Architectural design for internal projects application software

Information

  • Patent Grant
  • 8321831
  • Patent Number
    8,321,831
  • Date Filed
    Friday, December 30, 2005
    18 years ago
  • Date Issued
    Tuesday, November 27, 2012
    11 years ago
Abstract
Methods, systems, and apparatus, including computer program products, for implementing a software architecture design for a software application implementing an internal projects application useful for planning and executing internal projects and measures, including network scheduling, resource staffing, cost estimation and management, time confirmation, and progress monitoring. The application is structured as multiple process components interacting with each other through service interfaces, and multiple service interface operations, each being implemented for a respective process component. The process components include a Costing process component that maintains project cost estimates; an Accounting process component that records relevant business transactions; a Project Processing process component that structures, plans and executes simple, short-term measures and complex projects; and a Time and Labor Management process component that supports the definition of employees' planned working times as well as the recording of the actual working times and absences and their evaluation.
Description
TECHNICAL FIELD

The subject matter of this patent application relates to computer software architecture, and more particularly to the architecture of application software for internal projects.


BACKGROUND

Enterprise software systems are generally large and complex. Such systems can require many different components, distributed across many different hardware platforms, possibly in several different geographical locations. Thus, the architecture of a large software application, i.e., what its components are and how they fit together, is an important aspect of its design for a successful implementation.


SUMMARY

This specification presents a software architecture design for a software application.


The invention can be implemented as methods, systems, and apparatus, including computer program products, for implementing a software architecture design for a software application implementing an internal projects application useful for planning and executing internal projects and measures, including network scheduling, resource staffing, cost estimation and management, time confirmation, and progress monitoring. The application is structured as multiple process components interacting with each other through service interfaces, and multiple service interface operations, each being implemented for a respective process component. The process components include a Costing process component that maintains project cost estimates; an Accounting process component that records relevant business transactions; a Project Processing process component that structures, plans and executes simple, short-term measures and complex projects; and a Time and Labor Management process component that supports the definition of employees' planned working times as well as the recording of the actual working times and absences and their evaluation.


The subject matter described in this specification can be implemented to realize one or more of the following advantages. Effective use is made of process components as units of software reuse, to provide a design that can be implemented reliably in a cost effective way. Effective use is made of deployment units, each of which is deployable on a separate computer hardware platform independent of every other deployment unit, to provide a scalable design. Service interfaces of the process components define a pair-wise interaction between pairs of process components that are in different deployment units in a scalable way.


Details of one or more implementations of the subject matter described in this specification are set forth in the accompanying drawings and in the description below. Further features, aspects, and advantages of the subject matter will become apparent from the description, the drawings, and the claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram of a software architectural design for an internal projects software application.



FIG. 2 illustrates the elements of the architecture as they are drawn in the figures of this patent application.



FIG. 3 is a block diagram showing interactions between a Project Processing process component and an Accounting process component.



FIG. 4 is a block diagram showing interactions between a Project Processing process component and a Costing process component.



FIG. 5 is a block diagram showing interactions between a Project Processing process component and a Time and Labor Management process component.





Like reference numbers and designations in the various drawings indicate like elements.


DETAILED DESCRIPTION


FIG. 1 shows the software architectural design for an internal projects software application. The internal projects application is software that implements an end-to-end process used for planning and executing internal projects and measures, including network scheduling, resource staffing, cost estimation and management, time confirmation, and progress monitoring. Internal Projects can be used for simple, short-term measures, as well as for complex, long-term projects.


As shown in FIG. 1, the internal projects design includes three deployment units: a Financial Accounting deployment unit 102, a Project Management deployment unit 104, and a Human Capital Management deployment unit 106.


The Financial Accounting deployment unit 102 includes two process components: a Costing process component 108 and an Accounting process component 110. The Costing process component 108 is used for maintaining project cost estimates. The Accounting process component 110 records all relevant business transactions in Financial Accounting.


The Project Management deployment unit 104 includes a Project Processing process component 112. The Project Processing process component 112 is responsible for structuring, planning and executing simple, short-term measures and complex projects.


The Human Capital Management deployment unit 106 includes a Time and Labor Management process component 114. The Time and Labor Management process component 114 supports the definition of employees' planned working times as well as the recording of the actual working times and absences and their evaluation.



FIG. 2 illustrates the elements of the architecture as they are drawn in the figures of this patent application. The elements of the architecture include the business object (drawn as icon 202), the process component (drawn as icon 204), the operation (drawn as icon 206), the process agent (drawn as icon 208), the service interface or interface (drawn as icon 210), the message (drawn as icon 212), and the deployment unit (drawn as icon 214).


Not explicitly represented in the figures is a foundation layer that contains all fundamental entities that are used in multiple deployment units. These entities can be process components, business objects and reuse service components. A reuse service component is a piece of software that is reused in different transactions. A reuse service component is used by its defined interfaces, which can be, e.g., local APIs (Application Programming Interfaces) or service interfaces.


In contrast to a deployment unit, the foundation layer does not define a limit for application-defined transactions. Deployment units communicate directly with entities in the foundation layer, which communication is typically not message based. The foundation layer is active in every system instance on which the application is deployed. Business objects in the foundation layer will generally be master data objects. In addition, the foundation layer will include some business process objects that are used by multiple deployment units. Master data objects and business process objects that should be specific to a deployment unit are assigned to their respective deployment unit.


A process component of an external system is drawn as a dashed-line process component (drawn as icon 216). Such a process component is used to represent the external system in describing interactions with the external system; however, this should be understood to require no more of the external system that it be able to produce and receive messages as required by the process component that interacts with the external system.


The connector icon 218 is used to simplify the drawing of interactions between process components.


Interactions between process component pairs involving their respective business objects, process agents, operations, interfaces, and messages are described as process component interactions, which determine the interactions of a pair of process components across a deployment unit boundary, i.e., from one deployment unit to another deployment unit. Interactions between process components are indicated in FIG. 1 by directed lines (arrows). Interactions between process components within a deployment unit need not be described except to note that they exist, as these interactions are not constrained by the architectural design and can be implemented in any convenient fashion. Interactions between process components that cross a deployment unit boundary will be illustrated by the figures of this patent application; these figures will show the relevant elements associated with potential interaction between two process components, but interfaces, process agents, and business objects that are not relevant to the potential interaction will not be shown.


The architectural design is a specification of a computer software application, and elements of the architectural design can be implemented to realize a software application that implements the end-to-end process mentioned earlier. The elements of the architecture are at times described in this specification as being contained or included in other elements; for example, a process component is described as being contained in a deployment unit. It should be understood, however, that such operational inclusion can be realized in a variety of ways and is not limited to a physical inclusion of the entirety of one element in another.


The architectural elements include the business object. A business object is a representation of a type of a uniquely identifiable business entity (an object instance) described by a structural model. Processes operate on business objects.


A business object represents a specific view on some well-defined business content. A business object represents content, which a typical business user would expect and understand with little explanation. Business objects are further categorized as business process objects and master data objects. A master data object is an object that encapsulates master data (i.e., data that is valid for a period of time). A business process object, which is the kind of business object generally found in a process component, is an object that encapsulates transactional data (i.e., data that is valid for a point in time). The term business object will be used generically to refer to a business process object and a master data object, unless the context requires otherwise. Properly implemented, business objects are implemented free of redundancies.


