The invention relates to an architecture of a propulsion system of a multi-engine helicopter, in particular a twin-engine or three-engine helicopter, and to a helicopter comprising a propulsion system that has such an architecture.
As is known, a twin-engine or three-engine helicopter has a propulsion system comprising two or three turboshaft engines, each turboshaft engine comprising a gas generator and a free turbine which is rotated by the gas generator and is rigidly connected to an output shaft. The output shaft of each free turbine is suitable for inducing the movement of a power transmission gearbox, which itself drives the rotor of the helicopter.
It is known that, when the helicopter is in a cruise flight situation (that is, when it is progressing in normal conditions, during all flight phases, except for transitional phases of take-off, ascent, landing or hovering flight), the turboshaft engines develop low levels of power that are below the maximum continuous output thereof. These low levels of power lead to a specific consumption (hereinafter SC), defined as the ratio between the hourly fuel consumption of the combustion chamber of the turboshaft engine and the mechanical power supplied by this turboshaft engine, of approximately 30% greater than the SC of the maximum take-off power, and they therefore lead to an overconsumption of fuel during cruise flight.
Furthermore, the turboshaft engines of a helicopter are designed so as to be oversized in order to be able to keep the helicopter in flight in the event that one of the engines fails. This flight situation arises after the loss of an engine and results in the fact that each operating engine supplies a power level much beyond its nominal power so that the helicopter can cope with a dangerous situation, and then continue its flight.
The turboshaft engines are also oversized in order to be able to ensure flight over the entire flight range specified by the aircraft manufacturer and in particular flight at high altitudes and in hot weather. These flight points, which are highly demanding, particularly when the weight of the helicopter is close to its maximum take-off weight, are encountered only in certain circumstances of use.
These oversized turboshaft engines are disadvantageous in terms of weight and fuel consumption. In order to reduce this consumption during cruise flight, it is envisaged to put at least one of the turboshaft engines on standby during flight. The active engine or engines then operate at higher power levels in order to provide all the necessary power, and therefore at more favourable SC levels.
In applications FR1151717 and FR1359766, the applicants have proposed methods for optimising the specific consumption of the turboshaft engines of a helicopter through the option of putting at least one turboshaft engine into a stable flight mode, known as a continuous flight mode, and at least one turboshaft engine into a particular standby mode from which it can exit in a rapid or normal manner, as required.
An exit from standby mode is described as “normal” when a change in flight situation requires the activation of the turboshaft engine that is on standby, for example when the helicopter is going to transition from a cruise flight situation to a landing phase. A normal exit from standby of this kind occurs over a period of time between 10 seconds and 1 minute. An exit from standby mode is described as “rapid” when a failure or deficit of power in the active engine occurs or when the flight conditions suddenly become difficult. An emergency exit from standby of this kind occurs over a period of less than 10 seconds.
The applicant has already proposed a system for reactivating the turboshaft engine on standby allowing an exit from standby mode (in a normal or rapid manner) that uses an electric machine. This electric machine can be supplied with power by the onboard network of the helicopter (hereinafter OBN), which is a DC voltage 28-volt network and/or a network of which the voltage is provided by an appropriate power electronics unit connected to a compatible AC voltage of the aircraft. It has also been proposed to use an electric machine to mechanically assist the turboshaft engine during a specific standby mode.
The inventors have therefore sought to improve the performance of the architectures of propulsion systems comprising at least one turboshaft engine suitable for being put in standby mode and a system for reactivating the turboshaft engine comprising an electric machine.
In particular, the inventors have sought to propose a new propulsion system architecture that allows a very good level of availability of the reactivation system to be obtained. The inventors have also sought to propose a new architecture that allows any failures in the system for reactivating the turboshaft engine on standby to be detected.
The invention aims to provide a new architecture of the propulsion system of a multi-engine helicopter.
The invention also aims to provide, at least in one embodiment, an architecture of a propulsion system of a multi-engine helicopter comprising a turboshaft engine configured to be capable of being put on standby and a reactivation system that has an improved availability in comparison with the systems from the prior art.
The invention also aims to provide, at least in one embodiment, an architecture that allows any failures in the reactivation system to be detected.
The invention also aims to provide a helicopter comprising a propulsion system that has an architecture according to the invention.
In order to achieve this, the invention relates to an architecture of a propulsion system of a multi-engine helicopter comprising turboshaft engines connected to a power transmission gearbox, characterised in that it comprises:
An architecture according to the invention therefore makes it possible to at least duplicate the systems for reactivating a hybrid turboshaft engine capable of operating in a standby mode. The reactivation system of an architecture according to the invention therefore comprises at least two separate electric machines, each machine being connected to the hybrid turboshaft engine so as to form at least two separate reactivation systems configured to be capable of driving the turboshaft engine towards at least one operating mode selected from a plurality of predetermined modes.
