Pumps can be used to recirculate water in aquatic farms, such as recirculating aquaculture systems in which fish and other aquatic life are raised. Recirculating aquaculture systems generally include one or more tanks to house the fish, one or more water inlets into the tank, and one or more water outlets out of the tank. The water outlets are connected to an inlet of the pump. The pump generally propels the water through a filter and back into the tank through the water inlets.
Conventional recirculating aquaculture systems have a sizable upfront cost to design and build, and also have high operating costs that make it difficult for recirculating aquaculture farmers to compete with other types of aquaculture farms, such as ponds and net pen operations. Conventional recirculating aquaculture systems usually provide manually adjusted oxygen flow into the tank and manually adjusted water flow through the culture tank depending upon the size or requirements of the aquatic life. As a result, typical recirculating aquaculture farms spend anywhere from $100,000.00 to $1,000,000.00 in electrical cost and $1,700 to $4,000 in oxygen costs on an annual basis. In fact, the highest operating costs for recirculating aquaculture farms are feed, electricity, and oxygen.
In conventional recirculating aquaculture systems, there are several parameters that must be frequently monitored by the farmers in order to determine when feed rates for the fish may be increased. Presently, aquaculture farmers must monitor fecal output of the fish daily. Every 30 minutes to 2 hours, they must monitor the amount of feed the fish can be induced to consume. In addition, they must monitor the oxygen consumption of the fish and the culture system water constantly. Therefore, a need exists for a way in which to lower the production cost and operating cost of recirculating aquaculture systems.
Some embodiments of the invention provide a method of operating a variable speed pump in an aquaculture system including a culture tank that houses aquatic life. The method includes monitoring a dissolved oxygen level in the culture tank, determining a dissolved oxygen threshold based on current respiration requirements of the aquatic life in the culture tank, and comparing the dissolved oxygen level to the dissolved oxygen threshold. When the dissolved oxygen level is below the dissolved oxygen threshold, the method further includes increasing a speed of the variable speed pump until a flow rate through the culture tank that maintains the dissolved oxygen level at or above the dissolved oxygen threshold is reached. The method also includes updating the dissolved oxygen threshold based on new respiration requirements of the aquatic life as the aquatic life matures through its growth cycle.
Some embodiments of the invention provide a recirculating aquaculture system including a culture tank, a sensor, a variable speed pump, and a controller. The culture tank is configured to house aquatic life, the sensor is configured to measure a dissolved oxygen level in the culture tank, and the variable speed pump is configured to circulate water through the culture tank. The controller is in communication with the sensor and the variable speed pump and is configured to retrieve the dissolved oxygen level from the sensor, determine a dissolved oxygen threshold based on current respiration requirements of the aquatic life in the culture tank, and compare the dissolved oxygen level to the dissolved oxygen threshold. When the dissolved oxygen level is below the dissolved oxygen threshold, the controller is further configured to increase a speed of the variable speed pump until a flow rate through the culture tank that maintains the dissolved oxygen level at or above the dissolved oxygen threshold is reached. The controller is also configured to update the dissolved oxygen threshold based on new respiration requirements of the aquatic life as the aquatic life matures through its growth cycle.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless specified or limited otherwise, the terms “mounted,” “connected,” “supported,” and “coupled” and variations thereof are used broadly and encompass both direct and indirect mountings, connections, supports, and couplings. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings.
The following discussion is presented to enable a person skilled in the art to make and use embodiments of the invention. Various modifications to the illustrated embodiments will be readily apparent to those skilled in the art, and the generic principles herein can be applied to other embodiments and applications without departing from embodiments of the invention. Thus, embodiments of the invention are not intended to be limited to embodiments shown, but are to be accorded the widest scope consistent with the principles and features disclosed herein. The following detailed description is to be read with reference to the figures, in which like elements in different figures have like reference numerals. The figures, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of embodiments of the invention. Skilled artisans will recognize the examples provided herein have many useful alternatives and fall within the scope of embodiments of the invention.
The pump 12 can be a variable speed pump operated according to a flow control algorithm, as disclosed in U.S. Pat. No. 7,845,913 entitled “Flow Control” and issued Dec. 7, 2010, the entire contents of which is herein incorporated by reference. The controller 14 can read water quality information including dissolved oxygen, as well as other water quality variables. The controller 14 can be a separate component from the pump 12 or can be integrated into the variable speed pump 12.
The controller 14 can be connected to the various sensors, including the dissolved oxygen sensor 22, as well as the solenoid valve 24 in control of the oxygen supply. In some embodiments, the controller 14 can be in two-way communication with the biofilter 16, the dissolved oxygen sensor 22, and the solenoid valve 24. Two-way communication in the aquaculture system 10 can be performed as disclosed in U.S. Pat. No. 7,854,597 entitled “Pumping System with Two-Way Communication” and issued on Dec. 21, 2010, the entire contents of which is herein incorporated by reference.
