The present invention relates to releases for holding and releasing bowstrings, and more particularly, to back tension archery releases.
Conventional archery releases are designed to temporarily hold a bowstring of an archery bow so that an archer can pull on the release and subsequently draw the bowstring with the release. In general, such releases assist an archer in cleanly and consistently releasing the bowstring when the archer shoots an arrow from the bow, and thus increase the accuracy of the archer's shot.
There are a variety of archery releases available. One common release is a strapped trigger release, and another is a back tension release. A strapped trigger release typically includes a release body having a trigger mechanism and one or more moveable jaws joined with the trigger mechanism. The body is joined with a strap that fits around an archer's wrist to securely anchor the release to the archer. The moveable jaws are configured to hold a bowstring of a bow. When activated by the archer's digits, the trigger mechanism moves the moveable jaws to release the bowstring and thereby shoot the bow. Due to ease of use, direct attachment to the archer via the strap (which reduces the likelihood of loss or misplacement of the release) and general reliability, strapped trigger releases are typically the preferred release used by bow hunters in the field.
A back tension release typically includes a release handle, a release head bracket pivotally secured to the handle, and a hook pivotally secured to the release head bracket. The hook is configured to hold the bowstring, and is also adapted to engage a pawl. To operate the release so that it releases a bowstring held in the hook, an archer holds the handle, and concentrates to squeeze together their shoulder blades, or in other words, “tense their back.” Because the archer holds the device in their hand by the handle, tensing of the back muscles moves the hand, and in turn, rotates the release slightly. This slight rotation moves the release enough so that the hook disengages the pawl, and thereby becomes free to move and release the bowstring.
Back tension releases are highly effective at eliminating shot anticipation (which may hinder shot accuracy) because they release the bowstring somewhat unexpectedly. In general, this typically improves shooting form and shot placement and thereby increases the accuracy of an archer using the back tension release. For this reason, such releases are typically preferred by target shooting archers, where accuracy and precision are paramount. Such back tension releases, however, are usually difficult to keep track of due to their small size, and are generally difficult to learn how to use properly, given that their actuation is dependent on controlled contraction of infrequently used back muscles.
Many archers, who are both bow hunters and archery target shooters, switch back and forth from a strapped trigger release while bow hunting, to a back tension release while shooting for extreme accuracy and precision in target archery. Moreover, many bow hunters who have only used a strapped trigger release are usually hesitant to convert to a back tension release for hunting, or for target shooting for that matter, due to the complexities in training their muscles to operate the back tension release.
A hybrid archery release is provided including a release body, a pivoting roller joined with the release body, and a tether joining the pivoting roller with a wrist strap. The release body is effectively tethered to the wrist strap.
In one embodiment, the hybrid archery release is a hybrid back tension archery release. The release body can be a back tension release body. The pivoting roller and the tether can be spatially oriented to enable an archer to draw a bowstring of an archery bow with the back tension release, pulling via the attached the wrist strap, without the release unintentionally releasing the bowstring. The release remains in a cocked mode as the bowstring is drawn.
In another embodiment, the release body can include a handle, and the release body can selectively rotate about the roller axis when the handle is engaged by an archer so that the release releases a drawn bowstring upon such selective rotation.
In still another embodiment, the release defines a tether force axis and a bowstring force axis. The tether force axis is offset laterally from or aligned with the bowstring force axis when a bowstring is drawn with the release, so that the respective tether force and bowstring force cooperate to retain the release in a cocked mode as the bowstring is drawn.
The release described herein is an efficient hybrid release that combines a handheld release, for example, a back tension release, with a wrist strap. The release enables young and or less experiences archers, who are hesitant to use a handheld or back tension release, to do so with relative ease. It also can facilitate the transition between a conventional strapped release to a back tension release, which typically is difficult for many archers and bow hunters.
These and other objects, advantages and features of the invention will be more readily understood and appreciated by reference to the detailed description of the invention and the drawings.
