The invention relates generally to the field of archery bow alignment devices.
In one respect, disclosed is a method for tuning an archery bow, the method comprising: providing a bow having a string, providing a laser plane, rotating the laser plane to be inline with the string and aligning the bow to the laser plane.
In another respect, disclosed is a bow alignment device comprising: a housing; the housing comprising a power source, a laser, and a lens; where the lens scatters the laser beam into a plane of laser light.
Numerous additional embodiments are also possible.
Other objects and advantages of the invention may become apparent upon reading the detailed description and upon reference to the accompanying drawings.
While the invention is subject to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and the accompanying detailed description. It should be understood, however, that the drawings and detailed description are not intended to limit the invention to the particular embodiments. This disclosure is instead intended to cover all modifications, equivalents, and alternatives falling within the scope of the present invention as defined by the appended claims.
One or more embodiments of the invention are described below. It should be noted that these and any other embodiments are exemplary and are intended to be illustrative of the invention rather than limiting. While the invention is widely applicable to different types of systems, it is impossible to include all of the possible embodiments and contexts of the invention in this disclosure. Upon reading this disclosure, many alternative embodiments of the present invention will be apparent to persons of ordinary skill in the art.
This invention relates to the field of archery and the problem of setting up and aligning an archery bow and its attachments, and more specifically to an archery alignment device and method that accomplishes a faster, more convenient and more precise alignment by use of a plane of laser light or portion thereof.
In some embodiments, the archery bow 10 includes a riser 50, an upper flexible limb 20, a lower flexible limb 22, an upper wheel or cam 30, a lower wheel or cam 32, at least one string 40 and a sight 80. An arrow rest 60 is connected to the riser 50 to support a typical arrow (not shown) or in this preferred embodiment, the laser plane alignment device 90 of the present invention. The laser alignment device 90 has a device housing 100 much like an arrow shaft and an adapter 110 much like an arrow nock. The device housing 100 sits on the arrow rest 60 and connects to the bowstring 40 with the adapter 110 like a typical arrow.
In some embodiments, the archery bow 10 includes a riser 50, an upper flexible limb 20, a lower flexible limb 22, an upper wheel or cam 30, a lower wheel or cam 32, at least one string 40 and a sight 80. An arrow rest 60 is connected to the riser 50 to support a typical arrow (not shown) or in this preferred embodiment, the laser plane alignment device 90 of the present invention. The laser alignment device 90 has a device housing 100 much like an arrow shaft and an adapter 110 much like an arrow nock. The device housing 100 sits on the arrow rest 60 and connects to the bowstring 40 with the adapter 110 like a typical arrow. When the laser alignment device 90 is activated, a sheet of laser light 160 is projected within the archery bow 10.
In some embodiments, the laser plane 160 or portion thereof is generated from the laser beam source 140 striking the fiber optic bundle 120. The laser beam source 140 projects a laser beam 142 substantially orthogonal to the lens or fiber optic bundle 120, which generates a laser plane 160. This technology is taught by U.S. Pat. No. 5,898,809 issued Apr. 27, 1999 to John Taboada and John Martin Taboada. Further examples of devices and methods to generate a laser plane or portion thereof from a laser beam source can be found in the Taboada et. al. patent.
In some embodiments, the fiber optic bundle 120 is connected to and positioned by a housing 130 wherein the laser beam source 140 projects a laser beam 142 substantially orthogonal onto the fiber optic bundle 120. The laser beam source 140 and the fiber optic bundle 120 are connected interiorly to the device housing 100 by the fiber optic housing 130 whereby the laser plane 160 is allowed to exit through a slot 150 for alignment of the archery bow. A switch 102 activates and deactivates the laser plane 160 by connecting a power source such as at least one battery (not shown) to the laser beam source 140.
In some embodiments, referring back to
The previous description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
The benefits and advantages that may be provided by the present invention have been described above with regard to specific embodiments. These benefits and advantages, and any elements or limitations that may cause them to occur or to become more pronounced are not to be construed as critical, required, or essential features of any or all of the claims. As used herein, the terms “comprises,” “comprising,” or any other variations thereof, are intended to be interpreted as non-exclusively including the elements or limitations which follow those terms. Accordingly, a system, method, or other embodiment that comprises a set of elements is not limited to only those elements, and may include other elements not expressly listed or inherent to the claimed embodiment.
While the present invention has been described with reference to particular embodiments, it should be understood that the embodiments are illustrative and that the scope of the invention is not limited to these embodiments. Many variations, modifications, additions and improvements to the embodiments described above are possible. It is contemplated that these variations, modifications, additions and improvements fall within the scope of the invention as detailed within the following claims.
The inventors claim priority to provisional patent application No. 61/007,163 filed on Dec. 11, 2007.
Number | Name | Date | Kind |
---|---|---|---|
4594786 | Rezmer | Jun 1986 | A |
4911137 | Troncoso | Mar 1990 | A |
4974576 | Morey et al. | Dec 1990 | A |
5898809 | Taboada et al. | Apr 1999 | A |
5983879 | Gifford | Nov 1999 | A |
6526666 | Lastinger | Mar 2003 | B1 |
6763598 | Chen | Jul 2004 | B1 |
6851197 | Terry | Feb 2005 | B2 |
7353611 | Edwards et al. | Apr 2008 | B2 |
7401411 | White | Jul 2008 | B2 |
7409770 | Jones | Aug 2008 | B2 |
20080134526 | Christensen | Jun 2008 | A1 |
20090032004 | Jones | Feb 2009 | A1 |
20090071022 | Stagg | Mar 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20090144994 A1 | Jun 2009 | US |
Number | Date | Country | |
---|---|---|---|
61007163 | Dec 2007 | US |