursued in a case of non-separable reactions (groups) that may have sets of steady-state flow bench data. There may be an efficiency curve for a particular reaction. Signals that may be needed may incorporate inlet/outlet temperature, inlet pressure, inlet flow, inlet concentration of species participating in reactions, and ambient temperature. An identification process may be steady state. FIGS. 18, 19 and 20 are diagrams of plots 61, 62 and 63 for each group of separable reactions with manual calibration for component level identification involving conversion files for NO, NO2 and NH3, respectively.



FIGS. 21, 22 and 23 are diagrams of plots 64, 65 and 66 for each group of not separable reactions with automatic calibration for component level identification involving conversion profiles for NO, NO2 and NH3. FIG. 24 is a diagram of graphs 67 for not separable reactions with automatic calibration relative to outlet temperature.


Catalyst implementation may be noted. The catalyst may be of a continuous model, general enough to handle virtually any kind of reactions, be a MATLAB C-MEX S-function, have many parameters for identification, and have many parameters fixed for chosen chemical reactions.


The same block (MATLAB S-function) may be used for SCR, SCRF, DOC and the like. Just configuration and user data may be different.


Catalyst implementation may be noted. A nonlinear continuous 1D model that can handle any kind of reactions may be used. A MATLAB C-MEX S-function may be incorporated. Cca 30 parameters may be used for identification. Many parameters may be fixed for chosen chemical reactions. The parameters may be saved in block's user data.



FIG. 25 is a diagram of a block layout 70 for SCR. A subsystem 102 may represent engine exhaust with an outflow 103 to a urea injector 104. Urea 105 may be provided as an inflow to injector 104. A resulting outflow 106 may consist of NH3 as an inflow to an SCR component 107. An additional input 111 of catalyst surrounding temperature may go to SCR component 107. Component 107 may have an outflow 108 of NH3 provided as inflow to a modified boundary block 109 with NO, NO2, HC, and NH3 signals. An ambient pressure 112, ambient temperature 113 and ambient oxygen mass fraction (XO2) 114 may be input to modified boundary block 109. An outflow 115 from block 109 may go subsystem 102. In mass flow 116, in pressure 117, in temperature 118, in NO 119, in NO2 120 in NOx 121 and in NH3 122 may go to subsystem 102.



FIG. 26 is a diagram of a block layout 71 for DOC. A subsystem 102 may represent engine exhaust with an outflow 103 to an HC injector 125. A far post quantity (FPQ) 126, a far post timing (FPT) 127 and a close post quantity (CPQ) 128 may be input to HC injector 125. A resulting outflow 129 may consist of HC as an inflow to a standard DOC component 130. An additional input 131 of catalyst surrounding temperature may go to DOC component 130. Component 130 may have an outflow 132 of HC provided as inflow to a modified boundary block 109 with NO, NO2, HC, and NH3 signals. An ambient pressure 112, ambient temperature 113 and ambient O2 fraction 114 may be input to modified boundary block 109. An outflow 115 from block 109 may go subsystem 102. In mass flow 116, in pressure 117, in temperature 118, in NO 119, in NO2 120 in NOx 121, in NH3 122, and in HC 124 may go to subsystem 102.


SCR block 211 of diagram 73 in FIG. 27 may have inputs 212, 213, 214, 215, 216, 217, 218 and 219 corresponding to NH3, NO, NO2, O2, gas temperature (Tg), ambient temperature (Tamb), inlet pressure (Pin) and mass flow (Min), respectively. SCR block 211 may have outputs 221, 222, 223, 224 and 225 corresponding to NO, NO2, NH3, O2 and outlet gas temperature (Tg), respectively. A species input 231 to a catalyst 230 may incorporate inputs 232, 233, 234 and 235 corresponding to NH3, NO, NO2 and O2, respectively. Other inputs of catalyst 230 may incorporate gas input temperature 236, ambient temperature 237, gas pressure 238 and mass flow 239. Outputs of catalyst 230 may incorporate a species out 241, gas temperature out 242, monolith temperature out 243, coverage profile out 244, a gas temperature profile along axial direction of catalyst out 245, and monolith temperature profile along axial direction of catalyst out 246. Species out 241 may go to set of incorporating outputs 247, 248, 249 and 250 corresponding to NH3, NO, NO2 and O2, respectively.


DOC block 261 of diagram 74 in FIG. 28 may have inputs 262, 263, 264, 265, 266, 267, 268 and 269 corresponding to HC, NO, NO2, O2, inlet gas temperature (Tg), ambient temperature (Tamb), inlet pressure (Pin) and inlet mass flow (Min), respectively. DOC block 261 may have outputs 271, 272, 273, 274 and 275 corresponding to NO, NO2, HC, O2 and outlet gas temperature (Tg), respectively.


A species input to a catalyst 280 may incorporate inputs 282, 283, 284, 285 and 286 corresponding to CO which may be assumed as constant, NO, CH (C3H6), NO2, and O2, respectively. Other inputs of catalyst 280 may incorporate gas input temperatures 287, ambient temperature 288, gas pressure 289, and mass flow 290. Outputs of catalyst 280 may incorporate species out 291, temperature out 292, monolith temperature out 293, coverage profile along axial direction of catalyst out 294, a gas temperature profile along axial direction of catalyst out 295, and a monolithtemperature profile along axial direction of catalyst 296. Species out 291 may go to set of incorporating outputs 297, 298, 299, 300 and 301 corresponding to CO to terminator 8, NO, HC (C3H6), NO2 and O2, respectively.



FIG. 29 is a diagram of a table 75 of parameters for a system level identification. The table of parameters may incorporate frontal flow area, catalyst effective volume, heat transfer correction factor from gas to monolith, specific heat of monolith, adsorption pre-exponential factors, adsorption rate exponents, desorption pre-exponential factors, desorption activation energies, catalyst capacity (sites), pre-exponential factors, activation energies, reaction rate exponents, heat of reactions, diffusion parameters for velocity, diffusion parameters for temperature, inhibition parameters of a custom function 1, and inhibition parameter of a custom function 2. Adsorption rate exponents may be currently assumed as fixed and not used for identification. The specific heat of monolith and catalyst capacity may influence just a dynamic response.



FIG. 30 is a diagram of a set 76 of a navigation tree, table and graphs for an SCR steady-state data fit.



FIG. 31 is a diagram of a set 77 of a navigation tree, table and graphs for an SCR transient data fit.



FIG. 32 is a diagram of a set 78 of a navigation tree, table and graphs for a DOC steady-state data fit.



FIG. 33 is a diagram of a set 79 of a navigation tree, table and graphs for a DOC transient data fit.


To recap, an identification apparatus may incorporate a catalyst device for an engine, and a catalyst model of the catalyst device having a thermal model component, an adsorption and desorption component, a chemical reaction component, and a global component.


The thermal model component may represent heat transfer of the catalyst device, selected from a group consisting of heat transfer from gas to monolith, heat transfer from monolith to housing, and heat transfer from housing to ambient. The adsorption and desorption component may incorporate a storage of chemical species for reaction. The chemical reaction component may incorporate a reaction mechanism for chemical reactions.


Parameters for the catalyst model may be determined. Values of the parameters may be determined. Parameters of the thermal model may have values that are automatically estimated from data of on-engine or flow bench with reaction heat suppressed.


The adsorption and desorption of the adsorption and desorption component may be estimated independently when bench flow data are available but are estimated together with virtually all chemical reactions. The chemical reaction component may incorporate separable chemical reactions in that each chemical reaction can be isolated from the others during an identification process in that one reaction takes place at a time.


The chemical reaction component can further incorporate one or more inseparable chemical reactions.


Steady state data may be used in an identification. The identification based on steady state data may be an estimate for an identification based on transient data. Transient data may be used in an identification.


An approach for catalyst model identification may incorporate developing a catalyst model, processing a first phase having a specification of initial values for one or more parameters of the catalyst model, processing a second phase having a component level identification, and processing a third phase having a system level identification. The first, second and third phases may be processed by a computer.


Component level identification may incorporate a thermal model, adsorption and desorption, and chemical reactions. If there is one pollutant in a chemical reaction, then the chemical reaction may be of one component and parameters of the component that can be identified independently on other components from chemical flow bench data.


Developing the catalyst model may incorporate configuring the catalyst model with virtually all needed components for an engine application. The specification of initial values for one or more parameters of the catalyst model may incorporate estimating the initial values of virtually all needed parameters and selecting catalyst model components. System level identification may incorporate performing identification of the catalyst model to obtain a final set of parameters of the catalyst model.


Component level identification may incorporate steady state identification and transient identification. System level identification may incorporate steady state identification and transient identification.


A catalyst modeling mechanism may incorporate a computer, an engine from which an engine model is developed and stored in the computer, and a catalyst device, connected to the engine, from which a catalyst model is developed and stored in the computer.


The modeling may be accomplished by an identification procedure. The identification procedure may incorporate a catalyst parameter identification procedure. The catalyst parameter identification procedure may incorporate determination of parameters for the catalyst device, specification of values for the parameters, component level identification, and system level identification.


Component level identification may incorporate steady state identification and transient identification. System level identification may incorporate steady state identification and transient identification.


Component level identification may be obtained from data of a flow bench that permits preparation of exhaust gas composition from the engine. System level identification may be obtained from data of the exhaust gas composition from the engine. Component level identification may be determined from data selected from a group consisting of on engine data.


Results of the component level identification may be used as a starting point for system level identification. System level identification of the catalyst model may be performed to get a final set of parameters of the catalyst model.


In the present specification, some of the matter may be of a hypothetical or prophetic nature although stated in another manner or tense.


