In certain climates, it is common for ice to form on a body of water, such as a lake or a river. These ice-covered bodies of water provide recreational opportunities such as ice skating, ice boat sailing, or snow mobile riding. During the course of the activity, accidents can occur, such as involving a person falling through the ice. While time is of the essence in any water rescue, when a person is submerged in ice cold waters time becomes even more critical due to the possibility of hypothermia.
Many types of buoyant rescue devices have been developed which allow a rescuer to reach a drowning victim who has either fallen through the ice or is unable to swim in open water. For example, certain rescue devices are configured as relatively large sled-like structures having relatively large bottom service areas, such as pontoons, for distributing the weight of the device as well as the weight of the victim and the rescuer over a large supporting area. To support the weight of both the victim and the rescuer, conventional pontoons include foam blocks disposed within a shell. The foam blocks typically limit or prevent the weight of the victim and the rescuer from collapsing the pontoons, thereby causing harm to both parties.
Conventional rescue devices suffer from a variety of deficiencies. For example, conventional rescue devices are configured as relatively large sled-like structures. These structures are buoyant and have relatively large bottom service areas for distributing the weight of the device as well as the weight of the victim and the rescuer over a large supporting area such as an ice surface. Because of its primary purpose, the conventional rescue devices are buoyant so as to be supported on thin ice and to float in water. However, conventional rescue devices relatively bulky which can makes it difficult for an operator to transport to a rescue location and to store during periods of nonuse.
Further, typical rescue device pontoons are conventionally manufactured from a polyethylene shell which contain styrene blocks that provide vertical loading support for a user. The shell is bonded along a seam that extends about a perimeter of the pontoon. While the styrene blocks provide vertical loading support for a user, with such a configuration, the pontoons are fairly heavy.
Inflatable rescue devices have also been developed which do not have the disadvantage of being difficult to transport and store. However, the inflatable devices are subject to deflation as a result of tearing on sharp ice, rocks, or broken bottles. The weight of the victim and the rescuer are not spread uniformly and tends to shift so that the device is not as stable as that of the rigid rescue sleds. Also, due to the yieldable nature of the inflatable device, there is a tendency for the victim to roll off the supporting surface of the device.
By contrast to conventional rescue devices, embodiments of the present innovation relate to an aquatic rescue device. In one arrangement, the rescue device includes a frame and a set of flotation elements connected to the frame. Each of the flotation elements are configured as substantially hollow, water tight structures. With such a configuration, the flotation elements reduce the weight of the rescue device, thereby allowing the rescue device to be easily transported to a rescue location and stored when not in use. Further, each flotation element includes vertical load supports disposed at various locations within the hollow structure, and along the length, of the flotation elements. The vertical load supports can be configured as relatively thin walled structures which allow the flotation elements to support the weight of a rescue device operator and victim during a rescue operation. The vertical load supports, therefore, maintain the structural integrity of the flotation elements while minimizing the contribution of the weight of the flotation elements to that of the rescue device as a whole.
In one arrangement, each flotation element of the rescue device is configured with a relatively narrow profile. For example, each flotation element can have a length of about 84 inches, a width of about 16 inches, and a depth 34 of about 10 inches. With such a geometric configuration, each flotation element can support a load of about 325 pounds and can provide the rescue device with a total load support of about 650 pounds. Further, the geometric configuration of the flotation elements reduces the overall width of the rescue device compared to conventional rescue devices, thereby allowing the rescue device to be relatively easy to transport and store.
In one embodiment of the innovation, a rescue device includes a frame and at least one flotation element connected to the frame. The at least one flotation element defines a chamber containing a volume of air and includes at least one vertical load support extending between a first flotation element portion and an opposing second flotation element portion of the flotation element.
The foregoing and other objects, features and advantages will be apparent from the following description of particular embodiments of the innovation, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of various embodiments of the innovation.
