The present disclosure generally relates to limb pockets for archery bows and specifically relates to one or more repositionable limb contact members for archery bows.
Archery is a sport in which an archer draws and releases a bowstring of an archery bow to launch an arrow or other projectile down-range. Like many other sports, adjustable and customizable archery equipment is desirable to better optimize and elevate the archer's performance. To this end, archers regularly tweak, tune, adjust, or otherwise manipulate their archery equipment to secure more accuracy and repeatability in shot placement.
The mechanism or assembly for retaining or securing a bow limb to a riser of an archery bow can be used to achieve accurate and repeatable performance by determining how the limb flexes or bends relative to the riser. Commonly, each bow limb is secured or retained within a respective limb pocket of the riser. The limb pockets can be configured to receive limb bolts (i.e., tiller bolts) and dovetail bolts that engage with the limb to position, support, and retain the limb within the limb pocket.
When the limb bolt is adjusted, a proximal end of the limb moves forward or backward relative to the riser. The “tiller” of an archery bow is the difference between the perpendicular distance from the upper limb to the string and the perpendicular distance from the lower limb to the string. Thus, rotating a threaded limb bolt (i.e., tiller bolt) alters the “tiller” of the archery bow. For example, an archer can rotate an upper limb bolt clockwise and rotate the lower limb bolt counter-clockwise to adjust the tiller of the archery bow. Consequently, this method of adjusting the tiller of the archery bow can impede the archer's ability to adjust the draw weight of the archery bow because each limb bolt can only undergo a limited number of rotations.
Bow limbs of many sizes and shapes can be coupled to the riser to accommodate the varied preferences of an archer. While an archer can manipulate shooting characteristics of his or her archery bow by replacing one pair of limbs with another pair of limbs, purchasing and transporting multiple pairs of limbs can be costly and inconvenient. Moreover, replacing the limbs of an archery bow can require an archer to change shooting technique and muscle memory in order to secure optimum performance from the new limbs.
In view of the foregoing and other issues, there is a need for improvements to archery equipment including limb support within limb pocket assemblies.
According to an aspect of the present disclosure, an archery bow assembly is provided. The assembly can comprise a riser having a limb pocket. The assembly can also include a limb having a distal end extending away from the riser and a proximal end retained within the limb pocket of the riser. The proximal end of the limb can include a riser-facing surface and an outward-facing surface. The assembly can also include a limb contact member which is repositionable within the limb pocket and attachable to the limb pocket. The limb contact member can support the limb at one of a plurality of locations on the riser-facing surface of the limb. The limb contact member can be configured to vary a string tension of the archery bow assembly based on an attachment position of the limb contact member relative to the limb pocket.
The attachment position can be a first attachment position of a plurality of attachment positions within a channel defined by the limb pocket. The string tension of the archery bow assembly can be a first value when the limb contact member is attached to the limb pocket in a first attachment position and the string tension of the archery bow assembly can be a second value when the limb contact member is attached to the limb pocket in a second attachment position. The archery bow assembly can further comprise a second limb contact member. The second limb contact member can be repositionable within the limb pocket and attachable to the limb pocket. The second limb contact member can support the limb at one of a second plurality of locations on the riser-facing surface of the limb. The limb contact member and second limb contact member can be attachable to the limb pocket using a fastener.
The archery bow assembly can also include at least one shim positioned between the limb contact member and the limb pocket. The proximal end of the limb can be configured to receive at least one weight. The at least one weight can be at least partially concealed by the proximal end of the limb when the limb is retained within the limb pocket.
In another aspect of the disclosure, another archery bow assembly can comprise a string and a riser. The riser can include a handgrip portion and a limb pocket. The limb pocket can define a limb-facing surface having a channel. The assembly can also include a limb contact member configured to be retained within the channel. The limb contact member can be repositionable within the channel. The assembly can also include a limb having a distal end extending away from the riser and a proximal end retained within the limb pocket of the riser. The proximal end of the limb can define a riser-facing surface and an outward-facing surface. The limb contact member can support the riser-facing surface of the proximal end of the limb to vary a string tension of the archery bow assembly based on an attachment position of the limb contact member within the channel.