Although the present system and/or approach has been described with respect to at least one illustrative example, many variations and modifications will become apparent to those skilled in the art upon reading the specification. It is therefore the intention that the appended claims be interpreted as broadly as possible in view of the related art to include all such variations and modifications.

Claims
  • 1. A catalyst modeling mechanism comprising: a computer; an engine from which an engine model is developed and stored in the computer; and a catalyst device, connected to the engine, from which a catalyst model is developed and stored in the computer; and wherein: the computer is configured to construct the catalyst model by an identification procedure;the identification procedure comprises a catalyst parameter identification procedure, which the computer is configured to perform by: determining catalyst parameters for the catalyst device;specifying initial values for the catalyst parameters;identifying components from flow bench data that permits preparation of exhaust gas composition from the engine; andidentifying system level details from data of the exhaust gas composition from the engine, using the identified components from flow bench data as a starting point for identifying system level details; further wherein a final set of parameters of the catalyst model is generated from the identifying of system level details.
  • 2. The mechanism of claim 1, wherein: component level identification comprises steady state identification and transient identification; and system level identification comprises steady state identification and transient identification.
  • 3. A vehicle comprising the catalyst modeling mechanism of claim 1, including each of the engine and catalyst device, and an engine control unit, the engine control unit being configure to apply the catalyst model operate the engine and the catalyst device to prevent release of a contaminant the catalyst device is configured to react with.
  • 4. A method of catalyst modeling in a system that includes each of a computer; an engine from which an engine model is developed and stored in the computer; and a catalyst device, connected to the engine, from which a catalyst model is developed and stored in the computer; the method comprising using an identification procedure to accomplish the modelling, the identification procedure including a catalyst parameter identification procedure which comprises: determining catalyst parameters for the catalyst device;specifying initial values for the catalyst parameters;identifying components from flow bench data that permits preparation of exhaust gas composition from the engine;identifying system level details from data of the exhaust gas composition from the engine, using the identified components from flow bench data as a starting point for identifying system level details; andgenerating a final set of parameters of the catalyst model from the identifying of system level details.
  • 5. The method of claim 4, wherein: component level identification comprises steady state identification and transient identification; andsystem level identification comprises steady state identification and transient identification.
  • 6. The method of claim 4, further comprising controlling operation of the catalyst device and engine using the computer by applying the catalyst model to prevent release of a contaminant the catalyst device is configured to react with.
Parent Case Info

This application is a divisional of U.S. patent application Ser. No. 15/019,029, filed Feb. 9, 2016, which claims priority to European Patent Application 15155295.7, filed Feb. 16, 2015. U.S. patent application Ser. No. 15/019,029, filed Feb. 9, 2016, is hereby incorporated by reference.

