No federally sponsored research funds have been used for this work.
The technology described in this disclosure relates to pile formations used as structural foundation supports for building construction and other loads on soil substrates.
The broader societal need for glass fillers in structural pilings is not just a reduction in cost of pilings. Pilings can be substantial costs as some are as large as 24″ diameters and up to 150′ long. These are substantial components of foundations utilized for larger structures. A reduction in building costs would have far reaching effects throughout the country. Reducing building costs would put many projects that would have otherwise been neglected into reach, such as infrastructure upgrades. In fact, the current U.S. President has plans to increase infrastructure spending to $1T (whitehouse.gov). This is substantial especially considering the scale of projects. Infrastructure typically requires larger foundations that residential construction, meaning that most of these projects will require some type of pile foundation (bridges, for example, require larger foundations due to the high loading of the structures).
Prior art pilings include those made of steel, timber, and concrete summarized below.
Steel: These are used by driving the piles into soil. These cannot be used in soils with high moisture content as the steel will rust and deteriorate.
Timber: These have select uses. In locations were timber is very low cost, these can be economical, but they are more typically used in select locations in which the foundations are continually wet. Timber will not rot if continually wet or continually dry.
Concrete:
Installation methods for foundational piles include driven piles often made of steel, timber, or precast concrete. Other piles, particularly prior art piles made of concrete, may be cast in place.
As shown in
A need exists for a method of constructing piles of new materials to take advantage of a wide range of structural properties in construction.
Part of the innovation proposed is using glass as a material for construction of structural piling foundations. As mentioned above, glass greatly exceeds existing materials for construction piles, such as in strength. Through experimentation, it has been discovered that glasses can be melted by using electrical arcs (high amperage, low voltage) by exposing the glass to the radiant heat produced by the arc. This is different than the traditional method of melting glass using combustible gasses. It has been proven that glass cast using arcs can utilize fluxing materials to reduce the melting temperature. As glasses cast using arcs can also receive the effects of the reduction in melting temperatures, the costs of glass as a piling material can be made further economical as compared to concrete, especially when considering the increased strength of glass.
By casting glasses in a bore hole, the soil surrounding the bore hole naturally form an insulative barrier, which helps to maintain heat in the system and reduces moisture content in the soil surrounding the glass.
Another primary concern with piling type foundations is the friction produced on the exterior of a bore hole. It has been found through preliminary experimentation that the exterior of the steel casing partially melts and absorbs nearby soil, creating a rough surface on the exterior. This rough surface should have increased friction, increasing the pile's effective strength.
Another advantage is that glass piles can be considered a green material. If soil is taken from bore holes and recycled as a building material by making it into glass, material can be directly used from site. This would also help in cases were an excess of soil must be removed from the construction site. In comparison to concrete, steel, or timber piles, the costs reflect the transportation costs of these materials through their manufacturing processes and to the construction site. All these transportation costs are negated by using soils from the site.
In one embodiment, a system for forming a molten glass filled pile 575 includes a hollow casing 650, a control assembly 640 positioned proximately to the hollow casing, and a pivoting support device 649 connected to the control assembly. A pivoting electrode 675A is connected to the pivoting support device and configured to extend into the hollow casing, wherein the pivoting electrode has a range of motion defined by the hollow casing. A second electrode 675B is connected to the control assembly and configured to extend into the hollow casing within the range of motion of the pivoting electrode 675A. An electric power source 647 is connected to the pivoting electrode and the second electrode, wherein charge on the electrodes produces a current arc 669 between the pivoting electrode and the second electrode. A lift mechanism 605 is connected to a raising and lowering shaft 691 and the lifting/lowering assembly is positioned proximately to the hollow casing to control the electrodes' position within the hollow casing, i.e., a hollow steel sleeve.
A method of producing a piling employs steps that allow for a glass filler 500 in the field where a hollow casing 650 has been placed in a soil substrate. As noted above, the method includes positioning a pair of electrodes inside of a hollow casing, connecting the electrodes to a power source and inducing a charge on at least one of the electrodes. Moving at least one of the electrodes toward the other electrode within the hollow casing allows the the charge to initiate an arc of conduction between the pair of electrodes. Exposing glass forming materials to the heat of the arc within the hollow casing allows for forming a glass filler within the hollow casing, often from the bottom (distal end) up toward the surface and steel cap 608. In other words the lifting apparatus described above pulls the electrodes up and out of the glass filler as the glass is formed in a molten state that cools into glass. The hollow casing is not necessarily insulated if heating an environmental material such as sand or soil is desired for melting materials outside the hollow sleeve.
