The following disclosure relates to archery equipment, and more particularly to a gripping system for improved shooting.
Generally speaking, archery is the practice of shooting arrows from a bow. In its most rudimentary form, it has been around for over 10,000 years. In modern times, archery is used as both a hunting technique and a recreational activity.
As mentioned above, archery is used as both a hunting technique and a recreational activity. In both scenarios, accuracy is of the utmost importance. Using bow sites and mechanical releases can help, but they are relatively ineffective if the archer cannot find and maintain a proper shooting position at full draw and release. It is the process of finding and maintaining this proper shooting position that leads to accurate shooting for most archers.
Among other benefits that may result from the teachings disclosed herein, an archer using the described gripping systems may experience improved accuracy. The improved accuracy may result from the archer's enlarged grip angle. A conventional grip design can make it difficult for the archer to find the proper shooting position. Modern bows invite users to grab the bow grip and to wrap their fingers all the way around the grip as shown in image 302 of
As mentioned above, modern grips encourage zero degree grip angles. This is especially true for “ergonomic” grips that include finger depressions that are aligned perpendicular to the limb-to-limb line of the bow and/or palm mounds that fill the hollow formed in the palm area when a person closes his or her fist. It appears that grip design often results from having an individual squeeze a moldable material and then replicating the squeezed shape of the moldable material in the provided grip. The result is often a grip that promotes a zero degree grip angle.
Gripping the bow with a zero degree grip angle can create at least two problems for the typical archer. First, the archer can inadvertently “torque” the bow such that the archer actually twists the bow at release. This twisting throws the arrow off line. Second, a zero degree grip angle can force the meat of the forearm into the string path of the bow. The result is often a painful brushing of the string against the forearm after release. It is not uncommon to see an archer wearing an arm guard on the lead arm to protect the forearm skin from the bowstring. While the guard does protect the archer's arm, the string slapping against the guard can make consistent shot placement very difficult. Moreover, because the string slap from modern bows can be very painful, many archers develop two bad habits, namely, a flinching at release and a bending of the lead arm elbow.
In addition to other benefits apparent to one skilled in the art, the teachings of the present disclosure may help archers maintain a grip angle over zero degrees and a consistent body position when using a bow. As depicted in the figures, a bow may include a grip component that is unitary. The grip component could be an entire grip system that includes a grip, end caps, metacarpal offsets, etc. such as the system depicted in
In practice, the inclusion of one or more metacarpal offsets on a bow grip may disallow the wrap around gripping that creates the conventional zero degree grip angle. It should be understood that the metacarpal offsets could be implemented in many different ways depending on the design and cost preferences of the designer. For example, metacarpal offsets could be built into a factory bow grip, included on an aftermarket replacement grip, included in a lead-hand shooting glove, included in a bow grip cover that attaches to a traditional bow grip, some combination of these options, and/or some other appropriate technique for encouraging proper grip angles.
In a glove embodiment, a designer may elect to include a thumb-to-forefinger webbing structure that dissipates or reduces the amount of pressure felt by the webbing portion between a forefinger and a thumb of the archer's lead hand at full draw. The thumb-to-forefinger webbing structure could be made from a fabric, a plastic insert, a rubber insert, and/or some combination of these. In addition, the webbing structure could be sewn into a glove such that a load bearing structure is formed into a forefinger loop on one end and a thumb loop on the other. The glove may also include a thenar region pad. As an archer comes to full draw, a great deal of pressure is felt in the thumb/forefinger web and the thenar region of the lead hand. A glove with a thenar region pad may help to dissipate some of this otherwise acute pressure.
However formed, a system incorporating teachings of the present disclosure could be modular and allow for the removal and insertion of different metacarpal offsets. For example, a modular system could include a small sized offset that creates a twenty-five degree grip angle for a given archer, a medium sized offset creates a thirty-five degree grip angle, and a larger sized offset that creates a forty-five degree grip angle. These and other characteristics of the disclosed grip system may be better understood by referencing the figures.
As explained above in the brief description of the figures,
In a version of system 100 made from more than one material, a designer may choose to create system 100 from more than one type of rubber, more than one type of plastic, more than one type of wood, more than one type of metal, and/or various combinations of material types. For example, system 100 may have a metal core, a wood overlay, a rubber metacarpal insert, and plastic end caps.
As shown in
As depicted, system 100 also includes a front surface 108 with finger depressions 120. As shown, depressions 120 are not perpendicular to the limb-to-limb line of the bow. As shown, depressions 120 are angled down and away from the archer's palm. This angled depression design may assist the archer in finding a proper grip angle. System 100 also includes a third metacarpal offset 122 that is located such that it will fall under the middle finger knuckle of an archer's hand. Offset 122 is formed such that it creates a forefinger channel 124 that allows the second metacarpal of the archer's lead hand to rest in channel 124. In system 100, the width of channel 124 is fixed. In other embodiments, channel 124 may be adjustable to account for a wide range of hand sizes.
