The present application relates to archery and, more particularly to a tool that helps with alignment and angle of a vane on an arrow shaft.
Arrows used for the sport of archery has evolved over the thousands of years archery has existed. In recent years, bows as well as arrow shafts have significantly improved in technology and construction methods leading to more consistent products. Now more focus is being given to the individual components and construction of complete arrow assemblies. These arrow assemblies illustratively include a point, an insert, an arrow shaft, vanes and a nock. Vanes, in particular, are aerodynamic elements operatively coupled in some way to the nock end (rear) of the arrow shaft in some sort of polarity arrangement. Simply put, vanes are used to increase the stability of an arrow in flight.
A known issue is that fixtures or jigs most commonly used in the assembly of arrows today do not show accurately what angle the vane is being attached to the shaft of the arrow. This inaccuracy often leads to too much or not enough offset of the vane and therefor poor performance. Too little offset can impart too little spin to the arrow, leading to larger groupings of arrows. Conversely, too much offset can impart too much spin to the arrow resulting in the arrow having excessive drag and losing energy too quickly during flight. Another issue is inconsistency between multiple jigs set-up to fletch arrows. Differences in offset within a set of arrows can also cause inconsistencies with the flight of the arrow.
The archery vane angle or alignment tool (VAT) described in the illustrative embodiment of the present disclosure includes an arrow wrap that is operatively coupled to an arrow shaft, part of an arrow shaft or an object that may be used to represent an arrow shaft. The wrap can be, for example, either a decal, a tube or other graphical representation that has alignment lines originating from a point on the wrap approximately 1 inch from the rear end. Illustratively, these alignment lines extend from that origin point at an angle to a reference line that is parallel to the longitudinal axis of the arrow. These alignment lines can be angled from 0 degrees to 6 degrees between adjacent alignment lines as shown in this illustrative embodiment. The alignment lines may include illustrations and be of any number or angle increments.
A nock can be operatively coupled to the rear end of the arrow shaft which can be used to orient the shaft to a fletching jig. A nock may not be included when not required for positioning the arrow shaft in a fletching jig. A vane may be supported in a clamp or other holding device. The edge of the vane is then aligned to the center point on the wrap where all of the alignment lines originate. The angular adjustability of the jig is then used to adjust the vane to the desired offset or helical by aligning the edge of the vane to the desired alignment line on the vane angle tool. The adjustments on the jig are then secured in place, locking the offset angle of the jig. The vane angle tool is then removed from the fletching jig.
Additional features and advantages of the present invention will become apparent to those skilled in the art upon consideration of the following detailed description of illustrative embodiments exemplifying the best mode of carrying out the invention as presently perceived.
The detailed description of the drawings particularly refers to the accompanying figures in which:
For the purposes of promoting an understanding of the principles of the present disclosure, reference will now be made to the embodiments illustrated in the drawings, which are described herein. The embodiments disclosed herein are not intended to be exhaustive or to limit the invention to the precise form disclosed. Rather, the embodiments are chosen and described so that others skilled in the art may utilize their teachings. Therefore, no limitation of the scope of the claimed invention is thereby intended. The present invention includes any alterations and further modifications of the illustrated devices and described methods and further applications of principles in the invention which would normally occur to one skilled in the art to which the invention relates.
The front surface (115) of the substrate (111) illustratively supports a 0-degree or reference line (120) aligned with a longitudinal axis (122) of the wrap (110), a vertical base line (130), angular segments or alignment lines (140), a center or origin point (150) and indexing marks (160). The angular segments or alignment lines (140) are illustratively angled between 0 degrees and 6 degrees relative to each other as measured from the origin point (150). The origin point (150) is defined by the intersection of the reference line (120) and the base line (130).
The arrow shaft (220) is shown as extending along a longitudinal axis (222) and including a nock (230) on a rear end (232) thereof. In other illustrative embodiments the nock (230) could be eliminated or integrated into shaft (220). The angular segments or alignment lines (140) are shown relative to the longitudinal axis (222) of the arrow shaft (220). The nock (230) is coupled to the rear end (232) of the arrow shaft (220), and illustratively includes a recess or notch (234) and a visual indicator such as a mold parting line or seam (236).
The illustrative method of using the vane angle tool (VAT)(200) includes the initial steps of using the parting line (seam) (236) of the nock (230) as a reference, rotating the nock (23) about the longitudinal axis (222). In the illustrative embodiment
The illustrative method continues by placing the vane angle tool (VAT)(200) in the fletching jig (500). Next, with upper adjustment screw (560) and lower adjustment screw (570) loose or untightened, a user places a vane (550) in the clamp (540) to use as a straight edge, and adjusts the vane (550) and clamp (540) up and down in the clamp (540) until the corner (321) of the vane (550) aligns with the base line (130) and continuing to origin point (150).
The user then ensures that the back and front of the vane (550) are going to be capable to touch the arrow shaft (220) when pressed down during the assembly process. The user should rotate the nock (230) more about the longitudinal axis (222) if the front of the vane (550) does not touch the arrow shaft (220). In this illustrative embodiment this would be rotating the nock (230) more to the left (i.e., counterclockwise about the longitudinal axis (222) as viewed from the nock (230) end). Once the front corner (322) of the vane (550) is in the desired location/angle (illustratively as 2.5 degrees), The user then retightens screw (560) and (570). The user then removes the vane angle tool (VAT) (200) after having established the desired angle with the vane angle tool (200). Next the user inserts an arrow shaft to start the conventional fletching process with the jig.
Although the invention has been described in detail with reference to certain preferred embodiments, variations and modifications exist within the spirit and scope of the invention as described and defined in the following claims.
The present application claims priority to U.S. Provisional Patent Application Ser. No. 63/192,048, filed May 23, 2021, the disclosure of which is expressly incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
63192048 | May 2021 | US |