The architectural elements also include the process component. A process component is a software package that realizes a business process and generally exposes its functionality as services. The functionality contains business transactions. A process component contains one or more semantically related business objects. Any business object belongs to no more than one process component.


Process components are modular and context-independent. That they are context-independent means that a process component is not specific to any specific application and is reusable. The process component is the smallest (most granular) element of reuse in the architecture.


The architectural elements also include the operation. An operation belongs to exactly one process component. A process component generally has multiple operations. Operations can be synchronous or asynchronous, corresponding to synchronous or asynchronous process agents, which will be described below. An operation is the smallest, separately-callable function, described by a set of data types used as input, output, and fault parameters serving as a signature.


The architectural elements also include the service interface, referred to simply as the interface. An interface is a named group of operations. Each operation belongs to exactly one interface. An interface belongs to exactly one process component. A process component might contain multiple interfaces. In one implementation, an interface contains only inbound or outbound operations, but not a mixture of both. One interface can contain both synchronous and asynchronous operations. All operations of the same type (either inbound or outbound) which belong to the same message choreography will belong to the same interface. Thus, generally, all outbound operations to the same other process component are in one interface.


The architectural elements also include the message. Operations transmit and receive messages. Any convenient messaging infrastructure can be used. A message is information conveyed from one process component instance to another, with the expectation that activity will ensue. An operation can use multiple message types for inbound, outbound, or error messages. When two process components are in different deployment units, invocation of an operation of one process component by the other process component is accomplished by an operation on the other process component sending a message to the first process component.


The architectural elements also include the process agent. Process agents do business processing that involves the sending or receiving of messages. Each operation will generally have at least one associated process agent. A process agent can be associated with one or more operations. Process agents can be either inbound or outbound, and either synchronous or asynchronous.


Asynchronous outbound process agents are called after a business object changes, e.g., after a create, update, or delete of a business object instance.


Synchronous outbound process agents are generally triggered directly by a business object.


An output process agent will generally perform some processing of the data of the business object instance whose change triggered the event. An outbound agent triggers subsequent business process steps by sending messages using well-defined outbound services to another process component, which generally will be in another deployment unit, or to an external system. An outbound process agent is linked to the one business object that triggers the agent, but it is sent not to another business object but rather to another process component. Thus, the outbound process agent can be implemented without knowledge of the exact business object design of the recipient process component.


Inbound process agents are called after a message has been received. Inbound process agents are used for the inbound part of a message-based communication. An inbound process agent starts the execution of the business process step requested in a message by creating or updating one or multiple business object instances. An inbound process agent is not the agent of a business object but of its process component. An inbound process agent can act on multiple business objects in a process component.


Synchronous agents are used when a process component requires a more or less immediate response from another process component, and is waiting for that response to continue its work.


Operations and process components are described in this specification in terms of process agents. However, in alternative implementations, process components and operations can be implemented without use of agents using other conventional techniques to perform the functions described in this specification.


The architectural elements also include the deployment unit. A deployment unit includes one or more process components that are deployed together on a single computer system platform. Conversely, separate deployment units can be deployed on separate physical computing systems. For this reason, a deployment unit boundary defines the limits of an application-defined transaction, i.e., a set of actions that have the ACID properties of atomicity, consistency, isolation, and durability. To make use of database manager facilities, the architecture requires that all operations of such a transaction be performed on one physical database; as a consequence, the processes of such a transaction must be performed by the process components of one instance of one deployment unit.


The process components of one deployment unit interact with those of another deployment unit using messages passed through one or more data communication networks or other suitable communication channels. Thus, a deployment unit deployed on a platform belonging one business can interact with a deployment unit software entity deployed on a separate platform belonging to a different and unrelated business, allowing for business-to-business communication. More than one instance of a given deployment unit can execute at the same time, on the same computing system or on separate physical computing systems. This arrangement allows the functionality offered by a deployment unit to be scaled to meet demand by creating as many instances as needed.


Since interaction between deployment units is through service operations, a deployment unit can be replaced by other another deployment unit as long as the new deployment unit supports the operations depended upon by other deployment units. Thus, while deployment units can depend on the external interfaces of process components in other deployment units, deployment units are not dependent on process component interaction within other deployment units. Similarly, process components that interact with other process components or external systems only through messages, e.g., as sent and received by operations, can also be replaced as long as the replacement supports the operations of the original.


Interactions Between Process Components “Project Processing” and “Accounting”



FIG. 3 is a block diagram showing interactions between a Project Processing process component 302 and an Accounting process component 304 in the architectural design of FIG. 1. The Project Processing process component 302 contains a Project business object 306, a Notify of Project to Accounting outbound process agent 308, and a Project Accounting Out interface 310.


The Project business object 306 represents a business operation that is characterized by a unique set of conditions on which it is based. For example, the conditions may be the targets to be met, the organizational structure, or the financial, personal, and time constraints on the project. It is structured by project elements, such as phases and tasks.


The Accounting process component 304 contains an Accounting Notification business object 312, an Accounting View on Project business object 314, a Maintain Accounting View on Project and Ledger Account inbound process agent 316, and a Project Accounting In interface 318.


The Accounting Notification business object 312 represents a common input channel for all kinds of operational business transactions into Financial Accounting that is called by operational components in order to record the business transactions in Financial Accounting. The Accounting View on Project business object 314 represents a project structure in a Financials application. This project structure consists only of elements and their characteristics with respect to Financials.


The Project business object 306 initiates project notification within the Project Processing process component 302. The Project business object 306 first sends a request to the Notify of Project to Accounting outbound process agent 308. For example, the request may be to notify accounting that a project element has been created, changed, deleted or moved. Here, the outbound process agent 308 invokes a Notify of Project operation 320 provided by the Project Accounting Out interface 310. Upon completion, the Notify of Project operation 320 transmits a Project. Accounting Notification message 322 requesting the entry in accounting to be made. For example, the message 322 may indicate that relevant changes in project elements are complete.


The Project Accounting Notification message 322 initiates accounting notification within the Accounting process component 304. The Project Accounting Notification message 322 is received by a Maintain Subledger Account operation 324 provided by the Project Accounting In interface 318. Here, the operation 324 sends a request to the Maintain Accounting View on Project and Ledger Account inbound process agent 316 to update the Accounting Notification business object 312 and show that a project has been created, changed, or deleted.


Interactions Between Process Components “Project Processing” and “Costing”



FIG. 4 is a block diagram showing interactions between a Project Processing process component 402 and a Costing process component 404 in the architectural design of FIG. 1.


The Project Processing process component 402 contains two business objects, five outbound process agents, and one interface. The business objects include: a Project business object 406 and a Project Snapshot business object 408. The outbound process agents include: a Sync Request Project Cost Estimate Simulation from Project to Costing outbound process agent 410, a Request Project Cost Estimate from Project Snapshot to Costing outbound process agent 412, a Sync Query Project Cost Estimate from Project to Costing outbound process agent 414, a Request Project Cost Estimate from Project Snapshot to Costing outbound process agent 416, and a Sync Query Project Cost Estimate from Project Snapshot to Costing outbound process agent 418. The interface is a Project Costing Out interface 420.


