The present disclosure relates generally to archery and particularly to a release aid to assist an archer to draw and release the bowstring of an archery bow.
The traditional manner for an archer to pull the bowstring of an archery bow is using the archer's fingers. Alternately, archers often use accessories called releases or release aids which hold and then release the bowstring when a trigger or similar lever is pulled by the archer. Many common releases use a caliper system with a pair of jaws which pinch together around the bowstring or around a “D” loop on the bowstring. The caliper jaws are opened by pulling a trigger.
A less common type of archery release is sometimes called a back tension release. In archery a common problem for archers is target panic. One accepted way to combat target panic is to use a back tension style release. In contrast to a caliper or a trigger style release, a back tension release involves a two stage process for drawing and releasing the bowstring and does not use a trigger.
In the first stage, the release is hooked onto the bowstring or bowstring loop and pulled rearward to the draw position. During this phase the release head assembly will not operate to release the bowstring. In some current versions of a back tension release, once the archer achieves full draw, the archer toggles a thumb-triggered safety release which causes a portion of the release head assembly to be locked in place, as illustrated in U.S. Pat. No. 6,953,035.
In the second stage, after the safety is released, upon rotation of the release handle in a lateral plane the remaining portions of the release head assembly rotate relative to the locked portion. This frees the hook to rotate, allowing the hook to release the bowstring.
The present disclosure is directed to back tension style release aids usable for drawing and releasing a bowstring. In the first stage, the release is hooked onto the bowstring or a “D” loop on the bowstring and pulled rearward to the draw position. Once the archer achieves full draw, upon manual rotation of the release handle the release head assembly rotates relative to a locked portion, thereby allowing a hook piece to rotate and to release the bowstring, e.g. a firing event. Certain embodiments of a back tension release as disclosed include a pair of magnets creating an attraction force in the release head. Separately, certain embodiments of a back tension release as disclosed include a release lever arranged to engage and be operated by the archer's outer fingers, most typically the fourth and/or pinky fingers of the archer's hand.
In one embodiment, the release aid includes a handle having an inward end with one or more grooves to receive an archer's inward finger, namely the first or index finger, an outward end with one or more grooves to receive one or more of an archer's outer fingers, namely the third, fourth, and/or pinky fingers, and a post section extending forward from the handle and arranged intermediate the inward end and the outward end. As used herein, the inward end is typically extending toward and closer to the archer's body while the outward end generally extends away from the archer's body during use. The post section defines a central bore, which houses a movable spring pin.
The release aid further includes a release lever pivotally connected to and extending from the outward end of the handle. In some embodiments, the release lever has an outward end with one or more grooves to receive one or more of an archer's outer fingers, namely the third, fourth, and/or pinky fingers. The release lever generally includes an inwardly extending lever arm portion. The lever arm portion is operable to advance the spring pin forward within the central bore.
Pivotally mounted to a forward end of the post section is a release head assembly. The release head assembly has a hook piece for selectively retaining an archery bow bowstring while the bow is drawn. Generally, forward advancement of the spring pin blocks rotation of a portion of the release head assembly to facilitate firing of the archery bow.
In certain embodiments, the release aid includes a pair of magnets housed within the release head assembly. In one example, the pair of magnets includes a first magnet housed within a sear body and a second magnet housed within an upper portion of a bridge. Generally, the first and second magnets are arranged with opposite polarities to facilitate an attraction force. The magnetic attraction force of the magnets minimizes the risk of an unintentional release by maintaining a connection between the sear body and bridge. The magnetic connection between the sear body and bridge can be overcome when sufficient rotational force is placed on the release lever. Additionally, the magnetic force biases the bridge and hook piece to reconnect with the sear body after the bowstring is released, forming an automatic reset mechanism.
In a further embodiment, the release aid may include one or more set screws. In one example, the one or more set screws include a first set screw and a second set screw housed in the release lever. The one or more set screws may be used by an archer to modify the position of the release lever portion to reduce or increase the amount of rotation needed to release the bowstring.
In yet other embodiments, the release aid includes straight and swept back release lever versions to allow an archer with large hands to select a release lever to fit an archer's hands.
Additional objects and advantages of the described embodiments are apparent from the discussions and drawings herein.
For the purposes of promoting an understanding of the principles of the disclosure, reference will now be made to the embodiments illustrated and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the disclosure is thereby intended, such alterations, modifications, and further applications of the principles being contemplated as would normally occur to one skilled in the art to which the invention relates.
In contrast to a caliper or a trigger style release, a back tension release does not use a trigger. Instead it involves a two stage process for drawing and releasing a bowstring. In the first stage, the release is hooked onto the bowstring or a “D” loop on the bowstring and pulled rearward to the draw position. Optionally some back tension releases include a safety so that during the draw phase the release head assembly will not operate to release the bowstring. Once the archer achieves full draw, if present the archer may toggle a safety release which locks a portion of the release head assembly in place. Thereafter, upon manual rotation of the release handle, the remaining portions of the release head assembly rotate relative to the locked portion, thereby allowing a hook piece to rotate and to release the bowstring. In contrast to a thumb-operated safety release style, certain embodiments of a back tension release as disclosed include a safety release lever arranged to engage and be operated by the archer's outer fingers, typically the fourth and/or pinky fingers of the archer's hand.