Embodiments of the present innovation relate to an aquatic rescue device. In one arrangement, the rescue device includes a frame and a set of flotation elements connected to the frame. Each of the flotation elements are configured as substantially hollow, water tight structures. With such a configuration, the flotation elements reduce the weight of the rescue device, thereby allowing the rescue device to be easily transported to a rescue location and stored when not in use. Further, each flotation element includes vertical load supports disposed at various locations within the hollow structure, and along the length, of the flotation elements. The vertical load supports can be configured as relatively thin walled structures which allow the flotation elements to support the weight of a rescue device operator and victim during a rescue operation. The vertical load supports, therefore, maintain the structural integrity of the flotation elements while minimizing the contribution of the weight of the flotation elements to that of the rescue device as a whole.
The frame 12 is configured to support the flotation elements 14-1, 14-2 in a spaced and substantially parallel relationship. In one arrangement, the frame 12 includes a first cross member 16 connected to a first or front portion 18 of the first and second flotation elements 14-1, 14-2 and a second cross member 20 connected to a second or rear portion 22 of the first and second flotation elements 14-1, 14-2. For example, the first and second flotation elements 14-1, 14-2 each define corresponding first channels 24-1, 24-2 that contain the first cross member 16 and define corresponding second channels 26-1, 26-2 that contain the second cross member 20.
As shown, the frame 12 is configured to dispose the first and second flotation elements 14-1, 14-2 at a spaced distance d from each other. For example, the first flotation element 14-1 is connected to a first portion of the frame 12, such as to first ends 17-1, 17-2 of the first and second cross members 16, 20. Further, the second flotation element is connected to a second portion of the frame 12, such as to second ends 19-1, 19-2 of the first and second cross members 16, 20. With such positioning, the cross members 16, 20 and the first and second flotation elements 14-1, 14-2 define an opening 28 there between. In one arrangement, the opening 28 allows a rescue device operator to walk along a frozen or ice surface that supports the rescue device 10 during a rescue procedure. In another arrangement, the opening 28 is configured to receive a platform or other surface to provide support to the rescue device operator when guiding the rescue device 10 in a body of water during a rescue procedure.
The rescue device 10 can also include a first set of rails 40 and a second set of rails 42, as shown. In one arrangement, the first set of rails 40 are configured as guard rails which limit or prevent either a rescue device operator or a rescued person from falling from the rescue device 10. Further, the second set of rails 42 can be configured as carry rails, which allow a rescue device operator to move and/or carry the rescue device 10, such as to a site for a rescue procedure. Alternately, the second set of rails can be configured as storage rails which allow an operator to hang the rescue device from a wall, such as via a set of hooks, when not in use.
While the first and second sets of rails 40, 42 can be manufactured in a variety of ways, in one arrangement each rail of the first and second sets of rails 40, 42 is manufactured from a cylindrical tube of thermoplastic material, such as polyvinyl chloride, formed as a substantial U-shape. The cylindrical tubes can be configured as hollow tubes to minimize the overall weight of the rescue device.
Each of the first and second sets of rails 40, 42 can include any number of rails within the sets. For example, the first set of rails 40 can include a first rail 40-1 connected to the first flotation element 14-1 and a second rail 40-2 connected to the second flotation element 14-2. Further, the second set of rails 42 can include a first rail 42-1 connected to the first flotation element 14-1 and a second rail 42-2 connected to the second flotation element 14-2 where the rails 42-1, 42-2 of the second sets of rails are disposed on either side of the rails 40-1, 40-2 of the first set of rails.
In one arrangement, to provide stability in the coupling of the sets of rails 40, 42 to the rescue device 10, the first and second sets of rails 40, 42 are secured to both the cross members 16, 20 and the first and second flotation elements 14-1, 14-2. Such a connection configuration structurally ties the rails 40, 42 to both the frame 12 and the flotation elements 14, thereby increasing the relative structural integrity of the rescue device 10.