A release according to the current embodiment is shown in
The hybrid back tension release 10 shown in the figures includes a release body 20 joined with a release head 30, which can include an optional release bracket 40, a sear 50 and pawl 60. The release body 20, and generally the release 10, can be joined with a roller 70 to which a tether 80 is joined. The tether 80 can extend from the roller 70 to a wrist strap 90, which can then be secured directly to a wrist, arm or other appendage of a user.
Generally, the release body 20, roller 70, head 30 and tether 80 are aligned so that a bowstring 100, engaged by the sear 50, exerts a bowstring force 103 along a bowstring force axis 104. This bowstring force axis can be laterally offset and/or generally can balance a tether force 83 that is exerted by the tether 80 on the release along a tether force axis 84 as the release is used to draw a bowstring. In turn, this enables an archer to confidently draw the bowstring without the sear 50 disengaging the bowstring 100 and shooting the bow unintentionally. When drawn, this configuration also enables the release 10 to remain in a fully cocked mode until the release handle 22 or other actuator is depressed or generally moved, optionally toward the wrist strap 90. When such movement occurs, the release body 20 rotates about the roller pin axis 72 and causes the sear engagement edge 54 to move relative to the pawl engagement surface 66 until the sear engagement edge 54 disengages the same. Upon such a disengagement, the sear 50 is free to rotate, and thus release the bowstring 100 from the bowstring notch 52 of the sear, thereby shooting the bow with which the release is used.
Although shown as a bowstring 100, the term “bowstring” as used herein refers to an actual bowstring, a flexible or rigid D-loop or a nock generally attached to a bowstring, or some other element joined with the bowstring to which a release can be attached.
The components and structure of the hybrid archery release 10 will now be described in more detail. As mentioned above, the release 10 as illustrated is a hybrid back tension release. The release 10 can include a release body 20, which can include a handle 22. The handle can define multiple grooves or recesses 26 designed to accommodate one or more digits of a user. Alternatively, the handle can be a straight bar or other suitable gripping structure to enable a user to grasp the release body 20.
The handle can be configured so that it extends laterally on one side of the tether force axis 84, for example, on the first lateral side 89 of the tether force axis 84 when considered from the view point of a right-handed archer drawing the bowstring 100. Optionally, the handle and body can further be configured so that there is no portion of the handle, and more particularly, no finger grooves or other gripping elements disposed laterally, for example, on a second opposing lateral side 87 of the tether force axis 84. Such a construction can be included in the current embodiment of the release due to the geometry and relationship of the bowstring force axis 104 relative to the tether force axis and vice versa, and due to the corresponding balance of the respective forces 83, 103 via the arrangement of the release components.
For example, as shown in
Generally, the release body 20 is rotatable about the roller axis 72 of the roller 70 and/or vice versa. The release body 20 can include an arm 24 extending toward the release head 30. The arm 24 can be an integral or separate from the handle and remainder of the body 20. If desired, the head 30 can also include a pivoting member (not shown) so that the head 30 can freely rotate relative to the body 20 and/or handle 2.
The release head 30 can include a release bracket 40. This release bracket 40 can generally be in the form of a channel-shaped member, including opposing sidewalls 41 and 43. These sidewalls can generally straddle an end of the release arm 24 and/or release body 20. The release bracket 40 can be secured via a pawl axle or pin 44, and can freely rotate about the pawl axle 44, for example, about a pawl axis 46. At the opposite end of the release bracket 40, a sear axle or pin 42 can be located. A sear 50 can be rotatably mounted to a sear axle or pin 42 so that the sear 50 can rotate about the sear axis 47. The sear 50 itself can be spaced from the sidewalls 41 and 43 via spacers or some other elements so that the sear 50 is generally aligned with the pawl 60.
