AQUEOUS COMPOSITIONS FOR WHITENING AND SHADING IN COATING APPLICATIONS

Abstract
The instant invention relates to aqueous coating compositions for optical brightening and shading of substrates.
Description

The instant invention relates to aqueous coating compositions comprising derivatives of diaminostilbene optical brightener, shading dyes, white pigments, primary binders, and optionally secondary binders which can be used to provide coated substrates of high whiteness and brightness.


BACKGROUND OF THE INVENTION

It is well known that the whiteness and thereby the attractiveness of coated papers can be improved by the addition of optical brighteners and shading dyes to the coating composition.


WO 0218705 A1 however teaches that the use of shading dyes, while having a positive effect on whiteness, has a negative impact on brightness. The solution to this problem is to add additional optical brightener, the advantage claimed in WO 0218705 A1 being characterized by the use of a mixture comprising at least one direct dye (exemplified by C.I. Direct Violet 35) and at least one optical brightener.


In order to satisfy the demand for coated papers of higher whiteness and brightness, there is a need for more efficient shading compositions.


Surprisingly, we have now discovered shading dyes which have a strongly positive effect on whiteness while having little or no effect on brightness, and which can be used in coating compositions comprising optical brighteners, white pigments, primary binders, and optionally secondary binders in order to enable the papermaker to reach high levels of whiteness and brightness.


Therefore, the goal of the present invention is to provide aqueous coated compositions containing derivatives of diaminostilbene optical brightener, certain shading dyes, white pigments, primary binders, and optionally secondary binders, which afford enhanced high whiteness levels while avoiding the disadvantages characterized by the use of shading dyes (loss of brightness) or pigments (lower whiteness build) recognized as being state-of-the-art.







DESCRIPTION OF THE INVENTION

The present invention therefore provides aqueous coating compositions for optical brightening and shading of substrates, preferably paper, comprising


(a) at least one optical brightener of formula (I)




embedded image


in which

  • the anionic charge on the brightener is balanced by a cationic charge composed of one or more identical or different cations selected from the group consisting of hydrogen, an alkali metal cation, alkaline earth metal, ammonium, ammonium which is mono-, di-, tri- or tetrasubstituted by a C1-C4 linear or branched alkyl radical, ammonium which is mono-, di-, tri- or tetrasubstituted by a C1-C4 linear or branched hydroxyalkyl radical, ammonium which is, di-, tri- or tetrasubstituted by a mixture of C1-C4 linear or branched alkylradical and linear or branched hydroxyalkyl radical or mixtures of said compounds,
  • R1 and R1′ may be the same or different, and each is hydrogen, C1-C4 linear or branched alkyl, C2-C4 linear or branched hydroxyalkyl, CH2CO2, CH2CH2CONH2 or CH2CH2CN,
  • R2 and R2′ may be the same or different, and each is C1-C4 linear or branched alkyl, C2-C4 linear or branched hydroxyalkyl, CH2CO2, CH(CO2)CH2CO2, CH(CO2)CH2CH2CO2, CH2CH2SO3, CH2CH2CO2, CH2CH(CH3)CO2, benzyl, or
  • R1 and R2 and/or R1′ and R2′, together with the neighboring nitrogen atom signify a morpholine ring and
  • p is 1 or 2,


    (b) at least one shading dye of formula (II)




embedded image


in which

  • R3 signifies H, methyl or ethyl,
  • R4 signifies paramethoxyphenyl, methyl or ethyl,
  • M signifies a cation selected from the group consisting of hydrogen, an alkali metal cation, alkaline earth metal, ammonium, ammonium which is mono-, di-, tri- or tetrasubstituted by a C1-C4 linear or branched alkyl radical, ammonium which is mono-, di-, tri- or tetrasubstituted by a C1-C4 linear or branched hydroxyalkyl radical, ammonium which is, di-, tri- or tetrasubstituted by a mixture of C1-C4 linear or branched alkylradical and linear or branched hydroxyalkyl radical or mixtures of said compounds,


    (c) at least one white pigment,


    (d) at least one primary binder,


    (e) optionally one or more secondary binders and


    (f) water.


In compounds of formula (I) for which p is 1, the CO2 group is preferably in the 2 or 4-position of the phenyl ring.


Preferred compounds of formula (I) are those in which


the anionic charge on the brightener is balanced by a cationic charge composed of one or more identical or different cations selected from the group consisting of hydrogen, an alkali metal cation, alkaline earth metal, ammonium which is mono-, di-, tri- or tetrasubstituted by a C1-C4 linear or branched hydroxyalkyl radical, ammonium which is, di-, tri- or tetrasubstituted by a mixture of C1-C4 linear or branched alkylradical and linear or branched hydroxyalkyl radical or mixtures of said compounds,

  • R1 and R1′ may be the same or different, and each is hydrogen, C1-C4 linear or branched alkyl, C2-C4 linear or branched hydroxyalkyl, CH2CO2, CH2CH2CONH2 or CH2CH2CN,
  • R2 and R2′ may be the same or different, and each is C1-C4 linear or branched alkyl, C2-C4 linear or branched hydroxyalkyl, CH2CO2, CH(CO2)CH2CO2 or CH2CH2SO3 and is 1 or 2.


