This disclosure is generally related to system and methods for detecting an arc fault.
Electrical wiring systems may suffer from arc faults occurring when current arcs outside the confines of the insulated wires or the outlets of the wiring system. Such arcs can occur due to discontinuities in either the line or neutral wires (known as series arc faults) or due to shorts between the line and neutral wires or between the line and ground wires (known as parallel arc faults). Arc faults are dangerous and can cause fires within the structures that the electrical wiring systems are located. It is thus desirable to immediately detect and stop the flow of current through the wiring system when an arc fault occurs in order to minimize the risk of fire.
Detecting arc faults, however, can be difficult because many household appliances—such as vacuum cleaners, electric drills, etc.—create signals that mimic the appearance of an arc fault. These false-positive signals are known as nuisance signals and can cause an arc fault detection system to trip when no arc fault is occurring. It is thus desirable to find ways to distinguish actual arc faults from nuisance signals within an electrical wiring system.
This disclosure is generally related to a system and method for determining whether an arc fault is occurring, while discriminating against nuisance signals. The system and method may include a pulse frequency digitizer for determining when the frequency of instances that the derivative of the current through a line or neutral conductor exceeds a predetermined threshold, exceeds a predetermined frequency for a predetermined period of time. The system and method may further include a shunt amplifier for determining the magnitude of current flowing through the neutral conductor, using the inherent resistance of a length of the neutral conductor extending between a known point (to which the input of the shunt amplifier connects) to ground. The system and method may determine whether an arc fault is occurring based on the output of either or both the pulse frequency digitizer and the shunt amplifier.
According to an aspect, an arc fault protective wiring device disposed in an electrical distribution system, the device includes a plurality of line terminals comprising at a line-side phase terminal and a line-side neutral terminal; a plurality of load terminals comprising a load-side phase terminal and a load-side neutral terminal; a line conductor electrically coupling the line-side phase terminal to the load-side phase terminal; a neutral conductor electrically coupling the line-side neutral terminal to the load-side neutral terminal; a pulse frequency digitizer, the pulse frequency digitizer being configured to receive a plurality of pulses, each pulse being representative of an instance that the derivative of the current through the conductor exceeds a first predetermined threshold, the pulse frequency digitizer further being configured to produce a digital signal, the digital signal being representative of the instances at which a frequency of the plurality of pulses exceeds a predetermined threshold; and at least one processor configured to trigger a trip mechanism to electrically decouple the at least one of the plurality of line terminal from at least one of the plurality of least one of the plurality of load terminals based, at least in part, on the digital signal.
According to an embodiment, the arc fault protective wiring device further comprises a di/dt detector configured to produce a di/dt signal representative of the derivative of the current through the conductor.
According to an embodiment, the arc fault protective wiring device further comprises a comparator, the comparator being configured to receive the di/dt signal and to output a pulse to the pulse frequency digitizer each time the di/dt signal exceeds the first predetermined threshold.
The wiring device of claim 3, wherein the pulse frequency digitizer comprises an accumulator configured to receive the plurality of pulses and to output an accumulator signal representative of the frequency at which the plurality of pulses were received
The wiring device of claim 4, wherein the pulse frequency digitizer further comprises a digitizer configured to output the digital signal when the accumulator signal exceeds a third predetermined threshold, wherein the accumulator signal exceeds the third predetermined threshold when the frequency at which the pulses were received exceeds the second predetermined threshold.
According to an embodiment, the accumulator is a capacitor.
According to an embodiment, the digitizer is a switch.
According to an embodiment, the accumulator is a capacitor in series with an output of the comparator and in parallel with a control terminal of the switch.
According to an embodiment, the arc fault protective wiring device further comprises a high pass filter in a series relationship with the output of the comparator, the high pass filter having a corner frequency equal to or less than a maximum output frequency of the comparator.
According to an embodiment, the arc fault protective wiring device further comprises a shunt amplifier having a first input terminal, the first input terminal being connected at a first point along the neutral conductor between the line-side neutral terminal and the load-side neutral terminal, the first point being positioned such that a detectable voltage, proportional to current flowing through the neutral conductor and as a result of the resistance of the neutral conductor, is present, wherein the shunt amplifier is configured to output a shunt signal having a voltage value proportional to the current through the neutral conductor.
According to an embodiment, the at least one processor is configured to trigger the circuit interrupter to electrically decouple at least one of the plurality of line terminals from the at least one of the plurality of load terminals based, at least in part, on the shunt signal.
According to an another aspect an arc fault protective wiring device disposed in an electrical distribution system, the device includes: a plurality of line terminals comprising at a line-side phase terminal and a line-side neutral terminal; a plurality of load terminals comprising a load-side phase terminal and a load-side neutral terminal; a line conductor electrically coupling the line-side phase terminal to the load-side phase terminal; a neutral conductor electrically coupling the line-side neutral terminal to the load-side neutral terminal; a shunt amplifier having a first input terminal, the first input terminal being connected at a first point along the neutral conductor between the line-side neutral terminal and the load-side neutral terminal, the first point being positioned such that a detectable voltage, proportional to current flowing through the neutral conductor and as a result of the resistance of a length of the neutral conductor, is present, wherein the shunt amplifier is configured to output a shunt signal having a voltage value proportional to the current through the neutral conductor; and at least one processor configured to trigger the circuit interrupter to electrically decouple at least one of the plurality of line terminals from the at least one of the plurality of load terminals based, at least in part, on the shunt signal.