US Referenced Citations (561)
Number Name Date Kind
3744461 Davis Jul 1973 A
4005578 McInerney Feb 1977 A
4055158 Marsee Oct 1977 A
4206606 Yamada Jun 1980 A
4252098 Tomczak et al. Feb 1981 A
4359991 Stumpp et al. Nov 1982 A
4383441 Willis et al. May 1983 A
4426982 Lehner et al. Jan 1984 A
4438497 Willis et al. Mar 1984 A
4440140 Kawagoe et al. Apr 1984 A
4456883 Bullis et al. Jun 1984 A
4485794 Kimberley et al. Dec 1984 A
4601270 Kimberley et al. Jul 1986 A
4616308 Morshedi et al. Oct 1986 A
4653449 Kamei et al. Mar 1987 A
4671235 Hosaka Jun 1987 A
4677559 Van Bruck Jun 1987 A
4735181 Kaneko et al. Apr 1988 A
4947334 Massey et al. Aug 1990 A
4962570 Hosaka et al. Oct 1990 A
5044337 Williams Sep 1991 A
5076237 Hartman et al. Dec 1991 A
5089236 Clerc Feb 1992 A
5094213 Dudek et al. Mar 1992 A
5095874 Schnaibel et al. Mar 1992 A
5108716 Nishizawa Apr 1992 A
5123397 Richeson Jun 1992 A
5150289 Badavas Sep 1992 A
5186081 Richardson et al. Feb 1993 A
5233829 Komatsu Aug 1993 A
5270935 Dudek et al. Dec 1993 A
5273019 Matthews et al. Dec 1993 A
5282449 Takahashi et al. Feb 1994 A
5293553 Dudek et al. Mar 1994 A
5349816 Sanbayashi et al. Sep 1994 A
5365734 Takeshima Nov 1994 A
5394322 Hansen Feb 1995 A
5394331 Dudek et al. Feb 1995 A
5398502 Watanabe Mar 1995 A
5408406 Mathur et al. Apr 1995 A
5431139 Grutter et al. Jul 1995 A
5452576 Hamburg et al. Sep 1995 A
5477840 Neumann Dec 1995 A
5560208 Halimi et al. Oct 1996 A
5570574 Yamashita et al. Nov 1996 A
5598825 Neumann Feb 1997 A
5609139 Ueda et al. Mar 1997 A
5611198 Lane et al. Mar 1997 A
5682317 Keeler et al. Oct 1997 A
5690086 Kawano et al. Nov 1997 A
5692478 Nogi et al. Dec 1997 A
5697339 Esposito Dec 1997 A
5704011 Hansen et al. Dec 1997 A
5740033 Wassick et al. Apr 1998 A
5746183 Parke et al. May 1998 A
5765533 Nakajima Jun 1998 A
5771867 Amstutz et al. Jun 1998 A
5785030 Paas Jul 1998 A
5788004 Friedmann et al. Aug 1998 A
5842340 Bush et al. Dec 1998 A
5846157 Reinke et al. Dec 1998 A
5893092 Driscoll Apr 1999 A
5917405 Joao Jun 1999 A
5924280 Tarabulski Jul 1999 A
5942195 Lecea et al. Aug 1999 A
5964199 Atago et al. Oct 1999 A
5970075 Wasada Oct 1999 A
5974788 Hepburn et al. Nov 1999 A
5995895 Watt et al. Nov 1999 A
6029626 Bruestle Feb 2000 A
6035640 Kolmanovsky et al. Mar 2000 A
6048620 Zhong Apr 2000 A
6048628 Hillmann et al. Apr 2000 A
6055810 Borland et al. May 2000 A
6056781 Wassick et al. May 2000 A
6058700 Yamashita et al. May 2000 A
6067800 Kolmanovsky et al. May 2000 A
6076353 Fruedenberg et al. Jun 2000 A
6105365 Deeba et al. Aug 2000 A
6122555 Lu Sep 2000 A
6134883 Kato et al. Oct 2000 A
6153159 Engeler et al. Nov 2000 A
6161528 Akao et al. Dec 2000 A
6170259 Boegner et al. Jan 2001 B1
6171556 Burk et al. Jan 2001 B1
6178743 Hirota et al. Jan 2001 B1
6178749 Kolmanovsky et al. Jan 2001 B1
6208914 Ward et al. Mar 2001 B1
6216083 Ulyanov et al. Apr 2001 B1
6233922 Maloney May 2001 B1
6236956 Mantooth et al. May 2001 B1
6237330 Takahashi et al. May 2001 B1
6242873 Drozdz et al. Jun 2001 B1
6263672 Roby et al. Jul 2001 B1
6273060 Cullen Aug 2001 B1
6279551 Iwano et al. Aug 2001 B1
6312538 Latypov et al. Nov 2001 B1
6314351 Chutorash Nov 2001 B1
6314662 Ellis, III Nov 2001 B1
6314724 Kakuyama et al. Nov 2001 B1
6321538 Hasler Nov 2001 B2
6327361 Harshavardhana et al. Dec 2001 B1
6338245 Shimoda et al. Jan 2002 B1
6341487 Takahashi et al. Jan 2002 B1
6347619 Whiting et al. Feb 2002 B1
6360159 Miller et al. Mar 2002 B1
6360541 Waszkiewicz et al. Mar 2002 B2
6360732 Bailey et al. Mar 2002 B1
6363715 Bidner et al. Apr 2002 B1
6363907 Arai et al. Apr 2002 B1
6379281 Collins et al. Apr 2002 B1
6389203 Jordan et al. May 2002 B1
6389803 Sumilla et al. May 2002 B1
6425371 Majima Jul 2002 B2
6427436 Allansson et al. Aug 2002 B1
6431160 Sugiyama et al. Aug 2002 B1
6445963 Blevins et al. Sep 2002 B1
6446430 Roth et al. Sep 2002 B1
6453308 Zhao et al. Sep 2002 B1
6463733 Asik et al. Oct 2002 B1
6463734 Tamura et al. Oct 2002 B1
6466893 Latwesen et al. Oct 2002 B1
6470682 Gray, Jr. Oct 2002 B2
6470862 Isobe et al. Oct 2002 B2
6470886 Jestrabek-Hart Oct 2002 B1
6481139 Weldle Nov 2002 B2
6494038 Kobayashi et al. Dec 2002 B2
6502391 Hirota et al. Jan 2003 B1
6510351 Blevins et al. Jan 2003 B1
6512974 Houston et al. Jan 2003 B2
6513495 Franke et al. Feb 2003 B1
6532433 Bharadwaj et al. Mar 2003 B2
6542076 Joao Apr 2003 B1
6546329 Bellinger Apr 2003 B2
6549130 Joao Apr 2003 B1
6550307 Zhang et al. Apr 2003 B1
6553754 Meyer et al. Apr 2003 B2
6560528 Gitlin et al. May 2003 B1
6560960 Nishimura et al. May 2003 B2
6571191 York et al. May 2003 B1
6579206 Liu et al. Jun 2003 B2
6591605 Lewis Jul 2003 B2
6594990 Kuenstler et al. Jul 2003 B2
6601387 Zurawski et al. Aug 2003 B2
6612293 Schweinzer et al. Sep 2003 B2
6615584 Ostertag Sep 2003 B2
6625978 Eriksson et al. Sep 2003 B1
6629408 Murakami et al. Oct 2003 B1
6637382 Brehob et al. Oct 2003 B1
6644017 Takahashi et al. Nov 2003 B2
6647710 Nishiyama et al. Nov 2003 B2
6647971 Vaughan et al. Nov 2003 B2
6651614 Flamig-Vetter et al. Nov 2003 B2
6662058 Sanchez Dec 2003 B1
6666198 Mitsutani Dec 2003 B2
6666410 Boelitz et al. Dec 2003 B2
6671603 Cari et al. Dec 2003 B2
6672052 Taga et al. Jan 2004 B2
6672060 Buckland et al. Jan 2004 B1
6679050 Takahashi et al. Jan 2004 B1
6687597 Sulatisky et al. Feb 2004 B2
6688283 Jaye Feb 2004 B2
6694244 Meyer et al. Feb 2004 B2
6694724 Tanaka et al. Feb 2004 B2
6705084 Allen et al. Mar 2004 B2
6718254 Hashimoto et al. Apr 2004 B2
6718753 Bromberg et al. Apr 2004 B2
6725208 Hartman et al. Apr 2004 B1
6736120 Surnilla May 2004 B2
6738682 Pasadyn May 2004 B1
6739122 Kitajima et al. May 2004 B2
6742330 Genderen Jun 2004 B2
6743352 Ando et al. Jun 2004 B2
6748936 Kinomura et al. Jun 2004 B2
6752131 Poola et al. Jun 2004 B2
6752135 McLaughlin et al. Jun 2004 B2
6757579 Pasadyn Jun 2004 B1
6758037 Terada et al. Jul 2004 B2
6760631 Berkowitz et al. Jul 2004 B1
6760657 Katoh Jul 2004 B2
6760658 Yasui et al. Jul 2004 B2
6770009 Badillo et al. Aug 2004 B2
6772585 Iihoshi et al. Aug 2004 B2
6775623 Ali et al. Aug 2004 B2
6779344 Hartman et al. Aug 2004 B2
6779512 Mitsutani Aug 2004 B2
6788072 Nagy et al. Sep 2004 B2
6789533 Hashimoto et al. Sep 2004 B1
6792927 Kobayashi Sep 2004 B2
6804618 Junk Oct 2004 B2
6814062 Esteghlal et al. Nov 2004 B2
6817171 Zhu Nov 2004 B2
6823667 Braun et al. Nov 2004 B2
6823675 Brunell et al. Nov 2004 B2
6826903 Yahata et al. Dec 2004 B2
6827060 Huh Dec 2004 B2
6827061 Nytomt et al. Dec 2004 B2
6827070 Fehl et al. Dec 2004 B2
6834497 Miyoshi et al. Dec 2004 B2
6837042 Colignon et al. Jan 2005 B2
6839637 Moteki et al. Jan 2005 B2
6849030 Yamamoto et al. Feb 2005 B2
6873675 Kurady et al. Mar 2005 B2
6874467 Hunt et al. Apr 2005 B2
6879906 Makki et al. Apr 2005 B2
6882929 Liang et al. Apr 2005 B2
6904751 Makki et al. Jun 2005 B2
6911414 Kimura et al. Jun 2005 B2
6915779 Sriprakash Jul 2005 B2
6920865 Lyon Jul 2005 B2
6923902 Ando et al. Aug 2005 B2
6925372 Yasui Aug 2005 B2
6925796 Nieuwstadt et al. Aug 2005 B2
6928362 Meaney Aug 2005 B2
6928817 Ahmad Aug 2005 B2
6931840 Strayer et al. Aug 2005 B2
6934931 Plumer et al. Aug 2005 B2
6941744 Tanaka Sep 2005 B2
6945033 Sealy et al. Sep 2005 B2
6948310 Roberts, Jr. et al. Sep 2005 B2
6953024 Linna et al. Oct 2005 B2
6965826 Andres et al. Nov 2005 B2
6968677 Tamura Nov 2005 B2
6971258 Rhodes et al. Dec 2005 B2
6973382 Rodriguez et al. Dec 2005 B2
6978744 Yuasa et al. Dec 2005 B2
6988017 Pasadyn et al. Jan 2006 B2
6990401 Neiss et al. Jan 2006 B2
6996975 Radhamohan et al. Feb 2006 B2
7000379 Makki et al. Feb 2006 B2
7013637 Yoshida Mar 2006 B2
7016779 Bowyer Mar 2006 B2
7028464 Rosel et al. Apr 2006 B2
7039475 Sayyarrodsari et al. May 2006 B2
7047938 Flynn et al. May 2006 B2
7052434 Makino et al. May 2006 B2
7055311 Beutel et al. Jun 2006 B2
7059112 Bidner et al. Jun 2006 B2
7063080 Kitah et al. Jun 2006 B2
7067319 Wills et al. Jun 2006 B2
7069903 Sumilla et al. Jul 2006 B2
7082753 Dalla Betta et al. Aug 2006 B2
7085615 Persson et al. Aug 2006 B2
7106866 Astorino et al. Sep 2006 B2
7107978 Itoyama Sep 2006 B2
7111450 Surnilla Sep 2006 B2
7111455 Okugawa et al. Sep 2006 B2
7113835 Boyden et al. Sep 2006 B2
7117046 Boyden et al. Oct 2006 B2
7124013 Yasui Oct 2006 B2
