The present invention relates generally to circuit breakers, and more particularly to arc extinguishing components for extinguishing arcs generated within circuit breakers.
Circuit breakers can include electrical contact assemblies, which may have multiple pivotable contact arms per electrical phase. The contact arms are intended to blow apart from the stationary electrical contact due to magnetic repulsive forces generated under very high short circuit conditions. Currently, not only is there a demand to decrease the relative size of existing circuit breakers, but also to further improve their interruption speed. It is desirable that such circuit breakers interrupt as quickly as possible in order to limit damage to the protected electrical equipment and also to prevent excessive contact erosion.
Arc chutes have been used in circuit breakers in order to increase interruption speed. Arc chutes typically include stacked metal arc plates, with the top plate usually including an arc horn, which wraps over a front of some of the upper arc plates in front of the arm tips of the pivotable contact arms. One feature that has been used to increase speed at which the arc is pushed into the arc plates is by using magnetic forces augmented through the use of a slot motor. However, at lower arc currents it becomes quite difficult to push the arc into the upper arc plates, which, as has been witnessed by the inventors, results in lower arc voltage across the circuit breaker and little or no erosion of the upper arc plates.
Thus, improved mechanisms adapted to be used in circuit breakers to improve arc extinguishing performance are sought.
In a first embodiment, an arc extinguishing assembly is provided. The arc extinguishing assembly includes an arc chamber having an arc chamber width (b) adjacent to a contact arm tip of a contact arm, stacked arc plates located at a forward end of the arc chamber adjacent to the contact arm tip, and a first fin feature and a second fin feature located at the forward end between the arc plates and the contact arm tip, the first fin feature including a first inner edge and the second fin feature including a second inner edge, wherein the first inner edge and the second inner edge are spaced apart from one another by a spacing distance (a), wherein a venturi ratio of a/b is equal to or less than 0.6.
In yet another embodiment, an arc extinguishing assembly is provided. The arc extinguishing assembly includes an arc chamber having an arc chamber width (b) adjacent to a contact arm tip of a contact arm, stacked arc plates located at a forward end of the arc chamber adjacent to the contact arm tip, an arc horn located above the stacked arc plates, the arc horn including a tongue, a first outgassing spacer and a second outgassing spacer positioned on opposing sides of the arc chamber, and a first fin feature and a second fin feature located at the forward end between the arc plates and the contact arm tip and positioned at least partially behind the tongue, the first fin feature including first inner edge and the second fin feature including a second inner edge, wherein the first inner edge and the second inner edge are spaced apart from one another by a spacing distance (a), wherein a venturi ratio of a/b is equal to or less than 0.6, and wherein the first fin feature is integral with the first outgassing spacer and the second fin feature is integral with the second outgassing spacer.
In a method embodiment, a method of extinguishing an arc is provided. The method includes providing an arc chamber having an arc chamber width (b) adjacent to a contact arm tip of a contact arm, providing stacked arc plates located at a forward end of the arc chamber adjacent to the contact arm tip, providing a first fin feature and a second fin feature located at the forward end between the arc plates and the contact arm tip, the first fin feature including first inner edge and the second fin feature including a second inner edge, wherein the first inner edge and the second inner edge are spaced apart from one another by a spacing distance (a), wherein a venturi ratio of a/b is equal to or less than 0.6, and extinguishing the arc by passing gas through an opening between the first inner edge and the second inner edge to push the arc into the arc plates.
Still other aspects, features, and advantages of the present invention may be readily apparent from the following detailed description by illustrating a number of example embodiments and implementations, including the best mode contemplated for carrying out the present invention. The present invention may also be capable of different embodiments, and its details may be modified in various respects, all without departing from the scope of the present invention. The invention is to cover all modifications, equivalents, and alternatives falling within the scope of the claims.
The drawings, described below, are for illustrative purposes only and are not necessarily drawn to scale. The drawings are not intended to limit the scope of the invention in any way. Wherever possible, the same or like reference numbers will be used throughout the drawings to refer to the same or like parts.
Embodiments of an arc extinguishing assembly are useful in circuit breakers, such as in circuit breakers having one or more moveable contact arms, and ratings from 100 A-2000 A, including 160 A-1200 A, for example. However, the arc extinguishing assemblies described herein may be used in any suitable circuit breaker or switch component where better disbursement of the arc within the arc plates is desired. Embodiments of the arc extinguishing assembly are especially adapted for use in circuit breakers containing one or more contact assemblies having one or more contact arms that are intended to blow apart from a stationary contact due to magnetic repulsion forces generated under very high short circuit conditions. It is desirable that such circuit breakers have contact arms that blow apart extremely rapidly when exposed to such short circuit conditions.