According to an embodiment, the input terminal is placed at the neutral terminal a point that the resistance of the length of the neutral conductor is greater than 1 mOhm.
According to another aspect, a method for detecting an arc fault, includes the steps of: receiving an input current in a line conductor and neutral conductor of a wiring device; find a derivative of the input current; determine the frequency of instances the derivative of the input current exceeds a predetermined threshold; determine whether the frequency of instances exceeds a predetermined frequency and persists for a predetermined period of time; and determine whether an arc fault is occurring based, at least in part, on whether the frequency of instances exceeds the predetermined frequency and persists for a predetermined period of time.
According to an embodiment, the method further includes the steps of: finding a magnitude of the input current through the neutral conductor; determining whether an arc fault is occurring based, at least in part, on the magnitude of the input current through the neutral conductor.
Additional features and advantages of the invention will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the invention as described herein, including the detailed description which follows, the claims, as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description are merely exemplary of the invention, and are intended to provide an overview or framework for understanding the nature and character of the invention as it is claimed. It should be appreciated that all combinations of the foregoing concepts and additional concepts discussed in greater detail below (provided such concepts are not mutually inconsistent) are contemplated as being part of the inventive subject matter disclosed herein. In particular, all combinations of claimed subject matter appearing at the end of this disclosure are contemplated as being part of the inventive subject matter disclosed herein. It should also be appreciated that terminology explicitly employed herein that also may appear in any disclosure incorporated by reference should be accorded a meaning most consistent with the particular concepts disclosed herein.
The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate various embodiments of the invention and together with the description serve to explain the principles and operation of the invention.
In the drawings, like reference characters generally refer to the same parts throughout the different views. Also, the drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention.
Reference will now be made in detail to the present exemplary embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
Separable contacts 24 are opened when a fault, such as an arc fault or a ground fault, is detected. Whether an arc fault or a ground is occurring is determined by protective Ground Fault Interrupt 26 and Arc Fault Interrupt 28 circuity. As shown, AFI 28 circuitry may communicate with a di/dt detector 30 and comprise a comparator 32 (together with comparator support circuitry 34), a pulse frequency digitizer 36 a shunt amplifier 38, and a processor 40. When AFI 28 circuits detect a fault, trip mechanism 42 is triggered to open the separable contacts 24 and stop the flow of the electricity through the wiring device and to any load or downstream devices.
GFI 26 is on communication with at least one differential transformer 44 to detect current imbalances between the phase 20 and neutral conductor 22, and to trigger trip mechanism 42 upon detection of a current imbalance indicative of a ground fault. Any GFI circuit suitable for detecting such current imbalances may be used. One such GFI circuit is described in US Patent No. 6,522,510 and directed to “Ground Fault Circuit Interrupter with Miswire Protection and Indicator,” which is hereby incorporated by reference in its entirety.
At a high level, comparator 32 and pulse frequency digitizer 36 receive a di/dt signal from di/dt detector 30 indicative of the derivative of the current flowing through either the line conductor 20 or neutral conductor 22, and, together, produce a digital output signal representative of the instances that high-frequency current spikes appear on the line conductor 20 or neutral conductor 22 above a predetermined frequency and time. Shunt amplifier 38 monitors a shunt, consisting of a length of the neutral conductor 22 and produces a shunt signal. Both the digital output signal and the shunt signal are fed to processor 40, which, based on either the digital output signal, the shunt signal, or both, triggers trip mechanism 42 to open interrupting contacts 24. Each of the constituent components of the AFI 28 circuit will be discussed in detail below in conjunction with
Returning to
A comparator support circuit 34 may be disposed between the input of comparator 32, and the output of di/dt detector 30, to condition the output of di/dt detector 30 for comparator 32. In an example, comparator 32 support circuit may comprise a resistor 50, capacitors 52 and 54, and voltage divider formed of resistors 56, 58, and 60. In an example, resistor 50 may be placed across the outputs 62, 64 of di/dt detector 30 (shown in
The output of the comparator 32 may be fed to pulse frequency digitizer 36. Pulse frequency digitizer 36 is configured to receive the pulses from comparator 32 and to generate a digital signal representative of the frequency of instances at which the frequency of the pulses exceeds a predetermined threshold, exceeds a predetermined frequency for a predetermined time.