The accompanying drawings, which are in and constitute a part of this specification, illustrate certain examples of the present disclosure and together with the description, serve to explain, without limitation, the principles of the disclosure. Like numbers represent the same element(s) throughout the figures. One source of the
The following description of the disclosure is provided as an enabling teaching of the disclosure in its best, currently known embodiment(s). To this end, those skilled in the relevant art will recognize and appreciate that many changes can be made to the various embodiments of the invention described herein, while still obtaining the beneficial results of the present disclosure. It will also be apparent that some of the desired benefits of the present disclosure can be obtained by selecting some of the features of the present disclosure without utilizing other features. Accordingly, those who work in the art will recognize that many modifications and adaptations to the present disclosure are possible and can even be desirable in certain circumstances and are a part of the present disclosure. Thus, the following description is provided as illustrative of the principles of the present disclosure and not in limitation thereof.
Through experimentation conducted and summarized herein, it was determined that glass filler 500 could be produced by using two graphite electrodes 675A, 675B connected to a high amperage (˜200 Amps), low voltage (˜24 Volts) electric power source 647. This discovery led to researching the strengths of glasses compared to other materials. Upon discovering the key advantages of glass (namely, the excessive compressive strength in pure compression), it was assumed that glass could be cast underground in a steel sleeve and serve as a glass filled pile for load support in construction applications.
Several other discoveries have been determined. Namely, using a fluxing (such as sodium carbonate, also known as washing soda), the glass melting temperature can be reduced, increasing the advantages of glass and glass fillers 500 in pile formation.
By placing a series of electrodes 675A, 675B underground, connected through a melting head (referred herein as control assembly 640), which features an actuator mechanism 642 to push the electrodes 675A, 675B together, starting an electrical conduction arc 669 between the electrodes, and a feeding mechanism, such as a feed screw 644 and feed screw motor 670, it was determined that a mechanism could be created that would allow for continuous casting of soda-lime glass equivalent. This material could then be cast continuously while lifting the melting head/control assembly 640. Once the appropriate height was reached, the entire glass forming mechanism 600 could be removed from the molten glass filled pile 575. As the top layer of glass remains molten for an extended period after removing the melting head/control assembly 640, the cap 450 could then have steel reinforcement rods placed into the molten glass. This would then act as a capped pile in which load could be transmitted from the structure above to the glass pile 400, 500. The resulting capped pile as shown in
With the above summary of the glass filled pile discussed herein, one can note many advantages to using the glass filled piles, particularly in the cost comparison of Table 1.
Glass formations, therefore, present new, innovative material exhibiting increased strength above all other materials listed in Table 1. This is true even for steel; 150 ksi glass vs. 58 ksi steel. Glass also presents a lower costs than above materials on a cost per strength basis (0.88 cents/ksi concrete vs. 0.64 cents/ksi steel vs. 0.08 cents/ksi glass). Using glass as a filler material in pile construction is not time sensitive; glass can be cast when needed on site with no wait times or risk of delays.
In certain non-limiting embodiments, a few key components of glass filled pile systems will be required to be small, mechanized systems which must withstand temperatures between 400 and 600 deg. C. As glass filler becomes more prevalent, costs associated with components withstanding these conditions will be manageable.
Another key technical challenge has involved the strength of the resulting glass. While strengths of glasses are referenced as being substantial (greater than 1000 MPa in pure compression), none of these glasses have been manufactured through the same process, which is a bulk process for producing large quantities of low quality glass.
Casting in deeply restrictive environments could prove difficult. One major concern is a consistent method of controlling and measuring the casting process. Two possible measurable data points providing information during a glass casting process are voltage and current used to induce the electric art that melts materials and forms glass. It may prove to be necessary to include a temperature probe to verify that the glass is being cast at an appropriate temperature.
Casting below the water table of a river or other body of water is also possible using glass filled piles to support construction. Use of a bottom cap 402B is possible, and it has been found that partially saturated soil has shown no negative impacts. Casting glass onto fully saturated soil may be possible as well.