The channel can extend along a length of the limb pocket. The channel can comprise a plurality of attachment positions. The limb pocket can comprise a center plane. The channel can be a first channel and the limb-facing surface of the limb pocket can also include a second channel. The first and second channels can be positioned on opposite sides of the center plane of the limb pocket. The archery bow assembly can further include a second limb contact member. The second limb contact member can support the riser-facing surface of the proximal end of the limb. The second limb contact member can be configured to vary the string tension of the archery bow assembly based on a second attachment position of the second limb contact member within the second channel.
In another aspect of the disclosure, the archery bow assembly can comprise a string and a riser. The riser can include an adjustable limb pocket assembly. The adjustable limb pocket assembly can comprise a limb pocket having a limb-facing surface. The limb-facing surface can define a recess. The adjustable limb pocket assembly can also comprise a pocket insert. The pocket insert can define a pair of laterally spaced channels. The pocket insert can be receivable within the recess of the limb pocket. Each channel of the pair of laterally spaced channels can extend along a length of the pocket insert. Each channel can also include a plurality of attachment positions. The adjustable limb pocket assembly can also include a pair of limb contact members. Each limb contact member of the pair of limb contact members can be configured to removably couple to an attachment position of the plurality of attachment positions. The archery bow assembly can also include a limb having a distal end extending away from the riser and a proximal end retained within the limb pocket assembly. The proximal end of the limb can have a riser-facing surface and an outward-facing surface. Each limb contact member of the pair of limb contact members can contact a location on the riser-facing surface of the limb relative to the attachment position.
The pocket insert can include a protrusion configured to be received within the recess of the limb-facing surface. The pocket insert can define a dovetail track configured to receive a corresponding portion of a dovetail bolt extending from the riser-facing surface of the limb. The proximal end of the limb can include a notch configured to receive a portion of the limb bolt. The pocket insert can be receivable at a distal end of the limb pocket. The pair of limb contact members can comprise a first limb contact member and a second limb contact member. The first limb contact member can be positioned at a first distance from a distal end of the limb pocket and the second limb contact member can be positioned at a second distance from the distal end of the limb pocket. The first distance can be larger than the second distance.
In yet another aspect of the present disclosure, a method of tuning an archery bow is shown and described. The method can include providing a riser, a limb, and a limb contact member. The riser can have a limb pocket which defines a channel. The limb can have a distal end extending away from the riser and a proximal end retained at the limb pocket of the riser. The limb can have a riser-facing surface and an outward-facing surface. The limb contact member can be coupled at a first attachment position within the channel. The limb contact member can be configured to support the riser-facing surface of the limb. The method can include decoupling the limb contact member from the first attachment position within the channel. The method can also include coupling the limb contact member at a second attachment position within the channel.
The above summary of the present invention is not intended to describe each aspect of every implementation of the present invention. The figures and the detailed description that follow more particularly exemplify aspects of the disclosure.
The accompanying drawings and figures illustrate a number of exemplary aspects and are part of the specification. Together with the present description, these drawings demonstrate and explain various principles of this disclosure. A further understanding of the nature and advantages of the present invention may be realized by reference to the following drawings. In the appended figures, similar components or features may have the same reference label.
The present disclosure generally relates to apparatuses, methods, and assemblies for adjusting archery bow limbs. While drawing an archery bow, an archer pulls a bowstring away from the riser (e.g., direction Z1 of
A limb can be supported or otherwise secured to a riser of an archery bow using a limb pocket assembly. The limb pocket assembly can include a plurality of components which retain a proximal end of a bow limb within a limb pocket of the riser. The limb pocket assembly can include a limb bolt and/or dovetail bolt configured to secure the proximal end of the limb to the limb pocket of the riser. The limb bolt can be any fastener or coupling mechanism used to locate or hold the proximal end of the limb to the pocket or riser. Similarly, the dovetail bolt can be any fastener used to locate an intermediate portion of the limb (e.g., a portion of the limb located between the proximal end and distal end of the limb) to the pocket or riser. In some aspects, the limb can be notched or slotted at its proximal end to receive a shaft of the limb bolt. The limb bolt can be threadably coupled with the limb pocket of the riser to permit draw weight adjustment. The limb can also include an aperture near a proximal end of the limb to receive a dovetail bolt. The dovetail bolt can include a protrusion which interlocks with a corresponding dovetail track within a riser-facing surface of the limb pocket.