7149590 Martin et al. Dec 2006 B2
7151976 Lin Dec 2006 B2
7152023 Das Dec 2006 B2
7155334 Stewart et al. Dec 2006 B1
7165393 Betta et al. Jan 2007 B2
7165399 Stewart Jan 2007 B2
7168239 Ingram et al. Jan 2007 B2
7182075 Shahed et al. Feb 2007 B2
7184845 Sayyarrodsari et al. Feb 2007 B2
7184992 Polyak et al. Feb 2007 B1
7188637 Dreyer et al. Mar 2007 B2
7194987 Mogi Mar 2007 B2
7197485 Fuller Mar 2007 B2
7200988 Yamashita Apr 2007 B2
7204079 Audoin Apr 2007 B2
7212908 Li et al. May 2007 B2
7275374 Stewart et al. Oct 2007 B2
7275415 Rhodes et al. Oct 2007 B2
7277010 Joao Oct 2007 B2
7281368 Miyake et al. Oct 2007 B2
7292926 Schmidt et al. Nov 2007 B2
7302937 Ma et al. Dec 2007 B2
7321834 Chu et al. Jan 2008 B2
7323036 Boyden et al. Jan 2008 B2
7328577 Stewart et al. Feb 2008 B2
7337022 Wojsznis et al. Feb 2008 B2
7349776 Spillane et al. Mar 2008 B2
7357125 Kolavennu Apr 2008 B2
7375374 Chen et al. May 2008 B2
7376471 Das et al. May 2008 B2
7383118 Imai et al. May 2008 B2
7380547 Ruiz Jun 2008 B1
7389773 Stewart et al. Jun 2008 B2
7392129 Hill et al. Jun 2008 B2
7397363 Joao Jul 2008 B2
7398082 Schwinke et al. Jul 2008 B2
7398149 Ueno et al. Jul 2008 B2
7400967 Ueno et al. Jul 2008 B2
7413583 Langer et al. Aug 2008 B2
7415389 Stewart et al. Aug 2008 B2
7418372 Nishira et al. Aug 2008 B2
7430854 Yasui et al. Oct 2008 B2
7433743 Pistikopoulos et al. Oct 2008 B2
7444191 Caldwell et al. Oct 2008 B2
7444193 Cutler Oct 2008 B2
7447554 Cutler Nov 2008 B2
7467614 Stewart et al. Dec 2008 B2
7469177 Samad et al. Dec 2008 B2
7474953 Hulser et al. Jan 2009 B2
7493236 Mock et al. Feb 2009 B1
7515975 Stewart Apr 2009 B2
7522963 Boyden et al. Apr 2009 B2
7536232 Boyden et al. May 2009 B2
7542842 Hill et al. Jun 2009 B2
7577483 Fan et al. Aug 2009 B2
7587253 Rawlings et al. Sep 2009 B2
7591135 Stewart Sep 2009 B2
7599749 Sayyarrodsari et al. Oct 2009 B2
7599750 Piche Oct 2009 B2
7603226 Henein Oct 2009 B2
7627843 Dozorets et al. Dec 2009 B2
7630868 Turner et al. Dec 2009 B2
7634323 Vermillion et al. Dec 2009 B2
7634417 Boyden et al. Dec 2009 B2
7650780 Hall Jan 2010 B2
7668704 Perchanok et al. Feb 2010 B2
7676318 Allain Mar 2010 B2
7698004 Boyden et al. Apr 2010 B2
7702519 Boyden et al. Apr 2010 B2
7712139 Westendorf et al. May 2010 B2
7721030 Fuehrer et al. May 2010 B2
7725199 Brackney May 2010 B2
7734291 Mazzara, Jr. Jun 2010 B2
7743606 Havlena et al. Jun 2010 B2
7748217 Muller Jul 2010 B2
7752840 Stewart Jul 2010 B2
7765792 Rhodes et al. Aug 2010 B2
7779680 Sasaki et al. Aug 2010 B2
7793489 Wang et al. Sep 2010 B2
7798938 Matsubara et al. Sep 2010 B2
7808371 Blanchet et al. Oct 2010 B2
7826909 Attarwala Nov 2010 B2
7831318 Bartee et al. Nov 2010 B2
7840287 Wojsznis et al. Nov 2010 B2
7844351 Piche Nov 2010 B2
7844352 Youzis et al. Nov 2010 B2
7846299 Backstrom et al. Dec 2010 B2
7850104 Havlena et al. Dec 2010 B2
7856966 Saitoh Dec 2010 B2
7860586 Boyden et al. Dec 2010 B2
7861518 Federle Jan 2011 B2
7862771 Boyden et al. Jan 2011 B2
7877239 Grichnik et al. Jan 2011 B2
7878178 Stewart et al. Feb 2011 B2
7891669 Araujo et al. Feb 2011 B2
7904280 Wood Mar 2011 B2
7905103 Larsen et al. Mar 2011 B2
7907769 Sammak et al. Mar 2011 B2
7925399 Comeau Apr 2011 B2
7930044 Attarwala Apr 2011 B2
7933849 Bartee et al. Apr 2011 B2
7958730 Stewart Jun 2011 B2
7987145 Baramov Jul 2011 B2
7996140 Stewart et al. Aug 2011 B2
8001767 Kakuya et al. Aug 2011 B2
8019911 Dressier et al. Sep 2011 B2
8025167 Schneider et al. Sep 2011 B2
8032235 Sayyar-Rodsari Oct 2011 B2
8046089 Renfro et al. Oct 2011 B2
8060290 Stewart et al. Nov 2011 B2
8078291 Pekar et al. Dec 2011 B2
8109255 Stewart et al. Feb 2012 B2
8121818 Gorinevsky Feb 2012 B2
8145329 Pekar et al. Mar 2012 B2
8209963 Kesse et al. Jul 2012 B2
8229163 Coleman et al. Jul 2012 B2
8265854 Stewart et al. Sep 2012 B2
8281572 Chi et al. Oct 2012 B2
8311653 Zhan et al. Nov 2012 B2
8312860 Yun et al. Nov 2012 B2
8316235 Boehl et al. Nov 2012 B2
8360040 Stewart et al. Jan 2013 B2
8370052 Lin et al. Feb 2013 B2
8379267 Mestha et al. Feb 2013 B2
8396644 Kabashima et al. Mar 2013 B2
8402268 Dierickx Mar 2013 B2
8453431 Wang et al. Jun 2013 B2
8473079 Havlena Jun 2013 B2
8478506 Grichnik et al. Jul 2013 B2
RE44452 Stewart et al. Aug 2013 E
8504175 Pekar et al. Aug 2013 B2
8505278 Farrell et al. Aug 2013 B2
8543170 Mazzara, Jr. et al. Sep 2013 B2
8555613 Wang et al. Oct 2013 B2
8596045 Tuomivaara et al. Dec 2013 B2
8620461 Kihas Dec 2013 B2
8639925 Schuetze Jan 2014 B2
8649884 MacArthur et al. Feb 2014 B2
8649961 Hawkins et al. Feb 2014 B2
8667288 Yavuz Mar 2014 B2
8694197 Rajagopalan et al. Apr 2014 B2
8700291 Hermann Apr 2014 B2
8751241 Oesterling et al. Jun 2014 B2
8762026 Wolfe et al. Jun 2014 B2
8763377 Yacoub Jul 2014 B2
8768996 Shokrollahi et al. Jul 2014 B2
8813690 Kumar et al. Aug 2014 B2
8867746 Ceskutti et al. Oct 2014 B2
8892221 Kram et al. Nov 2014 B2
8899018 Frazier et al. Dec 2014 B2
8904760 Tai Dec 2014 B2
8983069 Merchan et al. Mar 2015 B2
9100193 Newsome et al. Aug 2015 B2
9141996 Christensen et al. Sep 2015 B2
9170573 Kihas Oct 2015 B2
9175595 Ceynow et al. Nov 2015 B2
9223301 Stewart et al. Dec 2015 B2
9253200 Schwarz et al. Feb 2016 B2
9325494 Boehl Apr 2016 B2
9367701 Merchan et al. Jun 2016 B2
9367968 Giraud et al. Jun 2016 B2
9483881 Comeau et al. Nov 2016 B2
9560071 Ruvio et al. Jan 2017 B2
9779742 Newsome, Jr. Oct 2017 B2
20020112469 Kanazawa et al. Aug 2002 A1
20020116104 Kawashima et al. Aug 2002 A1
20030089102 Colignon et al. May 2003 A1
20030150961 Boelitz et al. Aug 2003 A1
20040006973 Makki et al. Jan 2004 A1
20040034460 Folkerts et al. Feb 2004 A1
20040086185 Sun May 2004 A1
20040117766 Mehta et al. Jun 2004 A1
20040118107 Ament Jun 2004 A1
20040144082 Mianzo et al. Jul 2004 A1
20040165781 Sun Aug 2004 A1
20040199481 Hartman et al. Oct 2004 A1
20040221889 Dreyer et al. Nov 2004 A1
20040226287 Edgar et al. Nov 2004 A1
20050209714 Rawlings et al. Feb 2005 A1
20050107895 Pistikopoulos et al. May 2005 A1
20050143952 Tomoyasu et al. Jun 2005 A1
20050171667 Morita Aug 2005 A1
20050187643 Sayyar-Rodsari et al. Aug 2005 A1
20050193739 Brunell et al. Sep 2005 A1
20050210868 Funabashi Sep 2005 A1
20060047607 Boyden et al. Mar 2006 A1
20060111881 Jackson May 2006 A1
20060137347 Stewart et al. Jun 2006 A1
20060168945 Samad et al. Aug 2006 A1
20060185626 Allen et al. Aug 2006 A1
20060212140 Brackney Sep 2006 A1
20060265203 Jenny et al. Nov 2006 A1
20060282178 Das et al. Dec 2006 A1
20070101977 Stewart May 2007 A1
20070142936 Denison et al. Jun 2007 A1
20070144149 Kolavennu et al. Jun 2007 A1
20070156259 Baramov et al. Jul 2007 A1
20070240213 Karam et al. Oct 2007 A1
20070261648 Reckels et al. Nov 2007 A1
20070275471 Coward Nov 2007 A1
20080010973 Gimbres Jan 2008 A1
20080071395 Pachner Mar 2008 A1
20080097625 Vouzis et al. Apr 2008 A1
20080103747 Macharia et al. May 2008 A1
20080103748 Axelrud et al. May 2008 A1
20080104003 Macharia et al. May 2008 A1
20080109100 Macharia et al. May 2008 A1
20080125875 Stewart et al. May 2008 A1
20080132178 Chatterjee et al. Jun 2008 A1
20080183311 MacArthur et al. Jul 2008 A1
20080208778 Sayyar-Rodsari et al. Aug 2008 A1
20080244449 Morrison et al. Oct 2008 A1
20080264036 Bellovary Oct 2008 A1
20080289605 Ito Nov 2008 A1
20090005889 Sayyar-Rodsari Jan 2009 A1
20090008351 Schneider et al. Jan 2009 A1
20090043546 Srinivasan et al. Feb 2009 A1
20090087029 Coleman et al. Apr 2009 A1
20090131216 Matsubara et al. May 2009 A1
20090172416 Bosch et al. Jul 2009 A1
20090182518 Chu et al. Jul 2009 A1
20090198350 Thiele Aug 2009 A1
20090204233 Zhan et al. Aug 2009 A1
20090240480 Baramov Sep 2009 A1
20090254202 Pekar et al. Oct 2009 A1
20090287320 MacGregor et al. Nov 2009 A1
20090312998 Berckmans et al. Dec 2009 A1
20100017094 Stewart et al. Jan 2010 A1
20100038158 Whitney et al. Feb 2010 A1
20100050607 He et al. Mar 2010 A1
20100122523 Vosz May 2010 A1
20100126481 Will et al. May 2010 A1
20100204808 Thiele Aug 2010 A1
20100268353 Crisalle et al. Oct 2010 A1
20100300069 Hermann et al. Dec 2010 A1
20100300070 He et al. Dec 2010 A1
20100305719 Pekar et al. Dec 2010 A1
20100327090 Havlena et al. Dec 2010 A1
20110006025 Schneider et al. Jan 2011 A1
20110010073 Stewart et al. Jan 2011 A1