The sear 50 can be constructed to define a bowstring notch 52 which directly engages the bowstring of an archery bow. This bowstring notch 52 can transition to a sear body 53. The sear body 53 can define a hole (not shown) through which the sear axle 42 fits so that the sear can rotate about the sear axis 47. The sear 50 can also include a sear engagement edge 54 which can be in the form of a polished or extremely smooth surface that is adapted to selectively engage the pawl engagement surface 66, which itself can be polished or extremely smooth. If desired, the sear 50 can be selectively tensioned or biased to a preselected configuration with a rubber band or other biasing element (not shown).
The pawl 60 can be attached to the arm 24 and the release body 20. As shown, the pawl 60 is in the form of a partial moon pawl including a rounded pawl engagement surface 66 and a chordal planar surface 62. Optionally, the pawl can be in the form of a truncated or D-shaped disc.
The pawl 60 can be mounted to the arm 24 in a preselected configuration according to the preference and sensitivity of the release to the archer. Depending on the precise placement of the rounded surface and the chordal planar surface 62, the sear engagement edge 54 can engage and disengage the pawl engagement surface 66, thereby allowing the sear 50 to freely rotate about the sear axis 47, and thereby release the bowstring 100 from the bowstring notch as described in further detail below. Optionally, the pawl 60 can be adjustable so that the precise degree of rotation of the chordal planar surface 62 can be adjusted via a set screw (not shown) that protrudes through the arm or body 20 of the release 10. In turn, this can enable an archer to adjust the sensitivity of the release to their preference.
Returning to
The roller 70 can be rotatable about the axle 76 and more generally around the roller axis 72. Of course, if desired, the configuration can be reversed so that the axle 76 and roller 70 are an integral unit and the axle 76 rotates relative to one or both of the support arms 28 and 29, depending on the application. Moreover, although shown as including a forked configuration with support arms on opposite sides of the roller 70, one of the roller support arms 28 or 29 can be removed depending on the application.
The roller 70 as shown is generally in the form of a rounded or circular disc, however, it can take on other geometric configurations. For example, it can be elliptical, rectangular, square, triangular, polygonal, hexagonal or of some other geometric shape. Whatever the geometric configuration, the roller 70 and release body 20 generally can be rotatable relative to one another about the roller axis 72 or some other axis.
The roller 70 can include an attachment element 78. As shown in
The tether 80 as illustrated can be generally flexible, that is, it can flex and/or bend relatively easily to enable the orientation of the release body 20 to be altered relative to the wrist strap 90, and/or to provide a simple attachment to the release body. Optionally, although the tether is illustrated in the form of a cord, it can also be in the form of a strap, a wire, a rigid rod or some other connector. Such a connector can also be adjustable to enable the distance between the release body 20 and the wrist strap 90 to be varied and thereby accommodate the personal preferences and/or physical anatomy of an archer. One example of an adjustable connector suitable for use as a tether is disclosed in U.S. Pat. No. 5,850,825 to Scott, which is hereby incorporated by reference.
The strap 90 can include a fastening and/or adjustment element 92 that attaches the tether 80 to the strap 90. Of course, the precise attachment and exact construction used to attach the tether 80 to the strap 90 can vary as desired. The wrist strap 90 can be in the form of a buckle or velcro strap including opposing ends that generally close around an appendage, for example, a wrist, hand or forearm of an archer to secure the wrist strap 90 directly to the appendage. Optionally, the wrist strap can take the configuration of U.S. Pat. No. 5,595,167 to Scott, which is hereby incorporated by reference. Of course, if buckle straps or alternative straps are desired, those can be used as well.