The Project business object 406 represents a business operation that is characterized by the unique set of conditions on which it is based. The Project Snapshot business object 408 represents a specialization of a project. It is a copy of the whole project at a certain point in time and is used for determining, for example, planned scope vs. actual scope, milestone trend analysis, or earned value analysis.


The Costing process component 404 contains two business objects, three inbound process agents, and one interface. The business objects include: a Project Cost Estimate business object 422 and an Accounting View on Project business object 424. The inbound process agents include: a Sync Simulate Project Cost Estimate inbound process agent 426, a Maintain Project Cost Estimate and Project Accounting View inbound process agent 428, and a Sync Query Project Cost Estimate inbound process agent 430. The interface is a Project Costing In interface 432.


The Project Cost Estimate business object 422 represents a listing of the project elements that incur costs. Project elements relevant to valuation include: material usage, resource usage, external/internal services and travel expenses. The Accounting View on Project business object 424 represents a project structure in a Financials application. This project structure consists only of elements and their characteristics with respect to Financials.


In the Project Processing process component 402, the Project business object 406 initiates interactions associated with projects, and the Project Snapshot business object 408 initiates interactions associated with project snapshots.


In one interaction type, the Project business object 406 first sends a request to the Sync Request Project Cost Estimate Simulation from Project to Costing outbound process agent 410. For example, the request may be to perform a synchronous project costing simulation. Here, the outbound process agent 410 invokes a synchronous Request Project Cost Estimate Simulation operation 434 provided by the Project Costing Out interface 420. Upon completion of the operation, the Request Project Cost Estimate Simulation operation 434 transmits a Project Cost Estimate Simulation Request message 436 requesting the synchronous project costing simulation be performed. Upon completion of the simulation, the Request Project Cost Estimate Simulation operation 434 receives a Project Cost Estimate Simulation Response message 438 from the Costing process component 404 containing the project costing information needed.


In another interaction type, the Project business object 406 first sends a request to the Request Project Cost Estimate from Project Snapshot to Costing outbound process agent 412. For example, the request may be to inform the costing document processing about the creation or change of project elements that are costing relevant. Here, the outbound process agent 412 invokes a Request Project Cost Estimate operation 440 provided by the Project Costing Out interface 420. Upon completion of the operation, the Request Project Cost Estimate operation 440 transmits a Project Cost Estimate Request message 442 requesting the cost estimates be maintained.


In another interaction type, the Project business object 406 first sends a request to the Sync Query Project Cost Estimate from Project to Costing outbound process agent 414. For example, the request may be to query existing project costing information. Here, the outbound process agent 414 invokes a synchronous Query Project Cost Estimate operation 444 provided by the Project Costing Out interface 420. Upon completion of the operation, the Query Project Cost Estimate operation 444 transmits a Project Cost Estimate Query message 446 requesting project costing information. After the query has been transmitted, the Query Project Cost Estimate operation 444 receives a Project Cost Estimate Response message 448 from the Costing process component 404 containing the project costing information needed.


In yet another interaction type, the Project Snapshot business object 408 first sends a request to the Request Project Cost Estimate from Project to Costing outbound process agent 416. For example, the request may be to inform the costing document processing about creation/change of project snapshot elements that are costing relevant. Here, the outbound process agent 416 invokes the Request Project Cost Estimate operation 440 provided by the Project Costing Out interface 420. Upon completion of the operation, the Request Project Cost Estimate operation 440 transmits a Project Cost Estimate Request message 442 requesting the cost estimates be maintained.


In a further interaction type, the Project Snapshot business object 408 first sends a request to the Sync Query Project Cost Estimate from Project Snapshot to Costing outbound process agent 418. For example, the request may be to query existing project costing information. Here, the outbound process 418 agent invokes the Query Project Cost Estimate operation 444 provided by the Project Costing Out interface 420. Upon completion of the operation, the Query Project Cost Estimate operation 444 transmits a Project Cost Estimate Query message 446 requesting project costing information. Upon completion of the query, the Query Project Cost Estimate operation 444 receives a Project Cost Estimate Response message 448 from the Costing process component 404 containing the project costing information needed.


In the Costing process component 404, interactions are initiated when a message is received from another process components. For example, messages may be received from the Project Processing process component 402 to simulate, maintain or query cost estimates.


In one interaction type, the Project Cost Estimate Simulation Request message 436 is received by a synchronous Simulate Project Cost Estimate operation 450 provided by the Project Costing In interface 432. Here, the operation sends a request to the Sync Simulate Project Cost Estimate inbound process agent 426, which invokes the Project Cost Estimate business object 422 to complete the operation. Upon completion of the simulation, the Simulate Project Cost Estimate operation 450 sends a response to the originating process component by transmitting the Project Cost Estimate Simulation Response message 438.


In another interaction type, the Project Cost Estimate Request message 442 is received by a Maintain Project Cost Estimate operation 452 provided by the Project Costing In interface 432. Here, the operation 452 sends a request to the Maintain Project Cost Estimate and Project Accounting View inbound process agent 428. The inbound process agent 428 invokes the Project Cost Estimate business object 422 and the Accounting View on Project business object 424 to complete the operation.


In yet another interaction type, a synchronous Query Project Cost Estimate operation 454, provided in the Project Costing In interface 432, receives the Project Cost Estimate Query message 446. Here, the operation sends a query request to the Sync Query Project Cost Estimate inbound process agent 430. The inbound process agent 430 invokes the Project Cost Estimate business object 422 to complete the operation. Upon completion of the simulation, the Query Project Cost Estimate operation 454 sends a response to the originating process component by transmitting the Project Cost Estimate Response message 448.


Interactions Between Process Components “Project Processing” and “Time and Labor Management”



FIG. 5 is a block diagram showing interactions between a Project Processing process component 502 and a Time and Labor Management process component 504 in the architectural design of FIG. 1.


The Project Processing process component 502 contains a Project business object 506, a Notify of Project to Time and Labor Management outbound process agent 508, a Change Project based on Employee Time Calendar inbound process agent 510, a Project Task Confirmation Out interface 512, and a Project Task Confirmation In interface 514.


The Project business object 506 represents a business operation that is characterized by the unique set of conditions on which it is based: the targets to be met, the organizational structure, and the financial, personal, and time constraints on the project, for example. It is structured by project elements, such as phases and tasks.


The Time and Labor Management process component 504 contains an Employee Time Confirmation View On Project business object 516, an Employee Time Calendar business object 518, a Maintain Employee Time Confirmation View on Project inbound process agent 520, a Notify of Project Task Confirmation from Employee Time Calendar to Project Processing outbound process agent 522, a Project Task Confirmation In interface 524, and a Project Task Confirmation Out interface 526.


The Employee Time Confirmation View On Project business object 516 represents a view on a project, adapted for the confirmation of employee times. The Employee Time Calendar business object 518 represents a calendar-based overview of different time data (planned working time, absences and working time confirmations) of an employee and the employee's superpositions (illness vs. vacation, for example).


In the Project Processing process component 502, interactions may be initiated when a message is received or when a business object requests a notification.