Some archers, such as traditional archers and recurve archers, draw and release the bowstring by using their fingers to hold the bowstring. In other words, the archer hooks his or her fingertips around a portion of the bowstring to draw and release the bowstring (see
Many recurve archers rely on the length of each bow limb to achieve desired performance characteristics and attributes (e.g., a longer limb tends to support a longer draw length). By incorporating repositionable limb contact members within the limb pocket, an archer can purchase a medium length pair of limbs and use the repositionable limb contact members to effectively change the length of the limb to act as a longer or shorter pair of limbs. This can allow an archer to utilize a single pair of limbs and avoid needlessly purchasing and setting up additional pairs of limbs. Furthermore, replacing the limbs of an archery bow can alter shooting characteristics of the archery bow and therefore require the archer to modify his or her shooting mechanics to accommodate the new limbs which can negatively impact the archer's performance.
In one aspect of the disclosure, an adjustable limb pocket assembly can include a pair of limb contact members. The pair of limb contact members can be utilized to vary bowstring tension of an archery bow without significantly impacting a draw weight or other aspects of the archery bow. In one aspect, an archery bow can include at least one limb, a bowstring, and a riser having at least one adjustable limb pocket assembly. The adjustable limb pocket assembly can be configured to retain, secure, or otherwise support the limb within a limb pocket of the riser. The adjustable limb pocket assembly can include a pocket insert which removably couples to a recess within the limb pocket of the riser. The pocket insert can define a pair of channels configured to retain at least one limb contact member. As will be described in greater detail below, the position at which the limb contact member is retained within the channel can correlate to a change in the bowstring tension. For example, a limb contact member positioned near, or proximal to, a distal end of the limb pocket (as illustrated in
In some aspects, an archery bow can include an upper pocket assembly and a lower pocket assembly. In this aspect, the upper pocket assembly can include a pair of limb contact members and the lower pocket assembly can also include a pair of limb contact members. An archer can reposition the upper and lower pair of limb contact members to vary the bowstring tension of the archery bow. For example, the upper limb contact members can be positioned near or proximal to the distal end of the upper limb pocket and the lower limb contact members can be positioned near or proximal to the distal end of the lower limb pocket. In this manner, the archer can effectively shorten the portion of each limb that can deflect while the bow is drawn and released. Varying or manipulating the portion of the limb which can deflect (i.e., the effective length of the limb) can change the bowstring tension without significantly impacting the draw weight of the archery bow (see
In another aspect of the disclosure, a pair of limb contact members can be positioned within a limb pocket to cause a bow limb to twist, pivot, or otherwise turn relative to the riser. In other words, the limb can be caused to twist, pivot, or turn about an axis that extends parallel to the longitudinal axis of the limb. Pivoting or otherwise turning a bow limb relative to the riser can allow an archer to manipulate travel or movement of a distal tip of the bow limb while the bowstring is drawn and released. In one aspect, an archery bow can include an upper limb, a lower limb, a bowstring, and a riser having upper and lower limb pocket assemblies (e.g., adjustable limb pocket assemblies). The upper limb pocket assembly can be configured to retain and support the upper limb within a limb pocket of the riser. The upper limb pocket assembly can include a pocket insert which removably couples to a recess within the limb pocket of the riser. The pocket insert can define a pair of channels configured to retain at least one limb contact member. As will be described in greater detail below, the position at which the limb contact member is retained within the channel can alter a location at which the limb contact member contacts and supports a riser-facing surface of the limb. For example, a first limb contact member can be positioned near or proximal to a distal end of the limb pocket while a second limb contact member can be positioned away from the distal end of the limb pocket (as illustrated in
In some aspects, the upper and lower limb pocket assemblies can include respective pocket inserts and limb contact members. In such aspects, the upper and lower limb pocket assemblies can be utilized to pivot or turn the upper and lower limbs at respective angles relative to the riser. Such adjustability can be utilized by skilled archers to tune their archery bow for increased accuracy, repeatability, and overall performance of the archery bow. For example, one or both of the limbs can be pivoted or turned such that a plane in which the bowstring travels is parallel to a plane that extends through a longitudinal axis of the riser.