As mentioned above, the release 10 can define a bowstring force axis 104 and a tether force axis 84. Generally, these axes correspond to the axes along which the bow force 103 and the tether force 83 are exerted by the respective bowstring 100 and the tether 80, the tether being further attached to the wrist strap 90 as noted above. The bowstring force 103 generally coincides with the forces stored in the archery bow to which the bowstring 100 is attached. The forces in the tether 80 correspond to the forces exerted by a user's appendage attached to the wrist strap 90. Generally, when drawing an archery bow, the exerted tether force 83 is greater than the bowstring force 103 stored in the bow so that the bow can be drawn to a fully drawn mode. When the bowstring is fully drawn as shown in
Referring to
As shown in
The operation of the archery release will now be described in more detail with reference to
During the drawing of the release, the release remains in a cocked mode, with the primary forces exerted on the release 10 being that of the bowstring force 103 and the tether force 83. The user need not contact the handle 22 or other portions of the release 10 to ensure that the release remains in this cocked mode. Generally speaking, the release “automatically” remains in this cocked mode with the sear engagement edge 54 remaining in contact with and engaging the pawl engagement surface 66 so that the sear 50 and/or release bracket 40 does not release the bowstring 100 from the bowstring notch.
As shown in
In the cocked mode, the bowstring force axis 104 can be generally offset laterally from the tether force axis 84. For example, the bowstring force axis 104 can be laterally offset to the first lateral side 89 of the tether force axis 84. Put another way, when viewed from the view of a right-handed archer drawing a bow, the tether force 84 can be laterally offset to the left of the bowstring force axis 104. Put yet another way, the bowstring force axis 104 can be laterally offset to the right 89 of the tether force axis 84 when in the illustrated cocked mode. Due to the geometric configuration of this lateral offset, or generally where the tethered and bowstring forces are balanced (even if the bowstring force axis 104 and tether force axis 84 are not laterally offset from one another, that is, they align with one another), the sear engagement edge 54 remains in engagement with the pawl engagement surface 66. Thus, the bowstring force and tether forces remain in equilibrium and the release remains static, and unable to release the bowstring from the bowstring notch. When in this cocked mode as well, the bowstring force 103 exerts a force component through the sear engagement edge 54 to be pawl engagement surface 66. Generally, this force component is countered with an equal force component through the pawl 60 from the tether force 83. With those two force components balanced in the cocked mode, the edge 54 and surface 66 remain engaged and immobile relative to one another in the cocked mode. Generally, the edge 54 and the surface 66 engage one another to the first lateral side 89 of the tether axis 84. In this way, the engagement forces between these components can be laterally offset from the tether force axis 84.
To actuate the release and thereby release the bowstring 100 to shoot the bow to which the bowstring 100 is attached, a user begins a firing sequence. As shown in
As shown in
As release body 20 is further rotated about the roller axis as shown in
Movement of the release body 20 and the general rotation of the release body 20 about the roller axis 72 also can cause the roller axis 72 and pawl axis 46 to move from an aligned condition, where the two axes and respective axles are aligned along the tether (
Generally, the movement of the release body 20 and the related causes the movement of the pawl 60 relative to the sear 50, which ultimately translates to the sear engagement edge 54 moving toward a position where it disengages the pawl engagement surface 66 of the pawl. Also, as the release body moves about the axis 72, the release body rotates relative to the roller 70 and/or the tether 80. The release body 20 also can rotate itself and the pawl 60 relative to the release head 40 and/or the bowstring 100.
As shown in
As noted above, the bowstring 100 exerts a bowstring force 103 along the bowstring force axis 104. This bowstring force 103 is disengaged from the tether force 84 by virtue of the sear engagement edge 54 no longer being engaged with the pawl engagement surface 66. Accordingly, the bowstring force 103 rapidly rotates the sear 50 about the sear axis 47 in direction R3. Upon this rotation, the sear 50 is moved out of the way sufficiently so that the bowstring 100 exits the bowstring notch 52, enabling the bowstring to be fully released by the release 10, which itself is in the fully completed firing mode. To re-use the release and the shoot the bow again, a user repeats the above process.