In one interaction type, the Project business object 506 first sends a request to the Notify of Project to Time and Labor Management outbound process agent 508. For example, the request may be to notify time labor management of an employee's time on a project. Here, the outbound process agent 508 invokes a Notify of Project operation 528 provided by the Project Task Confirmation Out interface 512. Upon completion of the operation, the Notify of Project operation 528 transmits an Employee Time Confirmation View on Project Notification message 530 requesting the project notification be made to time and labor management.


In another interaction type, a Project Task Confirmation Notification message 532 received from the Time and Labor Management process component 504 may initiate interaction. The Project Task Confirmation Notification message 532 is received by a Change Project based on Employee Time Calendar operation 534 provided by the Project Task Confirmation In interface 514. Here, the operation sends a request to the Change Project based on Employee Time Calendar inbound process agent 510. The inbound process agent 510 invokes the Project business object 506 to complete the operation. For example, the project is updated with the working times and additional information such as status, short text, remaining work, etc.


In the Time and Labor Management process component 504, interactions may be initiated when a message is received or when a business object requests a notification.


In one interaction type, the Employee Time Confirmation View on Project Notification message 530 is received from the Project Processing process component 502. The Employee Time Confirmation View on Project Notification message 530 is received by a Maintain Employee Time Confirmation View On Project operation 536 provided by the Project Task Confirmation In interface 524. Here, the operation sends a request to the Maintain Employee Time Confirmation View on Project inbound process agent 520. The inbound process agent 520 invokes the Employee Time Confirmation View On Project business object 516 to complete the operation. For example, the project is updated with the working times and additional information such as status, short text, remaining work, etc.


In another interaction type, the Employee Time Calendar business object 518 first sends a request to the Notify of Project Task Confirmation from Emp Time Calendar to Project Processing outbound process agent 522. For example, the request may be to provide an employee's time calendar to project processing. Here, the outbound process agent 522 invokes a Notify of Project Task Confirmation operation 538 provided by the Project Task Confirmation Out interface 526. Upon completion of the operation, the Notify of Project Task Confirmation operation 538 transmits a Project Task Confirmation Notification message 532 notifying project processing of a project task confirmation or a project task status change. This notification is sent when an active employee time with project relevant information is created, changed or cancelled.


The subject matter described in this specification and all of the functional operations described in this specification can be implemented in digital electronic circuitry, or in computer software, firmware, or hardware, including the structural means disclosed in this specification and structural equivalents thereof, or in combinations of them. The subject matter described in this specification can be implemented as one or more computer program products, i.e., one or more computer programs tangibly embodied in an information carrier, e.g., in a machine-readable storage device or in a propagated signal, for execution by, or to control the operation of, data processing apparatus, e.g., a programmable processor, a computer, or multiple computers. A computer program (also known as a program, software, software application, or code) can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program does not necessarily correspond to a file. A program can be stored in a portion of a file that holds other programs or data, in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, sub-programs, or portions of code). A computer program can be deployed to be executed on one computer or on multiple computers at one site or distributed across multiple sites and interconnected by a communication network.


The processes and logic flows described in this specification can be performed by one or more programmable processors executing one or more computer programs to perform functions by operating on input data and generating output. The processes and logic flows can also be performed by, and apparatus can also be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application-specific integrated circuit).


Processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer. Generally, a processor will receive instructions and data from a read-only memory or a random access memory or both. The essential elements of a computer are a processor for executing instructions and one or more memory devices for storing instructions and data. Generally, a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto-optical disks, or optical disks. Information carriers suitable for embodying computer program instructions and data include all forms of non-volatile memory, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto-optical disks; and CD-ROM and DVD-ROM disks. The processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.


To provide for interaction with a user, the subject matter described in this specification can be implemented on a computer having a display device, e.g., a CRT (cathode ray tube) or LCD (liquid crystal display) monitor, for displaying information to the user and a keyboard and a pointing device, e.g., a mouse or a trackball, by which the user can provide input to the computer. Other kinds of devices can be used to provide for interaction with a user as well; for example, feedback provided to the user can be any form of sensory feedback, e.g., visual feedback, auditory feedback, or tactile feedback; and input from the user can be received in any form, including acoustic, speech, or tactile input.


The subject matter described in this specification can be implemented in a computing system that includes a back-end component (e.g., a data server), a middleware component (e.g., an application server), or a front-end component (e.g., a client computer having a graphical user interface or a Web browser through which a user can interact with an implementation of the subject matter described herein), or any combination of such back-end, middleware, and front-end components. The components of the system can be interconnected by any form or medium of digital data communication, e.g., a communication network. Examples of communication networks include a local area network (“LAN”) and a wide area network (“WAN”), e.g., the Internet.


The computing system can include clients and servers. A client and server are generally remote from each other and typically interact through a communication network. The relationship of client and server arises by virtue of computer programs running on the respective computers and having a client-server relationship to each other.


While this specification contains many specifics, these should not be construed as limitations on the scope of the invention or of what may be claimed, but rather as an exemplification of preferred embodiments of the invention. Certain features that are described in this specification in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be provided in multiple embodiments separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.


The subject matter has been described in terms of particular variations, but other variations can be implemented and are within the scope of the following claims. For example, the actions recited in the claims can be performed in a different order and still achieve desirable results. As one example, the processes depicted in the accompanying figures do not necessarily require the particular order shown, or sequential order, to achieve desirable results. In certain implementations, multitasking and parallel processing may be advantageous. Other variations are within the scope of the following claims.