More preferred compounds of formula (I) are those in which


the anionic charge on the brightener is balanced by a cationic charge composed of one or more identical or different cations selected from the group consisting of Li+, Na+, K+, Ca2+, Mg2+, ammonium which is mono-, di-, tri- or tetrasubstituted by a C1-C4 linear or branched hydroxyalkyl radical, ammonium which is, di-, tri- or tetrasubstituted by a mixture of C1-C4 linear or branched alkylradical and linear or branched hydroxyalkyl radical or mixtures of said compounds,

  • R1 and R1′ may be the same or different, and each is hydrogen, methyl, ethyl, propyl, α-methylpropyl, β-methylpropyl, β-hydroxyethyl, β-hydroxypropyl, CH2CO2, CH2CH2CONH2 or CH2CH2CN,
  • R2 and R2′ may be the same or different, and each is methyl, ethyl, propyl, α-methylpropyl, β-methylpropyl, β-hydroxyethyl, β-hydroxypropyl, CH2CO2, CH(CO2)CH2CO2 or CH2CH2SO3 and
  • p is 1 or 2.


Especially preferred compounds of formula (I) are those in which


the anionic charge on the brightener is balanced by a cationic charge composed of one or more identical or different cations selected from the group consisting of Na+, K+, triethanolammonium, N-hydroxyethyl-N,N-dimethylammonium, N-hydroxyethyl-N,N-diethylammonium or mixtures of said compounds,

  • R1 and R1′ may be the same or different, and each is hydrogen, methyl, ethyl, propyl, β-hydroxyethyl, β-hydroxypropyl, CH2CO2, CH2CH2CONH2 or CH2CH2CN,
  • R2 and R2′ may be the same or different, and each is ethyl, propyl, β-hydroxyethyl, β-hydroxypropyl, CH2CO2, CH(CO2)CH2CO2 or CH2CH2SO3 and
  • p is 1.


Compound of formula (I) is used in an amount typically of from 0.01 to 5% by weight, preferably in the range of from 0.05 to 3% by weight, the % by weight being based on the total weight of dry white pigment.


Preferred compounds of formula (II) are those in which

  • R3 signifies H, methyl or ethyl,
  • R4 signifies paramethoxyphenyl, methyl or ethyl,
  • M signifies a cation selected from the group consisting of hydrogen, an alkali metal cation, alkaline earth metal, ammonium which is mono-, di-, tri- or tetrasubstituted by a C1-C4 linear or branched hydroxyalkyl radical, ammonium which is, di-, tri- or tetrasubstituted by a mixture of C1-C4 linear or branched alkylradical and linear or branched hydroxyalkyl radical or mixtures of said compounds.


More preferred compounds of formula (II) are those in which

  • R3 signifies methyl or ethyl,
  • R4 signifies methyl or ethyl,
  • M signifies a cation selected from the group consisting of Li+, Na+, K+, ½ Ca2+, ½ Mg2+, ammonium which is mono-, di-, tri- or tetrasubstituted by a C1-C4 linear or branched hydroxyalkyl radical, ammonium which is, di-, tri- or tetrasubstituted by a mixture of C1-C4 linear or branched alkylradical and linear or branched hydroxyalkyl radical or mixtures of said compounds.


Especially preferred compounds of formula (II) are those in which

  • R3 signifies methyl or ethyl,
  • R4 signifies methyl or ethyl,
  • M signifies a cation selected from the group consisting of Na+, K+, triethanolammonium, N-hydroxyethyl-N,N-dimethylammonium, N-hydroxyethyl-N,N-diethylammonium or mixtures of said compounds.


Compound of formula (II) is used in an amount typically of from 0.00001 to 0.05% by weight, preferably in the range of form 0.00005 to 0.02% by weight, the % by weight being based on the total weight of dry white pigment.


Although it is possible to produce coating compositions that are free from white pigments, the best white substrates for printing are made using opaque coating compositions comprise from 10 to 70% by weight of white pigments, preferably of from 40 to 60% by weight of white pigments, the % by weight being based on the total weight of the coating composition. Such white pigments are generally inorganic pigments, e.g., aluminium silicates (kaolin, otherwise known as china clay), calcium carbonate (chalk), titanium dioxide, aluminium hydroxide, barium carbonate, barium sulphate, or calcium sulphate (gypsum). Preferably a mixture of from 10 to 20% by weight of clay and of from 30 to 40% by weight of chalk is used as white pigments, the % by weight being based on the total weight of the coating composition.


The binders may be any of those commonly used in the paper industry for the production of coating compositions and may consist of a single binder or of a mixture of primary and secondary binders.


The sole or primary binder is preferably a synthetic latex, typically a styrene-butadiene, vinyl acetate, styrene acrylic, vinyl acrylic or ethylene vinyl acetate polymer. The preferred primary binder is a latex binder.


The sole or primary binder is used in an amount typically in the range of form 2 to 25% by weight, preferably of from 4 to 20% by weight, the % by weight being based on the total weight of white pigment.


The secondary binder which may be optionally used may be, e.g., starch, carboxymethylcellulose, casein, soy polymers, polyvinyl alcohol or a mixture of any of the above. The preferred secondary binder which may be optionally used is a polyvinyl alcohol binder.


The polyvinyl alcohol which may be optionally used in the coating composition as secondary binder has preferably a degree of hydrolysis greater than or equal to 60% and a Brookfield viscosity of from 2 to 80 mPa·s (4% aqueous solution at 20° C.). More preferably, the polyvinyl alcohol has a degree of hydrolysis greater than or equal to 80% and a Brookfield viscosity of from 2 to 40 mPa·s (4% aqueous solution at 20° C.).


When optionally used, the secondary binder is used in an amount typically in the range of form 0.1 to 20% by weight, preferably of from 0.2 to 8% by weight, more preferably of from 0.3 to 6% by weight, the % by weight being based on the total weight of white pigment.


The pH value of the coating composition is typically in the range of from 5 to 13, preferably of from 6 to 11, more preferably of from 7 to 10. Where it is necessary to adjust the pH of the coating composition, acids or bases may be employed. Examples of acids which may be employed include but are not restricted to hydrochloric acid, sulphuric acid, formic acid and acetic acid. Examples of bases which may be employed include but are not restricted to alkali metal and alkaline earth metal hydroxide or carbonates, ammonia or amines.


