The invention relates to the technical field of arch foot maintenance, and in particular, to an arch foot maintaining device and a maintenance method for achieving multi-degree-of-freedom displacement of an arch foot.
An arch bridge has a long history of construction and beautiful appearances, which is one of significant bridge types in the field of bridges today. Due to frequent geological disasters, arch bridges have different degrees of bridge damage as a result of foundation settlement and deformation. For damaged bridges, continuing operating without maintenance results in a relatively high security risk, but premature demolition and reconstruction cause huge economic losses. Therefore, maintaining and strengthening arch bridges with arch foot displacement have great practical significance. A method for maintaining and strengthening a bridge in past construction generally includes strengthening through outer bonding of a steel plate, strengthening through bonding of carbon fiber, strengthening through outer covering of concrete, and prestressed strengthening. The above strengthening methods help, to some extent, improve resistance of arch bridges, but do not resolve the problem fundamentally. An arch rib is a main load-bearing member of an arch bridge, and is mainly built on a solid rock foundation or a large concrete foundation. Settlement and deformation of the foundation change the overall mechanical property of the arch bridge. However, there is no report about how to maintain and strengthen a displaced arch foot to improve a stress status of an arch bridge, thereby enabling the arch bridge structure to continue serving securely after foundation settlement and deformation.
For maintenance and strengthening of an arch foot of an existing arch bridge in service, the invention provides a simple, economical, and practical arch foot maintaining device and a maintenance method for achieving multi-degree-of-freedom displacement of an arch foot. The technical solutions are as follows.
An arch foot maintaining device includes a plurality of supporting structures combined along a straight line. The supporting structure includes a base, two base supporting seats disposed on an upper surface of the base, a hydraulic jack, a roller, and a roller supporting seat. The base is a cuboid with equal length and width, and a through hole running through four side surfaces of the base is provided on the base. A vertical guide groove is provided on each of the two base supporting seats. The roller supporting seat is U-shaped and located between the two base supporting seats. The roller is rotatably supported in the roller supporting seat, and two ends of a central axis of the roller are located in the two guide grooves, respectively. A plane where the roller lies is parallel to the side surface of the base. The hydraulic jack is disposed within the base, and a top of the hydraulic jack abuts against a bottom of the roller supporting seat. The plane where the roller lies is perpendicular to the central axis of the roller.
Further, two sides of the roller each have a shaft, and the shafts are disposed on the roller supporting seat through bearings.
Further, a vertical pin hole is provided on each of four corners of the base. Rectangular connecting holes are provided on side surfaces of the four corners of the base at different heights, and the rectangular connecting hole is in communication with the vertical pin hole. Two adjacent supporting structures are connected through a connecting rod whose both ends are provided with a circular through hole. Two ends of the connecting rod are inserted into the rectangular connecting holes of the two adjacent supporting structures, respectively. A pin in the vertical pin hole passes through the circular through hole of the connecting rod.
Further, the central axes of the rollers of the two adjacent supporting structures are perpendicular to each other.
Based on a same inventive concept, the invention further relates to a maintenance method for achieving multi-degree-of-freedom displacement of an arch foot. The arch foot maintaining device is used in the method, and the method specifically includes following steps.
1) Providing rectangular grooves: providing the rectangular grooves around the arch foot, the rectangular grooves are respectively distributed in one plane perpendicular to a longitudinal direction of a bridge, two planes perpendicular to a transverse direction of the bridge, and one horizontal plane. The rectangular grooves in the back plane and side planes extend along a vertical direction, and the rectangular groove in the horizontal plane extending along the longitudinal direction of the bridge.
2) Performing plane sectioning: plane sectioning is performed along planes of the rectangular grooves close to the arch foot, and obtaining an arch foot separated body by at least four sectional planes.
3) Placing the arch foot maintaining device: placing one arch foot maintaining device at every one of the rectangular grooves, and reserving one of the rectangular grooves being empty between two adjacent arch foot maintaining devices.
4) Adjusting a roller position of the arch foot maintaining device: the rollers of the arch foot maintaining device are adjusted according to a required arch foot displacement form, so that at least partial rollers of the arch foot maintaining device push against the corresponding sectional plane.
5) Cutting off concrete located in a direction where the arch foot separated body moves, and removing the concrete that is cut off.
6) Adjusting the roller position of the arch foot maintaining device again: the at least partial rollers push the arch foot separated body to move or move with the arch foot separated body.
7) Lowering all the rollers of the arch foot maintaining device after the arch foot separated body is moved in place, and removing the arch foot maintaining device.
8) Pouring concrete around the arch foot separated body.
Further, in the step 7), after the arch foot separated body is moved in place, positioning blocks for positioning the arch foot separated body are placed in at least a portion of the empty rectangular groove.