As mentioned previously, this disclosure includes one non-limiting example of a method of casting glass inside a borehole using graphite electrodes producing an electrical arc. There are several key points that illustrate the significance of this discovery:
The bore hole itself acts as a furnace, slowly cooling the glass, preventing cracking.
Table 2 above indicates the theoretical energy costs of several glass types. While borosilicate and soda-lime glasses have similar practical energy costs, borosilicate glass requires addition of materials (e.g. boric acid), which increase the cost far beyond soda-lime glass. Additionally, while pure silica has a lower practical material cost, it also requires producing very high temperatures to create the glass.
To express why glass makes a better pile material more clearly, a comparison of a glass to a steel piling is shown below in a design example. For simplicity, the example uses a condition in which an end-bearing pile of
In Table 3, the example's requirements required reaching a rock substrate below at 420 inches. The S.G. column represents the specific gravity, which dictates the weight of the material. The volume results from the pile length and the pile surface area, which is derived from the strength requirements. The material cost per unit weight is derived from a previous example which utilized the melting temperature of soda-lime glass and the heat of fusion. Assuming a 30% efficiency and $0.30 per kw-hr, the cost per unit weight of glass was found to be %0.12 per pound.
To explain the non-limiting example above, a required foundational pile strength of 530 tons is set as a test point. The rock substrate itself dictated design. The steel piles used utilized a cap as shown in
In the above example, glasses easily exceed the strength of steel as the failure strength of glass in compression is 1000 MPa (as compared to 400 MPa with steel; these values are from the diim.unict.it website). Additionally, steel has a relatively high cost when compared to glass produced on a construction site with the innovation outlined in this report.
Additionally, the above example includes a foundation type referred to as a “glass pedestal 300.” This type of foundation is shown in
The procedure of one non-limiting test was to connect the two graphite electrodes 675A, 675B to the positive and negative terminals of an electric power source 647. The electric power source 647. was set to 200 amps at 24 volts. The ends 681A, 681B, 682A, 682B of the graphite electrodes were lowered into the bottom of the hollow casing 650. Similar to welding, an arc 669 was created by moving the two electrodes together, then holding them about 0.5 inches apart. This arc was used to melt the sand-soda ash mixture, which about two cubic inches of mixture was added every 10 seconds of arcing.
After creating a small portion of glass, the steel sleeve 550 was cut to allow for easier viewing of the glass as shown in
An example prototype has been laid out in
In one embodiment, a system for forming a molten glass filled pile 575 includes a hollow casing 650, a control assembly 640 positioned proximately to the hollow casing, and a pivoting support device 649 connected to the control assembly. A pivoting electrode 675A is connected to the pivoting support device and configured to extend into the hollow casing, wherein the pivoting electrode has a range of motion defined by the hollow casing. A second electrode 675B is connected to the control assembly and configured to extend into the hollow casing within the range of motion of the pivoting electrode 675A. An electric power source 647 is connected to the pivoting electrode and the second electrode, wherein charge on the electrodes produces a current arc 669 between the pivoting electrode and the second electrode. A lift mechanism 605 is connected to a raising and lowering shaft 691 and the lifting/lowering assembly is positioned proximately to the hollow casing to control the electrodes' position within the hollow casing, i.e., a hollow steel sleeve. The lifting and lowering mechanism is configured to move the pivoting electrode and the second electrode along an interior of the hollow casing. In other words, the lifting and lowering assembly (including lead screw and shaft) are connected to a control assembly 640 so that the arc-forming electrodes 675A, 675B can move freely within the hollow casing 650. In one non-limiting embodiment, the hollow casing comprises a steel sleeve that conducts heat from the current arc. In this way, the heat emanating from the hollow casing 650 is positioned to melt soil or sand exterior 615 to the hollow casing 650, forming the rough surface 655 as described above. The control assembly 640 includes an insulating enclosure 643 surrounding the electric power source 642 and/or a pivoting support device 649 and/or at least one actuator 642 engaging the pivoting support device 649 to move the pivoting electrode 675A toward the second electrode 675B and induce the electrical current arc 669 between the electrodes. A system as described in this disclosure may configure the insulating enclosure 643 to be so dimensioned to traverse the interior 699 of the hollow casing 650 as the lift mechanism 605, 691 moves the pivoting electrode and the second electrode. As shown in
A method of producing a piling employs steps that allow for a glass filler 500 in the field where a hollow casing 650 has been placed in a soil substrate. As noted above, the method includes positioning a pair of electrodes inside of a hollow casing, connecting the electrodes to a power source and inducing a charge on at least one of the electrodes. Moving at least one of the electrodes toward the other electrode within the hollow casing allows the the charge to initiate an arc of conduction between the pair of electrodes. Exposing glass forming materials to the heat of the arc within the hollow casing allows for forming a glass filler within the hollow casing, often from the bottom (distal end) up toward the surface and steel cap 608. In other words the lifting apparatus described above pulls the electrodes up and out of the glass filler as the glass is formed in a molten state that cools into glass. The hollow casing is not necessarily insulated if heating an environmental material such as sand or soil is desired for melting materials outside the hollow casing 650.