Claims
  • 1. A computer program product comprising instructions encoded on a non-transitory tangible machine readable storage medium, the instructions being structured as process components interacting with each other through service interfaces, the instructions operable when executed by at least one processor to: define a plurality of process components, each of the process components comprising a modular and application-independent package of reusable granular software implementing a respective and distinct business process, the business process comprising functionality exposed by the process component via a corresponding service interface, the plurality of process components including: a Costing process component that maintains project cost estimates;an Accounting process component that records relevant business transactions;a Project Processing process component that structures, plans and executes simple, short-term measures and complex projects; anda Time and Labor Management process component that supports a definition of employees' planned working times as well as a recording of actual working times and absences and their evaluation;define a plurality of service interfaces, each service interface associated with exactly one process component and comprising at least one operation, each operation being implemented for exactly one process component, the operations comprising inbound and outbound operations, the outbound operation for a first process component being operable to send a message to a second process component of the plurality of process components, the second process component having an inbound operation for receiving the message, the sending and receiving of messages between an inbound and an outbound operation defining a message based pair-wise interaction between the respective process components of the respective operations, the pair-wise interactions between pairs of the process components including interactions between: the Project Processing process component and the Accounting process component, where the pair-wise interaction between the Project Processing process component and the Accounting process component includes the transmission of: a project accounting notification message from the Project Processing process component to the Accounting process component, the project accounting notification message comprising a request to notify accounting that a project element within the Project Processing process component has been created, changed, deleted, or moved;the Project Processing process component and the Costing process component, where the pair-wise interaction between the Project Processing process component and the Costing process component includes the transmission of: a project cost estimate simulation request message from the Project Processing process component to the Costing process component, the project cost estimate simulation request message comprising a request to the Costing process component to perform a synchronous costing simulation;a project cost estimate simulation response message from the Costing process component to the Project Processing process component, the project cost estimate simulation response message comprising a set of project costing information associated with a project cost estimate simulation request message;a project cost estimate request message from the Project Processing process component to the Costing process component, the project cost estimate request message comprising a set of information from the Project Processing process component to be sent to the Costing process component regarding a creation or change of at least one project snapshot element relevant to the Costing process component; andthe Project Processing process component and the Time and Labor Management process component, where the pair-wise interaction between the Project Processing process component and the Time and Labor Management process component includes the transmission of: an employee time confirmation view on project notification message from the Project Processing process component to the Time and Labor Management process component, the employee time confirmation view on project notification message comprising a request to notify the Time and Labor Management process component of an employee's time on a project; anda project task confirmation notification message from the Time and Labor Management process component to the Project Processing process component, the project task confirmation notification message comprising a notification to the Project Processing process component of a project task confirmation or a project task status change; andstore the defined process components and service interface in memory.
  • 2. The computer program product of claim 1, wherein: each of the plurality of process components is assigned to exactly one deployment unit among multiple deployment units, and each deployment unit is deployable on a separate computer hardware platform independent of every other deployment unit; andall interaction between a process component in one deployment unit and any other process component in any other deployment unit takes place through the respective service interfaces of the two process components.
  • 3. The computer program product of claim 2, wherein the deployment units comprise: a Financial Accounting deployment unit that includes the Costing process component and the Accounting process component;a Project Management deployment unit that includes the Project Processing process component; anda Human Capital Management deployment unit that includes the Time and Labor Management process component.
  • 4. The computer program product of claim 1, wherein: each of the process components includes at least one business object; andnone of the business objects of any one of the process components interacts directly with any of the business objects included in any of the other process components.
  • 5. The computer program product of claim 4, wherein the at least one business object comprises a business process object.
  • 6. The computer program product of claim 4, wherein: none of the business objects included in any one of the process components is included in any of the other process components.
  • 7. The computer program product of claim 1, further comprising: a plurality of process agents, each process agent being either an inbound process agent or an outbound process agent, each inbound process agent being operable to receive at least one message from an inbound operation, each outbound process agent being operable to cause an outbound operation to send at least one message, each process agent being associated with exactly one process component.
  • 8. The computer program product of claim 7, wherein: the inbound process agent comprises a first inbound process agent operable to start an execution of a step requested in a first inbound message by creating or updating at least one business object instance.
  • 9. The computer program product of claim 7, wherein: the outbound process agent comprises a first asynchronous outbound process agent that is called after a business object that is associated with a first outbound process agent changes.
  • 10. The computer program product of claim 1, wherein the operations comprise synchronous and asynchronous operations.