A hybrid turboshaft engine within the meaning of the invention is a turboshaft engine configured to be capable of being put, on demand and deliberately, in at least one predetermined standby mode, from which it can exit in a normal or rapid (also referred to as emergency) manner. A turboshaft engine can be in standby mode only during a stable flight of the helicopter, i.e. when no turboshaft engine of the helicopter has failed, during a cruise flight situation, when it is progressing in normal conditions. The exit from standby mode consists in changing the turboshaft engine into a gas generator acceleration mode by means of driving in a manner that is compatible with the exit mode required by the conditions (normal standby-exiting mode or rapid standby-exiting mode, also referred to as emergency exit).
Advantageously and according to the invention, given that the turboshaft engine comprising a gas generator, said plurality of predetermined modes comprises:
Advantageously and according to the invention, given that said helicopter comprising at least one onboard network, each reactivation system configured to drive said turboshaft engine in said rapid reactivation mode comprises a source of electrical power formed by an energy storage unit; and each reactivation system configured to drive said turboshaft engine in said normal reactivation mode or a standby mode comprises a source of electrical power formed by an onboard network of the helicopter.
An energy storage unit makes it possible to supply a significant amount of power compatible with the energy required for the turboshaft engine to exit its standby mode rapidly. The storage unit is therefore very suitable for the reactivation system intended for the rapid reactivation of the turboshaft engine.
The onboard network allows the corresponding reactivation system to be tested, both on the ground before takeoff and during flight, for example before the turboshaft engine is put on standby. In addition, such a source of energy is sufficient to supply power to an electric machine intended to restart the hybrid turboshaft engine under normal reactivation conditions.
Advantageously and according to the invention, said onboard network is a network configured to supply a compatible AC voltage of the aircraft.
According to a first advantageous variant of the invention, the architecture comprises:
In order to do this, in practice, the first system is connected to two separate sources of electrical energy, namely an energy storage unit and the onboard network of the helicopter. The second system is also connected to the onboard network.
According to this variant, the first and the second reactivation systems are both compatible with a normal reactivation of the turboshaft engine. They can therefore be called upon alternately at each start-up in order to check their availability.
The first reactivation system is in addition configured for both a rapid reactivation and a standby mode. Therefore, during the standby mode, the system is called upon, which acts as a test of the system, in readiness for any rapid reactivation. The absence of any malfunction in the system is thus checked during the standby mode.
In the event that the first system is unavailable, the second system is called upon for a normal reactivation of the hybrid turboshaft engine.
During a rapid reactivation of the hybrid turboshaft engine, the first system is called upon and the second system is able to provide additional power if necessary.
In combination with the first variant, the second system can also be configured to be capable of driving the turboshaft engine in said rapid reactivation mode. In order to do this, the second system is, in practice, connected to a second electrical energy storage unit.
An architecture according to this particular variant therefore has available two separate reactivation systems allowing the turboshaft engine to be restarted rapidly. Thus, in the event of a failure of one rapid reactivation system, the other system can compensate for the failure.
According to a second advantageous variant of the invention, the architecture comprises:
In order to do this, in practice, the first reactivation system comprises two sources of electrical power, namely an energy storage unit and the onboard network of the helicopter, and the second reactivation system is connected directly to the onboard network.
The first system is called upon at start-up in order to check the availability of the system. In standby mode, the second system is called upon in order to avoid producing wear in the system allocated to rapid reactivation. Any unavailability of the second system results in a switchover to the first system and in the reactivation of the turboshaft engine.
In combination with this second variant, the second system can also be configured to be capable of driving the turboshaft engine in said normal reactivation mode. In order to do this, the second system is connected to the onboard network.
This variant is advantageous particularly in that in the event of a failure of the first system, the second system can provide normal reactivation of the turboshaft engine.
In addition, the two systems can be tested at any moment.
The invention also relates to a helicopter comprising a propulsion system, characterised in that said propulsion system has an architecture according to the invention.
The invention also relates to an architecture of a propulsion system of a multi-engine helicopter and to a helicopter provided with a propulsion system having such an architecture, these being characterised in combination by all or some of the features mentioned above or below.
