This invention relates to generally to archery bows, and more specifically to designs for compound archery bows.
Compound archery bows typically include a cam or pulley at the end of each limb. Each cam or pulley is configured to rotate around an axle. As the bowstring is drawn, the limbs flex and the axles move. If a hypothetical line were drawn between the axles, the line would typically be oriented vertically. As the bow is drawn from a brace condition to full draw, the line would move in a rearward direction, away from the bow handle and toward the shooter.
There remains a need for further improvement in archery bows, including the ability to store more energy in the drawn condition and to gain further control over a bow's draw force profile.
Bow presses are often used when servicing a bow. There remains a need for bow press designs that are more suitable for use with new bow configurations than previous bow press designs.
All US patents and applications and all other published documents mentioned anywhere in this application are incorporated herein by reference in their entirety.
Without limiting the scope of the invention a brief summary of some of the claimed embodiments of the invention is set forth below. Additional details of the summarized embodiments of the invention and/or additional embodiments of the invention may be found in the Detailed Description of the Invention below.
A brief abstract of the technical disclosure in the specification is provided as well only for the purposes of complying with 37 C.F.R. 1.72. The abstract is not intended to be used for interpreting the scope of the claims.
In at least one embodiment, an archery bow comprises a riser supporting a first limb and a second limb. The first limb supports a first rotatable member that defines a first axis of rotation. The second limb supports a second rotatable member that defines a second axis of rotation. The first axis of rotation and the second axis of rotation move with respect to one another as the bow is drawn from a brace condition to a drawn condition. The bow defines a reference plane that includes the first axis of rotation and the second axis of rotation, wherein a distance between a predetermined location on the riser and the reference plane is greater in the brace condition than in the drawn condition.
In at least one embodiment, an archery bow comprises a riser supporting a first limb and a second limb, each limb comprising an inner surface and an outer surface. The bow further comprises at least one bearing accessory attached to the first limb. The bearing accessory comprises a raised portion extending outward beyond the outer surface of the first limb. Desirably, the raised portion comprises curvature about an axis transverse to said first limb.
In at least one embodiment, a combination comprises an archery bow comprising a bearing accessory and a bow press having a bow engaging member. The bearing accessory has a bearing surface of first predetermined shape, and the bow engaging member has a surface having a second predetermined shape, wherein the second predetermined shape matingly engages the first predetermined shape
These and other embodiments which characterize the invention are pointed out with particularity in the claims annexed hereto and forming a part hereof. However, for a better understanding of the invention, its advantages and objectives obtained by its use, reference can be made to the drawings which form a further part hereof and the accompanying descriptive matter, in which there are illustrated and described various embodiments of the invention.
A detailed description of the invention is hereafter described with specific reference being made to the drawings.
While this invention may be embodied in many different forms, there are described in detail herein specific embodiments of the invention. This description is an exemplification of the principles of the invention and is not intended to limit the invention to the particular embodiments illustrated.
For the purposes of this disclosure, like reference numerals in the figures shall refer to like features unless otherwise indicated.
In some embodiments, the predetermined location 30 comprises a location from which brace height is measured. For example, in some embodiments, the predetermined location 30 comprises a pivot point 31 of the grip 15. In some embodiments, the predetermined location 30 comprises an accessory mount location, such as an arrow rest mount location.
A distance between line a and line b is illustrated as distance A, for example taken in a direction orthogonal to the lines a, b.
Line c represents a hypothetical line drawn between the first axle 26 and an effective fulcrum 40 of the first limb 16. As the bowstring 12 is drawn, the fulcrum 40 represents an effective support point for the limb 16, which acts as a cantilever. As illustrated, in some embodiments, line c extends orthogonal to line/plane b.
In some embodiments, the distance A in the brace condition and distance B in the drawn condition represent the shortest distances between the predetermined location 30 and the line/reference plane b.
In various embodiments of the invention, the configuration of the limbs 16, 18 and locations of the axles 26, 28 in the brace and drawn conditions can be adjusted to allow for desired draw force profiles and movement of line/plane b. Movement of line/plane b in a direction toward the handle 14 can allow more energy to be stored in the bow. The specific movement of line/plane b as the bow is drawn can be used to impact the draw force profile.
In some embodiments, line/plane b can initially move away from the handle 14 then reverse the direction of travel, thus moving back toward the handle. In some embodiments, line/plane b moves past its original location in the brace condition and ends its travel at full draw being located closer to the handle 14.
In some embodiments, line/plane b remains a constant distance or a substantially constant distance from the handle 14 as the bow is drawn from brace to full draw.
In some embodiments, the invention is drawn to a bow wherein the line/plane b moves in a direction toward the handle 14 during some portion of bowstring draw, regardless of whether or not the line/plane b previously moved in a direction away from the handle 14.
The bow 10 of
Lines a and b, similar to those described with respect to
In some embodiments, line/plane b begins to move toward the handle 14 as the bow is initially drawn, and will continue to move closer to the handle 14 as the bowstring 12 is drawn to full draw.
In some embodiments, a power cable 52 extends from a power cam 42 on one rotatable member (e.g. 22) to an anchor (e.g. 50) on or near the opposite rotatable member (e.g. 20) that does not include a power cam. The power cable 52 can comprise a cam side 54 located between the roller guard 34 and the power cam 42, and an anchor side 56 located between the roller guard 34 and the anchor 50.