  • 11. A system, comprising: a computer system comprising at least one hardware platform for executing computer instructions, the computer instructions structured as a plurality of process components interacting with each other through service interfaces, each hardware platform including at least one processor for executing the computer instructions;memory storing a plurality of process components executable by the respective processor of the particular hardware platform, each of the process components comprising a modular and application-independent package of reusable granular software implementing a respective and distinct business process, the business process comprising functionality exposed by the process component via at least one service interface, the plurality of process components including: a Costing process component that maintains project cost estimates;an Accounting process component that records relevant business transactions;a Project Processing process component that structures, plans and executes simple, short-term measures and complex projects; anda Time and Labor Management process component that supports a definition of employees' planned working times as well as a recording of actual working times and absences and their evaluation; andthe memory further storing a plurality of service interfaces, each service interface associated with exactly one process component and comprising at least one operation, each operation being implemented for exactly one process component, the operations comprising inbound and outbound operations, the outbound operation for a first process component being operable to send a message to a second process component of the plurality of process components, the second process component having an inbound operation for receiving the message, the sending and receiving of messages between the inbound and outbound operations defining a message based pair-wise interaction between the respective process components of the respective operations, the pair-wise interaction between pairs of the process components including interactions between: the Project Processing process component and the Accounting process component, where the pair-wise interaction between the Project Processing process component and the Accounting process component includes the transmission of: a project accounting notification message from the Project Processing process component to the Accounting process component, the project accounting notification message comprising a request to notify accounting that a project element within the Project Processing process component has been created, changed, deleted, or moved;the Project Processing process component and the Costing process component, where the pair-wise interaction between the Project Processing process component and the Costing process component includes the transmission of: a project cost estimate simulation request message from the Project Processing process component to the Costing process component, the project cost estimate simulation request message comprising a request to the Costing process component to perform a synchronous costing simulation;a project cost estimate simulation response message from the Costing process component to the Project Processing process component, the project cost estimate simulation response message comprising a set of project costing information associated with a project cost estimate simulation request message;a project cost estimate request message from the Project Processing process component to the Costing process component, the project cost estimate request message comprising a set of information from the Project Processing process component to be sent to the Costing process component regarding a creation or change of at least one project snapshot element relevant to the Costing process component; andthe Project Processing process component and the Time and Labor Management process component, where the pair-wise interaction between the Project Processing process component and the Time and Labor Management process component includes the transmission of: an employee time confirmation view on project notification message from the Project Processing process component to the Time and Labor Management process component, the employee time confirmation view on project notification message comprising a request to notify the Time and Labor Management process component of an employee's time on a project; anda project task confirmation notification message from the Time and Labor Management process component to the Project Processing process component, the project task confirmation notification message comprising a notification to the Project Processing process component of a project task confirmation or a project task status change.
  • 12. The system of claim 11, wherein: each of the process components includes at least one business object; andnone of the business objects of any one of the process components interacts directly with any of the business objects included in any of the other process components.
  • 13. The system of claim 11, wherein: each of the process components includes at least one business object; andnone of the business objects included in any one of the process components is included in any of the other process components.
  • 14. The system of claim 11, wherein: a plurality of process agents, each process agent being either an inbound process agent or an outbound process agent, each inbound process agent being operable to receive at least one message from an inbound operation, each outbound process agent being operable to cause an outbound operation to send at least one message, and each process agent being associated with exactly one process component.
  • 15. The system of claim 11, the system comprising multiple hardware platforms, wherein: the Costing process component and the Accounting process component are deployed on a first hardware platform;the Project Processing process component is deployed on a second hardware platform; andthe Time and Labor Management process component is deployed on a third hardware platform.
  • 16. The system of claim 15, wherein each of the first through the third hardware platforms are distinct and separate from each other.
  • 17. A computer-implemented method for developing a computer software application, the method comprising the following steps performed by at least one processor: obtaining, in a programmable computer system having at least one processor, a storage medium, and an interface, digital data representing an architectural design for a set of processes implementing an end-to-end application process, the design specifying a process component for each process in the set of processes, each of the process components comprising a modular and application-independent package of reusable granular software implementing a respective and distinct business process, the business process comprising functionality exposed by the process component, the design further specifying a set of process component interactions based on messages transmitted between two or more process components, wherein the specified process components include: a Costing process component that maintains project cost estimates; an Accounting process component that records relevant business transactions;a Project Processing process component that structures, plans and executes simple, short-term measures and complex projects; anda Time and Labor Management process component that supports a definition of employees' planned working times as well as a recording of actual working times and absences and their evaluation; andthe process component interactions include interactions between the Project Processing process component and the Accounting process component, where the interactions between the Project Processing process component and the Accounting process component includes the transmission of: a project accounting notification message from the Project Processing process component to the Accounting process component, the project accounting notification message comprising a request to notify accounting that a project element within the Project Processing process component has been created, changed, deleted, or moved;the Project Processing process component and the Costing process component, where the interactions between the Project Processing process component and the Costing process component includes the transmission of: a project cost estimate simulation request message