20110029235 Berry Feb 2011 A1
20110046752 Piche Feb 2011 A1
20110056265 Yacoub Mar 2011 A1
20110060424 Havlena Mar 2011 A1
20110066308 Yang et al. Mar 2011 A1
20110071653 Kihas Mar 2011 A1
20110087420 Stewart et al. Apr 2011 A1
20110104015 Boyden et al. May 2011 A1
20110125293 Havlena May 2011 A1
20110125295 Bednasch et al. May 2011 A1
20110131017 Cheng et al. Jun 2011 A1
20110167025 Danai et al. Jul 2011 A1
20110173315 Aguren Jul 2011 A1
20110257789 Stewart et al. Oct 2011 A1
20110264353 Atkinson et al. Oct 2011 A1
20110270505 Chaturvedi et al. Nov 2011 A1
20110301723 Pekar et al. Dec 2011 A1
20120024089 Couey et al. Feb 2012 A1
20120109620 Gaikwad et al. May 2012 A1
20120174187 Argon et al. Jul 2012 A1
20130024069 Wang et al. Jan 2013 A1
20130030554 Macarthur et al. Jan 2013 A1
20130064717 Masaki et al. Mar 2013 A1
20130067894 Stewart et al. Mar 2013 A1
20130111878 Pachner et al. May 2013 A1
20130111905 Pekar et al. May 2013 A1
20130131954 Yu et al. May 2013 A1
20130131956 Thibault et al. May 2013 A1
20130131967 Yu et al. May 2013 A1
20130158834 Wagner et al. Jun 2013 A1
20130204403 Zheng et al. Aug 2013 A1
20130242706 Newsome, Jr. Sep 2013 A1
20130326232 Lewis et al. Dec 2013 A1
20130326630 Argon Dec 2013 A1
20130338900 Ardanese et al. Dec 2013 A1
20140032189 Hehle et al. Jan 2014 A1
20140034460 Chou Feb 2014 A1
20140171856 McLaughlin et al. Jun 2014 A1
20140258736 Merchan et al. Sep 2014 A1
20140270163 Merchan Sep 2014 A1
20140316683 Whitney et al. Oct 2014 A1
20140318216 Singh Oct 2014 A1
20140343713 Ziegler et al. Nov 2014 A1
20140358254 Chu et al. Dec 2014 A1
20150121071 Schwarz et al. Apr 2015 A1
20150275783 Wong et al. Oct 2015 A1
20150321642 Schwepp et al. Nov 2015 A1
20150324576 Quirant et al. Nov 2015 A1
20150334093 Mueller Nov 2015 A1
20150354877 Burns et al. Dec 2015 A1
20160003180 McNulty et al. Jan 2016 A1
20160043832 Ahn et al. Feb 2016 A1
20160108732 Huang et al. Apr 2016 A1
20160127357 Zibuschka et al. May 2016 A1
20160216699 Pekar et al. Jul 2016 A1
20160239593 Pekar et al. Aug 2016 A1
20160259584 Schlottmann et al. Sep 2016 A1
20160330204 Baur et al. Nov 2016 A1
20160344705 Stumpf et al. Nov 2016 A1
20160362838 Badwe et al. Dec 2016 A1
20160365977 Boutros et al. Dec 2016 A1
20170031332 Santin Feb 2017 A1
20170048063 Mueller Feb 2017 A1
20170126701 Glas et al. May 2017 A1
20170211453 Sappok Jul 2017 A1
20170218860 Pachner et al. Aug 2017 A1
20170300713 Fan et al. Oct 2017 A1
20170306871 Fuxman et al. Oct 2017 A1
20180137695 Sappok May 2018 A1
20180202341 Piper Jul 2018 A1
20180223756 Benson Aug 2018 A1
Foreign Referenced Citations (53)
Number Date Country
102063561 May 2011 CN
102331350 Jan 2012 CN
19628796 Oct 1997 DE
10219832 Nov 2002 DE
102009016509 Oct 2010 DE
102011103346 Aug 2012 DE
0301527 Feb 1989 EP
0950803 Apr 1999 EP
0877309 Jun 2000 EP
1134368 Mar 2001 EP
1180583 Feb 2002 EP
1221544 Jul 2002 EP
1225490 Jul 2002 EP
1245811 Oct 2002 EP
1273337 Jan 2003 EP
1420153 May 2004 EP
1447727 Aug 2004 EP
1498791 Jan 2005 EP
1425642 Nov 2005 EP
1686251 Aug 2006 EP
1399784 Oct 2007 EP
2107439 Oct 2009 EP
2146258 Jan 2010 EP
1794339 Jul 2011 EP
1529941 Nov 2011 EP
2543845 Jan 2013 EP
2551480 Jan 2013 EP
2589779 May 2013 EP
2617975 Jul 2013 EP
2267559 Jan 2014 EP
2919079 Sep 2015 EP
59190443 Oct 1984 JP
2010282618 Dec 2010 JP
0144629 Jun 2001 WO
0169056 Sep 2001 WO
WO 0232552 Apr 2002 WO
WO 02097540 Dec 2002 WO
WO 02101208 Dec 2002 WO
WO 03023538 Mar 2003 WO
03048533 Jun 2003 WO
WO 2003048533 Jun 2003 WO
WO 03065135 Aug 2003 WO
WO 03078816 Sep 2003 WO
03102394 Dec 2003 WO
WO 2004027230 Apr 2004 WO
WO 2006021437 Mar 2006 WO
WO 2007078907 Jul 2007 WO
WO 2008033800 Mar 2008 WO
WO 2008115911 Sep 2008 WO
WO 2012076838 Jun 2012 WO
WO 2013119665 Aug 2013 WO
WO 2014165439 Oct 2014 WO
WO 2016053194 Apr 2016 WO
Non-Patent Literature Citations (188)
Entry
“Aftertreatment Modeling of RCCI Engine During Transient Operation,” University of Wisconsin—Engine Research Center, 1 page, May 31, 2014.
“Chapter 14: Pollutant Formation,” Fluent Manual, Release 15.0, Chapter 14, pp. 313-345, prior to Jan. 29, 2016.
“Chapter 21, Modeling Pollutant Formation,” Fluent Manual, Release 12.0, Chapter 21, pp. 21-1—21-54, Jan. 30, 2009.
“J1979 E/E Diagnostic Test Modules,” Proposed Regulation, Vehicle E.E. System Diagnostic Standards Committee, 1 page, Sep. 28, 2010.
“MicroZed Zynq Evaluation and Development and System on Module, Hardware User Guide,” Avnet Electronics Marketing, Version 1.6, Jan. 22, 2015.
Actron, “Elite AutoScanner Kit—Enhanced OBD I & II Scan Tool, OBD 1300,” Downloaded from https://actron.com/content/elite-autoscanner-kit-enhanced-obd-i-and-obd-ii-scan-tool?utm_ . . . , 5 pages, printed Sep. 27, 2016.
Andersson et al., “A Predictive Real Time NOx Model for Conventional and Partially Premixed Diesel Combustion,” SAE International 2006-01-3329, 10 pages, 2006.
Andersson et al., “A Real Time NOx Model for Conventional and Partially Premixed Diesel Combustion,” SAE Technical Paper Series 2006-01-0195, 2006 SAE World Congress, 13 pages, Apr. 3-6, 2006.
Andersson et al., “Fast Physical NOx Prediction in Diesel Engines, The Diesel Engine: The Low CO2 and Emissions Reduction Challenge,” Conference Proceedings, Lyon, 2006. Unable to Obtain a Copy of This Reference.
Arregle et al., “On Board NOx Prediction in Diesel Engines: A Physical Approach,” Automotive Model Predictive Control, Models Methods and Applications, Chapter 2, 14 pages, 2010.
Asprion, “Optimal Control of Diesel Engines,” PHD Thesis, Diss ETH No. 21593, 436 pages, 2013.
Assanis et al., “A Predictive Ignition Delay Correlation Under Steady-State and Transient Operation of a Direct njection Diesel Engine,” ASME, Journal of Engineering for Gas Turbines and Power, vol. 125, pp. 450-457, Apr. 2003.
Bako et al., “A Recursive Identification Algorithm for Switched Linear/Affine Models,” Nonlinear Analysis: Hybrid Systems, vol. 5, pp. 242-253, 2011.
Barba et al., “A Phenomenological Combustion Model for Heat Release Rate Prediction in High-Speed DI Diesel Engines with Common Rail Injection,” SAE Technical Paper Series 2000-01-2933, International Fall Fuels and Lubricants Meeting Exposition, 15 pages, Oct. 16-19, 2000.
Blanco-Rodriguez, “Modelling and Observation of Exhaust Gas Concentrations for Diesel Engine Control,” Phd Dissertation, 242 pages, Sep. 2013.
Blue Streak Electronics Inc., “Ford Modules,” 1 page, May 12, 2010.
Boum et al., “Advanced Compressor Engine Controls to Enhance Operation, Reliability and Integrity,” Southwest Research Institute, DOE Award No. DE-FC26-03NT41859, SwRI Project No. 03.10198, 60 pages, Mar. 2004.
Charalampidis et al., “Computationally Efficient Kalman Filtering for a Class of Nonlinear Systems,” IEEE Transactions an Automatic Control, vol. 56, No. 3, pp. 483-491, Mar. 2011.
Chew, “Sensor Validation Scheme with Virtual NOx Sensing for Heavy Duty Diesel Engines,” Master's Thesis, 144 pages, 2007.
The Extended European Search Report for EP Application No. 15155295.7-1606, dated Aug. 4, 2015.
The Extended European Search Report for EP Application No. 15179435.1, dated Apr. 1, 2016.
Desantes et al., “Development of NOx Fast Estimate Using NOx Sensor,” EAEC 2011 Congress, 2011. Unable to Obtain a Copy of This Reference.
Ding, “Characterising Combustion in Diesel Engines, Using Parameterised Finite Stage Cylinder Process Models,” 281 pages, Dec. 21, 2011.
Docquier et al., “Combustion Control and Sensors: a Review,” Progress in Energy and Combustion Science, vol. 28, pp. 107-150, 2002.
Egnell, “Combustion Diagnostics by Means of Multizone Heat Release Analysis and NO Calculation,” SAE Technical Paper Series 981424, International Spring Fuels and Lubricants Meeting and Exposition, 22 pages, May 4-6, 1998.
Ericson, “NOx Modelling of a Complete Diesel Engine/SCR System,” Licentiate Thesis, 57 pages, 2007.
Finesso et al., “Estimation of the Engine-Out NO2/NOx Ration in a Euro VI Diesel Engine,” SAE International 2013-01-0317, 15 pages, Apr. 8, 2013.
Fleming, “Overview of Automotive Sensors,” IEEE Sensors Journal, vol. 1, No. 4, pp. 296-308, Dec. 2001.
Ford Motor Company, “2012 My OBD System Operation Summary for 6.7L Diesel Engines,” 149 pages, Apr. 21, 2011.