In yet another aspect of the present disclosure, the pocket assembly can include one or more weights configured to be removably coupled within the limb pocket of the riser. In one aspect, an upper pocket assembly and a lower pocket assembly can each include a plurality of weights configured to be operably coupled within an upper limb pocket and/or a lower limb pocket of the riser. The plurality of weights can be configured to provide a balancing weight at the upper portion of the riser, the lower portion of the riser, or both. Archers can utilize the plurality of weights to tune how the riser responds to launching an arrow or other projectile from the archery bow. While the limbs are attached or otherwise retained within the limb pockets of the riser, one or more weights coupled to each of the limb pockets can be partially or entirely concealed by the limbs. For example, the one or more weights can be positioned within a recess in the limb-facing surface of the limb pocket which is wholly or partially concealed by the proximal end of the limb.
The present description provides examples, and is not limiting of the scope, applicability, or configuration set forth in the claims. Thus, it will be understood that changes may be made in the function and arrangement of elements discussed without departing from the spirit and scope of the disclosure, and various aspects may omit, substitute or add other procedures or components as appropriate. For instance, methods described may be performed in an order different from that described, and various steps may be added, omitted, or combined. Also, features described with respect to certain aspects may be combined in other aspects. In some cases, the present disclosure may be applied to compound bows, recurve bows, and traditional bows.
The pocket insert 124 can also form a dovetail track 140 configured to interlock, couple, or otherwise receive a lower portion 120B of the dovetail bolt 120 to retain the upper limb 104 within the upper limb pocket 110. The dovetail track 140 can be positioned proximal to or abutting the distal end 128 of the limb pocket 110. The dovetail track 140 can also be positioned between the channels 130, 132 and extend parallel with a longitudinal axis L which extends along a centerline of the limb 104.
The limb bolt 118 can be coupled to or received by a limb bolt aperture 142 positioned on a proximal end 144 of the limb pocket 110 to secure the limb 104 to the limb pocket 110. For example, the limb bolt 118 can include a threaded lower portion 146 which is threadably received within the limb bolt aperture 142 of the limb pocket 110. The limb 104 can comprise a slot or notch 148 at the proximal end 114 of the limb 104. The slot or notch 148 can be configured to engage with the limb bolt 118 to retain the limb 104 to the limb pocket 110. In some aspects the slot or notch 148 can permit the removal of the limb 104 from the limb pocket 110 without removing the limb bolt 118 from the limb bolt aperture 142. In some aspects, an archer can vary the weight required to pull the bowstring to a drawn condition (i.e., draw weight) by turning the limb bolt 118 relative to the limb bolt aperture 142.
The dovetail bolt 120 can include an upper portion 120A and a lower portion 120B. The upper portion 120A can be coupled or otherwise attached to the lower portion 120B. For example, the upper portion 120A can be threadably attached to the lower portion 120B. Moreover, the upper and lower portions 120A, 120B of the dovetail bolt 120 can extend through a dovetail aperture 150 within the proximal end 114 of the limb 104. Coupling the upper portion 120A to the lower portion 120B can generate a clamping force relative to the limb 104 and thereby retain the dovetail bolt 120 within the dovetail aperture 150 of the limb 104.