For example, the first rail 40-1 of the first set of rails 40 includes a first end 44-1 connected to both the first cross member 16 and to the front portion 18 of the first flotation element 14-1 and includes a second end 44-2 connected to both the second cross member 20 and to the rear portion 22 of the first flotation element 14-2. Further, the second rail 40-2 of the first set of rails 40 includes a first end 46-1 connected to both the first cross member 16 and to the front portion 18 of the second flotation element 14-2 and includes a second end 46-2 connected to the second cross member 20 and to the rear portion 22 of the second flotation element 14-2.
Further, the first rail 42-1 of the second set of rails 42 includes a first end 48-1 connected to both the first cross member 16 and to a front portion 18 of the first flotation element 14-1 and includes a second end 48-2 connected to both the second cross member 20 and to a rear portion 22 of the first flotation element 14-2. Additionally, the second rail 42-2 of the second set of rails 40 includes a first end 50-1 connected to both the first cross member 16 and to the front portion 18 of the second flotation element 14-2 and includes a second end 50-2 connected to the second cross member 20 and to the rear portion 22 of the second flotation element 14-2.
The set of flotation elements 14 are configured to provide buoyancy to the rescue device 10 while minimizing the weight of the rescue device 10 and providing a stable support surface for a rescue device operator and victim. The following provides a description of an example embodiment of the flotation elements 14.
In one arrangement, to provide buoyancy to the rescue device 10, each of the flotation elements 14-1, 14-2 are configured as substantially hollow, water tight structures. For example each of the floatation elements 14-1, 14-2 can be manufactured using a rotational molding or rotomolding process. During the manufacturing process, a manufacturer utilizes a two cavity mold. For example, each mold element of the two cavity mold corresponds to the outer size, shape, and geometry of a corresponding first, or top, flotation element portion 64 and a corresponding second, or bottom flotation element portion 68, as indicated in
The rotational molding manufacturing process results in substantially hollow flotation elements 14-1, 14-2 which are leak tight, thereby limiting or preventing water from entering the hollow flotation elements 14-1, 14-2 during operation. An example of the first flotation element 14-1 is provided in
As illustrated, the flotation element 14-1 includes a shell 60 that is formed as a substantially hollow structure. As shown, the shell 60 includes a first flotation element portion 64 and an opposing second flotation element portion 68 and further defines a chamber 65 containing a volume of air. The chamber 65 extends between the first and second flotation element portions 64, 68 along a longitudinal axis 70 of the flotation element 14-1. With such a configuration, the chamber 65 can distribute the volume of air substantially evenly throughout the flotation element 14-1 to maintain buoyancy of the flotation element 14-1 along its length 30 and width 32. Further, with the absence of internal flotation elements, the configuration of the chamber 64 reduces the overall weight of the rescue device 10 compared to conventional devices.
The geometric configuration of the flotation elements 14-1, 14-2 also contributes to the buoyancy of the rescue device 10. For example, with continued reference to
Further, the geometric configuration of the flotation elements 14-1, 14-2 also allows for relatively easy and clean deployment of the rescue device 10 during a rescue operation. For example, the length 30, width 32, and depth 34 of the flotation elements 14-1, 14-2 as provided above are configured to provide a relatively narrow profile to the rescue device 10. This allows the rescue device 10 to be easily transported to a rescue location and deployed by one or more rescue device operators.
Each of the flotation elements 14-1, 14-2 are configured support the weight of a rescue device operator and a victim during a rescue procedure. For example, with continued reference to
The vertical load supports 62 can be configured with a variety of geometries. In one arrangement, as will be described below, each of the vertical load supports 62 includes opposing conically-shaped or cylindrically-shaped elements that define hollow cavities or chambers 86, 92. With such a configuration, the vertical load supports 62 minimize the weight of the flotation elements 14 while maintaining structural integrity of the flotation elements 14, thereby minimizing collapse of the flotation elements in use.