In addition to one or more compounds of formula (I), one or more compounds of formula (II), one or more white pigments, one or more binders, optionally one or more secondary binders and water, the coating composition may contain by-products formed during the preparation of compounds of formula (I) and compounds of formula (II) as well as other conventional paper additives. Examples of such additives are for example antifreezers, dispersing agents, synthetic or natural thickeners, carriers (e.g. polyethylene glycols), defoamers, wax emulsions, dyes, inorganic salts, solubilizing aids, preservatives, complexing agents, biocides, cross-linkers, pigments, special resins etc.


The coating composition may be prepared by adding one or more compounds of formula (I) and one or more compounds of formula (II), to a preformed aqueous dispersion of one or more binders, optionally one or more secondary binders and one or more white pigments.


One or more compounds of formula (I) and one or more compounds of formula (II) can be added in any order or at the same time to the preformed aqueous dispersion of one or more binders, optionally one or more secondary binders and one or more white pigments.


One or more compounds of formula (I), one or more compounds of formula (II) and optionally one or more secondary binders can be added as solids or as preformed aqueous solutions to the preformed aqueous dispersion of one or more white pigments.


The present invention further provides a process for the optical brightening and tinting of paper substrates characterized in that an aqueous coating composition containing at least one optical brightener, at least one certain shading dye, at least one white pigment, at least one binder and optionally at least one secondary binder is used.


When used as a preformed aqueous solution, the concentration of compound of formula (I) in water is preferably of from 1 to 80% by weight, more preferably of from 2 to 50% by weight, even more preferably from 10 to 30% by weight, the % by weight being based on the total weight of the preformed aqueous solution containing the compound of formula (I).


When used as a preformed aqueous solution, the concentration of compound of formula (II) in water is preferably of from 0.001 to 30% by weight, more preferably of from 0.01 to 25% by weight, even more preferably from 0.02 to 20% by weight, the % by weight being based on the total weight of the preformed aqueous solution containing the compound of formula (II).


When used as a preformed aqueous solution, the concentration of secondary binders in water is preferably of from 1 to 50% by weight, more preferably of from 2 to 40% by weight, even more preferably from 5 to 30% by weight, the % by weight being based on the total weight of the preformed aqueous solution containing the secondary binders.


The following examples shall demonstrate the instant invention in more details. In the present application, if not indicated otherwise, “parts” means “parts by weight” and “%” means “% by weight”.


EXAMPLES
Preparative Example 1

An aqueous solution (S1) is prepared by slowly adding 157 parts of water to 843 parts of a preformed aqueous mixture containing 0.210 mol per kg of compound of formula (1) (synthesized according to example 1 in WO 2011/033064-A2 with the sole difference that the final solution was ultra-filtered to remove salts and concentrated to 0.210 mol per kg of compound of formula (1)) at room temperature with efficient stirring. The obtained mixture is stirred for 1 hour at room temperature to afford 1000 parts of an aqueous solution (S1) containing 0.177 mol per kg of compound of formula (1). The resulting aqueous solution (S1) has a pH in the range of from 8.0 to 9.0.




embedded image


Preparative Example 1a

An aqueous solution (S1a) is prepared by slowly adding 2 parts of compound of formula (a) and 155 parts of water to 843 parts of a preformed aqueous mixture containing 0.210 mol per kg of compound of formula (1) (synthesized according to example 1 in WO 2011/033064-A2 with the sole difference that the final solution was ultra-filtered to remove salts and concentrated to 0.210 mol per kg of compound of formula (1)) at room temperature with efficient stirring. The obtained mixture is stirred for 1 hour at room temperature to afford 1000 parts of an aqueous formulation (S1a) containing compound of formula (a) at a concentration of 0.2 weight %, the weight % being based on the total weight of the final aqueous formulation (S1a) and 0.177 mol per kg of compound of formula (1). The resulting aqueous formulation (S1a) has a pH in the range of from 8.0 to 9.0.




embedded image


Preparative Example 1b

An aqueous solution (S1 b) is prepared by slowly adding 2 parts of compound of formula (b) and 155 parts of water to 843 parts of a preformed aqueous mixture containing 0.210 mol per kg of compound of formula (1) (synthesized according to example 1 in WO 2011/033064-A2 with the sole difference that the final solution was ultra-filtered to remove salts and concentrated to 0.210 mol per kg of compound of formula (1)) at room temperature with efficient stirring. The obtained mixture is stirred for 1 hour at room temperature to afford 1000 parts of an aqueous solution (S1b) containing compound of formula (b) at a concentration of 0.2 weight %, the weight % being based on the total weight of the final aqueous solution (S1b) and 0.177 mol per kg of compound of formula (1). The resulting aqueous solution (S1b) has a pH in the range of from 8.0 to 9.0.




embedded image


Comparative Example 1c

An aqueous solution (S1c) is prepared by slowly adding 18.2 parts of a preformed aqueous solution containing 11 weight % of C.I. Direct Violet 35, the weight being based on the total weight of the aqueous C.I. Direct Violet 35 preformed solution and 138.8 parts of water to 843 parts of a preformed aqueous mixture containing 0.210 mol per kg of compound of formula (1) (synthesized according to example 1 in WO 2011/033064-A2 with the sole difference that the final solution was ultra-filtered to remove salts and concentrated to 0.210 mol per kg of compound of formula (1)) at room temperature with efficient stirring. The obtained mixture is stirred for 1 hour at room temperature to afford 1000 parts of an aqueous solution (S1c) containing C.I. Direct Violet 35 at a concentration of 0.2 weight %, the weight % being based on the total weight of the final aqueous solution (S1c) and 0.177 mol per kg of compound of formula (1). The resulting aqueous solution (S1c) has a pH in the range of from 8.0 to 9.0.


