The present disclosure relates to a portable archery backstop.
It is customary when practicing archery to provide a backstop behind the desired target to both prevent the loss of arrows while also maintaining the safety of any persons or property that may be behind the target. However, one problem associated with such backstops is that the arrows shot at the backstop are commonly damaged during the impact with the backstop or during the removal of the arrow from the backstop. One solution to this problem has been to provide a soft backstop that allows the arrow to easily pierce the backstop during impact. Unfortunately, such backstops are easily damaged due to repeated piercings. Furthermore, such a backstop is a safety hazard because of the likelihood of an arrow striking an object on the other side of the backstop, due to the ease with which the arrows pierce the backstop or the formation of holes in the backstop from repeated use.
Another problem associated with known backstops is that they are not easily adaptable to differing conditions. The backstop may be difficult to assemble, disassemble, or carry, making transport of the backstop from one location to another undesirably difficult and frustrating. Furthermore, many backstops do not have adjustability to accommodate for targets of varying dimensions or different methods of mounting the target.
There is a continuing need for an archery backstop that militates against the loss and damage of arrows, while also presenting an ease of adjustability and transport.
In concordance with the instant disclosure, an archery backstop that militates against the loss and damage of arrows, while also presenting an ease of adjustability and transport, is surprisingly discovered.
In one embodiment, an archery backstop includes a frame, a pair of bar supports, and a bar. The frame is used to receive at least one board therein. The bar supports extend outwardly from and are coupled to the frame. The bar is disposed between the bar supports. The bar has at least one connector for holding and adjusting a position of an archery target on the bar and in front of the frame.
In another embodiment, a method of using an archery backstop includes a step of positioning at least one board within a frame. A pair of bar supports are then extended outwardly from and coupled to the frame. A bar is mounted between the bar supports and at least one connector is provided on the bar for holding an archery target in front of the frame. The bar supports permit horizontal spacing of the target on the frame.
In a further embodiment, a kit for an archery backstop includes a frame, a pair of bar supports, a hinge, a pair of magnetic locking devices, and a locking mechanism. The frame is used to receive at least one board therein. The frame is divisible into each of a first frame member and a second frame member. The bar supports extend outwardly from and are coupled to the frame. The hinge is positioned between the first frame member and the second frame member, and allows the first frame member to rotate with respect to the second frame member from an open position to place the first and the second frame members into the collapsed position. The magnetic locking devices cooperate to secure the frame in the collapsed position. The locking mechanism releasably secures the frame in the open position. The frame holds an archery target while in the open position.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
The following description of technology is merely exemplary in nature of the subject matter, manufacture and use of one or more inventions, and is not intended to limit the scope, application, or uses of any specific invention claimed in this application or in such other applications as may be filed claiming priority to this application, or patents issuing therefrom. Additionally, the dimensions provided in the drawings are merely for purposes of explaining the invention, and are not necessary or critical to operation of the invention unless otherwise stated herein. In respect of the methods disclosed, the steps presented are exemplary in nature, and thus, the order of the steps is not necessary or critical unless otherwise disclosed.
The frame 20 includes a first side member 21 and a second side member 22. Each of the first side member 21 and the second side member 22 are elongated C-channels arranged vertically with respect to a ground surface. Each of the first side member 21 and the second side member 22 has a length slightly greater than a height of each of the front board 50 and the rear board 60, for example. Each C-channel forming the first and second side members 21, 22 includes a pair of projections 25, 26 extending transversely from a central piece of material, where a space between the projections 25, 26 should be slightly larger than a combined thickness of the front board 50 and the rear board 60 when disposed adjacent one another and inserted within the frame 20. A side of each C-channel having the projections 25, 26 extending therefrom represents an open side of each C-channel. The open side of the first side member 21 is arranged opposite and in facing relationship to the open side of the second side member 22. The first side member 21 is spaced apart from the second side member 22 a distance slightly larger than a width of either of the front board 50 and the rear board 60.
Each of the first side member 21 and the second side member 22 may include apertures (not shown) formed therein for securing the front board 50 and the rear board 60 within the frame 20. The apertures may be formed in the projecting portions 25, 26 such as in each of the projections 25, 26 of the C-channels forming the first side member 21 and the second side member 22. Accordingly, each of the front board 50 and the rear board 60 may include corresponding apertures (not shown) formed adjacent a peripheral edge thereof. When the boards 50, 60 are placed in the frame 20, the boards 50, 60 may be moved to align the apertures formed therein with the apertures formed in the first and second side members 21, 22. A cross-pin may then be placed through the apertures, securing a position of the boards 50, 60 relative to the frame 20 when the boards 50, 50 are together inserted in the C-channels of the frame 20.