Further, in the step 4), when the arch foot is adjusted for transverse translation, transverse rollers of the arch foot maintaining devices in the rectangular grooves distributed in the back plane and in the horizontal plane abut against a corresponding sectional plane, and all rollers of the arch foot maintaining devices in the rectangular groove distributed in the side plane push against a corresponding sectional plane.
When the arch foot is adjusted for longitudinal translation, longitudinal rollers of the arch foot maintaining devices in the rectangular grooves distributed in the side planes and in the horizontal plane abut against a corresponding sectional plane, and all rollers of the arch foot maintaining devices in the rectangular groove distributed in the back plane push against a corresponding sectional plane.
When the arch foot needs to be adjusted for vertical translation, vertical rollers of the arch foot maintaining devices in the rectangular grooves distributed in the back plane and in the side planes abut against a corresponding sectional plane, and all rollers of the arch foot maintaining devices in the rectangular groove distributed in the horizontal plane push against a corresponding sectional plane. It should be noted that the transverse roller is a roller that may be rolled along the transverse direction (a plane of the roller is parallel to the transverse direction), the longitudinal roller is a roller that may be rolled along the longitudinal direction (a plane of the roller is parallel to the longitudinal direction), and the vertical roller is a roller that may be rolled along the vertical direction (a plane of the roller is parallel to the vertical direction).
Further, in the step 4), when the arch foot is rotated transversely, vertical rollers of the arch foot maintaining devices in the rectangular groove distributed in the back plane push against a corresponding sectional plane, and longitudinal rollers of the arch foot maintaining devices in the rectangular groove distributed in the horizontal plane push against a corresponding sectional plane.
When the arch foot is rotated longitudinally, vertical rollers of the arch foot maintaining devices in the rectangular groove distributed in the side planes push against a corresponding sectional plane, and transverse rollers of the arch foot maintaining device in the rectangular groove distributed in the horizontal plane push against a corresponding sectional plane.
When the arch foot is rotated vertically, transverse rollers of the arch foot maintaining devices in the rectangular groove distributed in the back plane push against a corresponding sectional plane, and longitudinal rollers of the arch foot maintaining devices in the rectangular groove distributed in the side planes push against a corresponding sectional plane.
Technical effects of the invention are as follows: a plurality of supporting structures are freely combined to form an arch foot maintaining device, which is simple in structure, flexible, convenient in operation, and highly adaptable, facilitating arrangement and storage of the arch foot maintaining device. The arch foot maintenance method where the arch foot maintaining device is used can be employed to achieve multi-degree-of-freedom displacement of the arch foot to adapt to settlement and deformation of a foundation, and may be widely applied in maintenance of an arch foot of an arch bridge in service.
(a) of
(b) of
(c) of
(a) of
(b) of
(a) of
(b) of
(c) of
In the picture: 1-base, 2-hydraulic jack, 3-roller, 4-roller supporting seat, 5-connecting rod, 6-pin, 7-base supporting seat, 8-vertical pin hole, 9-rectangular connection hole, 10-rectangular groove, 11-sectional plane, 12-arch foot separated body, 13-positioning block, 14-central axis, 15-axis portion.
The following further describes the present invention in detail with reference to accompanying drawings.
Referring to
Preferably, two sides of the roller 3 each have a shaft 15. The shafts 15 are disposed on the roller supporting seat 4 through bearings. The central axis passes through both the roller and the shaft. The roller 3 is disposed on the roller supporting seat 4 through the bearing, so that rotation resistance on the roller 3 can be reduced. The disposed shaft allows the roller to withstand a relatively large force transmitted by the hydraulic jack.
Further, a vertical pin hole 8 is provided on each of four corners of the base 1. Rectangular connecting holes 9 are provided on side surfaces of the four corners of the base 1 at different heights. The rectangular connecting hole 9 is in communication with the vertical pin hole 8. Two adjacent supporting structures are connected through a connecting rod 5 whose both ends are provided with a circular through hole. Two ends of the connecting rod 5 are inserted into the rectangular connecting holes 9 of the two adjacent supporting structures, respectively. A pin 6 in the vertical pin hole 8 passes through the circular through hole of the connecting rod 5. In the foregoing connecting manner, adjacent supporting structures may be freely combined and connected, which is simple and reliable. In order to ensure that the pin 6 does not fall off during use, an anti-fall hole (not shown) may be provided on the top of the pin, and a safety wire passes through the anti-fall hole to fix the pin 6 to the base 1.
Preferably, the central axes of the rollers 3 of the two adjacent supporting structures are perpendicular to each other. In this way, it can be ensured that rollers of different phases can be evenly distributed, so that the roller of the arch foot maintaining device can slide in different directions, helping moving the arch foot in different directions, thereby achieving multi-degree-of-freedom displacement of the arch foot.
Based on a same inventive concept, the invention further provides to a maintenance method for achieving multi-degree-of-freedom displacement of an arch foot. The arch foot maintaining device is used in the method, and the method specifically includes following steps.