Formentin et al., “NOx Estimation in Diesel Engines Via In-Cylinder Pressure Measurement,” IEEE Transactions on Control Systems Technology, vol. 22, No. 1, pp. 396-403, Jan. 2014.
Galindo, “An On-Engine Method for Dynamic Characterisation of NOx Concentration Sensors,” Experimental Thermal and Fluid Science, vol. 35, pp. 470-476, 2011.
Gamma Technologies, “Exhaust Aftertreatment with GT-Suite,” 2 pages, Jul. 17, 2014.
Guardiola et al., “A Bias Correction Method for Fast Fuel-to-Air Ratio Estimation in Diesel Engines,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 227, No. 8, pp. 1099-1111, 2013.
Guardiola et al., “A Computationally Efficient Kalman Filter Based Estimator for Updating Look-Up Tables Applied to NOx Estimation in Diesel Engines,” Control Engineering Practice, vol. 21, pp. 1455-1468.
Guzzella et al., “Introduction to Modeling and Control of Internal Combustion Engine Systems,” 303 pages, 2004.
Hahlin, “Single Cylinder ICE Exhaust Optimization,” Master's Thesis, retrieved from https://pure.Itu.se/portal/files/44015424/LTU-EX-2013-43970821.pdf, 50 pages, Feb. 1, 2014.
Hammacher Schlemmer, “The Windshield Heads Up Display,” Catalog, p. 47, prior to Apr. 26, 2016.
Heywood, “Pollutant Formation and Control,” Internal Combustion Engine Fundamentals, pp. 567-667, 1988.
Hirsch et al., “Dynamic Engine Emission Models,” Automotive Model Predictive Control, Chapter 5, 18 pages, LNCIS 402, 2012.
Hirsch et al., “Grey-Box Control Oriented Emissions Models,” The International Federation of Automatic Control (IFAC), Proceedings of the 17th World Congress, pp. 8514-8519, Jul. 6-11, 2008.
Hockerdal, “EKF-based Adaptation of Look-Up Tables with an Air Mass-Flow Sensor Application,” Control Engineering Practice, vol. 19, 12 pages, 2011.
http://nexceris.com/news/nextech-materials/, “NEXTECH Materials is Now NEXCERIS,” 7 pages, printed Oct. 4, 2016.
http://www.arb.ca.gov/msprog/obdprog/hdobdreg.htm, “Heavy-Duty OBD Regulations and Rulemaking,” 8 pages, printed Oct. 4, 2016.
http://www.not2fast.wryday.com/turbo/glossary/turbo_glossary.shtml, “Not2Fast: Turbo Glossary,” 22 pages, printed Oct. 1, 2004.
http://www.tai-cwv.com/sbl106.0.html, “Technical Overview-Advanced Control Solutions,” 6 pages, printed Sep. 9, 2004.
https://www.dieselnet.com/standards/us/obd.php, “Emission Standards: USA: On-Board Diagnostics,” 6 pages, printed Oct. 3, 2016.
https://www.en.wikipedia.org/wiki/Public-key_cryptography, “Public-Key Cryptography,” 14 pages, printed Feb. 26, 2016.
Ishida et al., “An Analysis of the Added Water Effect on NO Formation in D.I. Diesel Engines,” SAE Technical Paper Series 941691, International Off-Highway and Power-Plant Congress and Exposition, 13 pages, Sep. 12-14, 1994.
Ishida et al., “Prediction of NOx Reduction Rate Due to Port Water Injection in a DI Diesel Engine,” SAE Technical Paper Series 972961, International Fall Fuels and Lubricants Meeting and Exposition, 13 pages, Oct. 13-16, 1997.
Jensen, “The 13 Monitors of an OBD System,” http://www.oemoffhighway.com/article/1 0855512/the-13-monito . . . , 3 pages, printed Oct. 3, 2016.
Extended European Search Report for EP Application Serial No. 15155295.7 dated Aug. 4, 2015.
The Extended European Search Report for EP Application No. 17151521.6, dated Oct. 23, 2017.
The Extended European Search Report for EP Application No. 17163452.0, dated Sep. 26, 2017.
Greenberg, “Hackers Cut a Corvette's Brakes Via A Common Car Gadget,” downloaded from https://www wired.com2015/08/hackers-cut-corvettes-brakes-v . . . , 14 pages, Aug. 11, 2015, printed Dec. 11, 2017.
http://www.blackpoolcommunications.com/products/alarm-immo . . . , “OBD Security OBD Port Protection—Alarms & Immobilizers . . . ,” 1 page, printed Jun. 5, 2017.
http://www.cnbc.com/2016/09/20/chinese-company-hacks-tesla-car-remotely.html, “Chinese Company Hacks Tesla Car Remotely,” 3 pages, Sep. 20, 2016.
ISO, “ISO Document No. 13185-2:2015(E),” 3 pages, 2015.
Khair et al., “Emission Formation in Diesel Engines,” Downloaded from https://www.dieselnet.com/tech/diesel_emiform.php, 33 pages, printed Oct. 14, 2016.
Kihas et al., “Chapter 14, Diesel Engine SCR Systems: Modeling Measurements and Control,” Catalytic Reduction Technology (book), Part 1, Chapter 14, prior to Jan. 29, 2016.
Krause et al., “Effect of Inlet Air Humidity and Temperature on Diesel Exhaust Emissions,” SAE International Automotive Engineering Congress, 8 pages, Jan. 8-12, 1973.
Lavoie et al., “Experimental and Theoretical Study of Nitric Oxide Formation in Internal Combustion Engines,” Combustion Science and Technology, vol. 1, pp. 313-326, 1970.
Manchur et al., “Time Resolution Effects on Accuracy of Real-Time NOx Emissions Measurements,” SAE Technical Paper Series 2005-01-0674, 2005 SAE World Congress, 19 pages, Apr. 11-14, 2005.
Mohammadpour et al., “A Survey on Diagnostics Methods for Automotive Engines,” 2011 American Control Conference, pp. 985-990, Jun. 29, 2011-Jul. 1, 2011.
Moos, “Catalysts as Sensors—A Promising Novel Approach in Automotive Exhaust Gas Aftertreatment,” http://www.mdpi.com/1424-8220/10/7/6773htm, 10 pages, Jul. 13, 2010.
Olsen, “Analysis and Simulation of the Rate of Heat Release (ROHR) in Diesel Engines,” MSc-Assignment, 105 pages, Jun. 2013.
Payri et al., “Diesel NOx Modeling with a Reduction Mechanism for the Initial NOx Coming from EGR or Re-Entrained Burned Gases,” 2008 World Congress, SAE Technical Paper Series 2008-01-1188, 13 pages, Apr. 14-17, 2008.
Payri et al., “Methodology for Design and Calibration of a Drift Compensation Method for Fuel-to-Air Ratio,” SAE International 2012-01-0717, 13 pages, Apr. 16, 2012.
Pipho et al., “NO2 Formation in a Diesel Engine,” SAE Technical Paper Series 910231, International Congress and Exposition, 15 pages, Feb. 25, 1991-Mar. 1, 1991.
Querel et al., “Control of an SCR System Using a Virtual NOx Sensor,” 7th IFAC Symposium on Advances in Automotive Control, The International Federation of Automotive Control, pp. 9-14, Sep. 4-7, 2013.
Ricardo Software, “Powertrain Design at Your Fingertips,” retrieved from http://www.ricardo.com/PageFiles/864/WaveFlyerA4_4PP.pdf, 2 pages, downloaded Jul. 27, 2015.
Santin et al., “Combined Gradient/Newton Projection Semi-Explicit QP Solver for Problems with Bound Constraints,” 2 pages, prior to Jan. 29, 2016.
Schilling et al., “A Real-Time Model for the Prediction of the NOx Emissions in DI Diesel Engines,” Proceedings of the 2006 IEEE International Conference on Control Applications, pp. 2042-2047, Oct. 4-7, 2006.
Schilling, “Model-Based Detection and Isolation of Faults in the Air and Fuel Paths of Common-Rail DI Diesel Engines Equipped with a Lambda and a Nitrogen Oxides Sensor,” Doctor of Sciences Dissertation, 210 pages, 2008.
Shahzad et al., “Preconditioners for Inexact Interior Point Methods for Predictive Control,” 2010 American Control Conference, pp. 5714-5719, Jun. 30, 2010-Jul. 2010.
Signer et al., “European Programme on Emissions, Fuels and Engine Technologies (EPEFE)—Heavy Duty Diesel Study,” International Spring Fuels and Lubricants Meeting, SAE 961074, May 6-8, 1996.
Smith, “Demonstration of a Fast Response On-Board NOx Sensor for Heavy-Duty Diesel Vehicles,” Technical report, Southwest Research Institute Engine and Vehicle Research Division SwRI Project No. 03-02256 Contract No. 98-302, 2000. Unable to Obtain a Copy of This Reference.
Stradling et al., “The Influene of Fuel Properties and Injection Timing on the Exhaust Emissions and Fuel Consumption of an Iveco Heavy-Duty Diesel Engine,” International Spring Fuels and Lubricants Meeting, SAE 971635, May 5-8, 1997.
Traver et al., “A Neural Network-Based Virtual NOx Sensor for Diesel Engines,” 7 pages, prior to Jan. 29, 2016.
Tschanz et al., “Cascaded Multivariable Control of the Combustion in Diesel Engines,” The International Federation of Automatic Control (IFAC), 2012 Workshop on Engine and Powertrain Control, Simulation and Modeling, pp. 25-32, Oct. 23-25, 2012.
Tschanz et al., “Control of Diesel Engines Using NOx-Emission Feedback,” International Journal of Engine Research, vol. 14, No. 1, pp. 45-56, 2013.
Tschanz et al., “Feedback Control of Particulate Matter and Nitrogen Oxide Emissions in Diesel Engines,” Control Engineering Practice, vol. 21, pp. 1809-1820, 2013.