The first and second channels 130, 132 can include a plurality of attachment positions 154A-C, 156A-C within the channels 130, 132. In some aspects, each of the attachment positions 154A-C can be configured to retain the first limb contact member 134 in a particular location relative to the first channel 130. In one aspect, the attachment positions 154A-C include a plurality of distinct attachment positions evenly positioned along a length of the first channel 130. In another aspect, the attachment positions 154A-C can define an attachment track configured to provide an infinite number of attachment positions spanning a length of the first channel 130. Similarly, each of the attachment positions 156A-C can be configured to retain the second limb contact member 136 in a particular location relative to the second channel 132. In one aspect, the attachment positions 156A-C include a plurality of distinct attachment positions evenly positioned along a length of the second channel 132. In another aspect, the attachment positions 156A-C can define an attachment track configured to provide an infinite number of attachment positions spanning a length of the second channel 132. The attachment positions 154A-C, 156A-C can be threaded apertures, wherein each aperture is configured to receive a fastener (e.g., fastener 138).
The pocket insert 124 can also include a dovetail track 140 formed, machined, or otherwise defined on the limb-facing surface 152 of the pocket insert 124. The dovetail track 140 can be configured to receive and interlock with the dovetail bolt 120 to secure the limb 104 to the limb pocket 110. The dovetail track 140 can include a protrusion guide 158 configured to receive and depress a biased protrusion extending from the dovetail bolt 120 as the dovetail bolt 120 is inserted into the dovetail track 140. The dovetail track 140 can also include a recess 160 configured to receive the biased protrusion extending from the dovetail bolt 120 to secure or otherwise retain the dovetail bolt 120 within the dovetail track 140.
The pocket insert 124 can also include a pocket insert protrusion 162 having one or more pocket insert through-holes 164. The pocket insert protrusion 162 can extend in a direction generally perpendicular to the limb-facing surface 152 of the pocket insert 124. The pocket insert protrusion 162 can be received within a protrusion recess 168 formed within an insert recess 166 on the limb-facing surface 126 of the limb pocket 110 (see
In some aspects, the quantity or thickness of the shims 169 positioned under each respective limb contact member 134, 136 can be utilized to adjust the travel of a distal tip of the limb as the bowstring is drawn and released. For example, multiple shims or a thicker shim 169 can be positioned under the first limb contact member 134 while fewer shims or a thinner shim 169 is positioned under the second limb contact member 136, thereby creating an angle relative to the riser-facing surface of the limb and the distal end of the limb pocket (see
As depicted in
Referring to
Although only one limb pocket 610 (e.g., an upper limb pocket) is depicted in
Regarding the attachment position depicted in
Regarding the attachment position depicted in
As illustrated in
In another aspect of the present disclosure, the tiller of the archery bow can be adjusted by repositioning the limb contact members within the upper and lower limb pockets. By repositioning the limb contact members within a respective limb pocket, a location at which the limb is axially supported can be varied and thereby adjust the effective length of the limb. For example, a limb supported within the limb pocket 610 as depicted in
Moreover, the tiller can be adjusted without sacrificing a draw weight adjustment range of the limb bolts. As previously described, tiller can be adjusted by rotating the limb bolts (i.e., tiller bolts) of the archery bow. For example, an archer can adjust the tiller of an archery bow by rotating an upper limb bolt clockwise a full rotation and also rotating a lower limb bolt counter-clockwise a full rotation. This method of adjusting the tiller, however, utilizes a portion of the limb bolt's finite range of rotation and thereafter limits the range in which the draw weight of the archery bow can be adjusted.
According to one aspect of the disclosure, an archer can attain a desired tiller by, for example, positioning the limb contact members of the upper limb pocket as shown in
In another aspect of the present disclosure, the limb contact members can be positioned within the limb pockets such that the limb is forced to twist, pivot, or otherwise turn relative to the riser. In one aspect of the disclosure, pivoting or otherwise turning a bow limb relative to the riser can allow a distal tip of the bow limb to be tuned so that it travels in a straight line while the bowstring is drawn and released. In other aspects, pivoting or otherwise turning a bow limb relative to the riser can allow an archer to adjust the travel of a distal tip of the limb to compensate for external forces affecting arrow flight (e.g., riser torque).
Alternatively, the first and second limb contact members 706, 708 can be positioned out of vertical alignment such that the first and second limb contact members 706, 708 are unequally spaced from a distal end 718 of the limb pocket 710 (e.g., as depicted in
In yet another aspect of the present disclosure, the limb pocket of an archery bow can be configured to retain one or more weights.