As described above, the output of comparator 32 may be conditioned by capacitor 72 and diode 74. Capacitor 72 functions, in part, as a high-pass filter. Various nuisance loads may produce a fairly constant current rate of change which will result in a substantially DC output of the comparator. Similarly, if processor 40 fails (or, alternately, comparator 32 fails), the output of such a failure mode could result in a substantially DC output. Both of these scenarios—the nuisance load and failure mode of the processor 40—produce substantially DC outputs that are filtered by capacitor 72. The corner frequency of capacitor 72 must thus be selected to ensure that the output of the comparator is not filtered out when arc faults are occurring. This means that the corner frequency of the high-pass filter must be no more than the maximum output frequency of the comparator, determined by the delay propagation of the comparator 32. The corner frequency of the high-pass filter, therefore, must be greater than the maximum output frequency of nuisance loads and less than the maximum output frequency of the comparator. In an example, capacitor 72 may have a value of 18 pF. It will be appreciated that other methods of implementing the high-pass filter may be implemented in conjunction with or instead of capacitor 72.
Diode 74 may further condition the output of the comparator to allow only positive output pulses to charge capacitor 76 (as will be further described below). Negative output pulses will be blocked by diode 74. Diode 74 may, in an example, be a Schottky diode to maximize the voltage possible across capacitor 76. Negative pulses produced by the comparator may be clamped by a negative voltage clamping diode internal to processor. In other examples, such negative voltage clamping diode may be implemented external to processor 40. In yet further examples, diode 74 and the negative voltage clamping diode may not be required, because comparator may be configured to only output positive pulses in response to either positive or negative rates of change or to only positive or only negative rates of change.
Looking again at
Because the voltage across capacitor 76 will begin to decay any time a pulse is not output from comparator 32, a certain frequency of pulses will be required to retain or increase the voltage across capacitor 76. The minimum frequency for which capacitor 76 will retain a charge will be determined by the size of the capacitor and the values of resistors 78 and 80 (specifically, the decay rate is determined by the product of capacitor 76 and the sum of resistors 78 and 80). A large capacitor will decay more slowly than a small capacitor and will accumulate pulses over a larger period of time. Thus, a lower frequency of pulses will be required to retain a voltage across a large capacitor than small. By contrast, a smaller capacitor will quickly discharge and will therefore require a higher frequency of pulses to retain a charge. By tuning the values of capacitor 76 and resistors 78, 80, the output signal of accumulator 68 may be tailored to achieve a particular value for a specific frequency of pulses, as necessary.
For example, as will be described below, digitizer may be implemented with a switch, such as a BJT or MOSFET. Thus, values of capacitor 76 and resistors 78 and 80 may be tailored such that, at a particular frequency of pulses, the voltage output of accumulator 68 is equal to or greater than the threshold voltage of the switch 82 control node (e.g., the base or gate or switch 82), causing switch 82 to begin conducting.
As an example, capacitor 76 may have a capacitance of 10 nF, resistor 78 may have a resistance of 1 K, and resistor 80 may have a resistance of 9.09 K.
In practice, arc faults result in high frequency pulses in the neutral or line conductor. Accumulator 68 requires that the high frequency data persist for a period of time sufficient to increase the output signal of accumulator (e.g., the voltage across capacitor 76) to a level sufficient to turn switch 82 on. Setting capacitor 76 and resistors 78, 80 to the values described above will require high frequency data to persist out of comparator 32 for at least 250 μs switch 82 to turn on. Conversely, accumulator will ignore bursts of high frequency impulses less than 250 μs, because such bursts will be insufficient to raise the voltage of capacitor 76 above the control terminal of switch 82 above the threshold voltage.
Of course, these pulses may be accumulated in ways other than capacitor 76, and capacitor 76 is merely provided as an example. In another example, accumulator 68 may be implemented with a microprocessor configured to count the output pulses and thus the
Turning now to digitizer 70, as described earlier, digitizer may output a digital signal indicative of the instances at which the frequency of the pulses output by comparator 32 exceeds a predetermined frequency. As briefly described above, digitizer 70 may be comprised of a switch 82, such as a MOSFET or a BJT. In the example shown in
Because switch 82 is tied to ground, once the output signal of accumulator 68 is high enough to turn on switch 82, the pin of processor 40 tied to the collector of switch 82 will be pulled low (in this example, the pin of processor 40 is otherwise held high due a pull-up resistor disposed within processor 40). Of course, in an alternate example, the transistor may be tied to a voltage source and the same pin of processor 300 may thus be pulled high. (As described above, the voltage necessary to turn on switch 82 may, in an example, be conditioned by a voltage divider network consisting of resistors 78 and 80.)
The output of switch 82 thus signifies when the rate of change of the current, present in the line, exceeds a given threshold a given number of times within a given period of time. This output may be used as part of a larger calculation to determine whether an actual arc fault is occurring in the electrical wiring system.
It will be appreciated that determining whether the frequency of the comparator output exceeds a second threshold for a predetermined period of time may be accomplished in any other suitable way.
Returning to
In an example, the resistance of neutral line from point P to ground is greater than 1 mOhm. In another example, the resistance of the neutral line from point P to ground is approximately 1.5 mOhm. The length of neutral conductor 22 may be a bus bar or a length of wire and may be comprised any material classified as a conductor such as copper. It should be further understood that the length of neutral conductor from point P to ground should not include a lumped element resistor.