Desirably, an angle α between line b (reference plane) and the anchor side 56 of the power cable 52 is less in the drawn condition than in the brace condition.
Referring again to
As archery bows have evolved, the positioning of the limbs 16, 18 has changed. Whereas older bows typically had spacing between the limbs 16, 18 that continuously increased as the limbs 16, 18 were traversed from the handle/riser 14 toward the axles 26, 28, the bow 10 shown in
Referring to
Referring to
Desirably, the bearing surface 62 of each bearing accessory 60 comprises a raised portion that extends outward beyond the outer surface 17 of the limb 16. The raised portion provides a flange that the bow press 70 can engage.
The bearing surface 62 can comprise any suitable shape. In some embodiments, at least a portion of the bearing surface 62 extends at an angle to the outer surface 17 of the limb 16. In some embodiments, the bearing surface 62 is not oriented perpendicular to the outer surface 17.
In some embodiments, the bearing surface 62 comprises curvature about an axis 68 oriented transverse to the limb 16. For example, the axis 68 can be parallel to said axle 26. In some embodiments, the curvature is convex with respect to the limb 16. The bearing surface 62 can define a cavity.
In some embodiments, the bearing surface 62 is flat in a direction parallel to said axis 68.
The bearing accessory 60 can be attached to the limb 60 using any suitable method, such as adhesives, fasteners or the like.
In some embodiments, the bearing accessory 60 further comprises a target plate 38 that can be used to secure the bearing accessory 60. For example, in some embodiments, the bearing accessory 60 and the target plate 38 are positioned on opposite sides of the limb 16, and fastener such as a bolt can attach the bearing accessory 60 to the target plate 38. In some embodiments, a fastener extends through a portion of the limb.
In some embodiments, the target plate 38 comprises an archery bow accessory 66, such as a string suppressor as shown in
In some embodiments, at least one bearing accessory 60 is included on each limb 16, 18. In some embodiments, the orientation of a bearing accessory 60 on the first limb 16 is a mirror image of the bearing accessory on the second limb 18.
The above disclosure is intended to be illustrative and not exhaustive. This description will suggest many variations and alternatives to one of ordinary skill in this field of art. All these alternatives and variations are intended to be included within the scope of the claims where the term “comprising” means “including, but not limited to.” Those familiar with the art may recognize other equivalents to the specific embodiments described herein which equivalents are also intended to be encompassed by the claims.
Further, the particular features presented in the dependent claims can be combined with each other in other manners within the scope of the invention such that the invention should be recognized as also specifically directed to other embodiments having any other possible combination of the features of the dependent claims. For instance, for purposes of claim publication, any dependent claim which follows should be taken as alternatively written in a multiple dependent form from all prior claims which possess all antecedents referenced in such dependent claim if such multiple dependent format is an accepted format within the jurisdiction (e.g. each claim depending directly from claim 1 should be alternatively taken as depending from all previous claims). In jurisdictions where multiple dependent claim formats are restricted, the following dependent claims should each be also taken as alternatively written in each singly dependent claim format which creates a dependency from a prior antecedent-possessing claim other than the specific claim listed in such dependent claim below.
This completes the description of the preferred and alternate embodiments of the invention. Those skilled in the art may recognize other equivalents to the specific embodiment described herein which equivalents are intended to be encompassed by the claims attached hereto.
This application is a continuation application of U.S. application Ser. No. 13/720,575, filed Dec. 19, 2012, which is a continuation application of U.S. application Ser. No. 12/700,612, filed Feb. 4, 2010, now U.S. Pat. No. 8,505,526, which claims the benefit of U.S. Provisional Application No. 61/149,972, filed Feb. 4, 2009, the entire disclosure of which is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3012552 | Allen | Dec 1961 | A |
3486495 | Allen | Dec 1969 | A |
3854467 | Hofmeister | Dec 1974 | A |
4020819 | Haines | May 1977 | A |
4074409 | Smith | Feb 1978 | A |
4781168 | Lester | Nov 1988 | A |
4879987 | Nishioka | Nov 1989 | A |
5022377 | Stevens | Jun 1991 | A |
5125389 | Paff | Jun 1992 | A |
5323756 | Rabska | Jun 1994 | A |
5339790 | Smith | Aug 1994 | A |
5370103 | Desselle | Dec 1994 | A |
5495843 | Larson | Mar 1996 | A |
5499618 | Thompson | Mar 1996 | A |
5832910 | Wolfrath | Nov 1998 | A |
5853001 | Vyprachticky | Dec 1998 | A |
5921227 | Allshouse et al. | Jul 1999 | A |
7980236 | Kronengold et al. | Jul 2011 | B1 |
8020544 | McPherson et al. | Sep 2011 | B2 |
20090056688 | Marsh et al. | Mar 2009 | A1 |
20090107475 | Pittman | Apr 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20140283808 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
61149972 | Feb 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13720575 | Dec 2012 | US |
Child | 14299729 | US | |
Parent | 12700612 | Feb 2010 | US |
Child | 13720575 | US |