A central pillar or post section 30 is arranged intermediate the length of handle 20 and extends forward toward the bowstring during use. Post section 30 is arranged between the opening and groove 24 for an archer's inward finger and the opening and groove 28 for an archer's outward fingers. A pair of parallel opposing flanges or plate portions 38 extend from the forward end of post section 30. A release head assembly is pivotally mounted to the forward end of post section 30 between plate portions 38. The release head assembly primarily includes sear body 60, bridge 70 and hook piece 80. The distal end of hook piece 80 defines a hook groove 86 to engage a bowstring or D-loop.
As seen for instance in
Spring pin 50 is movably mounted within central bore 36. Spring pin 50 includes a shaft 54 arranged to selectively translate forward and rearward within central bore 36. Spring pin 50 includes a cap head portion 52 adjacent to and partially extending into lever slot 32. Cap head portion 52 is aligned with and may contact activating arm portion 48 and head portion 49. Rearward rotation of lever arm 46 correspondingly advances spring pin 50 to translate forward within central bore 36. Spring pin 50 further includes a distal end portion 56 which extends from and exits the forward end of central bore 36 between plate portions 38. In certain embodiments, distal end portion 56 includes a conically tapered end. Within handle 20, compressible coil spring 58 is mounted around shaft 54 between cap head portion 52 and an inner shelf or bearing surface of central bore 36. Coil spring 58 biases spring pin 50 in the rearward retracted direction.
The release head assembly includes sear body 60, bridge 70 and hook piece 80. Sear body 60 and bridge 70 are pivotally mounted to handle 20 between plate portions 38 using a shared axle pin 78. A lower portion of sear body 60 defines a channel 62 (seen in
Sear body 60 further includes sear profile portion 63 defining a sear face 64. The sear profile portion 63 rotates in combination with the rotation of sear body 60. Sear face 64 defines a bearing surface and edge over which the sear face 82 and edge 83 of hook portion 80 overlap in the locked position. A set screw 66 can be advanced or retracted on sear body 60 to adjust the clearance amount by which the sear face 82 of hook portion 80 may overlap with sear face 64.
Bridge 70 has a lower portion 72 coaxially pivotally mounted to handle 20 with sear body 60 via shared axle pin 78. Hook piece 80 is pivotally mounted to an upper portion 76 of bridge 70 via an axle pin 88. When sear body 60 is locked in place, bridge 70 remains free to rotate, allowing hook piece 80 to translate radially relative to sear body 60.
Hook piece 80 includes an interior end defining sear face 82 and edge 83, arranged to overlap with sear face 64 of sear body 60 in the locked position. Hook piece 80 further includes an opposite and external end defining a groove 86 to receive the bowstring of a bow. In the illustrated embodiment, hook piece 80 is formed in an angled or bell-crank style shape.
Spring 90 is arranged between sear body 60 and bridge 70. Spring 90 includes a pair of mounting coils coaxially mounted along axle pin 78 with sear body 60 and bridge lower portion 72. A spring cross-piece 92 extends across and bears against a face of sear body 60 opposite to bridge 70. Spring 90 includes a pair of legs 94. Legs 94 extend from axle pin 78 and into a pair of passages defined in upper portion 76 of bridge 70. Alternately legs 94 could bear against a surface of upper portion 76. Spring 90 yieldingly biases bridge 70 and correspondingly hook portion 80 to the locked position shown in
An alternate embodiment of a release aid 110 is illustrated in
Bow 210 is used with an arrow 250. Arrow 250 includes a shaft with a forward end 252, to which typically an arrowhead is mounted. A nock 254 is arranged at the rearward end of arrow 250. Nock 254 is configured to selectively engage bowstring 240, preferably between the ends of “D” loop 242.
In use, an archer loads an arrow 250 onto a bow, preferably with the nock 254 engaged between the ends of a “D” loop 242. The archer holds release aid 10 in the drawing hand and rotates hook piece 80 to ensure it is in the locked position shown in
At this stage, the entire release head assembly is freely pivotal relative to handle 20. The sear body 60, bridge 70 and hook piece 80 remain locked together so that they will not rotate relative to each other, yet they may rotate as a combined unit relative to handle 20. Correspondingly, release 10 will not release bowstring 240 despite any unintended or minor rotation of the release head assembly relative to the handle during the draw process.
After the archer has achieved full draw, the archer may use the outer fingers such as the third, fourth or pinky finger to pivot the outward end of safety release lever 40 in a lateral plane rearward relative the handle 20. This creates a lever moment where the activating arm portion 48 of the safety release lever 40 advances safety pin 50 forward within central bore 36. When safety pin 50 is advanced, the cone shaped distal end 56 advances into channel 62 of sear body 60. When distal end 56 engages channel 62 it forms a wedging action forming a brake effect. The brake effect prevents sear body 60 from rotating relative to handle 20. At this point, the safety in release aid 10 has been disengaged.
