Aquatic protective units described herein may be used in the protection of wetlands, coastal areas and various other aquatic environments. Certain devices disclosed herein may have particular utility in the restoration of coastal marsh and habitat.
In the drawings,
Minimum width may, for example, be 7.5 feet with certain examples falling between 5.0 and 9.0 feet and a significant number of those examples falling between 6.3 and 8.3 feet. These minimum width characteristics may apply in any of the examples described herein.
In the drawings,
In the drawings,
In the drawings,
Embodiments disclosed may serve as a shoreline protection particularly when multiple units are used cooperatively such as is depicted in
The geometric parameters may be modified to the environment in which the units are deployed. The individual units may be wide enough to resist forces by waves relative to the height of the structure. The height of the structure may be increased or decreased to regulate overtopping, select for vegetation types, or other design considerations. The sides of the structure may have holes in them to allow for water passage, provide habitat for fish, and reduce wave reflection.
The structure may be filled with soil and planted with vegetation. The structure may be constructed from pervious concrete to allow water to permeate through the sides and provide circulation that will inhibit soil salinity spikes and anaerobic conditions.
The bottom of the units may have holes such as Filling orifice 143 which may allow for easy placement due to the ease with which water may enter the main cavity to overcome buoyant forces of the empty unit. Alternatively, the bottoms of the unit may be open or other orifices may be present that would mitigate the buoyant effects of an air filled empty unit being placed in water. The bottom platform may be offset from the bottom of the cylindrical portion so that when it is placed on the seafloor, the perimeter of the structure is embedded in the soil. When the structure is filled with soil, a tight seal is created between the lower cavity embedded in the soil and the upper cavity. This gives the structure added stability from the unit acting as a suction pile. Alternatively, the units may be constructed with no bottom structure at all such that the walls make up the substantial portion of the units. When the units are backfilled with soil they may achieve a greater stability against movement. Further, the interlocking nature of the units with the close spacing of the units may further resist the displacement of the units by waves or other forces. The bottom of these units may extend beyond the unit floor to be driven into the existing soil. Forward facing pieces such as Wave reflective wedges 160 may reduce wave reflection or provide habitat. Such pieces would generally be oriented seaward of the main body of the unit to reduce wave refection. Those pieces may also have holes to help further reduce that reflection.
The exterior walls and lower rims of unit walls may have texture or patterns creating exterior profiles that may not perfectly follow an “arc path.” However, as the phrases “arc path” and “follow an arc path” are used herein, texture, patterns and other relatively minor deviations from the “arc path” that are not sufficient to impair a close fitting relationship between a primary wall outer face of one unit and the secondary wall outer face of another unit shall be viewed as following an arc path. For example, an alternate embodiment in which units as described in Example 1 had cooperating corrugated patterns on Primary wall outer face 116 and Secondary wall outer face 126 shall be construed as having a Primary wall lower rim 113 and a Secondary wall lower rim 123 that follow an arc path.
The close fitting relationship depicted in
The arc center point of the first unit Secondary wall lower rim 123 may be the same location as the arc center point of the second unit Primary wall lower rim 113 or it may be located within one foot of the arc center point of the second unit Primary wall lower rim 113. The arc radius of the Primary wall lower rim 113 of the units is defined herein as a standard radius such that various other dimensions of the units may be described in terms of standard radii. The distance between the Primary wall lower rim 113 radial center of the first unit and the Primary wall lower rim 113 radial center of the second unit when they are abutting each other as in
The length of the Primary wall lower rim 113 may, for example, be 4.7 standard radii with certain examples falling between 3.0 and 6.0 standard radii and a significant number of those examples falling between 3.9 and 5.4 standard radii. The length of Secondary wall lower rim 123 may be between 0.8 and 2.3 standard radii, in many cases it may be between 1.1 and 1.9 standard radii and may, for example, be 1.5 standard radii. The height of the units may, for example, be 5.0 feet with certain examples falling between 1.3 and 9.0 feet and a significant number of those examples falling between 3.1 and 7.0 feet. The units may have a Cross sectional width 156 along the line of symmetry. That Cross sectional width 156 may be 1.5 standard radii or may be between 1.2 and 1.8 standard radii. The wall thickness of the units may, for example, be 0.10 standard radii with certain examples falling between 0.02 and 0.20 standard radii and a significant number of those examples falling between 0.04 and 0.10 standard radii.