Shunt amplifier 38 may, as shown in
In example the value of resistor 86 and resistor 88 may be matched, the parallel resistance (i.e., the Thevenin equivalent) of resistors 90 and 92 may be matched to resistor 94. This configuration will result in an amplifier gain of the value of the voltage at point P multiplied by the ratio of resistor 88 and resistor 94. In an example, the resistors may be set to the following values: resistors 86 and 88 may both be set to approximately 4.02 kOhm, resistor 94 may be set to 69.8 kOhm, and resistors 90, 92 may be set to 140 kOhm. Assuming the resistance of the neutral conductor from point P is 1.5 mOhm yields an output of approximately 25 mV/Amp of current flowing through the neutral conductor 22.
This configuration permits detecting the current through the neutral conductor without placing a resistor in series with the conductor. It should be understood that other amplifier topologies and other types of amplifiers may be used to amplify the voltage present at point P of the neutral conductor.
Processor 40 may receive the digital output signal from pulse frequency digitizer 36 and from the shunt signal from shunt amplifier 38 and, based on either the digital output signal, the shunt signal, or both, trigger the trip mechanism 42 to open interrupting contacts. In an example, processor 40 may be a microprocessor 40 capable of receiving digital signal and/or shunt signal, performing at least one analytical process to determine the presence of a fault based on at least one of digital signal and shunt signal, and initiating the trip process to open interrupting contacts 24. In an example, processor 40 may comprise a nontransitory storage medium storing program code for executing instructions to carry out the processes described above. In another example, processor may comprise multiple such storage mediums, and/or may be comprised of a plurality of independent devices that work in concert to achieve the above-described processors.
A detailed view of trip mechanism 42 is depicted in
Turning to
Turning to in step 510 an input current is received, the signal may be received, for example, through the line conductor 20 and neutral conductor 22 of a wiring device such as wiring device 10.
At step 512, a derivative of the input current is found. As described above, the derivative may be found using a di/dt detector 30, such as a toroidal coil.
At step 514, the frequency of instances the derivative of the input current exceeds a predetermined threshold is determined. Step 514 may be accomplished using a combination of comparator 32 and accumulator 68. Specifically, step 514 may be broken into sub steps 602 and 604, shown in
Returning to
At step 518, the magnitude of the input current is found. This step may be accomplished using, for example, the shunt amplifier 38, which is configured to find the magnitude of the current flowing through the neutral conductor, using a length of the neutral conductor from a known point as a resistive shunt.
At step 520, whether an arc fault is occurring is determined based on, at least in part, the output of step 516 and/or the magnitude of the input current. This step may be accomplished, for example, using processor 40 which receives the inputs from both the shunt amplifier 38 and the pulse frequency digitizer 36 and based, at least in part, on the signal from one or both, whether an arc fault exists.
Although a dual afci/gfci embodiment has been shown and described in the figures (e.g.,
While several inventive embodiments have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the function and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the inventive embodiments described herein. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the inventive teachings is/are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific inventive embodiments described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto; inventive embodiments may be practiced otherwise than as specifically described and claimed.
All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
All definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms.
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. The term “connected” is to be construed as partly or wholly contained within, attached to, or joined together, even if there is something intervening.
As used herein in the specification and in the claims, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.
It should also be understood that, unless clearly indicated to the contrary, in any methods claimed herein that include more than one step or act, the order of the steps or acts of the method is not necessarily limited to the order in which the steps or acts of the method are recited.
Approximating language, as used herein throughout the specification and claims, may be applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term or terms, such as “about” and “substantially” are not to be limited to the precise value specified. In at least some instances, the approximating language may correspond to the precision of an instrument for measuring the value. Here and throughout the specification and claims, range limitations may be combined and/or interchanged; such ranges are identified and include all the sub-ranges contained therein unless context or language indicates otherwise.
The recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein.
All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate embodiments of the invention and does not impose a limitation on the scope of the invention unless otherwise claimed.
No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
In the claims, as well as in the specification above, all transitional phrases such as “comprising,” “including,” “carrying,” “having,” “containing,” “involving,” “holding,” “composed of,” and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of” shall be closed or semi-closed transitional phrases, respectively, as set forth in the United States Patent Office Manual of Patent Examining Procedures, Section 2111.03.
