The present disclosure relates generally to devices for use in the aquatic industry, and various methods associated with such devices. More particularly, this disclosure relates to aquarium sumps for use with aquariums, and methods associated with aquarium sumps.
To maintain an ecological balance within an aquarium, it is necessary to keep the water in the aquarium clean. Cleaning is often accomplished by pumping water from the aquarium to a filtering system, and returning the filtered water to the aquarium. Some cleaning or filtering systems include a sump having a one or more of mechanical, chemical, and biological filtration elements. In general, conventional sumps for filtering aquarium water can be improved.
The present invention relates to a sump arrangement for an aquarium. One aspect of the sump arrangement concerns a sump having an elongated water flow pathway that improves the clarity of filtered water. Another aspect of the sump arrangement concerns a dedicated skimmer area that maintains a constant water level to increase operational efficiencies of protein skimmers.
A variety of examples of desirable product features or methods are set forth in part in the description that follows, and in part will be apparent from the description, or may be learned by practicing various aspects of the disclosure. The aspects of the disclosure may relate to individual features as well as combinations of features. It is to be understood that both the foregoing general description and the following detailed description are explanatory only, and are not restrictive of the claimed invention.
Reference will now be made in detail to exemplary aspects of the present disclosure that are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
The present aquarium sump 10 is used generally to filter aquarium water of an aquarium. The sump 10 collects, filters, and otherwise treats the aquarium water outside of the aquarium tank. In the illustrated embodiment, the sump is a stand-alone sump; meaning the sump is not contained within the interior volume of the aquarium tank itself, and further does not hang alongside or hang over an edge of the aquarium tank. Rather, the sump 10 is typically located beneath the aquarium tank.
Referring to
The filter modules 14 each include an incoming reservoir 16 and a filtration region 18. The vertical tubes 12 of each filter module are in fluid communication with the incoming reservoir 16. Water feeding into the sump rises within the incoming reservoir 16 and spills into the filtration region 18 of the filter module 14 (as shown by dashed arrows). In the filtration region 18, the aquarium water falls through filtration media 24 including one or more filter elements.
In the illustrated embodiment, the filtration media of the modules 14 includes mechanical filter elements 26, chemical filter elements 28, and a biological filter element 30. The mechanical filter elements 26 can include various types of mesh constructions designed to capture larger particulates; the chemical filter elements 28 can include carbon-type elements; and the biological filter element 30 can include a rotating cylindrical filtering device. Other types of mechanical, chemical, and biological filter elements can be used; also only one type of filter element or a different combination of filter element types can be used.
After the water passes through the filtration media 24 of the filter module 14, the filtered water collects within a collection region 22 of the module. As the water level rises in the collection region 22, the filtered water spills over a lip 40 of the filter module 14 into a dedicated skimmer area 32 (see
The dedicated skimmer area 32 of the present sump 10 is generally defined by first and second partition wall 42, 44, a mid-wall construction 46, and a rear wall 48 of the sump tank 20. The dedicated area 32 is sized to receive a protein skimmer 34 that filters proteins from the aquarium water. The illustrated protein skimmer 34 generally has a water column chamber 36 and includes a collection cup 38. In use, water within the dedicated skimmer area 32 is drawn into the skimmer 34. Air bubbles are introduced into the water and the aerated water is directed to the water column chamber 36. As the air bubbles of the aerated water rise within the chamber 36, proteins attach to the bubbles and rise to the surface. The proteins are collected in the collection cup 38 until disposed. Further details of a protein skimmer that can be used in the present sump arrangement are provided in U.S. Application No. ______ [having Attorney Docket No. 12742.0123USU1, entitled Protein Skimmer with Stationary Fan]; which application is incorporated herein by reference.
The present dedicated skimmer area 32 is constructed and arranged to receive protein skimmers that are separate and removable from the sump arrangement, such as the skimmer device shown or other aftermarket skimmer devices. That is, the sump 10 does not have a built in skimmer, but rather accepts a protein skimmer within a specific skimmer area of the sump.
Some protein skimmers are adjustable and operate optimally only at a particular setting associated with a specific water level. When the water level in conventional sumps change, the efficiency of the protein skimmer is affected. For example, too high a water level can cause the skimmer to unnecessarily filter already “clean” or filtered water. Too low a water level can result in insufficient water volume filtration. The dedicated skimmer area 32 of the present sump 10 maintains a constant water level for optimal operation of a protein skimmer. That is, the sump 10 continually supplies water to the dedicated area 32 for filtration, yet prevents water level fluctuations that can decrease the filtering efficiencies of a skimmer.
The water level WL of the dedicated skimmer area 32 is maintained by the provision of openings 50 formed in the first and second partition walls 42, 44 of the sump 10. As the water level rises in the dedicated skimmer area 32, the water flows through the openings 50 and into a lower region 52 of the sump 10, i.e., a region located beneath the filter modules 14. The water level WL in the dedicated skimmer area 32 is maintained at the constant level due to the incoming flow from the filter modules 14 and the exiting flow of excess water through the openings 50. As can be understood, the arrangement permits the water level WL in the dedicated skimmer area to be independent of the water level in the remainder of the sump tank 20 during operation of the sump 10. In the illustrated embodiment, the openings 50 are sized to accommodate a flow rate of 700 gallons per hour. Various sized openings can be provided to accommodate the particular flow rates required for an application.
Referring still to
In particular and as previously described, aquarium water cascades through the filtration media and is further filtered by the skimmer that induces air for protein filtration purposes. As can be understood, the introduction of air bubbles can give the filtered water a cloudy appearance when returned to the tank and otherwise take away from the viewing pleasure. In the present sump 10, the filtered water that overflows through the openings 50 in the partitioned walls 42, 44 is drawn by the return pump 54 through a series of passageways and channels. The passageways and channels are defined by baffles or divider walls 56, 66 located in the lower region 52 of the sump 10. Referring to the flow arrows provided in
As the water flows through the passages 60, 64 and along the elongated pathway, air bubbles rise and are captured in this region 52 beneath the filter modules 14. The region 52 is submerged, i.e., the region and a substantial portion of the elongated pathway are located below the returning water level within the sump tank 20. Spaces or gaps G are located along the sides of the filter modules 14 to which the air bubbles eventually migrate and naturally vent to atmosphere.
The elongated water pathway in the lower region 52 generally allows bubbles to rise to an upper portion within the pathway while less aerated water continues to flow through the lower region 52. The passageways and channels of water pathway provide an increased distance of travel through a catacomb that reduces water aeration along the flow length of pathway.
In addition, the present elongated water pathway does not utilize aspirating foam or other chemical processes/products to aspirate air bubbles. In conventional applications, the use of foam can clog and damage water pump equipment. The present sump eliminates the need for aspirating foams or similar aspirating products by providing lengthy pathways and passages that permit air bubbles to naturally aspirate.
The filter modules 14 are also constructed to reduce the amount of air bubbles introduced into the returning filtered water. In particular, the filter modules 14 each have an angled wall 58 (
The above specification provides a complete description of the present invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, certain aspects of the invention reside in the claims hereinafter appended.
This application claims the benefit of U.S. Provisional Application Ser. No. 61/065,736, filed Feb. 13, 2008; which application is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61065736 | Feb 2008 | US |