Other aims, features and advantages of the invention will become apparent upon reading the description that follows, which is given purely by way of non-limiting example and relates to the accompanying figures, in which:
The embodiments described below are some examples for carrying out the invention. Although the detailed description refers to one or more embodiments, this does not necessarily mean that each reference relates to the same embodiment, or that the features apply only to a single embodiment. Individual features of different embodiments can also be combined in order to provide other embodiments. In addition, in the figures, for the purposes of illustration and clarity, the scales and the proportions are not necessarily accurate.
The turboshaft engine 10 having the architectures from
In
An architecture according to the invention comprises a plurality of turboshaft engines connected to a power transmission gearbox (not shown in the figures).
Among the plurality of turboshaft engines, at least one turboshaft engine, referred to as a hybrid turboshaft engine 20, is capable of operating in at least one standby mode during a cruise flight of the helicopter.
According to the embodiments shown in
It is also hereby specified that the same reference numerals 30 and 40 are used to indicate the first and second reactivation systems in
Each reactivation system 30, 40 is configured to be capable of driving the turboshaft engine 20 in at least one operating mode among a plurality of predetermined modes.
In light of the turboshaft engine comprising a gas generator, the predetermined modes comprise at least the following modes:
In
This embodiment allows the first reactivation system 30 to drive the turboshaft engine 20 in any of the rapid reactivation mode (by the use of the energy from the storage unit 33), the normal reactivation mode (by the use of the energy from the onboard network 51 or from the storage unit 33), or at least one standby mode (by the use of the energy from the onboard network 51). It also allows the second reactivation system 40 to be capable of driving the turboshaft engine 20 in said normal reactivation mode (by the use of the energy from the onboard network 51).
According to this embodiment, the first and second systems can be called upon alternately at each start-up to check their availability.
Since the first system is also configured for a rapid reactivation and a standby mode, the transition of the turboshaft engine 20 into standby mode allows the integrity of the system 30 to be tested and therefore any malfunction then preventing rapid reactivation of the turboshaft engine 20 by the system 30 to be detected. In the event of a malfunction being detected, the second system 40 is then called upon for a normal reactivation of the hybrid turboshaft engine 20.
During a rapid reactivation of the hybrid turboshaft engine 20 by the first reactivation system 30, the second system 40 can also potentially provide additional power if necessary.
The architecture shown in
This embodiment therefore allows the second reactivation system 40 to also drive the turboshaft engine 20 in the rapid reactivation mode (by the use of the energy from the storage unit 43).
This architecture is therefore redundant and has a high degree of availability.
In
In this embodiment, the first reactivation system 30 allows the turboshaft engine 20 to be driven in the rapid reactivation mode (by the use of the energy from the storage unit 33), in the normal reactivation mode (by the use of the energy from the onboard network 51 or from the storage unit 33) or in a standby mode. It also allows the second reactivation system 40 to be capable of driving the turboshaft engine 20 in a normal reactivation mode (by the use of the energy from the onboard network 52 or from the optional storage unit 53 or by the energy from the onboard network 51). In particular, this particular configuration allows the second system 40 for reactivating the turboshaft engine 20 to use the onboard network 51 for high power levels, for example levels greater than 10 kW, and to use the onboard network 52 for lower power levels, for example levels below 10 kW.
In
In this embodiment, the first reactivation system 30 allows the turboshaft engine 20 to be driven in the rapid reactivation mode (by the use of the energy from the storage unit 33). It also allows the second reactivation system 40 to be capable of driving the turboshaft engine 20 in a standby mode (by the use of the energy from the onboard network 51) or in a normal reactivation mode.
In
In this embodiment, the first reactivation system 30 allows the turboshaft engine 20 to be driven in the rapid reactivation mode (by the use of the energy from the storage unit 33) and in the normal reactivation mode (by the use of the energy from the onboard network 51 or from the storage unit 33). It also allows the second reactivation system 40 to be capable of driving the turboshaft engine 20 in a standby mode or in a normal reactivation mode (by the use of the energy from the onboard network 51).
In a variant, the second system can be configured to drive the turboshaft engine 20 solely in a standby mode (by the use of the energy from the onboard network 51).
The advantage of this architecture is the ability to use power-optimised electric machines, in particular for the electric machine 41, the only function of which is to provide the standby mode.
For each mode, the control of the reactivation systems is governed by the turboshaft engine control system known by the acronym FADEC, for Full Authority Digital Engine Control.
The invention is not limited solely to the embodiments described. In particular, the invention may comprise a plurality of hybrid turboshaft engines, each turboshaft engine being provided with at least two reactivation systems of its own as described.
Number | Date | Country | Kind |
---|---|---|---|
1459777 | Oct 2014 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FR2015/052683 | 10/6/2015 | WO | 00 |