In view of the foregoing difficulties, an inventive configuration of an arc extinguishing assembly, which may provide improved interruption speed, is provided. The arc extinguishing assemblies include an arc chamber having an arc chamber width (b) adjacent to a contact arm tip of a contact arm, stacked arc plates located at a forward end of the arc chamber adjacent to the contact arm tip, and a first fin feature and a second fin feature located at the forward end between the arc plates and the contact arm tip. The first fin feature includes a first inner edge and the second fin feature includes a second inner edge. The first inner edge and the second inner edge are spaced apart from one another by a spacing distance (a). The spacing distance (a) is set for a particular arc chamber design so as to produce a venturi ratio of a/b that is equal to or less than 0.6. This feature improves gas pressure and helps push the arc to the upper arc plates.
As will become apparent, the arc extinguishing assemblies described herein may advantageously allow circuit breakers into which they are received to interrupt an experienced short circuit condition more rapidly. Moreover, alternatively, inventive arc extinguishing assemblies may advantageously allow the circuit breaker into which it is received to be made physically smaller.
These and other embodiments of the arc extinguishing assemblies, contact assemblies including the arc extinguishing assemblies, arc chute assemblies, fin and support assemblies and methods of extinguishing an arc with an arc extinguishing assembly are described below with reference to
Referring now in specific detail to
Arc extinguishing assembly 100 may further be included within a housing 106 of a circuit breaker, for example. Components of the arc extinguishing assembly 100 may reside in a pocket formed in the housing 106. Other arc extinguishing assemblies, like arc extinguishing assembly 100, may be installed in the housing 106, as well. For example, the arc extinguishing assemblies 100 may be installed in a circuit breaker, wherein each arc extinguishing assembly 100 may be dedicated to an electrical phase (e.g., A, B, C phases). Each arc extinguishing assembly 100 dedicated to each phase may include one, two, three, four, five or more contact arms 102.
For example,
Referring again to
Arc extinguishing assembly 100 may further include an arc chute assembly 111 that further includes stacked arc plates 112A-112J located at a forward end of the arc chamber 108 adjacent to the contact arm tip 102E of the one or more contact arms 102. The stacked arc plates 112A-112J may have a thickness of between about 1 mm and 4 mm, and a width between side plates 117A, 117B of less than about 50 mm, or even less than 30 mm in some embodiments. For example, the arc plate thickness may be about 1.5 mm and arc plate width may be about 24 mm in some embodiments. Other thicknesses and widths may be used. Furthermore, other numbers of arc plates may be used. Arc plates 112A-112J may be made of a steel material, such as low carbon steel or oth3er suitable material.
Arc chute assembly 111 may further include arc runner 114 below the lower arc plate 112A, and an arc horn 116 above the upper arc plate 112J. Each of the arc plates 112A-112J, arc runner 114, and arc horn 116 may be fastened to side plates 117A, 117B, which may be made from a fiberglass glass polyester sheet material, such as National Electrical Manufacturers Association (NEMA) grade GPO-3 material. Other suitable materials may be used. The arc plates 112A-112J, arc runner 114, and arc horn 116 may be attached to the side plates 117A, 117B by tabs. In some embodiments, the arc runner 114 may optionally be attached to the line side terminal 105, such as by one or more fasteners (e.g., screws or bolts). The attachment to the side plates 117A, 117B may be by crimping to deform a portion of the tabs, such as by use of a suitable crimping die or other crimping or deforming means. Further description of the arc plates 112A-112J, arc runner 114, and arc horn 116 may be found in U.S. patent application Ser. No. 14/371,770 entitled “SLOT MOTOR, SLOT MOTOR COVER, SLOT MOTOR—ARC PLATE ASSEMBLY, AND METHODS OF OPERATION, which is hereby incorporated by reference herein. Arc chute assembly 111 may reside within, and be contained in the pocket formed in the housing 106.
The arc extinguishing assembly 100 may further include a first fin feature 118A and a second fin feature 118B located at the forward end of the arc chamber 108 between the arc plates 112A-112J and the contact arm tip 102E. The first fin feature 118A includes first inner edge 120A and the second fin feature 118B includes a second inner edge 120B. First and second inner edges 120A, 120B may be parallel to one another. First inner edge 120A and the second inner edge 120B are spaced apart from one another by a spacing distance (a) as shown in
Arc extinguishing assembly 100 may optionally include a slot motor 122 in some embodiments. Slot motor 122 may include a first side 122A and a second side 122B spaced apart from the first side 122A, as shown herein. Slot motor 122 may include a bottom side 122C extending between the first side 122A and a second side 122B, thereby providing a magnetic circuit. The first side 122A, second side 122B, and bottom side 122C of the slot motor 122 may each include a core 124 of a magnetically permeable material, such as steel (e.g., powdered metal or laminated plates), and a coating 126 of an insulating material, such as an epoxy layer, to prevent arcing to the core 124. Coating 126 may have a generally-uniform nominal layer thickness of less than about 2 mm, or even less than about 1 mm in some embodiments. Other thickness and insulating materials may be used. Further, other configurations and materials of the cores may be used.