It will be apparent to those skilled in the art that various modifications and variations can be made to the present invention without departing from the spirit and scope of the invention. There is no intention to limit the invention to the specific form or forms disclosed, but on the contrary, the intention is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the invention, as defined in the appended claims. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
This application is a national stage application under 35 U.S.C. 371 based on international patent application PCT/US18/34117 filed on May 23, 2018, which claims the benefit of Provisional Application Ser. No. 62/510202, filed on May 23, 2017, and Provisional Application Ser. No. 62/532141, filed on Jul. 13, 2017.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/034117 | 5/23/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/217883 | 11/29/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3723814 | Gross | Mar 1973 | A |
3872355 | Klein et al. | Mar 1975 | A |
4159499 | Bereskin | Jun 1979 | A |
4247879 | Elms et al. | Jan 1981 | A |
4424439 | Payne et al. | Jan 1984 | A |
4507698 | Nilssen | Mar 1985 | A |
4707759 | Bodkin | Nov 1987 | A |
4878142 | Bergman et al. | Oct 1989 | A |
5095399 | Terada et al. | Mar 1992 | A |
5105325 | Lawrence | Apr 1992 | A |
5136454 | Halferty et al. | Aug 1992 | A |
5179490 | Lawrence | Jan 1993 | A |
5682101 | Brooks | Oct 1997 | A |
5825598 | Dickens et al. | Oct 1998 | A |
5834940 | Brooks et al. | Nov 1998 | A |
5839092 | Erger et al. | Nov 1998 | A |
5847913 | Turner et al. | Dec 1998 | A |
5886861 | Parry | Mar 1999 | A |
5889643 | Elms | Mar 1999 | A |
5892195 | Aufermann et al. | Apr 1999 | A |
5896262 | Rae et al. | Apr 1999 | A |
5905619 | Jha | May 1999 | A |
5910872 | Marmonier et al. | Jun 1999 | A |
5925276 | Batliwalla et al. | Jul 1999 | A |
5933305 | Schmalz et al. | Aug 1999 | A |
5933308 | Garzon | Aug 1999 | A |
5940256 | MacKenzie et al. | Aug 1999 | A |
5946179 | Fleege et al. | Aug 1999 | A |
5969920 | Mackenzie | Oct 1999 | A |
5973896 | Nemir | Oct 1999 | A |
5982593 | Kimblin et al. | Nov 1999 | A |
5982596 | Spencer | Nov 1999 | A |
5993615 | Abry et al. | Nov 1999 | A |
6005758 | Spencer et al. | Dec 1999 | A |
6011399 | Matsumaru et al. | Jan 2000 | A |
6014297 | Clarey et al. | Jan 2000 | A |
6025980 | Morron et al. | Feb 2000 | A |
6031699 | Dollar, II et al. | Feb 2000 | A |
6034611 | Brooks et al. | Mar 2000 | A |
6052046 | Ennis et al. | Apr 2000 | A |
6057997 | Mackenzie et al. | May 2000 | A |
6072317 | Mackenzie | Jun 2000 | A |
6084756 | Doring et al. | Jul 2000 | A |
6094043 | Scott et al. | Jul 2000 | A |
6115230 | Voigts et al. | Sep 2000 | A |
6128168 | Arnold et al. | Oct 2000 | A |
6141197 | Kim et al. | Oct 2000 | A |
6144537 | Boteler | Nov 2000 | A |
6157527 | Spencer | Dec 2000 | A |
6161077 | Fawcett | Dec 2000 | A |
6175229 | Becker et al. | Jan 2001 | B1 |
6191589 | Clunn | Feb 2001 | B1 |
6194982 | Mrenna et al. | Feb 2001 | B1 |
6195241 | Brooks et al. | Feb 2001 | B1 |
6195243 | Spencer | Feb 2001 | B1 |
6212049 | Spencer | Apr 2001 | B1 |
6215378 | Gibson et al. | Apr 2001 | B1 |
6218844 | Wong et al. | Apr 2001 | B1 |
6225883 | Wellner et al. | May 2001 | B1 |
6229680 | Shea | May 2001 | B1 |
6232857 | Mason, Jr. et al. | May 2001 | B1 |
6233128 | Spencer | May 2001 | B1 |
6239962 | Seymour et al. | May 2001 | B1 |
6242993 | Fleege et al. | Jun 2001 | B1 |
6246556 | Haun et al. | Jun 2001 | B1 |
6255923 | Mason, Jr. et al. | Jul 2001 | B1 |
6259246 | Ward | Jul 2001 | B1 |