1). A rectangular groove 10 is provided. The rectangular grooves 10 are provided around an arch foot. The rectangular grooves 10 are distributed in a plane perpendicular to a longitudinal direction of a bridge, two planes perpendicular to a transverse direction of the bridge, and a horizontal plane. The rectangular grooves in the back plane and in the side planes extend along a vertical direction, and the rectangular grooves in the horizontal plane extend along the longitudinal direction of the bridge.
2). Performing plane sectioning: plane sectioning is performed along the planes of the rectangular grooves 10 close to the arch foot, and at least four sectional planes 11 are necessary to obtain an arch foot separated body 12.
3). The arch foot maintaining device is placed: one arch foot maintaining device is placed at every rectangular groove (10), and one of the rectangular grooves (10) that is empty is reserved between two adjacent arch foot maintaining devices.
4). A roller position of the arch foot maintaining device is adjusted: the rollers 3 of the arch foot maintaining devices are adjusted according to a required arch foot displacement, so that at least partial rollers 3 of the arch foot maintaining device push against the sectional plane 11.
5). Concrete located in a direction where the arch foot separated body moves is cut off, and the concrete that is cut off is removed.
6). The roller position of the arch foot maintaining device is adjusted again: the at least partial rollers 3 push the arch foot separated body 12 to move or move with the arch foot separated body.
7). After the arch foot separated body 12 is moved in place, all rollers 3 of the arch foot maintaining device are lowered, and the arch foot maintaining device is removed.
8). Concrete is poured around the arch foot separated body.
Preferably, in the step 3), one arch foot maintaining device is placed at every rectangular groove 10, and one empty rectangular groove 10 is reserved between two adjacent arch foot maintaining devices.
Preferably, in the step 7), after the arch foot separated body 12 is moved in place, positioning blocks 13 for positioning the arch foot separated body 12 are placed in at least a portion of the empty rectangular groove.
A specific displacement manner of the arch foot is described in detail below.
In actual construction, the arch foot deviates from an original design position due to a foundation settlement and deformation. When the displaced arch foot needs to be adjusted to the original design position, any displacement may include the following six basic displacements: translation along transverse, longitudinal, and vertical directions of a bridge and rotation around transverse, longitudinal, and vertical axes.
The method for maintaining an arch foot of an arch bridge mainly includes the following eight basic steps: providing of a rectangular groove, plane sectioning, placing of the arch foot maintaining device, adjustment of lifting/lowering of the roller of the arch foot maintaining device, placing of a positioning block, lowering of all rollers of the arch foot maintaining device, removal of the arch foot maintaining device, and pouring of concrete. Implementation of the six basic displacements is described below.
Methods for providing the rectangular grooves, sectional planes, and placing the arch foot maintaining device are the same for the six basic displacement cases. As shown in
(1) Transverse Translation
After completion of providing the rectangular groove, plane sectioning, and placing the arch foot maintaining device, first, all transverse rollers ((a) of
(2) Longitudinal Translation
After completion of providing the rectangular groove, plane sectioning, and placing the arch foot maintaining device, all longitudinal rollers ((a) of
If the arch foot separated body needs to be moved closer to a bridge span ((d) of
If the arch foot separated body needs to be far from the bridge span, plane sectioning ((f) of
(3) Vertical Translation
After completion of providing the rectangular groove, plane sectioning, and placing the arch foot maintaining device, all rollers ((a) of
If the arch foot separated body needs to be translated vertically upward ((d) of
If the arch foot separated body needs to be translated vertically downward, plane sectioning ((f) of
(4) Rotation Around a Transverse Axis
After completion of providing the rectangular groove, plane sectioning, and placing the arch foot maintaining device, first, all longitudinal rollers ((a) of
(5) Rotation Around a Longitudinal Axis
After completion of providing the rectangular groove, plane sectioning, and placing the arch foot maintaining device, first, all transverse rollers ((a) of
(6) Rotation Around a Vertical Axis
After completion of providing the rectangular groove, plane sectioning, and placing the arch foot maintaining device, first, all transverse rollers (or all longitudinal rollers or all rollers) ((a) of
The embodiments of the present invention have been described above with reference to the accompanying drawings. The embodiments of the present invention and features of the embodiments may be combined with each other if there is no conflict. For convenience of description, the words “above”, “below” and the like only indicate directions consistent with those of the accompanying drawings, and are not intended to limit the structure. The present invention is not limited to the specific embodiments described above, and the specific embodiments described above are merely exemplary and not limitative. Those of ordinary skill in the art may make various variations under the teaching of the present invention without departing from the spirit of the present invention and the protection scope of the claims, and such variations shall all fall within the protection scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
201811047866.2 | Sep 2018 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2019/081664 | 4/8/2019 | WO | 00 |