Positioning the hollow casing underground with the exterior environment being soil allows for glass filled piles to be formed for bearing a load thereon as discussed above. Lifting the electrodes from a first end of the hollow casing cause distal ends of the electrodes to move from an opposite end of the hollow casing toward the first end of the hollow casing, forming the glass filler with the pair of electrodes as the pair of electrodes moves from the opposite end toward the first end of the hollow casing. As noted above, the method of this disclosure optionally includes forming a glass cap in the exterior environment, wherein the glass cap connects to the hollow casing and the glass filler in the hollow casing by melting soil in the exterior environment below the opposite end of the hollow casing.
Operating parameters for forming the glass filler optionally include operating the power source within a range of 190-210 amps at a voltage within a range of 20-30 volts. In one non-limiting embodiment, applying the power source at about 200 amps at about 24 volts forms a desirably strong glass filler.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs.
As used in the specification and claims, the singular form “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise. For example, the term “an agent” includes a plurality of agents, including mixtures thereof.
As used herein, the terms “can,” “may,” “optionally,” “can optionally,” and “may optionally” are used interchangeably and are meant to include cases in which the condition occurs as well as cases in which the condition does not occur. Thus, for example, the statement that a formulation “may include an excipient” is meant to include cases in which the formulation includes an excipient as well as cases in which the formulation does not include an excipient.
Ranges can be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint. It is also understood that there are a number of values disclosed herein, and that each value is also herein disclosed as “about” that particular value in addition to the value itself. For example, if the value “10” is disclosed, then “about 10” is also disclosed.
Publications cited herein are hereby specifically by reference in their entireties and at least for the material for which they are cited.
Although the present disclosure has been described in detail with reference to particular arrangements and configurations, these example configurations and arrangements may be changed significantly without departing from the scope of the present disclosure. For example, although the present disclosure has been described with reference to particular communication exchanges involving certain network access and protocols, network device 102 may be applicable in other exchanges or routing protocols. Moreover, although network device 102 has been illustrated with reference to particular elements and operations that facilitate the communication process, these elements, and operations may be replaced by any suitable architecture or process that achieves the intended functionality of network device 102.
Numerous other changes, substitutions, variations, alterations, and modifications may be ascertained to one skilled in the art and it is intended that the present disclosure encompass all such changes, substitutions, variations, alterations, and modifications as falling within the scope of the appended claims.
Note that in this Specification, references to various features (e.g., elements, structures, modules, components, steps, operations, characteristics, etc.) included in “one embodiment”, “example embodiment”, “an embodiment”, “another embodiment”, “some embodiments”, “various embodiments”, “other embodiments”, “alternative embodiment”, and the like are intended to mean that any such features are included in one or more embodiments of the present disclosure, but may or may not necessarily be combined in the same embodiments. Note also that an ‘application’ as used herein this Specification, can be inclusive of an executable file comprising instructions that can be understood and processed on a computer, and may further include library modules loaded during execution, object files, system files, hardware logic, software logic, or any other executable modules. In example implementations, at least some portions of the activities may be implemented in software provisioned on networking device. In some embodiments, one or more of these features may be implemented in hardware, provided external to these elements, or consolidated in any appropriate manner to achieve the intended functionality. The various network elements may include software (or reciprocating software) that can coordinate in order to achieve the operations as outlined herein. In still other embodiments, these elements may include any suitable algorithms, hardware, software, components, modules, interfaces, or objects that facilitate the operations thereof.