The roller used with the release can come in a variety of a different constructions. As shown in
As another example of an alternative roller, in
The above descriptions are those of the preferred embodiments of the invention. Various alterations and changes can be made without departing from the spirit and broader aspects of the invention as defined in the appended claims, which are to be interpreted in accordance with the principles of patent law including the doctrine of equivalents. Any references to claim elements in the singular, for example, using the articles “a,” “an,” “the,” or “said,” is not to be construed as limiting the element to the singular. Any reference to claim elements as “at least one of X, Y and Z” is meant to include any one of X, Y or Z individually, and any combination of X, Y and Z, for example, X, Y, Z; X, Y; X, Z; and Y, Z.
Number | Name | Date | Kind |
---|---|---|---|
228302 | Beard | Jun 1880 | A |
229089 | Burnham | Jun 1880 | A |
3853111 | Stanislawski et al. | Dec 1974 | A |
3965884 | Killian | Jun 1976 | A |
4036204 | Scott | Jul 1977 | A |
4041926 | Troncoso et al. | Aug 1977 | A |
4160437 | Fletcher | Jul 1979 | A |
4509497 | Garvison | Apr 1985 | A |
4539968 | Garvison | Sep 1985 | A |
4567875 | Fletcher | Feb 1986 | A |
4574767 | Gazzara | Mar 1986 | A |
4620523 | Peck | Nov 1986 | A |
4674469 | Peck | Jun 1987 | A |
4854293 | Roberts | Aug 1989 | A |
4881516 | Peck | Nov 1989 | A |
5009214 | Wilde | Apr 1991 | A |
5025772 | Stevenson | Jun 1991 | A |
5205268 | Savage | Apr 1993 | A |
5261581 | Harden, Sr. | Nov 1993 | A |
5273021 | Tepper | Dec 1993 | A |
5323754 | Pittman et al. | Jun 1994 | A |
5448983 | Scott | Sep 1995 | A |
5546924 | Todd | Aug 1996 | A |
5595167 | Scott | Jan 1997 | A |
5596977 | Scott | Jan 1997 | A |
5685286 | Summers | Nov 1997 | A |
5694915 | Summers | Dec 1997 | A |
5765536 | Scott | Jun 1998 | A |
5803068 | Summers | Sep 1998 | A |
5850825 | Scott | Dec 1998 | A |
5937842 | Summers et al. | Aug 1999 | A |
6032661 | Goff et al. | Mar 2000 | A |
6571786 | Summers et al. | Jun 2003 | B2 |
6631709 | Carter et al. | Oct 2003 | B2 |
6736124 | Carter | May 2004 | B2 |
6895951 | Summers et al. | May 2005 | B2 |
6945241 | Pellerite | Sep 2005 | B2 |
6953035 | Summers et al. | Oct 2005 | B1 |
7654254 | Rentz et al. | Feb 2010 | B1 |
8622051 | Summers et al. | Jan 2014 | B2 |
20040079351 | Summers et al. | Apr 2004 | A1 |
20090090342 | Freitag et al. | Apr 2009 | A1 |
20090095270 | Graves | Apr 2009 | A1 |
20100108047 | Jones | May 2010 | A1 |
20110168146 | Deceuster | Jul 2011 | A1 |
20120192844 | Springer | Aug 2012 | A1 |
20120285431 | Summers et al. | Nov 2012 | A1 |
Entry |
---|
Various prior art releases (1) downloaded from http://www.archeryhistory.com/releases/releasespics/pse.jpg on Dec. 29, 2009. |
Various prior art releases (2) downloaded from http://www.archeryhistory.com/releases/releasespics/release4.jpg on Dec. 29, 2009. |
Prior art releases (3) downloaded from http://www.archeryhistory.com/releases on Jul. 21, 2011. |
Prior art releases (4) downloaded from http://www.archeryhistory.com/releases on Jul. 21, 2011. |
Longhorn Hunter (Jan. 2010). |
Number | Date | Country | |
---|---|---|---|
20130025578 A1 | Jan 2013 | US |