Application Example 1

A coating composition is prepared containing 70 parts chalk (commercially available under the trade name Hydrocarb 90 from OMYA), 30 parts clay (commercially available under the trade name Kaolin SPS from IMERYS), 42.8 parts water, 0.6 parts dispersing agent (a sodium salt of a polyacrylic acid commercially available under the trade name Polysalz S from BASF), 20 parts of 50% latex (a styrene butadiene copolymer commercially available under the trade name DL 921 from Dow) and 0.8 parts of a polyvinyl alcohol having a degree of hydrolysis of 98-99% and Brookfield viscosity of 4.0-5.0 mPa·s (4% aqueous solution at 20° C.). The solids content of the coating composition is adjusted to approx. 65% by the addition of water, and the pH is adjusted to 8-9 with sodium hydroxide.


Aqueous solutions (S1), (S1a), (S1b) and (S1c) prepared according to preparative example 1, 1a and 1b and comparative example 1c respectively are added to the stirred coating composition at a range of concentrations of from 0 to 2 weight % (from 0 to 0.4% by weight of compound of formula (1) based on dry solid), the % by weight being based on the total weight of the dry pigment.


The coating composition is then applied to a commercial 75 gsm neutral-sized white paper base sheet using an automatic wire-wound bar applicator with a standard speed setting and a standard load on the bar. The coated paper is then dried for 5 minutes in a hot air flow. Afterwards the paper is allowed to condition and measured then for CIE Whiteness and brightness on a calibrated Elrepho spectrophotometer. Results are depicted in table 1a and 1b respectively and clearly shows the significant improvement in whiteness while avoiding the disadvantages characterized by the use of shading dyes (loss of brightness).











TABLE 1a









CIE Whiteness











Solution (S1) from
Solution (S1a) from
Solution (S1b) from


Conc.
preparative
preparative
preparative


%
example 1
example 1a
example 1b













0.0
84.2
84.2
84.2


0.3
98.8
100.6
100.6


0.6
106.4
108.9
108.8


0.9
108.9
112.5
111.6


1.2
109.1
114.0
114.0


1.5
109.4
115.7
115.6


















TABLE 1b









Brightness












Solution (S1)
Solution (S1a)
Solution (S1b)
Solution (S1c)



from
from
from
from


Conc.
preparative
preparative
preparative
comparative


%
example 1
example 1a
example 1b
example 1c





0.0
88.8
88.8
88.8
88.8


0.3
93.6
93.4
93.6
92.7


0.6
96.3
96.0
95.9
94.0


0.9
98.0
97.1
97.0
93.2


1.2
97.8
96.9
97.0
92.5


1.5
98.2
97.1
97.1
92.1









Preparative Example 2

An aqueous solution (S2) is prepared by slowly adding 157 parts of water to 843 parts of a preformed aqueous mixture containing 0.210 mol per kg of compound of formula (2) (synthesized according to example 1 in WO 2011/033064-A2 with the sole differences that iminodiacetic acid is used instead of diethanolamine and the final solution is concentrated to 0.210 mol per kg of compound of formula (2)) at room temperature with efficient stirring. The obtained mixture is stirred for 1 hour at room temperature to afford 1000 parts of an aqueous solution (S2) containing 0.177 mol per kg of compound of formula (2). The resulting aqueous solution (S2) has a pH in the range of from 8.0 to 9.0.




embedded image


Preparative Example 2a

An aqueous solution (S2a) is prepared by slowly adding 2 parts of compound of formula (a) and 155 parts of water to 843 parts of a preformed aqueous mixture containing 0.210 mol per kg of compound of formula (2) (synthesized according to example 1 in WO 2011/033064-A2 with the sole differences that iminodiacetic acid is used instead of diethanolamine and the final solution is concentrated to 0.210 mol per kg of compound of formula (2)) at room temperature with efficient stirring. The obtained mixture is stirred for 1 hour at room temperature to afford 1000 parts of an aqueous solution (S2a) containing compound of formula (a) at a concentration of 0.2 weight %, the weight % being based on the total weight of the final aqueous solution (S2a) and 0.177 mol per kg of compound of formula (2). The resulting aqueous solution (S2a) has a pH in the range of from 8.0 to 9.0.


Preparative Example 2b

An aqueous solution (S2b) is prepared by slowly adding 2 parts of compound of formula (b) and 155 parts of water to 843 parts of a preformed aqueous mixture containing 0.210 mol per kg of compound of formula (2) (synthesized according to example 1 in WO 2011/033064-A2 with the sole differences that iminodiacetic acid is used instead of diethanolamine and the final solution is concentrated to 0.210 mol per kg of compound of formula (2)) at room temperature with efficient stirring. The obtained mixture is stirred for 1 hour at room temperature to afford 1000 parts of an aqueous solution (S2b) containing compound of formula (b) at a concentration of 0.2 weight %, the weight % being based on the total weight of the final aqueous solution (S2b) and 0.177 mol per kg of compound of formula (2). The resulting aqueous solution (S2b) has a pH in the range of from 8.0 to 9.0.