Furthermore, the computers referenced herein may also include suitable interfaces for receiving, transmitting, and/or otherwise communicating data or information in a network environment. Additionally, some of the processors and memory elements associated with the various nodes may be removed, or otherwise consolidated such that single processor and a single memory element are responsible for certain activities. In a general sense, the arrangements depicted in the Figures may be more logical in their representations, whereas a physical architecture may include various permutations, combinations, and/or hybrids of these elements. It is imperative to note that countless possible design configurations can be used to achieve the operational objectives outlined here. Accordingly, the associated infrastructure has a myriad of substitute arrangements, design choices, device possibilities, hardware configurations, software implementations, equipment options, etc.
In some of example embodiments, one or more memory elements can store data used for the operations described herein. This includes the memory being able to store instructions (e.g., software, logic, code, etc.) in non-transitory media, such that the instructions are executed to carry out the activities described in this Specification. A processor can execute any type of instructions associated with the data to achieve the operations detailed herein in this Specification. In one example, processors could transform an element or an article (e.g., data) from one state or thing to another state or thing. In another example, the activities outlined herein may be implemented with fixed logic or programmable logic (e.g., software/computer instructions executed by a processor) and the elements identified herein could be some type of a programmable processor, programmable digital logic (e.g., a field programmable gate array (FPGA), an erasable programmable read only memory (EPROM), an electrically erasable programmable read only memory (EEPROM)), an ASIC that includes digital logic, software, code, electronic instructions, flash memory, optical disks, CD-ROMs, DVD ROMs, magnetic or optical cards, other types of machine-readable mediums suitable for storing electronic instructions, or any suitable combination thereof.
These devices may further keep information in any suitable type of non-transitory storage medium (e.g., random access memory (RAM), read only memory (ROM), field programmable gate array (FPGA), erasable programmable read only memory (EPROM), electrically erasable programmable ROM (EEPROM), etc.), software, hardware, or in any other suitable component, device, element, or object where appropriate and based on particular needs. Any of the memory items discussed herein should be construed as being encompassed within the broad term ‘memory element. Similarly, any of the potential processing elements, modules, and machines described in this Specification should be construed as being encompassed within the broad term ‘processor.
The list of network destinations can be mapped to physical network ports, virtual ports, or logical ports of the router, switches, or other network devices and, thus, the different sequences can be traversed from these physical network ports, virtual ports, or logical ports.
This application claims priority to, and the benefit of, U.S. Provisional Patent Application Ser. No. 62/731,891 filed on Sep. 15, 2018, which is incorporated by reference as if set forth fully herein.
Number | Name | Date | Kind |
---|---|---|---|
762270 | Benjamin | Jun 1904 | A |
2692296 | De Piolenc et al. | Oct 1954 | A |
4037043 | Segsworth | Jul 1977 | A |
4230425 | Gusev et al. | Oct 1980 | A |
4538042 | Tanaka et al. | Aug 1985 | A |
4867609 | Grosman | Sep 1989 | A |
4957393 | Buelt et al. | Sep 1990 | A |
5476992 | Ho et al. | Dec 1995 | A |
6120028 | Boyer | Sep 2000 | A |
6120430 | Hansen | Sep 2000 | A |
20080205993 | Wissmann et al. | Aug 2008 | A1 |
20090035070 | Kwon | Feb 2009 | A1 |
20120151966 | Sakamoto et al. | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
106368207 | Feb 2017 | CN |
H04254694 | Sep 1992 | JP |
2003335532 | Nov 2003 | JP |
2008088172 | Jul 2008 | WO |
Entry |
---|
Rolland, et al., Mapping Organizational Units in the State: Challenges and Classifications, International Journal of Public Administration, 33: 463-473, 2010. |
Shilong Jia et al. (2018). Research on the Properties of the Waste Glass Concrete Composite Foundation. IOP Conference Series: Earth and Environmental Science. 113. 012098. 10.1088/1755-1315/113/1/012098. |
Henry, Karen S., and Susan Hunnewell Morin. “Frost susceptibility of crushed glass used as construction aggregate.” Journal of cold regions engineering 11.4 (1997): 326-333. |
International Search Report and Written Opinion issued for Application No. PCT/US2019/051020, dated Dec. 11, 2019. |
Number | Date | Country | |
---|---|---|---|
20200087881 A1 | Mar 2020 | US |
Number | Date | Country | |
---|---|---|---|
62731891 | Sep 2018 | US |