In one aspect of the disclosure, the weight recess 1006 can be formed on the limb-facing surface 1004 of the limb pocket 1010 and positioned between an insert recess 1018 and a limb bolt aperture 1020. The one or more weights 1008 can define a peripheral shape. Moreover, an outer periphery of the weight recess 1006 can be correspondingly shaped to receive the one or more weights 1008. For example, the outer periphery or shape of the weight recess 1006 can form a rectangle, square, circle, oval, or any other shape and the one or more weights 1008 can define a corresponding cross-sectional shape configured to be received within the weight recess 1006. The corresponding shape of the one or more weights 1008 can prevent the one or more weights 1008 from rotating or otherwise moving within the weight recess 1006.
Although
A person having ordinary skill in the art will appreciate that all of the aspects of the present disclosure described herein can be combined or otherwise utilized on multiple limb pockets of an archery bow. Moreover, all of the aspects of the present disclosure described herein can be incorporated on at least a recurve archery bow, a compound archery bow, or a cross bow. For example, the string tension of cables extending between the cams or wheels of a compound bow can be varied using aspects of the present disclosure.
Various inventions have been described herein with reference to certain specific aspects and examples. However, they will be recognized by those skilled in the art that many variations are possible without departing from the scope and spirit of the inventions disclosed herein, in that those inventions set forth in the claims below are intended to cover all variations and modifications of the inventions disclosed without departing from the spirit of the inventions. The terms “including:” and “having” come as used in the specification and claims shall have the same meaning as the term “comprising.”
Number | Name | Date | Kind |
---|---|---|---|
5172679 | Mussack | Dec 1992 | A |
5280779 | Smith | Jan 1994 | A |
5464001 | Peck | Nov 1995 | A |
5487373 | Smith | Jan 1996 | A |
5722380 | Land | Mar 1998 | A |
6024076 | Laborde | Feb 2000 | A |
7762245 | Smith | Jul 2010 | B2 |
7784452 | Kronengold | Aug 2010 | B1 |
7832387 | Yehle | Nov 2010 | B1 |
8047189 | McPherson | Nov 2011 | B2 |
8281773 | Dahl, II | Oct 2012 | B2 |
8448630 | McPherson | May 2013 | B1 |
8453635 | McPherson | Jun 2013 | B1 |
8459244 | Yehle | Jun 2013 | B2 |
8844508 | Sims | Sep 2014 | B2 |
9103622 | Park | Aug 2015 | B2 |
9581406 | Nevels | Feb 2017 | B1 |
9976831 | Badgerow | May 2018 | B2 |
10024622 | Boester | Jul 2018 | B1 |
10184750 | McPherson | Jan 2019 | B2 |
20020078939 | Andrews | Jun 2002 | A1 |
20030084893 | Andrews | May 2003 | A1 |
20060011181 | Andrews | Jan 2006 | A1 |
20080072888 | Chang | Mar 2008 | A1 |
20090145411 | Sims | Jun 2009 | A1 |
20090241928 | Blosser | Oct 2009 | A1 |
20120192843 | Batdorf | Aug 2012 | A1 |
20140041645 | Wasilewski | Feb 2014 | A1 |
20150226511 | Chang | Aug 2015 | A1 |
20160091273 | Denton | Mar 2016 | A1 |
20170030674 | Ell | Feb 2017 | A1 |
20180094897 | Langley | Apr 2018 | A1 |
20200088492 | Liu | Mar 2020 | A1 |
20200141687 | Romero | May 2020 | A1 |
Number | Date | Country |
---|---|---|
202011107947.7 | Feb 2012 | DE |
20090054766 | Jun 2009 | KR |
20100043869 | Apr 2010 | KR |
20180117745 | Oct 2018 | KR |
Entry |
---|
Extended European Search Report for European Application No. 20169059.1 dated Sep. 30, 2020. |
Number | Date | Country | |
---|---|---|---|
20200355459 A1 | Nov 2020 | US |