Comparative Example 2c

An aqueous solution (S2c) is prepared by slowly adding 18.2 parts of a preformed aqueous solution containing 11 weight % of C.I. Direct Violet 35, the weight % being based on the total weight of the aqueous C.I. Direct Violet 35 preformed solution and 138.8 parts of water to 843 parts of a preformed aqueous mixture containing 0.210 mol per kg of compound of formula (2) (synthesized according to example 1 in WO 2011/033064-A2 with the sole differences that iminodiacetic acid is used instead of diethanolamine and the final solution is concentrated to 0.210 mol per kg of compound of formula (2)) at room temperature with efficient stirring. The obtained mixture is stirred for 1 hour at room temperature to afford 1000 parts of an aqueous solution (S2c) containing C.I. Direct Violet 35 at a concentration of 0.2 weight %, the weight % being based on the total weight of the final aqueous solution (S2c) and 0.177 mol per kg of compound of formula (2). The resulting aqueous solution (S2c) has a pH in the range of from 8.0 to 9.0.


Application Example 2

A coating composition is prepared containing 70 parts chalk (commercially available under the trade name Hydrocarb 90 from OMYA), 30 parts clay (commercially available under the trade name Kaolin SPS from IMERYS), 42.8 parts water, 0.6 parts dispersing agent (a sodium salt of a polyacrylic acid commercially available under the trade name Polysalz S from BASF), 20 parts of 50% latex (a styrene butadiene copolymer commercially available under the trade name DL 921 from Dow) and 0.8 parts of a polyvinyl alcohol having a degree of hydrolysis of 98-99% and Brookfield viscosity of 4.0-5.0 mPa·s (4% aqueous solution at 20° C.). The solids content of the coating composition is adjusted to approx. 65% by the addition of water, and the pH is adjusted to 8-9 with sodium hydroxide.


Aqueous solutions (S2), (S2a), (S2b) and (S2c) prepared according to preparative example 2, 2a and 2b and comparative example 2c respectively are added to the stirred coating composition at a range of concentrations of from 0 to 2 weight % (from 0 to 0.4% by weight of compound of formula (2) based on dry solid), the % by weight being based on the total weight of the dry pigment.


The coating composition is then applied to a commercial 75 gsm neutral-sized white paper base sheet using an automatic wire-wound bar applicator with a standard speed setting and a standard load on the bar. The coated paper is then dried for 5 minutes in a hot air flow. Afterwards the paper is allowed to condition and measured then for CIE Whiteness and brightness on a calibrated Elrepho spectrophotometer. Results are depicted in table 2a and 2b respectively and clearly shows the significant improvement in whiteness while avoiding the disadvantages characterized by the use of shading dyes (loss of brightness).











TABLE 2a









CIE Whiteness











Solution (S2) from
Solution (S2a) from
Solution (S2b) from


Conc.
preparative
preparative
preparative


%
example 2
example 2a
example 2b













0.0
84.2
84.2
84.2


0.3
99.5
100.6
100.8


0.6
106.4
110.2
109.3


0.9
110.5
114.3
114.4


1.2
111.0
116.4
116.3


1.5
111.1
117.6
117.8


















TABLE 2b









Brightness












Solution (S2)
Solution (S2a)
Solution (S2b)
Solution (S2c)



from
from
from
from


Conc.
preparative
preparative
preparative
comparative


%
example 2
example 2a
example 2b
example 2c





0.0
88.8
88.8
88.8
88.8


0.3
93.9
93.6
93.7
93.0


0.6
96.5
96.4
96.2
94.6


0.9
98.1
97.6
97.6
95.4


1.2
98.7
98.0
97.9
95.0


1.5
98.9
97.6
97.5
94.6









Preparative Example 3

An aqueous solution (S3) is prepared by slowly adding 222.2 parts of water to 777.8 parts of a preformed aqueous mixture containing 0.157 mol per kg of compound of formula (3) (synthesized according to example 1 in WO 2011/033064-A2 with the sole differences that aspartic acid is used instead of diethanolamine and the final solution is concentrated to 0.157 mol per kg of compound of formula (3)) at room temperature with efficient stirring. The obtained mixture is stirred for 1 hour at room temperature to afford 1000 parts of an aqueous solution (S3) containing 0.122 mol per kg of compound of formula (3). The resulting aqueous solution (S3) has a pH in the range of from 8.0 to 9.0.




embedded image


Preparative Example 3a

An aqueous solution (S3a) is prepared by slowly adding 2 parts of compound of formula (a) and 220.2 parts of water to 777.8 parts of a preformed aqueous mixture containing 0.157 mol per kg of compound of formula (3) (synthesized according to example 1 in WO 2011/033064-A2 with the sole differences that aspartic acid is used instead of diethanolamine and the final solution is concentrated to 0.157 mol per kg of compound of formula (3)) at room temperature with efficient stirring. The obtained mixture is stirred for 1 hour at room temperature to afford 1000 parts of an aqueous solution (S3a) containing compound of formula (a) at a concentration of 0.2 weight %, the weight % being based on the total weight of the final aqueous solution (S3a) and 0.122 mol per kg of compound of formula (3). The resulting aqueous solution (S3a) has a pH in the range of from 8.0 to 9.0.


Preparative Example 3b

An aqueous solution (S3b) is prepared by slowly adding 2 parts of compound of formula (b) and 220.2 parts of water to 777.8 parts of a preformed aqueous mixture containing 0.157 mol per kg of compound of formula (3) (synthesized according to example 1 in WO 2011/033064-A2 with the sole differences that aspartic acid is used instead of diethanolamine and the final solution is concentrated to 0.157 mol per kg of compound of formula (3)) at room temperature with efficient stirring. The obtained mixture is stirred for 1 hour at room temperature to afford 1000 parts of an aqueous solution (S3b) containing compound of formula (b) at a concentration of 0.2 weight %, the weight % being based on the total weight of the final aqueous solution (S3b) and 0.122 mol per kg of compound of formula (3). The resulting aqueous solution (S3b) has a pH in the range of from 8.0 to 9.0.