6259340 | Fuhr et al. | Jul 2001 | B1 |
6259996 | Haun et al. | Jul 2001 | B1 |
6262871 | Nemir et al. | Jul 2001 | B1 |
6275044 | Scott | Aug 2001 | B1 |
6285534 | Gibson et al. | Sep 2001 | B1 |
6300766 | Schmalz | Oct 2001 | B1 |
6307453 | Wellner et al. | Oct 2001 | B1 |
D450660 | Seymour et al. | Nov 2001 | S |
6313641 | Brooks | Nov 2001 | B1 |
6313642 | Brooks | Nov 2001 | B1 |
6329810 | Reid | Dec 2001 | B1 |
6362629 | Parker et al. | Mar 2002 | B1 |
6377427 | Haun et al. | Apr 2002 | B1 |
6388849 | Rae | May 2002 | B1 |
6392513 | Whipple et al. | May 2002 | B1 |
6400258 | Parker | Jun 2002 | B1 |
6414829 | Haun et al. | Jul 2002 | B1 |
6417671 | Tiemann | Jul 2002 | B1 |
6426632 | Clunn | Jul 2002 | B1 |
6426634 | Clunn et al. | Jul 2002 | B1 |
6433976 | Phillips | Aug 2002 | B1 |
6437952 | Suptitz et al. | Aug 2002 | B1 |
6437955 | Duffy et al. | Aug 2002 | B1 |
6452767 | Brooks | Sep 2002 | B1 |
6456097 | Sutherland | Sep 2002 | B1 |
6456471 | Haun et al. | Sep 2002 | B1 |
6459273 | Dollar, II et al. | Oct 2002 | B1 |
6459960 | Shuto et al. | Oct 2002 | B1 |
6477021 | Haun et al. | Nov 2002 | B1 |
6504692 | Macbeth et al. | Jan 2003 | B1 |
6522228 | Wellner et al. | Feb 2003 | B2 |
6522509 | Engel et al. | Feb 2003 | B1 |
6525918 | Alles et al. | Feb 2003 | B1 |
6532424 | Haun et al. | Mar 2003 | B1 |
6538862 | Mason, Jr. et al. | Mar 2003 | B1 |
6542056 | Nerstrom et al. | Apr 2003 | B2 |
6545574 | Seymour et al. | Apr 2003 | B1 |
6567250 | Haun et al. | May 2003 | B1 |
6577138 | Zuercher et al. | Jun 2003 | B2 |
6577485 | Reid et al. | Jun 2003 | B2 |
6590757 | Pahl et al. | Jul 2003 | B2 |
6591482 | Fleege et al. | Jul 2003 | B1 |
6594125 | Dollar | Jul 2003 | B2 |
6614638 | Kleemeier | Sep 2003 | B1 |
6618229 | Bax | Sep 2003 | B2 |
6621669 | Haun et al. | Sep 2003 | B1 |
6621677 | Amundsen | Sep 2003 | B1 |
6625550 | Scott et al. | Sep 2003 | B1 |
6633824 | Dollar | Oct 2003 | B2 |
6639768 | Zuercher et al. | Oct 2003 | B2 |
6650515 | Schmalz et al. | Nov 2003 | B2 |
6650969 | Sieleman | Nov 2003 | B1 |
6658360 | Gies et al. | Dec 2003 | B1 |
6678131 | Chapman et al. | Jan 2004 | B2 |
6678137 | Mason, Jr. et al. | Jan 2004 | B1 |
6683766 | Guo et al. | Jan 2004 | B1 |
6684134 | Sieleman | Jan 2004 | B1 |
6703842 | Itimura et al. | Mar 2004 | B2 |
6710687 | Elms et al. | Mar 2004 | B2 |
6720872 | Engel et al. | Apr 2004 | B1 |
6728085 | Dudhwala et al. | Apr 2004 | B2 |
6731483 | Mason et al. | May 2004 | B2 |
6734682 | Tallman et al. | May 2004 | B2 |
6744260 | Schmalz et al. | Jun 2004 | B2 |
6747459 | Parker et al. | Jun 2004 | B2 |
6747856 | Huber et al. | Jun 2004 | B1 |
6762920 | Parker | Jul 2004 | B2 |
6772077 | Parker et al. | Aug 2004 | B1 |
6777953 | Blades | Aug 2004 | B2 |
6781381 | Parker | Aug 2004 | B2 |
6782329 | Scott | Aug 2004 | B2 |
6785104 | Tallman et al. | Aug 2004 | B2 |
6798628 | Macbeth | Sep 2004 | B1 |
6809483 | Alexandrov | Oct 2004 | B2 |
6822458 | Shander | Nov 2004 | B2 |
6833713 | Schoepf et al. | Dec 2004 | B2 |
6850073 | Elms et al. | Feb 2005 | B2 |
6859041 | Styles | Feb 2005 | B2 |
6859042 | Parker | Feb 2005 | B2 |
6867670 | McCormick et al. | Mar 2005 | B2 |
6873161 | Meckler et al. | Mar 2005 | B1 |
6876203 | Blades | Apr 2005 | B2 |
6876204 | Smith | Apr 2005 | B2 |
6882158 | Blades | Apr 2005 | B2 |
6927579 | Blades | Aug 2005 | B2 |
6943558 | Hale et al. | Sep 2005 | B2 |
6980407 | Pellon | Dec 2005 | B2 |
D515505 | Lin | Feb 2006 | S |
7009406 | Naidu et al. | Mar 2006 | B2 |
7016172 | Escoda | Mar 2006 | B2 |
7023196 | Khan et al. | Apr 2006 | B2 |