Turner, “Automotive Sensors, Sensor Technology Series,” Momentum Press, Unable to Obtain the Entire Book, a Copy of the Front and Back Covers and Table of Contents are Provided, 2009.
Van Helden et al., “Optimization of Urea SCR deNOx Systems for HD Diesel Engines,” SAE International 2004-01-0154, 13 pages, 2004.
VDO, “UniNOx-Sensor Specification,” Continental Trading GmbH, 2 pages, Aug. 2007.
Vereschaga et al., “Piecewise Affine Modeling of NOx Emission Produced by a Diesel Engine,” 2013 European Control Conference (ECC), pp. 2000-2005, Jul. 17-19, 2013.
Wahlstrom et al., “Modelling Diesel Engines with a Variable-Geometry Turbocharger and Exhaust Gas Recirculation by Optimization of Model Parameters for Capturing Non-Linear System Dynamics,” (Original Publication) Proceedings of the Institution of Mechanical Engineers, Part D, Journal of Automobile Engineering, vol. 225, No. 7, 28 pages, 2011.
Wang et al., “Sensing Exhaust NO2 Emissions Using the Mixed Potential Principal,” SAE 2014-01-1487, 7 pages, Apr. 1, 2014.
Wilhelmsson et al., “A Fast Physical NOx Model Implemented on an Embedded System,” Proceedings of the IFAC Workshop on Engine and Powertrain Control, Simulation and Modeling, pp. 207-215, Nov. 30, 2009-Dec. 2, 2009.
Wilhemsson et al., “A Physical Two-Zone NOx Model Intended for Embedded Implementation,” SAE 2009-01-1509, 11 pages, 2009.
Winkler et al., “Incorporating Physical Knowledge About the Formation of Nitric Oxides into Evolutionary System dentification,” Proceedings of the 20th European Modeling and Simulation Symposium (EMSS), 6 pages, 2008.
Winkler et al., “On-Line Modeling Based On Genetic Programming,” 12 pages, International Journal on Intelligent Systems Technologies and Applications 2, 2007.
Winkler et al., “Using Genetic Programming in Nonlinear Model Identification,” 99 pages, prior to Jan. 29, 2016.
Winkler et al., “Virtual Sensors for Emissions of a Diesel Engine Produced by Evolutionary System Identification,” LNCS, vol. 5717, 8 pages, 2009.
Winkler, “Evolutionary System Identification—Modern Approaches and Practical Applications,” Kepler Universitat Linz, Reihe C: Technik und Naturwissenschaften, Universitatsverlag Rudolf Trauner, 2009. Unable to Obtain a Copy of This Reference.
Wong, “CARB Heavy-Duty OBD Update,” California Air Resources Board, SAE OBD TOPTEC, Downloaded from http://www.arb.ca.gov/msprog/obdprog/hdobdreg.htm, 72 pages, Sep. 15, 2005.
Yao et al., “The Use of Tunnel Concentration Profile Data to Determine the Ratio of NO2/NOx Directly Emitted from Vehicles,” HAL Archives, 19 pages, 2005.
Zaman, “Lincoln Motor Company: Case study 2015 Lincoln MKC,” Automotive Electronic Design Fundamentals, Chapter 6, 2015.
Zeldovich, “The Oxidation of Nitrogen in Combustion and Explosions,” ACTA Physiochimica U.R.S.S., vol. XX1, No. 4, 53 pages, 1946.
Zhuiykov et al., “Development of Zirconia-Based Potentiometric NOx Sensors for Automotive and Energy Industries in the Early 21st Century: What Are the Prospects for Sensors?”, Sensors and Actuators B, vol. 121, pp. 639-651, 2007.
Goodwin, “Researchers Hack A Corvette's Brakes Via Insurance Black Box,” Downloaded from http://www.cnet.com/roadshow/news/researchers-hack-a-corvettes-brakes-via-insurance-black-box/, 2 pages, Aug. 2015.
Greenberg, “Hackers Remotely Kill A Jeep On The Highway—With Me In It,” Downloaded from http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/, 24 pages, Jul. 21, 2015.
“Model Predictive Control Toolbox Release Notes,” The Mathworks, 24 pages, Oct. 2008.
“Model Predictive Control,” Wikipedia, pp. 1-5, Jan. 22, 2009. http://en.wikipedia.org/w/index.php/title=Special:Book&bookcmd=download&collecton_id=641cd1b5da77cc22&writer=r1&return_to=Model predictive control, retrieved Nov. 20, 2012.
“MPC Implementation Methods for the Optimization of the Response of Control Valves to Reduce Variability,” Advanced Application Note 002, Rev. A, 10 pages, 2007.
“SCR, 400-csi Coated Catalyst,” Leading NOx Control Technologies Status Summary, 1 page prior to Feb. 2, 2005.
Advanced Petroleum-Based Fuels-Diesel Emissions Control (APBF-DEC) Project, “Quarterly Update,” No. 7, 6 pages, Fall 2002.
Allanson, et al., “Optimizing the Low Temperature Performance and Regeneration Efficiency of the Continuously Regenerating Diesel Particulate Filter System,” SAE Paper No. 2002-01-0428, 8 pages, Mar. 2002.
Amstuz, et al., “EGO Sensor Based Robust Output Control of EGR in Diesel Engines,” IEEE TCST, vol. 3, No. 1, 12 pages, Mar. 1995.
Axehill et al., “A Dual Gradiant Projection Quadratic Programming Algorithm Tailored for Model Predictive Control,” Proceedings of the 47th IEEE Conference on Decision and Control, Cancun Mexico, pp. 3057-3064, Dec. 9-11, 2008.
Axehill et al., “A Dual Gradient Projection Quadratic Programming Algorithm Tailored for Mixed Integer Predictive Control,” Technical Report from Linkopings Universitet, Report No. Li-Th-ISY-R-2833, 58 pages, Jan. 31, 2008.
Baffi et al., “Non-Linear Model Based Predictive Control Through Dynamic Non-Linear Partial Least Squares,” Trans IChemE, vol. 80, Part A, pp. 75-86, Jan. 2002.
Bemporad et al., “Model Predictive Control Toolbox 3, User's Guide,” Matlab Mathworks, 282 pages, 2008.
Bemporad et al., “The Explicit Linear Quadratic Regulator for Constrained Systems,” Automatica, 38, pp. 3-20, 2002.
Bemporad, “Model Predictive Control Based on Linear Programming—The Explicit Solution,” IEEE Transactions on Automatic Control, vol. 47, No. 12, pp. 1974-1984, Dec. 2002.
Bemporad, “Model Predictive Control Design: New Trends and Tools,” Proceedings of the 45th IEEE Conference on Decision & Control, pp. 6678-6683, Dec. 13-15, 2006.
Bemporad, et al., “Explicit Model Predictive Control,” 1 page, prior to Feb. 2, 2005.
Bertsekas, “On the Goldstein-Levitin-Polyak Gradient Projection Method,” IEEE Transactions on Automatic Control, vol. AC-21, No. 2, pp. 174-184, Apr. 1976.
Bertsekas, “Projected Newton Methods for Optimization Problems with Simple Constraints*,” SIAM J. Control and Optimization, vol. 20, No. 2, pp. 221-246, Mar. 1982.
Borrelli et al., “An MPC/Hybrid System Approach to Traction Control,” IEEE Transactions on Control Systems Technology, vol. 14, No. 3, pp. 541-553, May 2006.
Borrelli, “Constrained Optimal Control of Linear and Hybrid Systems,” Lecture Notes in Control and Information Sciences, vol. 290, 2003.
Borrelli, “Discrete Time Constrained Optimal Control,” A Dissertation Submitted to the Swiss Federal Institute of Technology (ETH) Zurich, Diss. ETH No. 14666, 232 pages, Oct. 9, 2002.
Catalytica Energy Systems, “Innovative NOx Reduction Solutions for Diesel Engines,” 13 pages, 3rd Quarter, 2003.
Chatterjee, et al. “Catalytic Emission Control for Heavy Duty Diesel Engines,” JM, 46 pages, prior to Feb. 2, 2005.
European Search Report for EP Application No. 12191156.4-1603 dated Feb. 9, 2015.
European Search Report for EP Application No. EP 10175270.7-2302419 dated Jan. 16, 2013.
European Search Report for EP Application No. EP 15152957.5-1807 dated Feb. 10, 2015.
Search Report for Corresponding EP Application No. 11167549.2 dated Nov. 27, 2012.
U.S. Appl. No. 15/005,406, filed Jan. 25, 2016.
U.S. Appl. No. 15/011,445, filed Jan. 29, 2016.
De Oliveira, “Constraint Handling and Stability Properties of Model Predictive Control,” Carnegie Institute of Technology, Department of Chemical Engineering, Paper 197, 64 pages, Jan. 1, 1993.
De Schutter et al., “Model Predictive Control for Max-Min-Plus-Scaling Systems,” Proceedings of the 2001 American Control Conference, Arlington, Va, pp. 319-324, Jun. 2001.
Delphi, Delphi Diesel NOx Trap (DNT), 3 pages, Feb. 2004.
Diehl et al., “Efficient Numerical Methods for Nonlinear MPC and Moving Horizon Estimation,” Int. Workshop on Assessment and Future Directions of NMPC, 24 pages, Pavia, Italy, Sep. 5-9, 2008.
Dunbar, “Model Predictive Control: Extension to Coordinated Multi-Vehicle Formations and Real-Time Implementation,” CDS Technical Report 01-016, 64 pages, Dec. 7, 2001.
GM “Advanced Diesel Technology and Emissions,” powertrain technologies—engines, 2 pages, prior to Feb. 2, 2005.