A pair of upper frame members 23, 23′ are disposed between and extend from the open side of each of the first side member 21 and the second side member 22. One upper frame member 23 contacts a projection 25, and upper frame member 23′ contacts projection 26, for example. Each upper frame member 23, 23′ is a thin elongated piece of material having a generally rectangular shape. Each upper frame member 23, 23′ is coupled to a corresponding side member 21, 22 adjacent an upper end thereof by a conventional coupling means, such as welding as a nonlimiting example. A space between each pair of upper frame members 23, 23′ is also slightly larger than a combined width of the front board 50 and the rear board 60, in order to permit the front board 50 and the rear board 60 to be inserted together into the frame 20.
Each upper frame member 23, 23′ extends about half of the distance between the first side member 21 and the second side member 22. One of the upper frame members 23 extending from the first side member 21 is rotatably coupled to another one of the upper frame members 23′ extending from the second side member 22 by means of an upper first hinge 28.
As shown in
A pair of lower frame members 24, 24′ are disposed between and extend from the open side of each of the first side member 21 and the second side member 22 similar to the upper frame members 23, 23′. One lower frame member 24 contacts the projection 25, and the lower frame member 24′ contacts the projection 26, for example. Each lower frame member 24, 24′ is a thin elongated piece of material having a generally rectangular shape. Each lower frame member 24, 24′ is coupled to one of the corresponding side members 21, 22 adjacent a lower end thereof by a conventional coupling means, such as welding as a non-limiting example. A space between each pair of lower frame members 24, 24′ is also slightly larger than a combined width of the front board 50 and the rear board 60, in order to permit the front board 50 and the rear board 60 to be inserted together into the frame 20.
Each lower frame member 24, 24′ extends about half of the distance between the first side member 21 and the second side member 22. One of the lower frame members 24 extending from the first side member 21 is rotatably coupled to another one of the lower frame members 24′ extending from the second side member 22 by means of a lower second hinge 28.
Alternatively, the lower frame members 24 may be C-channels similar to the first and second side members 21, 22, where the addition of the central connecting portion of each C-channel is used to aid in supporting the front and rear boards 50, 60 when the boards 50, 60 are installed in the frame 20.
As shown in
Referring now to
Each of the first bar support 71 and the second bar support 72 includes a plurality of apertures 75 formed therein. The apertures 75 are spaced apart and arranged in a direction of the longitudinal axis of each of the first bar support 71 and the second bar support 72. The apertures 75 may be formed, for example, in nuts 76 protruding from and fixed to a surface of the bar supports 71, 72. The apertures 75 formed in the nuts 76 may have a threaded interior surface for receiving a hook 77 therein. With specific reference to
Referring again to
The frame 20 may also include a first magnetic lock 81 connected to the first side member 21 and a second magnetic lock 82 connected to the second side member 22. The first and second magnetic locks 81, 82 may be disposed along a central portion of the corresponding first and second side members 21, 22, but it should be understood that any placement of the first and second magnetic locks 81, 82 that results in the first and second magnetic locks 81, 82 being aligned when the frame 20 is folded about the upper and lower hinges 28, 29 may be used. The first and the second magnetic locks 81, 82 are oppositely magnetized to attract to each other when brought in alignment and close proximity to each other with the frame in a folded or closed position shown and described in greater detail in
Although the frame 20 is shown and described herein primarily in relation to a collapsible or foldable embodiment having the upper and the lower hinges 28, 29, one of ordinary skill in the art should appreciate that the frame 20 of the present disclosure may alternatively be in the form of a single, unitary frame that is not collapsible or foldable, as desired.
As further shown in
Referring to
The first portion 31 may include at least one aperture 35 most clearly visible in
A longitudinal axis of the third portion 33 is arranged perpendicular to the longitudinal axes of both the first portion 31 and the second portion 32. The third portion 33 extends laterally to each side of the L-shaped coupling of the first and second portions 31, 32 to add support to the archery backstop 10. The first and second portions 31, 32 are rigidly coupled to the third portion 33 on a top surface thereof and at a midpoint thereof, such as by welding. In contrast to the first and second portions 31, 32, which are formed from a C-channel with an open side, the third portion 33 is formed from square or rectangular tubing having a channel formed therein extending from an open first end 38 of the third portion 33 to an open second end 39 of the third portion 33. The third portion 33 may also include at least one aperture 37 formed in each sidewall thereof to each side of the first and second portions 31, 32. As mentioned hereinabove, the third portion 33 has a height equal to that of the flange 34 to allow the second portion 32 to extend in a direction parallel to a ground surface supporting the archery backstop 10.