7035066 | McMahon et al. | Apr 2006 | B2 |
7038897 | Csanky et al. | May 2006 | B2 |
7062388 | Rivers, Jr. et al. | Jun 2006 | B2 |
7068045 | Zuercher et al. | Jun 2006 | B2 |
7068480 | Wong et al. | Jun 2006 | B2 |
7075310 | Mason, Jr. | Jul 2006 | B2 |
7091723 | Simmons | Aug 2006 | B2 |
7106069 | Kim et al. | Sep 2006 | B2 |
7110864 | Restrepo | Sep 2006 | B2 |
7133267 | Potter | Nov 2006 | B2 |
7136265 | Wong et al. | Nov 2006 | B2 |
7142291 | Sarkozi et al. | Nov 2006 | B2 |
7145757 | Shea et al. | Dec 2006 | B2 |
7148696 | Zhou et al. | Dec 2006 | B2 |
7149066 | Elms | Dec 2006 | B2 |
7151656 | Dvorak et al. | Dec 2006 | B2 |
7161775 | Schmalz | Jan 2007 | B2 |
7170376 | Mills et al. | Jan 2007 | B2 |
7187181 | Parker | Mar 2007 | B2 |
7190561 | Pellon et al. | Mar 2007 | B2 |
7190562 | Pellon et al. | Mar 2007 | B2 |
7205772 | Naidu et al. | Apr 2007 | B2 |
7219023 | Banke et al. | May 2007 | B2 |
7227729 | Parker et al. | Jun 2007 | B2 |
7242291 | Nicolls et al. | Jul 2007 | B2 |
7245129 | Wajcer et al. | Jul 2007 | B2 |
7253637 | Dvorak et al. | Aug 2007 | B2 |
7253640 | Engel et al. | Aug 2007 | B2 |
7253996 | Elms et al. | Aug 2007 | B2 |
7268989 | Parker et al. | Sep 2007 | B2 |
7282924 | Wittner | Oct 2007 | B1 |
7288901 | Yu et al. | Oct 2007 | B1 |
7305311 | van Zyl | Dec 2007 | B2 |
7307429 | Parker et al. | Dec 2007 | B1 |
7307820 | Restrepo | Dec 2007 | B2 |
7319574 | Engel | Jan 2008 | B2 |
7327101 | Chen et al. | Feb 2008 | B1 |
7337079 | Park et al. | Feb 2008 | B2 |
7345860 | Wong | Mar 2008 | B2 |
7349188 | Zuercher | Mar 2008 | B2 |
7359168 | Elms et al. | Apr 2008 | B2 |
7362552 | Elms | Apr 2008 | B2 |
7362553 | Elms et al. | Apr 2008 | B2 |
7366622 | Nemir | Apr 2008 | B1 |
7368918 | Restrepo | May 2008 | B2 |
7391218 | Kojori et al. | Jun 2008 | B2 |
7400478 | Potter | Jul 2008 | B2 |
7400481 | Pellon et al. | Jul 2008 | B2 |
7403129 | Zhou et al. | Jul 2008 | B2 |
7405522 | Stack | Jul 2008 | B2 |
7405912 | Sung | Jul 2008 | B2 |
7408750 | Pellon et al. | Aug 2008 | B2 |
7439744 | Gass et al. | Oct 2008 | B2 |
7440245 | Miller et al. | Oct 2008 | B2 |
7441173 | Restrepo | Oct 2008 | B2 |
7443172 | Fraedrich | Oct 2008 | B2 |
7443640 | Sung | Oct 2008 | B2 |
7443644 | Sung | Oct 2008 | B2 |
7451012 | Wang et al. | Nov 2008 | B2 |
7460346 | Deshpande et al. | Dec 2008 | B2 |
7463037 | Henson et al. | Dec 2008 | B2 |
7463465 | Rivers et al. | Dec 2008 | B2 |
7468586 | Yu et al. | Dec 2008 | B2 |
7471075 | Berland et al. | Dec 2008 | B2 |
7489138 | Yu et al. | Feb 2009 | B2 |
7492163 | Restrepo | Feb 2009 | B2 |
7492562 | Evans | Feb 2009 | B2 |
7499250 | Zhang | Mar 2009 | B2 |
7499251 | Byron | Mar 2009 | B2 |
7518475 | Mills et al. | Apr 2009 | B2 |
7518840 | Elms | Apr 2009 | B2 |
7536914 | Land, III et al. | May 2009 | B2 |
7558033 | Zhou et al. | Jul 2009 | B2 |
7570146 | Mills et al. | Aug 2009 | B2 |
7570465 | Beatty, Jr. | Aug 2009 | B2 |
7577535 | Anderson et al. | Aug 2009 | B2 |
7627400 | Dutoya et al. | Dec 2009 | B2 |
7633727 | Zhou et al. | Dec 2009 | B2 |
7633728 | Parker et al. | Dec 2009 | B2 |
7633729 | Oldenburg et al. | Dec 2009 | B2 |
7633736 | Domitrovich et al. | Dec 2009 | B2 |
7636225 | Potter | Dec 2009 | B2 |
7646572 | Mills et al. | Jan 2010 | B2 |
7652566 | Lee et al. | Jan 2010 | B2 |
7656626 | Carton et al. | Feb 2010 | B2 |
7685447 | Parker | Mar 2010 | B2 |
7697248 | Tomimbang | Apr 2010 | B2 |
7701681 | Dooley | Apr 2010 | B2 |
7746605 | Elms et al. | Jun 2010 | B2 |
7750646 | Maity et al. | Jul 2010 | B2 |
7787113 | Aiello et al. | Aug 2010 | B2 |