System 100 includes a fixed version of offset 122 with a predefined width, a predetermined offset amount 128, a predetermined feathering angle 130, and a fixed tailing angle 132. In other embodiments, one or more of these offset characteristics may be adjustable. As shown, system 100 also includes a small palm mound 134 on the palm-facing surface 136. In other embodiments, palm mound 134 may be removed to facilitate the finding of a proper grip angle.
Depending on the embodiment deployed, many of the above-described characteristics may be altered and/or alterable. For example, a designer may change the location of offset 122, the rake angle, the cross section of surface 106, the size and location of channel 124, the amount of overhang 136 created by top end cap 102, the amount of overhang created by bottom end cap 104, etc. Moreover, though
As mentioned above,
As shown, sleeve 202 wraps the existing grip along the entire length of the existing grip. In other embodiments, sleeve 202 may include one, two, or more strips that wrap all the way around the existing grip while leaving much of the existing grip uncovered. In such an embodiment, each of the strips may include its own clasping mechanism. In some embodiments, the size and clasping mechanisms chosen for a sleeve may allow the sleeve to be attached to an existing grip in more than one location. The ability to move system 200 into different mounting positions on an existing grip may effectively allow an archer to adjust the location of an included metacarpal offset.
As shown, system 200 includes a third metacarpal offset 206 that is attached to sleeve 202. In embodiments of system 200 that allow the system to be attached in slightly different positions on an existing bow, this offset 206 may be moved to fit a given archer's hand. In addition, offset 206 may take on varying sizes and shapes depending upon design goals of the developer and hand sizes of archers. Moreover, offset 206 may be formed from one or more types of material. For example, offset 206 may include one or more of a plastic material, a rubber material, a leather material, a metal material, a wooden material, a woven material, and/or some other material that is suitable for performing the objective of offset 206.
As shown, offset 206 is sewed into sleeve 202. A designer could choose other techniques for attaching offset 206 to sleeve 202. In one embodiment, sleeve 202 may be formed to include a pocket into which offset 206 can be removably placed. In such an embodiment, a designer could provide several offsets having various sizes. An archer could shoot his or her bow with each of the offsets to determine which one yields the best results. The archer may then place the chosen offset into the pocket of sleeve 202.
As mentioned above, offset 206 can be connected to sleeve 202 using one or more of several different techniques. System 200 could be formed such that offset 206 and sleeve 202 are part of a unitary system. Offset 206 can be permanently or removeably affixed to sleeve 202. Offset 206 could be glued, sewed, tied, stapled, shrink fit, pocketed, etc. to sleeve 202. However connected, an archer may want offset 206 to remain in a relatively fixed position relative to the existing bow grip. To help make this happen, a designer may rely on one or more techniques. For example, the designer may choose a specific material for sleeve 202 that facilitates the sleeve's ability to stay in a relatively fixed location once it has been attached to an existing bow grip. The material may include a stretchable material like spandex or neoprene. Once clasped or locked in place, the stretchable material may help to hold system 200 in place. A designer may also choose to include a non-slip material on an inside surface 208 of sleeve 202 that resists slipping around the existing grip. Similarly, the designer may choose the same non-slip material or some other desired material for the exterior surface 210 of system 200. The material and/or surface texture of exterior surface 210 may be chosen to feel good in the archer's hand.
A system incorporating teachings of the present disclosure may replace, add, or delete many of the above-described features without departing from the scope of the disclosure. One skilled in the art will recognize that the many of the above-described components could be combined or broken out into other combinations.
Although the present invention has been described in detail, it should be understood that various changes, substitutions and alterations to the devices, methods, and other aspects and techniques of the present invention can be made without departing from the spirit and scope of the invention as defined by the appended claims.
While the present invention has been described with respect to a limited number of embodiments, those skilled in the art will appreciate numerous modifications and variations therefrom. It is intended that the appended claims cover all such modifications and variations as fall within the true spirit and scope of this present invention.
This application claims priority to U.S. Provisional Patent Application Ser. No. 61/753,522, filed Jan. 17, 2013, the content of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4257385 | Stewart | Mar 1981 | A |
5243958 | Shepley, Jr. | Sep 1993 | A |
5551413 | Walk | Sep 1996 | A |
5615663 | Simonds | Apr 1997 | A |
5853000 | Torgerson | Dec 1998 | A |
20110132344 | Moon et al. | Jun 2011 | A1 |
20110259309 | Oppenheim | Oct 2011 | A1 |
20130047379 | Zilke | Feb 2013 | A1 |
Entry |
---|
U.S. Appl. No. 15/006,199, filed Jan. 26, 2016, entitled “An Archery Grip System,” by Russell W. White. |
Number | Date | Country | |
---|---|---|---|
20140196705 A1 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
61753522 | Jan 2013 | US |