Guerreiro et al., “Trajectory Tracking Nonlinear Model Predictive Control for Autonomous Surface Craft,” Proceedings of the European Control Conference, Budapest, Hungary, 6 pages, Aug. 2009.
Guzzella, et al., “Control of Diesel Engines,” IEEE Control Systems Magazine, pp. 53-71, Oct. 1998.
Havelena, “Componentized Architecture for Advanced Process Management,” Honeywell International, 42 pages, 2004.
Hiranuma, et al., “Development of DPF System for Commercial Vehicle—Basic Characteristic and Active Regeneration Performance,” SAE Paper No. 2003-01-3182, Mar. 2003.
Honeywell, “Profit Optimizer A Distributed Quadratic Program (DQP) Concepts Reference,” 48 pages, prior to Feb. 2, 2005.
http://www.tai-cwv.com/sb1106.0.html, “Technical Overview—Advanced Control Solutions,” 6 pages, printed Sep. 9, 2004.
Johansen et al., “Hardware Architecture Design for Explicit Model Predictive Control,” Proceedings of ACC, 6 pages, 2006.
Johansen et al., “Hardware Synthesis of Explicit Model Predictive Controllers,” IEEE Transactions on Control Systems Technology, vol. 15, No. 1, Jan. 2007.
Jonsson, “Fuel Optimized Predictive Following in Low Speed Conditions,” Master's Thesis, 46 pages, Jun. 28, 2003.
Kelly, et al., “Reducing Soot Emissions from Diesel Engines Using One Atmosphere Uniform Glow Discharge Plasma,” SAE Paper No. 2003-01-1183, Mar. 2003.
Keulen et al., “Predictive Cruise Control in Hybrid Electric Vehicles”, May 2009, World Electric Journal, vol. 3, ISSN 2032-6653.
Kolmanovsky, et al., “Issues in Modeling and Control of Intake Flow in Variable Geometry Turbocharged Engines”, 18th IFIP Conf. System Modeling and Optimization, pp. 436-445, Jul. 1997.
Kulhavy, et al. “Emerging Technologies for Enterprise Optimization in the Process Industries,” Honeywell, 12 pages, Dec. 2000.
Locker, et al., “Diesel Particulate Filter Operational Characterization,” Corning Incorporated, 10 pages, prior to Feb. 2, 2005.
Lu, “Challenging Control Problems and Engineering Technologies in Enterprise Optimization,” Honeywell Hi-Spec Solutions, 30 pages, Jun. 4-6, 2001.
Maciejowski, “Predictive Control with Constraints,” Prentice Hall, Pearson Education Limited, 4 pages, 2002.
Mariethoz et al., “Sensorless Explicit Model Predictive Control of the DC-DC Buck Converter with Inductor Current Limitation,” IEEE Applied Power Electronics Conference and Exposition, pp. 1710-1715, 2008.
Marjanovic, “Towards a Simplified Infinite Horizon Model Predictive Controller,” 6 pages, Proceedings of the 5th Asian Control Conference, 6 pages, Jul. 20-23, 2004.
Mayne et al., “Constrained Model Predictive Control: Stability and Optimality,” Automatica, vol. 36, pp. 789-814, 2000.
Mehta, “The Application of Model Predictive Control to Active Automotive Suspensions,” 56 pages, May 17, 1996.
Moore, “Living with Cooled-EGR Engines,” Prevention Illustrated, 3 pages, Oct. 3, 2004.
Murayama et al., “Speed Control of Vehicles with Variable Valve Lift Engine by Nonlinear MPC,” ICROS-SICE International Joint Conference, pp. 4128-4133, 2009.
National Renewable Energy Laboratory (NREL), “Diesel Emissions Control- Sulfur Effects Project (DECSE) Summary of Reports,” U.S. Department of Energy, 19 pages, Feb. 2002.
Ortner et al., “MPC for a Diesel Engine Air Path Using an Explicit Approach for Constraint Systems,” Proceedings of the 2006 IEEE Conference on Control Applications, Munich Germany, pp. 2760-2765, Oct. 4-6, 2006.
Ortner et al., “Predictive Control of a Diesel Engine Air Path,” IEEE Transactions on Control Systems Technology, vol. 15, No. 3, pp. 449-456, May 2007.
Pannocchia et al., “Combined Design of Disturbance Model and Observer for Offset-Free Model Predictive Control,” IEEE Transactions on Automatic Control, vol. 52, No. 6, 6 pages, 2007.
Patrinos et al., “A Global Piecewise Smooth Newton Method for Fast Large-Scale Model Predictive Control,” Tech Report TR2010-02, National Technical University of Athens, 23 pages, 2010.
Qin et al., “A Survey of Industrial Model Predictive Control Technology,” Control Engineering Practice, 11, pp. 733-764, 2003.
Rajamani, “Data-based Techniques to Improve State Estimation in Model Predictive Control,” Ph.D. Dissertation, 257 pages, 2007.
Rawlings, “Tutorial Overview of Model Predictive Control,” IEEE Control Systems Magazine, pp. 38-52, Jun. 2000.
Salvat, et al., “Passenger Car Serial Application of a Particulate Filter System on a Common Rail Direct Injection Engine,” SAE Paper No. 2000-01-0473, 14 pages, Feb. 2000.
Schauffele et al., “Automotive Software Engineering Principles, Processes, Methods, and Tools,” SAE International, 10 pages, 2005.
Shamma, et al. “Approximate Set-Valued Observers for Nonlinear Systems,” IEEE Transactions on Automatic Control, vol. 42, No. 5, May 1997.
Soltis, “Current Status of NOx Sensor Development,” Workshop on Sensor Needs and Requirements for PEM Fuel Cell Systems and Direct-Injection Engines, 9 pages, Jan. 25-26, 2000.
Stefanopoulou, et al., “Control of Variable Geometry Turbocharged Diesel Engines for Reduced Emissions,” IEEE Transactions on Control Systems Technology, vol. 8, No. 4, pp. 733-745, Jul. 2000.
Stewart et al., “A Model Predictive Control Framework for Industrial Turbodiesel Engine Control,” Proceedings of the 47th IEEE Conference on Decision and Control, 8 pages, 2008.
Stewart et al., “A Modular Model Predictive Controller for Turbodiesel Problems,” First Workshop on Automotive Model Predictive Control, Schloss Muhldorf, Feldkirchen, Johannes Kepler University, Linz, 3 pages, 2009.
Storset, et al., “Air Charge Estimation for Turbocharged Diesel Engines,” vol. 1 Proceedings of the American Control Conference, 8 pages, Jun. 28-30, 2000.
Takacs et al., “Newton-Raphson Based Efficient Model Predictive Control Applied on Active Vibrating Structures,” Proceeding of the European Control Conference 2009, Budapest, Hungary, pp. 2845-2850, Aug. 23-26, 2009.
The MathWorks, “Model-Based Calibration Toolbox 2.1 Calibrate complex powertrain systems,” 4 pages, prior to Feb. 2, 2005.
The MathWorks, “Model-Based Calibration Toolbox 2.1.2,” 2 pages, prior to Feb. 2, 2005.
Theiss, “Advanced Reciprocating Engine System (ARES) Activities at the Oak Ridge National Lab (ORNL), Oak Ridge National Laboratory,” U.S. Department of Energy, 13 pages, Apr. 14, 2004.
Tondel et al., “An Algorithm for Multi-Parametric Quadratic Programming and Explicit MPC Solutions,” Automatica, 39, pp. 489-497, 2003.
Van Basshuysen et al., “Lexikon Motorentechnik,” (Dictionary of Automotive Technology) published by Vieweg Verlag, Wiesbaden 039936, p. 518, 2004. (English Translation).
Van Den Boom et al., “MPC for Max-Plus-Linear Systems: Closed-Loop Behavior and Tuning,” Proceedings of the 2001 American Control Conference, Arlington, Va, pp. 325-330, Jun. 2001.
Van Keulen et al., “Predictive Cruise Control in Hybrid Electric Vehicles,” World Electric Vehicle Journal vol. 3, ISSN 2032-6653, pp. 1-11, 2009.
Wang et al., “Fast Model Predictive Control Using Online Optimization,” Proceedings of the 17th World Congress, the International Federation of Automatic Control, Seoul, Korea, pp. 6974-6979, Jul. 6-11, 2008.
Wang et al., “PSO-Based Model Predictive Control for Nonlinear Processes,” Advances in Natural Computation, Lecture Notes in Computer Science, vol. 3611/2005, 8 pages, 2005.
Wright, “Applying New Optimization Algorithms to Model Predictive Control,” 5th International Conference on Chemical Process Control, 10 pages, 1997.
Zavala et al., “The Advance-Step NMPC Controller: Optimality, Stability, and Robustness,” Automatica, vol. 45, pp. 86-93, 2009.
Zeilinger et al., “Real-Time MPC—Stability Through Robust MPC Design,” Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, P.R. China, pp. 3980-3986, Dec. 16-18, 2009.
Zelenka, et al., “An Active Regeneration as a Key Element for Safe Particulate Trap Use,” SAE Paper No. 2001-0103199, 13 pages, Feb. 2001.
Zhu, “Constrained Nonlinear Model Predictive Control for Vehicle Regulation,” Dissertation, Graduate School of the Ohio State University, 125 pages, 2008.
Related Publications (1)
Number Date Country
20200218837 A1 Jul 2020 US
Divisions (1)
Number Date Country
Parent 15019029 Feb 2016 US
Child 16824244 US