Materials used in the construction of the units may be resilient enough to withstand wave action anticipated at the location of placement. The units may be constructed of concrete and may have a compressive strength of at least 1000 psi as measured by ASTM 39 Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens.
A method for the placement of any of the units described herein may comprise transporting multiple of those units to a coastal or shoreline area and placing the units in the water such that the tops of the units are near the typical water line and the units interface generally as depicted in
The length of Primary wall lower rim 113 as compared to the length of Secondary wall lower rim 123 allows for multiple units to connect to a Primary wall outer face 116 at the same time such that a series of contiguous coordinating units may be joined in a “Y” configuration without any special joining piece. In such configurations two Secondary wall outer faces 126 would be connected to a single Primary wall outer face 116.
As that term is used herein the term “soil” encompasses a wide variety of materials including dirt, sand, rock, gravel, etc.
Protective structures described herein may, for example, have a first unit comprising: a first wall, a first wall lower rim situated at the base of the first wall, a second wall and a second wall lower rim situated at the base of the second wall and a second unit comprising: a third wall, a third wall lower rim situated at the base of the third wall, a fourth wall and a fourth wall lower rim situated at the base of the fourth wall; such that the third wall may contain concrete; the first wall lower rim follows a first arc path having a first radius; the second wall lower rim follows a second arc path having a second radius; the third wall lower rim follows a third arc path having a third radius; the fourth wall lower rim follows a fourth arc path having a fourth radius; the first radius may be between 1.3 and 7.0 feet; the second radius between 0.7 and 1.3 times the length of the first radius; the third radius may be between 0.7 and 1.3 times the length of the first radius; the fourth radius may be between 0.7 and 1.3 times the length of the first radius; and the first unit and the second unit may be configured such that the entirety of the second wall lower rim may be position adjacent to the third wall lower rim. In related examples, the third wall may have an average thickness of between 1 and 36 inches and in many cases may have an average thickness of between 2 and 24 inches. In a related example, the first radius may be between 3.4 and 6.3 feet. In a related example, the first wall lower rim may have a first wall lower rim arc center; the third wall lower rim may have a third wall lower rim arc center and the first wall lower rim arc center may be separated from the third wall lower rim arc center by a unit center separation distance that may be between 0.6 and 1.7 times the first radius. In a related example, the second wall and the third wall may be arranged to be against one another. In a related example, a third wall lower rim length of the third wall lower rim may be between 0.8 and 2.3 times the first radius. In a related example, the protective structure may have a central cavity between the first wall and the second wall such that the central cavity may be filled with soil. In a related example, the protective structure may have at least two additional units such that the first unit, the second unit and the two additional units may be arranged in water along a shoreline. In a related example, the protective structure may have at least two additional units wherein the first unit, the second unit and the two additional units may be arranged adjacent to one another in a non-linear configuration. In a further related example, the protective structure may have a central cavity between the first wall and the second wall such that the central cavity contains vegetation. In a further related example, the protective structure may have a third unit wherein the first unit, the second unit and the third unit may be arranged as a non-linear series of contiguous coordinating units. In a still further related example, the protective structure may have a third unit wherein the first unit, the second unit and the third unit may be arranged as an equally spaced series of contiguous coordinating units. In a still further related example, the height of the first unit may be between 1.3 and 9.0 feet.
Protective structures described herein may, for example, comprise a first semi-cylindrical wall having a first wall with a first wall external surface that may be convex; a second semi-cylindrical wall having a second wall with a second wall external surface that may be concave; a third semi-cylindrical wall having a third wall with a third wall external surface that may be convex; and a fourth semi-cylindrical wall having a fourth wall with a fourth wall external surface that may be concave; such that the third wall may contain concrete; the first wall external surface may follow a first arc path having a first radius; the first radius may be between 1.3 and 7.0 feet; the second wall external surface may follow a second arc path having a second radius; the second radius may be between 1.3 and 7.0 feet; the third wall external surface may follow a third arc path having a third radius; the third radius may be between 1.3 and 7.0 feet; the fourth wall external surface may follow a fourth arc path having a fourth radius; the fourth radius may be between 1.3 and 7.0 feet; the first wall and the second wall may be components of a continuous first unit perimeter wall; the third wall and the fourth wall may be components of a continuous second unit perimeter wall and the second wall external surface may be configured to be positioned such that a majority of the second wall external surface may be adjacent to the third wall external surface. In related examples, the third wall may have an average thickness of between 1 and 36 inches and in many cases may have an average thickness of between 2 and 24 inches.