Comparative Example 3c

An aqueous solution (S3c) is prepared by slowly adding 18.2 parts of a preformed aqueous solution containing 11 weight % of C.I. Direct Violet 35, the weight % being based on the total weight of the aqueous C.I. Direct Violet 35 preformed solution and 204.0 parts of water to 777.8 parts of a preformed aqueous mixture containing 0.157 mol per kg of compound of formula (3) (synthesized according to example 1 in WO 2011/033064-A2 with the sole differences that aspartic acid is used instead of diethanolamine and the final solution is concentrated to 0.157 mol per kg of compound of formula (3)) at room temperature with efficient stirring. The obtained mixture is stirred for 1 hour at room temperature to afford 1000 parts of an aqueous solution (S3c) containing C.I. Direct Violet 35 at a concentration of 0.2 weight %, the weight % being based on the total weight of the final aqueous solution (S3c) and 0.122 mol per kg of compound of formula (3). The resulting aqueous solution (S3c) has a pH in the range of from 8.0 to 9.0.


Application Example 3

A coating composition is prepared containing 70 parts chalk (commercially available under the trade name Hydrocarb 90 from OMYA), 30 parts clay (commercially available under the trade name Kaolin SPS from IMERYS), 42.8 parts water, 0.6 parts dispersing agent (a sodium salt of a polyacrylic acid commercially available under the trade name Polysalz S from BASF), 20 parts of 50% latex (a styrene butadiene copolymer commercially available under the trade name DL 921 from Dow) and 0.8 parts of a polyvinyl alcohol having a degree of hydrolysis of 98-99% and Brookfield viscosity of 4.0-5.0 mPa·s (4% aqueous solution at 20° C.). The solids content of the coating composition is adjusted to approx. 65% by the addition of water, and the pH is adjusted to 8-9 with sodium hydroxide.


Aqueous solutions (S3), (S3a), (S3b) and (S3c) prepared according to preparative example 3, 3a and 3b and comparative example 3c respectively are added to the stirred coating composition at a range of concentrations of from 0 to 2 weight % (from 0 to 0.4% by weight of compound of formula (3) based on dry solid), the % by weight being based on the total weight of the dry pigment.


The coating composition is then applied to a commercial 75 gsm neutral-sized white paper base sheet using an automatic wire-wound bar applicator with a standard speed setting and a standard load on the bar. The coated paper is then dried for 5 minutes in a hot air flow. Afterwards the paper is allowed to condition and measured then for CIE Whiteness and brightness on a calibrated Elrepho spectrophotometer. Results are depicted in table 3a and 3b respectively and clearly shows the significant improvement in whiteness while avoiding the disadvantages characterized by the use of shading dyes (loss of brightness).











TABLE 3a









CIE Whiteness











Solution (S3) from
Solution (S3a) from
Solution (S3b) from


Conc.
preparative
preparative
preparative


%
example 3
example 3a
example 3b













0.0
84.3
84.3
84.3


0.3
95.9
96.4
96.9


0.6
102.3
103.4
105.3


0.9
106.5
107.8
110.2


1.2
109.5
111.4
114.7


1.5
110.7
113.1
117.4


















TABLE 3b









Brightness












Solution (S3)
Solution (S3a)
Solution (S3b)
Solution (S3c)



from
from
from
from


Conc.
preparative
preparative
preparative
comparative


%
example 3
example 3a
example 3b
example 3c





0.0
89.2
89.2
89.2
89.2


0.3
92.8
92.5
92.5
92.1


0.6
95.0
94.6
94.7
93.7


0.9
96.5
95.9
96.1
94.2


1.2
97.7
96.8
96.9
94.3


1.5
98.3
97.2
97.4
94.5









Preparative Example 4

An aqueous solution (S4) is prepared by slowly adding 222.2 parts of water to 777.8 parts of a preformed aqueous mixture containing 0.157 mol per kg of compound of formula (4) (synthesized according to example 1 in WO 2011/033064-A2 with the sole differences that diisopropanolamine is used instead of diethanolamine and the final solution is concentrated to 0.157 mol per kg of compound of formula (4)) at room temperature with efficient stirring. The obtained mixture is stirred for 1 hour at room temperature to afford 1000 parts of an aqueous solution (S4) containing 0.122 mol per kg of compound of formula (4). The resulting aqueous solution (S4) has a pH in the range of from 8.0 to 9.0.




embedded image


Preparative Example 4a

An aqueous solution (S4a) is prepared by slowly adding 2 parts of compound of formula (a) and 220.2 parts of water to 777.8 parts of a preformed aqueous mixture containing 0.157 mol per kg of compound of formula (4) (synthesized according to example 1 in WO 2011/033064-A2 with the sole differences that diisopropanolamine is used instead of diethanolamine and the final solution is concentrated to 0.157 mol per kg of compound of formula (4)) at room temperature with efficient stirring. The obtained mixture is stirred for 1 hour at room temperature to afford 1000 parts of an aqueous solution (S4a) containing compound of formula (a) at a concentration of 0.2 weight %, the weight % being based on the total weight of the final aqueous solution (S4a) and 0.122 mol per kg of compound of formula (4). The resulting aqueous solution (S4a) has a pH in the range of from 8.0 to 9.0.


Preparative Example 4b

An aqueous solution (S4b) is prepared by slowly adding 2 parts of compound of formula (b) and 220.2 parts of water to 777.8 parts of a preformed aqueous mixture containing 0.157 mol per kg of compound of formula (4) (synthesized according to example 1 in WO 2011/033064-A2 with the sole differences that diisopropanolamine is used instead of diethanolamine and the final solution is concentrated to 0.157 mol per kg of compound of formula (4)) at room temperature with efficient stirring. The obtained mixture is stirred for 1 hour at room temperature to afford 1000 parts of an aqueous solution (S4b) containing compound of formula (b) at a concentration of 0.2 weight %, the weight % being based on the total weight of the final aqueous solution (S4b) and 0.122 mol per kg of compound of formula (4). The resulting aqueous solution (S4b) has a pH in the range of from 8.0 to 9.0.