In one arrangement, each vertical load support 62 is integrally formed with the first flotation element portion 64 and the second flotation element portion 68. For instance, during a rotomolding process, the two cavity mold can form each vertical load support 62 as conical or cup-shaped elements. As indicated in
With such a configuration, each of the vertical load supports 62 include relatively thin walled structures which distribute a load from the upper surface 80 of the first flotation element portion 64 to the bottom surface 82 of the of the second flotation element portion 68. This allows the flotation elements 14 to support the weight of a rescue device operator and victim, such as applied through the frame 12 by the rescue device operator and victim, during a rescue operation. The vertical load supports 62, therefore, maintain the structural integrity of the flotation elements 14 while minimizing the contribution of the weight of the flotation elements to that of the rescue device as a whole.
Each flotation element 14-1, 14-2 can be configured with a variety of additional features to aid the rescue device operator during a rescue operation. For example, with reference to
In another example, with reference to
In another example, returning to
In one arrangement, returning to
The third strap 1100 includes a first primary fastening element 1112 on one side of the strap and a secondary fastening element 1116 on the opposite side of the strap. The fourth strap 1102 includes a primary second fastening element on one side of the strap (not shown) and a secondary fastening element 1114 on the opposite side of the strap. The second primary fastening element 1114 is complementary to the primary first fastening element 1112 so that when the fastening elements 1112 and 1114 are joined, the straps 1100 and 1102 form a loop for encircling and retaining a victim as indicated in
In use, a rescue device operator can deploy the rescue device 10 to retrieve a potential drowning victim from a body of water. If, for example, the victim is to be rescued from a hole in thin ice, the operator places the rescue device 10 on the ice so that the flotation elements 14-1, 14-2 rest on the surface of the ice near the shore. The device operator then advances the rescue device 10 toward the victim. This is accomplished by grasping the first and second rail 40-1, 40-2 of the first set of rails 40 so that a majority of the rescuer's weight is transferred through the frame 12 to the flotation elements 14-1, 14-2 which extend over a relatively large surface area on the ice, while the rescuer's feet contact the ice in the space 28 between the flotation elements 14-1, 14-2. This enables the rescuer to push or walk on the surface of the ice to advance the rescue device 10 toward the victim with only enough downward pressure on the ice to create traction but not to cause the ice to break.
When the rescuer has advanced the rescue device 10 to the edge of the hole in the ice where the victim is located, the rescuer stands on the device 10 with one foot on each of the flotation elements 14-1, 14-2 and grabs the victim's hands or clothing and pulls the victim onto the first cross member 16 of the frame 12. This positions the victim on top of the mid-portions of the webbing 192 and 194 of the harness 190. The device operator then places straps 1100 and 1102 over the victim and fastens the straps together to form a loop which encircles the torso of the victim. This secures the victim to the rescue device 10.
The rescuer then turns 180° and advances the rescue device 10 towards the shore in the same manner as the rescue device 10 was advanced toward the victim. The rescue device operator will now be at the opposite end of the rescue device 10 from the victim (i.e., facing the second or rear portion 22 of the first and second flotation elements 14-1, 14-2) so that the combined weight of the victim and rescue device operator will be relatively evenly distributed between both ends 18, 22 of the rescue device 10. If additional rescuers are at the shore, the rescue device 10 containing the victim and rescuer can be pulled toward shore by these additional rescuers.
Based upon the utilization of a substantially hollow chamber 65 for each of the flotation elements 14, the configuration of the flotation elements 14 reduces the weight of the rescue device 10, thereby allowing the rescue device 10 to be easily transported and deployed at a rescue location. Further, each flotation element 14-1, 14-2 includes vertical load supports 62 disposed at various locations within the hollow chamber 65 and along the length of the flotation elements 14-1, 14-2. The vertical load supports 62 are structurally rigid, which allows the flotation elements 14-1, 14-2 to support the weight of the rescue device operator and victim during a rescue operation. For example, the vertical load supports 62 are configured to distribute weight applied by the rescue device operator to the frame 12, via the first and second rail 40-1, 40-2, from the upper surface 80 to the bottom surface 82 of the flotation elements 14-1, 14-2. The vertical load supports 62, therefore, maintain the structural integrity of the flotation elements 14-1, 14-2 during use while minimizing the contribution of the weight of the flotation elements 14-1, 14-2 to that of the rescue device 10 as a whole.