As shown in
As shown in
The front board 50 may be formed from a medium density fiberboard while the rear board 60 is formed from an extruded polystyrene insulation. The rear board 60 may for instance be formed from Foamular® boards produced by Owen Corning. As should be understood, each of the front board 50 and the rear board 60 may be formed from a two-piece construction to allow the frame 20 to be folded when the front board 50 and the rear board 60 are received within the frame 20. Accordingly, as shown in
Similarly, as shown in
In use, the archery backstop 10 may first be in a folded or collapsed position as shown in
To use the archery backstop 10, a user first pulls or rotates the first side member 21 away from the second side member 22 to overcome the magnetic coupling of the first and second magnetic locks 81, 82. Once fully rotated or unfolded, the user then rotates the switch 6 of the locking mechanism 5 to secure the switch 6 in the clip 7, securing the frame 20 in an open or unfolded position as shown in
Next, the user inserts both the first and second portions 51, 52 of the front board 50 as well as the first and second portions 61, 62 of the rear board 60 through the opening 27 formed in the upper portion of frame 20. The front board 50 should be arranged in front of the rear board 60, meaning that the front board 50 should be facing in the same direction that the hooks 77 extend from the first and second support bars 71, 72.
Alternatively, as shown in
With continuing reference to
With reference to
Referring to
After use, the user may first remove the target 99, the bar 74, and all locking pins and retaining devices to uncouple the first and second supports 30, 40 from both the ground surface and the frame 20. The user may also optionally remove each hook 77 from the first and second bar supports 71, 72 if the bar 74 is used. Next, the user may return the frame 20 to the collapsed position by rotating the switch 6 of the locking mechanism 5 to remove the switch 6 from the clip 7, allowing the frame 20 to be folded about the upper and lower hinges 28, 29. The first and second magnetic locking devices 81, 82 are then caused to be attracted to each other when in close proximity, causing the frame 20 to remain in the collapsed position until the user wishes to use the archery backstop 10 again.
The archery backstop 10 advantageously allows a user to collapse the archery backstop 10 for ease of transport. Furthermore, the archery backstop 10 is easily assembled and disassembled, saving the user considerable time and potentially frustration. The use of the front board 50 and the rear board 60 allows the archery backstop 10 to prevent the loss of arrows and the incidence of accidents associated with practicing archery, as well being able to capture filed-tipped arrows without damaging the arrows or the vanes, even when the arrows are shot with forces up to 30 lbs and from distances as close as 5 yards from the archery backstop 10.
The archery backstop 10 of the present disclosure is therefore available as a kit with multiple parts or components configured to connect to each other. The kit includes a frame used to slidably receive at least one board therein. The kit further includes a pair of bar supports extending outwardly from and coupled to the frame. The kit also includes a bar supported by and between the bar supports and has at least one connector for releasably holding an archery target in front of the frame. A pair of magnetic locking devices are provided that cooperate to secure the frame in a collapsed position for transport. A locking mechanism is also provided for securing the frame in an open position for use.
From the foregoing description, one ordinarily skilled in the art can easily ascertain the essential characteristics of this invention and, without departing from the spirit and scope thereof, can make various changes and modifications to the invention to adapt it to various usages and conditions.
This application claims the benefit of U.S. Provisional Application Ser. No. 61/925,705, filed on Jan. 10, 2014. The entire disclosure of the above application is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5829753 | Wiser | Nov 1998 | A |
5865439 | Marcuson, III | Feb 1999 | A |
6543778 | Baker | Apr 2003 | B2 |
7434810 | DeMille | Oct 2008 | B2 |
7959154 | Ball | Jun 2011 | B2 |
7967296 | Halverson | Jun 2011 | B1 |
20060125186 | Digges | Jun 2006 | A1 |
20110233870 | Oh | Sep 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20150198425 A1 | Jul 2015 | US |
Number | Date | Country | |
---|---|---|---|
61925705 | Jan 2014 | US |