The window covering of the invention is shown generally at 1 in
In the illustrated embodiment the shade panel 10 is a cellular shade where a plurality of contiguous cells 12 extend radially along a line extending from a central point P to create an arched configuration. The shade 10 panel moves about axis P as it is opened and closed. The panel 10 may be made of a woven or non-woven material that is constructed to form the cells 12 where the cells have a polygonal cross-sectional shape. Each cell 12 is formed of a plurality of faces 12a that are joined at fold lines such that the cell can collapse when the shade is retracted and expand when the shade is extended. While cells 12 having six faces are illustrated it is to be understood that the cells may have a fewer or greater number of faces and that the specific shape of the cells can vary. The interior of each cell 12 is typically open although it is known to include additional layers of material inside the cells to increase thermal insulation or light impermeability. Moreover, while a single cell configuration is illustrated the shade of the invention may be configured as a double or triple cell shade. A double cell configuration has two layers of cells while a triple cell configuration has three layers of cells. The cellular panel 10 may be created by any known method and is typically made by stitching, gluing, mechanically fastening or otherwise joining multiple pieces of the material together to form the cells. Moreover while a cellular shade panel is illustrated it is to be understood that the panel 12 may have other constructions. For example the shade may be a pleated shade, slatted shade or the like.
The shade panel 10 may be created from a standard rectangular shade panel where the panel is “fanned” to create the arched window covering. Specifically, the top edge of the rectangular panel forms first end 10a, the bottom edge of the rectangular panel forms second end 10b, one side of the rectangular panel forms curved free edge 10c and the other side of the rectangular panel forms an inner curved edge 10d. In the illustrated embodiment the shade panel 10 is fanned about point P to create a centrally located void 14 defined by inner edge 10d. The shade panel 10 as formed has a partial annular shape. The void 14 is substantially covered by the head rail 2 when the shade is closed to limit the amount of light that can pass through the window covering. A separate valance 11 may be provided to provide a decorative finish to the window covering where the valance also covers void 14.
The first end 10a of shade panel 10 is located at one end of head rail 2 in channel 3 and the second end 10b is located at the opposite end of head rail 2 in channel 3 such that the shade panel extends for substantially the entire length of the head rail. One end of the shade panel, either first end 10a or second end 10b, may be fixed to the head rail with the opposite end free to move relative thereto such that the shade can be opened and closed from the free end. The end of the shade panel 10 that is fixed to head rail 2 may be secured thereto using any suitable connection device such as adhesive, two sided tape, mechanical fastener or the like.
Alternatively, both ends 10a and 10b of shade panel 10 may be free to move relative to the head rail 2 such that the shade may be opened and closed from either or both ends of the shade panel to create a split shade. The split shade arrangement also allows both ends of the shade panel to be moved toward one another such that when the shade is opened, the shade panel is retracted to a central portion of the window.
To support the free edge of the panel 10c for movement of the shade, a mounting track 16 is secured to the arched surface of the architectural feature 4 by fasteners such as screws 18. The mounting track 16 extends for the length of the architectural feature 4 and may be made flexible so as to be able to fit arches having different shapes.
Referring to
The slider track 40 may be made of a flexible material such as molded plastic and extends for substantially the length of the mounting track 16. Slider track 40 comprises a track portion 42 that includes a first support portion 42a that extends beyond one sidewall of the mounting track 16 and a second support portion 42b that extends beyond the other sidewall of the mounting track 16. The support portions 42a and 4b are angled slightly towards the mounting track 16 and are rigid enough to support the shade panel 10. A rib 44 connects the track portion 42 to a flange 46 that extends along the track portion 42 for substantially the length of the slider track 40. Flange 46 is dimensioned so as to be closely received in the interior space 36 of the mounting track 16. The slider track 40 may be mounted to the mounting track 16 by snapping the flange 46 into the interior space 36. Specifically, the flange 46 and rib 44 of the slider track 40 have a generally T-shape where extending portions of flange 46 are trapped between flanges 28 and 30 and 32 and 34 of mounting track 16. The outer corners of flanges 30 and 34 are beveled to allow flange 46 to spread the flanges 30 and 34 apart far enough to allow the flange 46 to enter space 36. Once flange 46 is located in space 36 the flanges 30 and 34 move back to their original position to lock flange 46 to mounting track 16.