Comparative Example 4c

An aqueous solution (S4c) is prepared by slowly adding 18.2 parts of a preformed aqueous solution containing 11 weight % of C.I. Direct Violet 35, the weight % being based on the total weight of the aqueous C.I. Direct Violet 35 preformed solution and 204.0 parts of water to 777.8 parts of a preformed aqueous mixture containing 0.157 mol per kg of compound of formula (4) (synthesized according to example 1 in WO 2011/033064-A2 with the sole differences that diisopropanolamine is used instead of diethanolamine and the final solution is concentrated to 0.157 mol per kg of compound of formula (4)) at room temperature with efficient stirring. The obtained mixture is stirred for 1 hour at room temperature to afford 1000 parts of an aqueous solution (S4c) containing C.I. Direct Violet 35 at a concentration of 0.2 weight %, the weight % being based on the total weight of the final aqueous solution (S4c) and 0.122 mol per kg of compound of formula (4). The resulting aqueous solution (S4c) has a pH in the range of from 8.0 to 9.0.


Application Example 4

A coating composition is prepared containing 70 parts chalk (commercially available under the trade name Hydrocarb 90 from OMYA), 30 parts clay (commercially available under the trade name Kaolin SPS from IMERYS), 42.8 parts water, 0.6 parts dispersing agent (a sodium salt of a polyacrylic acid commercially available under the trade name Polysalz S from BASF), 20 parts of 50% latex (a styrene butadiene copolymer commercially available under the trade name DL 921 from Dow) and 0.8 parts of a polyvinyl alcohol having a degree of hydrolysis of 98-99% and Brookfield viscosity of 4.0-5.0 mPa·s (4% aqueous solution at 20° C.). The solids content of the coating composition is adjusted to approx. 65% by the addition of water, and the pH is adjusted to 8-9 with sodium hydroxide.


Aqueous solutions (S4), (S4a), (S4b) and (S4c) prepared according to preparative example 4, 4a and 4b and comparative example 4c respectively are added to the stirred coating composition at a range of concentrations of from 0 to 2 weight % (from 0 to 0.4% by weight of compound of formula (4) based on dry solid), the % by weight being based on the total weight of the dry pigment.


The coating composition is then applied to a commercial 75 gsm neutral-sized white paper base sheet using an automatic wire-wound bar applicator with a standard speed setting and a standard load on the bar. The coated paper is then dried for 5 minutes in a hot air flow. Afterwards the paper is allowed to condition and measured then for CIE Whiteness and brightness on a calibrated Elrepho spectrophotometer. Results are depicted in table 4a and 4b respectively and clearly shows the significant improvement in whiteness while avoiding the disadvantages characterized by the use of shading dyes (loss of brightness).











TABLE 4a









CIE Whiteness











Solution (S4) from
Solution (S4a) from
Solution (S4b) from


Conc.
preparative
preparative
preparative


%
example 4
example 4a
example 4b













0.0
84.3
84.3
84.3


0.3
96.7
98.2
98.0


0.6
103.1
105.5
105.9


0.9
107.6
110.5
110.2


1.2
110.0
115.1
115.1


1.5
111.1
118.6
117.1


















TABLE 4b









Brightness












Solution (S4)
Solution (S4a)
Solution (S4b)
Solution (S4c)