The controller 14 can operate the pump 12 to control water flow and the solenoid valve 24 to control oxygen delivery based on the principles of fish growth. When fish are fingerlings, they require X amount of oxygen and Y amount of water flow to have the continuous and substantial growth that is required in aquaculture systems. As the fingerlings mature into market-size fish, the formulas change to the following:
X+Ratio of Respiration Required by Larger Fish (in ppm of oxygen)=New Oxygen Requirement/Time; and
Y+Flow Required by Maturing Fish for Water Quality and Safe Swimming Velocity=Clean Water Standard of X Ammonia/PH/Solids Removed, etc.
The new oxygen requirement/time can also incorporate the oxygen demand of the water with increased nutrient loading.
Presently, aquaculture farmers must monitor fecal output of the fish daily. Every 30 minutes to 2 hours, the fanners must monitor the amount of feed the fish can be induced to consume. In addition, the farmers must monitor oxygen consumption of the fish constantly. The aquaculture system 10 according to some embodiments of the invention allows the farmer to measure a single parameter (i.e., dissolved oxygen) that summarizes all conditions for continued feeding. In some embodiments, the aquaculture system 10 can be used to tell the farmer where and when to feed.
As the fish grow, their oxygen and water flow requirements change. As a result, the electrical and oxygen costs of an aquaculture farm change with the life cycle or respiration potential of a fish through its growth cycle. In other words, the electrical and oxygen costs of an aquaculture farm change with the dissolved oxygen requirements and water treatment needs of the fish as they grow. In conventional recirculating aquaculture systems, an operator must manually adjust oxygen flow and/or water flow (i.e., through manual valves to adjust flow paths) periodically to meet oxygen and water flow requirements.
The aquaculture system 10 according to embodiments of the invention can be used with any scale of culture tank(s) 20 through any part of the lifecycle of aquatic life requiring oxygen. The aquaculture system 10 can operate to keep dissolved oxygen substantially constant by varying the flow of water, coupled with the flow of oxygen, by monitoring and pinpointing respiration and circulation requirements. In other words, the controller 14 can monitor a dissolved oxygen level in the culture tank 20 and can increase oxygen flow into the culture tank 20 if the dissolved oxygen level is below an oxygen threshold. The controller 14 can also, or alternatively, determine a flow rate threshold based on the dissolved oxygen level, and increase water flow through the culture tank 20 by adjusting a speed of the pump 12 (e.g., by providing an updated speed control command to the pump 12) if the dissolved oxygen level is below the flow rate threshold. Accordingly, the dissolved oxygen level in the culture tank 20 can be increased by changing the speed of the pump 12 and increasing the flow rate of water through the culture tank 20.
In some embodiments, the controller 14 can incrementally increase the speed of the pump 12 until dissolved oxygen levels are at or above the oxygen threshold. In other words, the controller 14 can determine the oxygen threshold (e.g., based on respiration requirements of the aquatic life in the culture tank 20, as discussed above), compare the oxygen threshold to the measure dissolved oxygen level, and increase the speed of the pump 12 and, thus, the flow rate through the culture tank 20 when the measure dissolved oxygen level is below the oxygen threshold. The controller 14 can continuously monitor the dissolved oxygen level and increase the speed of the pump 12 until a flow rate through the culture tank 20 that maintains the dissolved oxygen level at or above the oxygen threshold is reached. In some embodiments, an operator can also manually adjust the speed of the pump 14 through a user interface of the controller 14, as further discussed below.
The aquaculture system 10 can cadence off of the requirements for the fish and only require full normal operation of the pump 12 toward the end of the aquatic life growth curve. This would potentially save the farmer 50 percent to 70 percent of the normal operating costs associated with water flow and oxygen delivery (e.g., electrical and oxygen costs).
In some embodiments, the on-board controller 116 can be enclosed in a case 128. The case 128 can include a field wiring compartment 130 and a cover 132. The cover 132 can be opened and closed to allow access to the on-board controller 116 and protect it from moisture, dust, and other environmental influences. The case 128 can be mounted on the motor 114. In some embodiments, the field wiring compartment 130 can include a power supply to provide power to the motor 114 and the on-board controller 116.
In some embodiments, the motor 114 can include a coupling 158 to connect to the on-board controller 116. In some embodiments, the on-board controller 116 can automatically operate the pump 12 according to at least one schedule. In some embodiments, the on-board controller 116 can allow a manual operation of the pump 12. In some embodiments, the on-board controller 116 can monitor the operation of the pump 12 and can indicate abnormal conditions of the pump 12.
It will be appreciated by those skilled in the art that while the invention has been described above in connection with particular embodiments and examples, the invention is not necessarily so limited, and that numerous other embodiments, examples, uses, modifications and departures from the embodiments, examples and uses are intended to be encompassed by the claims attached hereto. The entire disclosure of each patent and publication cited herein is incorporated by reference, as if each such patent or publication were individually incorporated by reference herein. Various features and advantages of the invention are set forth in the following claims.
This application is a continuation of U.S. patent application Ser. No. 13/710,073, filed on Dec. 10, 2012, which claims priority under 35 U.S.C. §119 to U.S. Provisional Patent Application No. 61/568,427 filed on Dec. 8, 2011, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61568427 | Dec 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13710073 | Dec 2012 | US |
Child | 15637651 | US |