Next, the archer may pivot the release aid 10 slightly further in a lateral plane in the clockwise direction from the perspective of
An alternate embodiment of a release aid 310 is shown in
As best depicted in
Release aid 310 includes a release lever 340 with a modified lever arm portion 346. Optionally, the modified lever arm portion 346 may include one or more set screws 341 and 343. The first set screw 341 may be positioned in the lever arm portion 346 outward from the pivot point of lever arm portion 346. The first set screw 341 adjustably protrudes from lever arm portion toward handle rear end 326. The second set screw 343 may be positioned in the activating arm portion 348 inward from the pivot point of the lever arm portion 346. The second set screw 343 is aligned with spring pin 350 and adjustably protrudes from activating arm portion 348 toward spring pin cap head portion 352. The one or more set screws 341 and 343 enable an archer to adjust or tune the release based on personal preference.
As best shown in
Separately, optional second set screw 343 protrudes from activating arm portion 348. The protrusion distance of second screw 343 can be advanced to adjust the distance between the activating arm portion 348 and the cap head portion 352 in an untriggered condition. As should be appreciated, the smaller the distance between the activating arm portion 348 and the cap head portion 352 the less rotation of the lever arm is needed to trigger the release.
Handle 320 may include an optional accessory loop 321. The accessory loop 321 enables an archer to connect a lanyard or string to release aid 310 to prevent dropping and/or losing the release aid. As should be appreciated, any of the release aids herein, including release aids 10 and 110, may optionally include an accessory loop.
Release aid 510 differs from release aids 10 and 310 by incorporating a longer handle rear end 526 and openings/grooves 528 for both the archer's third and fourth fingers. The archer's pinky finger is received in the opening/groove of release lever 540. Alternately, an archer with larger hands could use release aid 510 with a third finger arranged in an openings/grooves 528 and the archer's fourth finger in the opening/groove of release lever 540. Corresponding to longer handle rear end 526, release lever 540 includes a longer lever arm portion.
Release aid 610 differs from release aids 10 and 310 by incorporating a longer release lever 640 and openings/grooves 644 for both the archer's fourth and pinky fingers. The archer's third finger is received in the opening/groove 628 of handle outer end 626. Alternately, an archer with larger hands could use release aid 610 with their third and fourth fingers arranged in openings/grooves 644. Longer release lever 640 creates a mechanical advantage as an archer is able to provide a greater amount of force when using the fourth and pinky fingers.
Release aid 810 differs from release aids 10 and 310 by incorporating a longer handle rear end 826 and openings/grooves 828 for both the archer's third and fourth fingers. The archer's pinky finger is received in the opening/groove of release lever 840. Alternately, an archer with larger hands could use release aid 810 with a third finger arranged in an openings/grooves 828 and the archer's fourth finger in the opening/groove of release lever 840. Corresponding to longer handle rear end 826, release lever 840 includes a longer lever arm portion.
Release aid 910 differs from release aids 10 and 310 by incorporating a longer release lever 940 and openings/grooves 944 for both the archer's fourth and pinky fingers. The archer's third finger is received in an opening/groove 928 of handle outer end 926. Alternately, an archer with larger hands could use release aid 910 with their third and fourth fingers arranged in openings/grooves 944. Longer release lever 940 creates a mechanical advantage as an archer is able to provide a greater amount of force when using the fourth and pinky fingers.
In the example shown in
In the example embodiment, the release aid 1010 incudes a handle 1020 with an inward end 1022. The inward end 1022 may include one or more grooves 2024 to receive the index finger 1092 of an archer. The handle 1020 further includes an outer end 1026. The outer end 1026 is separated from the inner end 1022 by a post section 1030 arranged intermediate the inner end 1022 and the outer end 1026. The outer end 1026 generally includes one or more grooves 1028 to receive the third finger 1093, the fourth finger 1094, and/or the pinky finger 1095 of an archer. Extending outward from the outer end 1026 is a release lever 1040. The release lever 1040 generally includes one or more grooves 1044 to receive one or more outer fingers, most commonly the fourth finger 1094 and/or the pinky finger 1095 of an archer.
In the first position 1011 (best shown in
As should be appreciated, an archer may apply rotational force to the release lever 1040 with any of the archer's outer fingers, although most typically the archer's third finger 1093 will remain on the handle. In another example, an archer with smaller hands may apply rotational force with the pinky finger 1095. In other examples, the archer may choose to apply rotational force with more than one finger, such as the third 1093 and fourth fingers 1094 or the fourth 1094 and pinky fingers 1095.
While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiment has been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected.
Number | Date | Country | |
---|---|---|---|
63008887 | Apr 2020 | US |