from the Project Processing process component to the Costing process component, the project cost estimate simulation request message comprising a request to the Costing process component to perform a synchronous costing simulation;a project cost estimate simulation response message from the Costing process component to the Project Processing process component, the project cost estimate simulation response message comprising a set of project costing information associated with a project cost estimate simulation request message;a project cost estimate request message from the Project Processing process component to the Costing process component, the project cost estimate request message comprising a set of information from the Project Processing process component to be sent to the Costing process component regarding a creation or change of at least one project snapshot element relevant to the Costing process component; andthe Project Processing process component and the Time and Labor Management process component, where the interactions between the Project Processing process component and the Time and Labor Management process component includes the transmission of: an employee time confirmation view on project notification message from the Project Processing process component to the Time and Labor Management process component, the employee time confirmation view on project notification message comprising a request to notify the Time and Labor Management process component of an employee's time on a project; anda project task confirmation notification message from the Time and Labor Management process component to the Project Processing process component, the project task confirmation notification message comprising a notification to the Project Processing process component of a project task confirmation or a project task status change; andgenerating, using the at least one processor on the computer system, a computer software application to perform the set of processes based on the obtained design including the specified process components and the specified process component interactions.
  • 18. The method of claim 17, wherein: each process in the set of processes is a business process transforming a defined business input into a defined business outcome.
  • 19. The method of claim 18, wherein: obtaining digital data representing the architectural design further comprises editing the design before using the design.
US Referenced Citations (376)
Number Name Date Kind
4947321 Spence et al. Aug 1990 A
5361198 Harmon et al. Nov 1994 A
5550734 Tarter et al. Aug 1996 A
5560005 Hoover et al. Sep 1996 A
5566097 Myers et al. Oct 1996 A
5586312 Johnson et al. Dec 1996 A
5590277 Fuchs et al. Dec 1996 A
5632022 Warren et al. May 1997 A
5634127 Cloud et al. May 1997 A
5680619 Gudmundson et al. Oct 1997 A
5704044 Tarter et al. Dec 1997 A
5710917 Musa et al. Jan 1998 A
5768119 Havekost et al. Jun 1998 A
5822585 Nobel et al. Oct 1998 A
5832218 Gibbs et al. Nov 1998 A
5848291 Milne et al. Dec 1998 A
5867495 Elliott et al. Feb 1999 A
5870588 Rompaey et al. Feb 1999 A
5881230 Christensen et al. Mar 1999 A
5893106 Brobst et al. Apr 1999 A
5898872 Richley Apr 1999 A
5918219 Isherwood Jun 1999 A
5987247 Lau Nov 1999 A
5991536 Brodsky et al. Nov 1999 A
H1830 Petrimoulx et al. Jan 2000 H
6028997 Leymann et al. Feb 2000 A
6038393 Iyengar et al. Mar 2000 A
6049838 Miller et al. Apr 2000 A
6067559 Allard et al. May 2000 A
6070197 Cobb et al. May 2000 A
6112024 Almond et al. Aug 2000 A
6151582 Huang et al. Nov 2000 A
6167563 Fontana et al. Dec 2000 A
6167564 Fontana et al. Dec 2000 A
6177932 Galdes et al. Jan 2001 B1
6182133 Horvitz Jan 2001 B1
6192390 Berger et al. Feb 2001 B1
6208345 Sheard et al. Mar 2001 B1
6237136 Sadhiro May 2001 B1
6272672 Conway Aug 2001 B1
6311170 Embrey Oct 2001 B1
6338097 Krenzke et al. Jan 2002 B1
6424991 Gish Jul 2002 B1
6434740 Monday et al. Aug 2002 B1
6442748 Bowman-Amuah Aug 2002 B1
6445782 Elfe et al. Sep 2002 B1
6446045 Stone et al. Sep 2002 B1
6446092 Sutter Sep 2002 B1
6473794 Guheen et al. Oct 2002 B1
6493716 Azagury et al. Dec 2002 B1
6571220 Ogino et al. May 2003 B1
6601233 Underwood Jul 2003 B1
6601234 Bowman-Amuah Jul 2003 B1
6606744 Mikurak Aug 2003 B1
6609100 Smith et al. Aug 2003 B2
6640238 Bowman-Amuah Oct 2003 B1
6671673 Baseman et al. Dec 2003 B1
6678882 Hurley et al. Jan 2004 B1
6687734 Sellink et al. Feb 2004 B1
6691151 Cheyer et al. Feb 2004 B1
6721783 Blossman et al. Apr 2004 B1
6738964 Zink et al. May 2004 B1
6747679 Finch et al. Jun 2004 B1
6750885 Finch et al. Jun 2004 B1
6757837 Platt et al. Jun 2004 B1
6764009 Melick et al. Jul 2004 B2
6772216 Ankireddipally et al. Aug 2004 B1
6782536 Moore et al. Aug 2004 B2
6789252 Burke et al. Sep 2004 B1
6845499 Srivastava et al. Jan 2005 B2
6847854 Discenzo Jan 2005 B2
6859931 Cheyer et al. Feb 2005 B1
6889197 Lidow May 2005 B2
6889375 Chan et al. May 2005 B1
6895438 Ulrich May 2005 B1
6898783 Gupta et al. May 2005 B1
6904399 Cooper et al. Jun 2005 B2
6907395 Hunt et al. Jun 2005 B1
6954736 Menninger et al. Oct 2005 B2
6985939 Fletcher et al. Jan 2006 B2
6990466 Hu Jan 2006 B1
7003474 Lidow Feb 2006 B2
7031998 Archbold Apr 2006 B2
7043448 Campbell May 2006 B2
7047518 Little et al. May 2006 B2
7050056 Meyringer May 2006 B2
7050873 Discenzo May 2006 B1
7055136 Dzoba et al. May 2006 B2
7058587 Horne Jun 2006 B1
7069536 Yaung Jun 2006 B2
7072855 Godlewski et al. Jul 2006 B1
7076766 Wirts et al. Jul 2006 B2
7100195 Underwood Aug 2006 B1
7103873 Tanner et al. Sep 2006 B2
7117447 Cobb et al. Oct 2006 B2
7120597 Knudtzon et al. Oct 2006 B1
7120896 Budhiraja et al. Oct 2006 B2
7131069 Rush et al. Oct 2006 B1
7149887 Morrison et al. Dec 2006 B2
7155403 Cirulli et al. Dec 2006 B2
7155409 Stroh Dec 2006 B1
7181694 Reiss et al. Feb 2007 B2
7184964 Wang Feb 2007 B2
7194431 Land et al. Mar 2007 B1
7197740 Beringer et al. Mar 2007 B2
7200569 Gallagher et al. Apr 2007 B2
7206768 deGroeve et al. Apr 2007 B1
7213232 Knowles May 2007 B1
7216091 Blandina et al. May 2007 B1
7219107 Beringer May 2007 B2
7222786 Renz et al. May 2007 B2
7225240 Fox et al. May 2007 B1
7249044 Kumar et al. Jul 2007 B2
7257254 Tunney Aug 2007 B2
7283973 Loghmani et al. Oct 2007 B1
7293254 Bloesch et al. Nov 2007 B2
7299970 Ching Nov 2007 B1
7315830 Wirtz et al. Jan 2008 B1
7322024 Carlson et al. Jan 2008 B2
7324966 Scheer Jan 2008 B2
7353180 Silverstone et al. Apr 2008 B1
7356492 Hazi et al. Apr 2008 B2
7367011 Ramsey et al. Apr 2008 B2
7370315 Lovell et al. May 2008 B1
7376601 Aldridge May 2008 B1
7376604 Butcher May 2008 B1
7376632 Sadek et al. May 2008 B1
7383201 Matsuzaki et al. Jun 2008 B2
7386833 Granny et al. Jun 2008 B2
7406716 Kanamori et al. Jul 2008 B2
7415697 Houlding Aug 2008 B1
7418409 Goel Aug 2008 B1
7418424 Martin et al. Aug 2008 B2
7424701 Kendall et al. Sep 2008 B2
7433979 Need Oct 2008 B2
7448022 Ram et al. Nov 2008 B1
7451432 Shukla et al. Nov 2008 B2
7460654 Jenkins et al. Dec 2008 B1
7461030 Hibler et al. Dec 2008 B2
7469233 Shooks et al. Dec 2008 B2
7516088 Johnson et al. Apr 2009 B2
7523054 Tyson-Quah Apr 2009 B2
7529699 Fuse et al. May 2009 B2
7536325 Randell et al. May 2009 B2
7536354 deGroeve et al. May 2009 B1
7546520 Davidson et al. Jun 2009 B2
7546575 Dillman et al. Jun 2009 B1
7565640 Shukla et al. Jul 2009 B2
7574694 Mangan et al. Aug 2009 B2
7624371 Kulkarni et al. Nov 2009 B2
7631291 Shukla et al. Dec 2009 B2
7640195 Von Zimmermann et al. Dec 2009 B2
7640291 Maturana et al. Dec 2009 B2
7644390 Khodabandehloo et al. Jan 2010 B2
7657406 Tolone et al. Feb 2010 B2
7657445 Goux Feb 2010 B1
7665083 Demant et al. Feb 2010 B2
7668761 Jenkins et al. Feb 2010 B2
7672888 Allin et al. Mar 2010 B2
7681176 Wills et al. Mar 2010 B2
7693586 Dumas et al. Apr 2010 B2
7703073 Illowsky et al. Apr 2010 B2
7739160 Ryan et al. Jun 2010 B1
7742985 Digrigoli et al. Jun 2010 B1
7747980 Illowsky et al. Jun 2010 B2
7765156 Staniar et al. Jul 2010 B2
7765521 Bryant Jul 2010 B2