from
from
from
from


Conc.
preparative
preparative
preparative
comparative


%
example 4
example 4a
example 4b
example 4c





0.0
89.2
89.2
89.2
89.2


0.3
93.0
92.9
92.8
92.2


0.6
95.2
94.9
94.9
93.3


0.9
96.8
96.0
96.0
93.1


1.2
97.7
97.0
97.1
93.1


1.5
98.3
97.3
97.3
92.5








Claims
  • 1. An aqueous coating composition for optical brightening and shading of a substrate, comprising (a) at least one optical brightener of formula (I)
  • 2. Aqueous coating composition according to claim 1, wherein in a compound of formula (I) for which p is 1, the CO2 group is in the 2 or 4-position of the phenyl ring.
  • 3. Aqueous coating composition according to claim 1, wherein in a compound of formula (1) the anionic charge on the brightener is balanced by a cationic charge composed of one or more identical or different cations selected from the group consisting of hydrogen, an alkali metal cation, alkaline earth metal, ammonium which is mono-, di-, tri- or tetrasubstituted by a C1-C4 linear or branched hydroxyalkyl radical, ammonium which is, di-, tri- or tetrasubstituted by a mixture of C1-C4 linear or branched alkylradical and linear or branched hydroxyalkyl radical or mixtures thereof, R1 and R1 may be the same or different, and each is hydrogen, C1-C4 linear or branched alkyl, C2-C4 linear or branched hydroxyalkyl, CH2CO2, CH2CH2CONH2 or CH2CH2CN,R2 and R2 may be the same or different, and each is C1-C4 linear or branched alkyl, C2-C4 linear or branched hydroxyalkyl, CH2C02, CH(CO2)CH2CO2 or CH2CH2S03 and P is 1 or 2.
  • 4. An aqueous coating composition according to claim 1, wherein in compounds of formula (I), the anionic charge on the brightener is balanced by a cationic charge comprising one or more identical or different cations selected from the group consisting of Li+, Na+, K+, Ca2+, Mg+, ammonium which is mono-, di-, tri- or tetrasubstituted by a C1-C4 linear or branched hydroxyalkyl radical, ammonium which is, di-, tri- or tetrasubstituted by a mixture of C1-C4 linear or branched alkylradical and linear or branched hydroxyalkyl radical or mixtures thereof, R1 and R1 may be the same or different, and each is hydrogen, methyl, ethyl, propyl, α-methylpropyl, β-methylpropyl, β-hydroxyethyl, β-hydroxypropyl, CH2CO2, CH2CH2CONH2 or CH2CH2CN,R2 and R2 may be the same or different, and each is methyl, ethyl, propyl, α-methylpropyl, β-methylpropyl, β-hydroxyethyl, β-hydroxypropyl, CH2CO2, CH(CO2)CH2CO2 or CH2CH2S03 and p is 1 or 2.
  • 5. Aqueous coating composition according to claim 1, wherein in a compound of formula (I), the anionic charge on the brightener is balanced by a cationic charge comprising one or more identical or different cations selected from the group consisting of Nat, Kt, triethanolammonium, N-hydroxyethyl-N,Ndimethylammonium, N-hydroxyethyl-N,N-diethylammonium or mixtures thereof, R1 and R1 may be the same or different, and each is hydrogen, methyl, ethyl, propyl, β-hydroxyethyl, β-hydroxypropyl, CH2CO2, CH2CH2CONH2 or CH2CH2CN,R2 and R2 may be the same or different, and each is ethyl, propyl, hydroxyethyl, β-hydroxypropyl, CH2CO2, CH(CO2)CH2CO2 or CH2CH2SO3 and p is 1.
  • 6. Aqueous coating composition according to claim 1, wherein the compound of formula (I) is present in an amount of from 0.01 to 5% by weight, % by weight being based on the total weight of said white pigment.
  • 7. Aqueous coating composition according to claim 1, wherein in a compound of formula (II) R3 signifies H, methyl or ethyl,R4 signifies paramethoxyphenyl, methyl or ethyl,M signifies a cation selected from the group consisting of hydrogen, an alkalimetal cation, alkaline earth metal, ammonium which is mono-, di-, tri- or tetrasubstituted by a C1-C4 linear or branched hydroxyalkyl radical,ammonium which is, di-, tri- or tetrasubstituted by a mixture of C1-C4 linear or branched alkylradical and linear or branched hydroxyalkyl radical or mixtures thereof.
  • 8. Aqueous coating composition according to claim 1, wherein in a compound of formula (II) R3 signifies methyl or ethyl,R4 signifies methyl or ethyl,M signifies a cation selected from the group consisting of Li+, Na+, K+, K+, ½ Ca2+, ½ Mg2+, ammonium which is mono-, di-, tri- or tetrasubstituted by a C1-C4 linear or branched hydroxyalkyl radical, ammonium which is, di-, tri- or tetrasubstituted by a mixture of C1-C4 linear or branched alkylradical and linear or branched hydroxyalkyl radical or mixtures thereof.
  • 9. Aqueous coating composition according to claim 1, wherein in a compound of formula (II) R3 signifies methyl or ethyl,R4 signifies methyl or ethyl,M signifies a cation selected from the group consisting of Na+, K+, triethanolammonium, N-hydroxyethyl-N,N-dimethylammonium, N-hydroxyethyl-N,N-diethylammonium or mixtures thereof.
  • 10. Aqueous coating composition according to claim 1, wherein the compound of formula (II) is used in an amount from 0.00001 to 0.05% by weight, the % by weight being based on the total weight of said white pigment.
  • 11. Aqueous coating composition according to claim 1, wherein the coating composition comprises from 10 to 70% by weight of white pigment, the % by weight being based on the total weight of the coating composition.
  • 12. Aqueous coating composition according to claim 11, wherein the white pigment comprises an inorganic pigment.
  • 13. Aqueous coating composition according to at least claim 11, wherein the binder comprises a single binder or of a mixture of primary and/or secondary binders.
  • 14. Aqueous coating composition according to claim 13, wherein the single or primary binder is used in an amount in a range of from 2 to 25% by weight, the % by weight being based on the total weight of white pigment.
  • 15. Aqueous coating composition according to claim 13, wherein polyvinyl alcohol is used as secondary binder, which has a degree of hydrolysis greater than or equal to 60% and a Brookfield viscosity of from 2 to 80 mPa·s (4% aqueous solution at 20° C.).
  • 16. Aqueous coating composition according to claim 13, wherein the secondary binder is used in an amount in a range of from 0.1 to 20% by weight, the % by weight being based on the total weight of white pigment.
  • 17. Aqueous coating composition according to claim 1, wherein the pH value of the coating composition is in a range of from 5 to 13.
  • 18. An aqueous coating composition according to claim 1, capable of being used for optical brightening and tinting of a paper substrate.
  • 19. An aqueous coating composition according to claim 18, capable of being used as a preformed aqueous solution, and the concentration of compound of formula (I) in water is optionally from 1 to 80% by weight, the % by weight being based on the total weight of the preformed aqueous solution comprising the compound of formula (I).
  • 20. An aqueous coating composition according to claim 19, wherein in the preformed aqueous solution, the concentration of compound of formula (II) in water is optionally of from 0.001 to 30% by weight, the % by weight being based on the total weight of the preformed aqueous solution comprising the compound of formula (II).
  • 21. An aqueous coating composition according to claim 19, wherein in the preformed aqueous solution, the concentration of secondary binders in water is from 1 to 50% by weight, the % by weight being based on the total weight of the preformed aqueous solution comprising the secondary binders.
Priority Claims (1)
Number Date Country Kind
11006601.6 Aug 2011 EP regional
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP2012/003348 8/4/2012 WO 00 2/6/2014