A plurality of sliders 50 are mounted on the slider track 40 such that they can reciprocate relative to the slider track by sliding on support portions 42a and 42b. Referring to
Attached to the distal end 52a of the elongated member 52 and extending at an angle relative thereto is a track engagement structure 54. The track engagement structure 54 may be formed integrally with the elongated member 52 such as by molding a unitary plastic element. Alternatively the components could be formed separately and joined together. The track engagement structure 54 includes a support surface 56. A first bearing surface 58 is mounted to the support surface by a first flange 60 and a second bearing surface 62 is mounted to the support surface by a second flange 64. The bearing surfaces 58 and 62 are spaced from the support surface 56 such that the support track 42 is closely received between the support surface 56 and the bearing surfaces 58 and 62 but where the slider 50 can slide relative to the slider track 40. In one embodiment the support surface 56 defines protrusions 64 and 66 that are opposed to the bearing surfaces 58 and 62, respectively, such that the track portion 42 is closely held therebetween. The track portion 42 also closely fits between flanges 60 and 64 such that lateral movement of the slider 50 relative to the slider track 40 is limited. Sliders 50 extend substantially perpendicularly from slider track 40 such that they extend radially along lines extending from point P.
Selected ones of the sliders 50 are provided with a ball joint 70 that extends from the track engagement structure 54 and is exposed toward the user. Note, the slider of
Referring to
An alternate embodiment of the invention is shown in
An alternate embodiment of the invention is shown in
To install the shade on an architectural feature the mounting track 16 is secured to the architectural feature 4 by fasteners 18. The head rail 2 is also connected to the architectural feature 4 in alignment with the mounting track 16 by fasteners 6. In a typical installation the head rail 2 will be located directly below the mounting track 16 although the actual spatial orientation will depend on the orientation of the architectural feature 4. The sliders 50 are slid onto the end of the slider track 40 and are positioned relative to the shade panel 10. The sliders 50 are connected to the shade panel 10 at spaced intervals using adhesive, staples or the like. With a cellular shade the sliders 50 may be inserted into cells 12. Cord 81, 85 and or 90 may be attached to the sliders 50. Note, cord 80 may be used with either cord 85 or cord 90 such that both cords are attached to sliders 50 as previously described. The first and second ends 10a and 10b of the shade panel 10 are inserted into channel 3 of the head rail 2 and the slider track 40 is snapped into the mounting track 16. Where motor 91 is used, the motor may be located in head rail 2. One end, either first end 10a or second end 10b, of the shade panel 10 may be fixed to the head rail 2.
The shade panel 10 may be opened and closed by engaging the ball joint 70 in the socket 72 of the control wand 74 or by physically grasping the ball joint 70 or shade panel 10; by manipulating pull cord 85; or by actuating motor 91. The window covering may be opened by pulling or pushing the first end 10a toward the second end 10b (or visa versa) such that the sliders 50 slide on slider track 40 to retract the shade panel 10. The shade may be closed by pulling or pushing the first end 10a away from the second end 10b such that the sliders 50 slide on slider track 40 to expand the shade panel 10. In a split shade design both ends of the shade panel 10a and 10b are movable such that the ends of the shade panel may be moved to the middle of the window to open the shade. To close the shade both ends of the shade panel are moved toward the head rail 2.
Specific embodiments of an invention are described herein. One of ordinary skill in the art will recognize that the invention has other applications in other environments. In fact, many embodiments and implementations are possible. The following claims are in no way intended to limit the scope of the invention to the specific embodiments described above.