7788145 Wadawadigi et al. Aug 2010 B2
7788319 Schmidt Aug 2010 B2
7793256 Charisius et al. Sep 2010 B2
7793258 Sundararajan et al. Sep 2010 B2
7797698 Diament et al. Sep 2010 B2
7805365 Slavin et al. Sep 2010 B1
7814142 Mamou et al. Oct 2010 B2
7822682 Arnold et al. Oct 2010 B2
7835971 Stockton et al. Nov 2010 B2
7886041 Outhred et al. Feb 2011 B2
7895568 Goodwin et al. Feb 2011 B1
7904350 Ayala et al. Mar 2011 B2
7912755 Perry et al. Mar 2011 B2
7917889 Devarakonda et al. Mar 2011 B2
7925985 Moore Apr 2011 B2
8001519 Conallen et al. Aug 2011 B2
8010938 Elaasar Aug 2011 B2
8051332 Zakonov et al. Nov 2011 B2
8091065 Mir et al. Jan 2012 B2
8112738 Pohl et al. Feb 2012 B2
20010052108 Bowman-Amuah Dec 2001 A1
20020026394 Savage et al. Feb 2002 A1
20020042756 Kumar et al. Apr 2002 A1
20020049622 Lettich et al. Apr 2002 A1
20020069144 Palardy Jun 2002 A1
20020073114 Nicastro et al. Jun 2002 A1
20020078046 Uluakar et al. Jun 2002 A1
20020082892 Raffel et al. Jun 2002 A1
20020103660 Cramon et al. Aug 2002 A1
20020104071 Charisius et al. Aug 2002 A1
20020107826 Ramachandran et al. Aug 2002 A1
20020120553 Bowman-Amuah Aug 2002 A1
20020133368 Strutt et al. Sep 2002 A1
20020138281 Cirulli et al. Sep 2002 A1
20020138358 Scheer Sep 2002 A1
20020143598 Scheer Oct 2002 A1
20020156695 Edwards Oct 2002 A1
20020161907 Moon Oct 2002 A1
20020184111 Swanson Dec 2002 A1
20020188486 Gil et al. Dec 2002 A1
20020198798 Ludwig et al. Dec 2002 A1
20020198828 Ludwig et al. Dec 2002 A1
20030009754 Rowley et al. Jan 2003 A1
20030058277 Bowman-Amuah Mar 2003 A1
20030069774 Hoffman et al. Apr 2003 A1
20030074271 Viswanath et al. Apr 2003 A1
20030074360 Chen et al. Apr 2003 A1
20030083762 Farrah et al. May 2003 A1
20030084127 Budhiraja et al. May 2003 A1
20030101112 Gallagher et al. May 2003 A1
20030130860 Datta et al. Jul 2003 A1
20030182206 Hendrix et al. Sep 2003 A1
20030212602 Schaller Nov 2003 A1
20030233290 Yang et al. Dec 2003 A1
20040015367 Nicastro et al. Jan 2004 A1
20040034578 Oney et al. Feb 2004 A1
20040054564 Fonseca et al. Mar 2004 A1
20040093268 Ramchandani et al. May 2004 A1
20040093381 Hodges et al. May 2004 A1
20040111304 Meka et al. Jun 2004 A1
20040111639 Schwartz et al. Jun 2004 A1
20040128180 Abel et al. Jul 2004 A1
20040133481 Schwarze et al. Jul 2004 A1
20040153359 Ho et al. Aug 2004 A1
20040158506 Wille Aug 2004 A1
20040172510 Nagashima et al. Sep 2004 A1
20040181470 Grounds Sep 2004 A1
20040181538 Lo et al. Sep 2004 A1
20040205011 Northington et al. Oct 2004 A1
20040236639 Candadai et al. Nov 2004 A1
20040236687 Tyson-Quah Nov 2004 A1
20040243489 Mitchell et al. Dec 2004 A1
20040254866 Crumbach et al. Dec 2004 A1
20040255152 Kanamori et al. Dec 2004 A1
20050010501 Ward Jan 2005 A1
20050033588 Ruiz et al. Feb 2005 A1
20050044015 Bracken et al. Feb 2005 A1
20050060235 Byrne Mar 2005 A2
20050060408 McIntyre et al. Mar 2005 A1
20050065828 Kroswek et al. Mar 2005 A1
20050108680 Cheng et al. May 2005 A1
20050113092 Coppinger et al. May 2005 A1
20050114829 Robin et al. May 2005 A1
20050125310 Hazi et al. Jun 2005 A1
20050144125 Erbey et al. Jun 2005 A1
20050144226 Purewal Jun 2005 A1
20050156500 Birecki et al. Jul 2005 A1
20050160104 Meera et al. Jul 2005 A1
20050165784 Gomez et al. Jul 2005 A1
20050177435 Lidow Aug 2005 A1
20050203760 Gottumukkala et al. Sep 2005 A1
20050203813 Welter et al. Sep 2005 A1
20050209732 Audimoolam et al. Sep 2005 A1
20050209943 Ballow et al. Sep 2005 A1
20050216325 Ziad et al. Sep 2005 A1
20050216507 Wright Sep 2005 A1
20050222896 Rhyne et al. Oct 2005 A1
20050234787 Wallmeier et al. Oct 2005 A1
20050235020 Gabelmann et al. Oct 2005 A1
20050240592 Mamou et al. Oct 2005 A1
20050246250 Murray Nov 2005 A1
20050246482 Gabelmann et al. Nov 2005 A1
20050256775 Schapler et al. Nov 2005 A1
20050256882 Able et al. Nov 2005 A1
20050257125 Roesner et al. Nov 2005 A1
20050257197 Herter et al. Nov 2005 A1
20050262192 Mamou et al. Nov 2005 A1
20050262453 Massasso Nov 2005 A1
20050284934 Ernesti et al. Dec 2005 A1
20050288987 Sattler et al. Dec 2005 A1
20050289020 Bruns et al. Dec 2005 A1
20050289079 Krishan et al. Dec 2005 A1
20060004802 Phillips et al. Jan 2006 A1
20060053063 Nagar Mar 2006 A1
20060064344 Lidow Mar 2006 A1
20060074704 Shukla et al. Apr 2006 A1
20060074731 Green et al. Apr 2006 A1
20060080338 Seubert et al. Apr 2006 A1
20060085243 Cooper et al. Apr 2006 A1
20060085294 Boerner et al. Apr 2006 A1
20060085336 Seubert et al. Apr 2006 A1
20060089886 Wong Apr 2006 A1
20060095439 Buchmann et al. May 2006 A1
20060129978 Abrari et al. Jun 2006 A1
20060143029 Akbay et al. Jun 2006 A1
20060149574 Bradley et al. Jul 2006 A1
20060206352 Pulianda Sep 2006 A1
20060248504 Hughes Nov 2006 A1
20060274720 Adams et al. Dec 2006 A1
20060287939 Harel et al. Dec 2006 A1
20060288350 Grigorovitch et al. Dec 2006 A1
20070011650 Hage et al. Jan 2007 A1
20070022410 Ban et al. Jan 2007 A1
20070050308 Latvala et al. Mar 2007 A1
20070075916 Bump et al. Apr 2007 A1
20070094098 Mayer et al. Apr 2007 A1
20070094261 Phelan et al. Apr 2007 A1
20070129964 Helmolt et al. Jun 2007 A1
20070129984 von Helmolt et al. Jun 2007 A1
20070129985 Helmolt et al. Jun 2007 A1
20070143164 Kaila et al. Jun 2007 A1
20070150332 Grichnik et al. Jun 2007 A1
20070150387 Seubert et al. Jun 2007 A1
20070150855 Jeong Jun 2007 A1
20070156428 Brecht-Tillinger et al. Jul 2007 A1
20070156430 Kaetker et al. Jul 2007 A1
20070156474 Scherberger et al. Jul 2007 A1
20070156475 Berger et al. Jul 2007 A1
20070156476 Koegler et al. Jul 2007 A1
20070156482 Bagheri Jul 2007 A1
20070156489 Berger et al. Jul 2007 A1
20070156493 Tebbe et al. Jul 2007 A1
20070156499 Berger et al. Jul 2007 A1
20070156500 Merkel et al. Jul 2007 A1
20070156538 Peter et al. Jul 2007 A1
20070156550 Der Emde et al. Jul 2007 A1
20070156731 Ben-Zeev Jul 2007 A1
20070162893 Moosmann et al. Jul 2007 A1
20070164849 Haeberle et al. Jul 2007 A1
20070168303 Moosmann et al. Jul 2007 A1
20070174068 Alfandary et al. Jul 2007 A1
20070174145 Hetzer et al. Jul 2007 A1
20070174811 Kaetker et al. Jul 2007 A1
20070186209 Kaetker et al. Aug 2007 A1
20070197877 Decorte et al. Aug 2007 A1
20070198391 Dreyer et al. Aug 2007 A1
20070214065 Kahlon et al. Sep 2007 A1
20070220046 Moosmann et al. Sep 2007 A1
20070220143 Lund et al. Sep 2007 A1
20070233539 Suenderhauf et al. Oct 2007 A1
20070233541 Schorr et al. Oct 2007 A1
20070233545 Cala et al. Oct 2007 A1
20070233574 Koegler et al. Oct 2007 A1
20070233575 Berger et al. Oct 2007 A1
20070233581 Peter Oct 2007 A1
20070233598 Der Emde et al. Oct 2007 A1
20070234282 Prigge et al. Oct 2007 A1
20070239508 Fazal et al. Oct 2007 A1
20070239569 Lucas et al. Oct 2007 A1
20070265860 Herrmann et al. Nov 2007 A1
20070265862 Freund et al. Nov 2007 A1
20080004929 Raffel et al. Jan 2008 A9
20080017722 Snyder et al. Jan 2008 A1
20080027831 Gerhardt Jan 2008 A1
20080065437 Dybvig Mar 2008 A1
20080120129 Seubert et al. May 2008 A1
20080147507 Langhammer Jun 2008 A1
20080162382 Clayton et al. Jul 2008 A1
20080208707 Erbey et al. Aug 2008 A1
20080215354 Halverson et al. Sep 2008 A1
20080263152 Daniels et al. Oct 2008 A1
20080300959 Sinha et al. Dec 2008 A1
20090037287 Baitalmal et al. Feb 2009 A1
20090037492 Baitalmal et al. Feb 2009 A1
20090063112 Hader et al. Mar 2009 A1
20090171716 Suenderhauf et al. Jul 2009 A1
20090171818 Penning et al. Jul 2009 A1
20090172699 Jungkind et al. Jul 2009 A1
20090189743 Abraham et al. Jul 2009 A1
20090192858 Johnson Jul 2009 A1
20100070324 Bock et al. Mar 2010 A1
20100070331 Koegler et al. Mar 2010 A1
20100070336 Koegler et al. Mar 2010 A1
20100070391 Storr et al. Mar 2010 A1
20100070395 Elkeles et al. Mar 2010 A1
20100070555 Duparc et al. Mar 2010 A1
20100100464 Ellis et al. Apr 2010 A1
20100138269 Cirpus et al. Jun 2010 A1
20110252395 Charisius et al. Oct 2011 A1
Foreign Referenced Citations (3)
Number Date Country
0023874 Apr 2000 WO
WO 2004083984 Sep 2004 WO
WO 2005114381 Dec 2005 WO
Related Publications (1)
Number Date Country
20070156490 A1 Jul 2007 US