Protective structures described herein may, for example, comprise a first semi-spherical wall having a first wall with a first wall external surface that may be convex; a second semi-spherical wall having a second wall with a second wall external surface that may be concave; a third semi-spherical wall having a third wall with a third wall external surface that may be convex and a fourth semi-spherical wall having a fourth wall with a fourth wall external surface that may be concave; such that the third wall may be constructed of concrete; the first wall external surface may follow a first arc path having a first radius; the first radius may be between 1.3 and 7.0 feet; the second wall external surface may follow a second arc path having a second radius; the second radius may be between 1.3 and 7.0 feet; the third wall external surface may follow a third arc path having a third radius; the third radius may be between 1.3 and 7.0 feet; the fourth wall external surface may follow a fourth arc path having a fourth radius; the fourth radius may be between 1.3 and 7.0 feet; the first wall and the second wall may be components of a continuous first unit perimeter wall; the third wall and the fourth wall may be components of a continuous second unit perimeter wall and the second wall external surface may be configured to be positioned such that a majority of the second wall external surface may be adjacent to the third wall external surface. In related examples, the third wall may have an average thickness of between 1 and 36 inches and in many cases may have an average thickness of between 2 and 24 inches.
The above-described embodiments have a number of independently useful individual features that have particular utility when used in combination with one another including combinations of features from embodiments described separately. There are, of course, other alternate embodiments which are obvious from the foregoing descriptions, which are intended to be included within the scope of the present application.
Number | Name | Date | Kind |
---|---|---|---|
954283 | Hawkes | Mar 1910 | A |
2069715 | Arpin | Feb 1937 | A |
2652692 | Hayden | Sep 1953 | A |
3073061 | Pearson | Jan 1963 | A |
3368357 | Takamori | Feb 1968 | A |
3415061 | Staempfli | Dec 1968 | A |
3653216 | Stickler, Jr. | Apr 1972 | A |
3990247 | Palmer | Nov 1976 | A |
3995434 | Kato | Dec 1976 | A |
4229123 | Heinzmann | Oct 1980 | A |
4407608 | Hubbard | Oct 1983 | A |
4431337 | Iwasa | Feb 1984 | A |
4498805 | Weir | Feb 1985 | A |
4711598 | Schaaf et al. | Dec 1987 | A |
4896996 | Mouton et al. | Jan 1990 | A |
4913595 | Creter, Jr. et al. | Mar 1990 | A |
4978247 | Lenson | Dec 1990 | A |
4997311 | Van Doren | Mar 1991 | A |
4998844 | Mouton | Mar 1991 | A |
5074707 | Greene | Dec 1991 | A |
5080526 | Waters | Jan 1992 | A |
5123780 | Martinsen | Jun 1992 | A |
5173006 | Lowe | Dec 1992 | A |
5246307 | Rauch | Sep 1993 | A |
5259695 | Mostkoff | Nov 1993 | A |
5269254 | Gagliano et al. | Dec 1993 | A |
5393169 | Creter | Feb 1995 | A |
5536112 | Oertel, II | Jul 1996 | A |
5620280 | Melby et al. | Apr 1997 | A |
5803660 | Warren et al. | Sep 1998 | A |
6106195 | Komatsu | Aug 2000 | A |
6186702 | Bartkowski | Feb 2001 | B1 |
6286251 | Whitson | Sep 2001 | B1 |
6491473 | Veazey | Dec 2002 | B2 |
6565283 | Hall | May 2003 | B1 |
6824327 | Walter | Nov 2004 | B1 |
6896445 | Engler | May 2005 | B1 |
7144196 | Campbell et al. | Dec 2006 | B1 |
7513711 | Walter | Apr 2009 | B1 |
7704013 | Kim | Apr 2010 | B2 |
7827937 | Walter | Nov 2010 | B1 |
9144228 | Ortego et al. | Sep 2015 | B1 |
20100104366 | Melby | Apr 2010 | A1 |
Number | Date | Country |
---|---|---|
0047718 | Mar 1982 | EP |