Cores 124 may comprise a powdered metal material in one or more embodiments. The powdered metal material may be a powdered iron, such as F-0000-10, F-0000-15, or F-0000-20 powdered iron per MPIF Standard 35. The density of the powdered metal material may be between about 6.0 g/cm3 and about 7.5 g/cm3, for example. Other densities and types of powdered metal including powdered metal alloys may be used. The cores 124 of the slot motor 122 including a powdered metal may be formed by a conventional pressing and sintering process.
The slot motor 122 functions to intensify a magnetic field crossing through the one or more contact arms 102 during a short circuit event. This increases the magnetic repulsion force on the contact arms 102, so that the one or more contact arms 102 blow open more quickly. By quickly lengthening a distance between the moving electrical contact 103M and the stationary electrical contact 103S, a rapid increase in an opposing arc voltage is caused, which tends to more rapidly extinguish the arc. Furthermore, the slot motor 122 functions to intensify a magnetic field crossing through the electric arc. This increases the magnetic arc forces tending to drive the arc into the arc plates 122A-122J of the arc chute assembly 111 more rapidly.
In one or more embodiments, the first outgassing spacer 110A includes the first fin feature 118A coupled thereto at a forward end, and the body of the first outgassing spacer 110A and the first fin feature 118A may be one integral piece, such as is shown in
As shown in
Likewise, second fin feature 118B may include a second lower taper 130LB. First lower taper 130LA and second lower taper 130LB may each include a lower taper angle 132 of between about 5 degrees and 75 degrees, or between 10 degrees and 60 degrees in some embodiments, as best shown in
Similarly, first fin feature 118A may include first upper taper 130UA wherein the first fin feature 118A tapers from a larger dimension proximate the outgassing spacer 110A to a smaller dimension proximate the inner edge 120A. Likewise, second fin feature 118B may include a second upper taper 130UB. First upper taper 130UA and second upper taper 130UB may each include an upper taper angle 136 of between about 0 degrees and 45 degrees, or between 0 degrees and 35 degrees in some embodiments, as shown in
In the depicted embodiment, the fin features 118A, 118B may be integral with the outgassing spacers 110A, 110B, but optionally may be mechanically fastened to the outgassing spacers 110A, 110B, such as with rivets. The outgassing spacers 110A, 110B may be plates.
As shown in
As shown in
As is shown in
As is shown in
The other components of a circuit breaker including contact arms 102 are not shown and may be of conventional construction, or as shown in WO 2011/097612 entitled “Circuit Breaker Contact Assembly, And Systems and Methods Using Same,” which is hereby incorporated by reference herein.
The method 600 includes, in 606, providing a first fin feature (e.g., first fin feature 118A) and a second fin feature (e.g., second fin feature 118B) located at the forward end between the arc plates and the contact arm tip, the first fin feature including first inner edge (e.g., first inner edge 120A) and the second fin feature including a second inner edge (e.g., second inner edge 120B), wherein the first inner edge and the second inner edge are spaced apart from one another by a spacing distance (a) to form an opening, wherein a venturi ratio of a/b is equal to or less than 0.6. Reducing the spacing between the respective inner edges 120A, 120B in comparison to the arc chamber width (b) functions to create a larger gas pressure that causes the arc to remain on the arc plates 112A-112J and then jump to the arc horn 116.
The method 600 includes, in 608, extinguishing the arc by passing gas through an opening between the first inner edge (e.g., first inner edge 120A) and the second inner edge (e.g., 120B) to push the arc into the arc plates. The close spacing of the fin features 118A, 118B channels the arc through the opening and especially into the upper arc plates (e.g., arc plates 112H, 112I, and 112J), for example.
While the invention is susceptible to various modifications and alternative forms, specific embodiments and methods thereof have been shown by way of example in the drawings and are described in detail herein. It should be understood, however, that it is not intended to limit the invention to the particular apparatus, assemblies, or methods disclosed, but, to the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2970197 | Frink | Jan 1961 | A |
4831347 | Orosz | May 1989 | A |
4876421 | Miller | Oct 1989 | A |
4963849 | Kowalczyk | Oct 1990 | A |
6373016 | Brouillat et al. | Apr 2002 | B2 |
20050263492 | McCoy | Dec 2005 | A1 |
20110017709 | Prohaska | Jan 2011 | A1 |
20120211469 | An | Aug 2012 | A1 |
20150028973 | Cardwell et al. | Jan 2015 | A1 |
20150041436 | Ferree | Feb 2015 | A1 |
20150348720 | Smeltzer | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
2013130035 | Sep 2013 | WO |