The rescue device 10 can include additional features that contribute to the stability of the device 10 during operation. The following provides a description of various examples of such features.
For example, as provided above, the ends of the first and second sets of rails 40, 42 are connected to the respective cross bars 16, 20 and flotation elements 14-1, 14-2. In one arrangement, to secure these elements together in a substantially rigid configuration, each of the first and second sets of rails 40, 42 includes two separate connection assemblies 200, such that the rescue device 10 includes a total of eight connection assemblies, as indicated in
In one arrangement, with reference to
With reference to
With reference to the example shown in
The sleeve 202 is further configured as a substantially cylindrically shaped structure having an outer diameter that is less than the diameter of the opening 205 of the cross member 20 and less that an inner diameter of the end of the first rail 42-1. With such a configuration, during assembly, the tubular end of the first rail 42-1 inserts within the opening 205 of the cross member 20 and around the sleeve 202. In one arrangement, the wall of the first rail 42-1 forms a friction fit with the wall opening 205 of the cross member and the outer wall of the sleeve 202.
With the end of the first rail 42-1 disposed about the sleeve 202, a lateral opening 212 of the first rail 42-1 aligns with a corresponding lateral opening 214 of the sleeve 202. With such alignment, the manufacturer can insert the second connector 206, such as a threaded fastener, into the openings 212, 214 to connect first rail 42-1 to the sleeve 200. As a result of connecting the flotation element, the cross member 20, and the sleeve 42-1 together as a unit, the connection assembly 200 provides a level of structural stability to the rescue device 10.
As provided above, the rescue device 10 includes a retaining harness 190 configured to secure a victim to the rescue device 10 during a rescue operation. In one arrangement, the rescue device 10 is configured to act in conjunction with the retaining harness 190 to secure the victim to the device 10 in order to minimize movement or slippage of the victim from the device 10.
For example, with reference to
In use, each of the first and second harness retaining mechanisms 220-1, 220-2, are configured to engage and secure corresponding first and second ends 1104, 1108 of the retaining harness 190 to the rails 40-1, 40-2. For example, once a victim has been secured to the retaining harness 190, the device operator can further pull the victim onto the rescue device 10 by grasping the straps 1100 and 1102 and pulling the victim upwardly so that the loops 1104 and 1108 slide along the corresponding first and second rails 40-1, 40-2 along direction 230. As the loops 1104, 1108 reach the corresponding harness retaining mechanisms 220-1, 220-2, the top portions 232, 234 of the loops 1104, 1108 slide along the engagement faces 222 and past the vertical faces 224. With such positioning of the loops 1104 and 1108, the vertical faces 224 limit the loops 1104, 1108, and the retaining harness 190, from sliding back toward the front portion 18 of the rescue device 10. Accordingly, the first and second harness retaining mechanisms 220-1, 220-2 enables the victim to be pulled almost completely out of the water, shifts his weight toward the center of the rescue device 10, and secures the victim to the rescue device 10 in a stable position.
As provided above, the flotation elements 14 are geometrically configured to allow for ease of deployment. For example, the length 30, width 32, and depth 34 of the flotation elements 14-1, 14-2 are configured to provide a relatively narrow profile to the rescue device 10 which allows the rescue device 10 to be easily transported to a rescue location and deployed by one or more rescue device operators. In one arrangement, the flotation elements 14 are also geometrically configured to assist in getting a victim secured to the rescue device 10.
In one arrangement, with reference to
While various embodiments of the innovation have been particularly shown and described, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the innovation as defined by the appended claims.
This patent application claims the benefit of U.S. Provisional Application No. 62/253,068, filed on Nov. 9, 2015, entitled, “Aquatic Rescue Device,” the contents and teachings of which are hereby incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
62253068 | Nov 2015 | US |