7796366 | Kilroy et al. | Sep 2010 | B2 |
7806000 | Land, III et al. | Oct 2010 | B2 |
7826184 | Rivers et al. | Nov 2010 | B2 |
7834637 | Kojori et al. | Nov 2010 | B2 |
7864005 | Gouhl et al. | Jan 2011 | B2 |
7864492 | Restrepo | Jan 2011 | B2 |
7865321 | Muthu-Manivannan et al. | Jan 2011 | B2 |
7872464 | Berland et al. | Jan 2011 | B2 |
7880476 | McKenzie | Feb 2011 | B1 |
7898781 | Kawate et al. | Mar 2011 | B2 |
7912660 | Anderson et al. | Mar 2011 | B2 |
7944654 | Scott | May 2011 | B2 |
7947901 | Leopold | May 2011 | B2 |
7948719 | Xu | May 2011 | B2 |
7952842 | Engel | May 2011 | B2 |
7952843 | Potter | May 2011 | B2 |
8004283 | Mills | Aug 2011 | B2 |
8004287 | Prabhu et al. | Aug 2011 | B2 |
8004802 | Elms | Aug 2011 | B2 |
8008585 | Mills | Aug 2011 | B2 |
8008865 | Stack | Aug 2011 | B2 |
8023235 | Bilac et al. | Sep 2011 | B2 |
8040644 | Hastings et al. | Oct 2011 | B2 |
8054591 | Changali et al. | Nov 2011 | B2 |
8054592 | Rivers, Jr. | Nov 2011 | B2 |
8072716 | Lee | Dec 2011 | B2 |
8089737 | Parker et al. | Jan 2012 | B2 |
8093904 | Ohta et al. | Jan 2012 | B2 |
8098465 | Flegel | Jan 2012 | B1 |
8159793 | Hall et al. | Apr 2012 | B2 |
8164347 | Schroeder et al. | Apr 2012 | B2 |
8169757 | Larson et al. | May 2012 | B2 |
8170816 | Changali et al. | May 2012 | B2 |
8179145 | Kinsel | May 2012 | B2 |
8179147 | Dargatz et al. | May 2012 | B2 |
8184011 | Nayak et al. | May 2012 | B2 |
8213138 | Dougherty | Jul 2012 | B2 |
8218274 | Hastings | Jul 2012 | B2 |
8228649 | Shea et al. | Jul 2012 | B2 |
8233254 | Prabhu et al. | Jul 2012 | B2 |
8320090 | Rozman et al. | Nov 2012 | B2 |
8325504 | Kammeter et al. | Dec 2012 | B2 |
8373570 | Restrepo | Feb 2013 | B2 |
8395391 | Potter et al. | Mar 2013 | B2 |
8421473 | Shea | Apr 2013 | B2 |
8427794 | Dvorak et al. | Apr 2013 | B2 |
8497688 | Dorr et al. | Jul 2013 | B2 |
8503148 | Schroeder et al. | Aug 2013 | B2 |
8508233 | Eriksson et al. | Aug 2013 | B2 |
8542021 | Scott et al. | Sep 2013 | B2 |
8618811 | Berland | Dec 2013 | B2 |
8654487 | Mikani et al. | Feb 2014 | B2 |
8675325 | Beierschmitt et al. | Mar 2014 | B2 |
8717720 | Deboer | May 2014 | B2 |
8737033 | Parker | May 2014 | B2 |
8743513 | Ward | Jun 2014 | B2 |
8817431 | Tomimbang | Aug 2014 | B2 |
8854066 | Shea | Oct 2014 | B2 |
8878563 | Robbins | Nov 2014 | B2 |
8879218 | Tomimbang | Nov 2014 | B2 |
8891211 | Dent | Nov 2014 | B2 |
8899342 | Chesley | Dec 2014 | B2 |
8929036 | Nayak et al. | Jan 2015 | B2 |
8929038 | Strobl et al. | Jan 2015 | B2 |
8947246 | Aiken | Feb 2015 | B2 |
8958182 | Luebke | Feb 2015 | B2 |
9008978 | Robbins | Apr 2015 | B2 |
9025287 | Privitera et al. | May 2015 | B2 |
9042073 | Mills | May 2015 | B2 |
9043039 | Eizips et al. | May 2015 | B2 |
9046588 | Behrends et al. | Jun 2015 | B2 |
9057752 | Luebke et al. | Jun 2015 | B2 |
9136688 | Laschinski et al. | Sep 2015 | B2 |
9190836 | Dent | Nov 2015 | B2 |
9203231 | Samuelson et al. | Dec 2015 | B2 |
20120119751 | Scott | May 2012 | A1 |
20120229939 | Mikani | Sep 2012 | A1 |
Entry |
---|
Military handbook, Grounding, bonding, and shielding for electronic equipments and facility, vol. 1 of 2 volumes, Basic theory, Dec. 29, 1987 (Year: 1987). |
International Search Report Form PCT/ISA/220, International Application No. PCT/US2018/034117, pp. 1-19 dated Jan. 10, 2019. |
Chinese Office Action, Issued Feb. 4, 2023, Application No. 201880034359.7, pp. 1-8. |
Number | Date | Country | |
---|---|---|---|
20200127452 A1 | Apr 2020 | US |
Number | Date | Country | |
---|---|---|---|
62532141 | Jul 2017 | US | |
62510202 | May 2017 | US |