The present disclosure relates generally to hybrid optical fiber and electrical communication systems.
Rapid growth of portable high-speed wireless transceiver devices (e.g., smart phones, tablets, laptop computers, etc.) continues in today's market, thereby creating higher demand for untethered contact. Thus, there is growing demand for integrated voice, data and video capable of being transmitted wirelessly at data rates of 10 Gbits/second and faster. To provide the bandwidth needed to support this demand will require the cost effective and efficient deployment of additional fixed location transceivers (i.e., cell sites or nodes) for generating both large and small wireless coverage areas.
One aspect of the present disclosure relates to an architecture that allows both power and communications to be transmitted over one cable to a device for generating a cellular coverage area (e.g., macrocell, microcell, metrocell, picocell, femtocell, etc.). In certain examples, aspects of the present disclosure are particularly advantageous for deploying small coverage area devices (e.g., microcell devices, picocell devices, femtocell devices).
A further aspect of the present disclosure relates to systems, methods, and devices that facilitate the fast, low cost and simple deployment of optical fiber and power lines to interface with active devices such as devices for generating wireless communication coverage areas (e.g., wireless transceivers) and other active devices (e.g., cameras).
Still other aspects of the present disclosure relate to systems, methods and devices that facilitate the deployment of wireless communication coverage areas at various locations such as stadiums, shopping areas, hotels, high rise office buildings, multi-dwelling units, suburban environments, corporate and university campuses, in-building areas, near-building areas, tunnels, canyons, roadside areas and coastal areas.
Still further aspects of the present disclosure relate to systems and methods for enhancing the coverage areas provided by cellular technologies (e.g., GSM, CDMA, UMTS, LTE, WiMax, WiFi, etc.).
A further aspect of the present disclosure relates to a method for providing electrical power and communication signals to an active device. The method includes converting the electrical power from a first voltage to a second voltage at a first location. The method also includes transmitting the electrical power having the second voltage through a hybrid cable from the first location to a second location, and transmitting the communication signals in an optical form through the hybrid cable from the first location to the second location. The method further includes converting the electrical power to a third voltage at the second location and converting the communication signals from the optical form to an electrical form at the second location. The method additionally includes powering the active device with the electrical power having the third voltage and supplying the communication signals to the active device at the second location.
A variety of additional inventive aspects will be set forth in the description that follows. The inventive aspects can relate to individual features and to combinations of features. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the broad inventive concepts upon which the examples disclosed herein are based.
Various examples will be described in detail with reference to the figures, wherein like reference numerals represent like parts and assemblies throughout the several views. Any examples set forth in this specification are not intended to be limiting and merely set forth some of the many possible variations of the inventive aspects disclosed herein.
The wireless coverage area defining equipment 12a, 12b, 12c, 12d, 12e and 12f can each include one or more wireless transceiver 22. The transceivers 22 can include single transceivers 22 or distributed arrays of transceivers 22. As used herein, a “wireless transceiver” is a device or arrangement of devices capable of transmitting and receiving wireless signals. A wireless transceiver typically includes an antenna for enhancing receiving and transmitting the wireless signals. Wireless coverage areas are defined around each of the wireless coverage area defining equipment 12a, 12b, 12c, 12d, 12e and 12f. Wireless coverage areas can also be referred to as cells, cellular coverage areas, wireless coverage zones, or like terms. Examples of and/or alternative terms for wireless transceivers include radio-heads, wireless routers, cell sites, wireless nodes, etc.
In the depicted example of
The first location 102 receives optical signals from a remote location 108 via a fiber optic trunk cable 110. Optical fibers of the trunk cable 110 can be separated at a fan-out device 111 at the first location. Alternatively, optical power splitters or wavelength division multi-plexers can be used to split optical communications signals from the trunk cable 110 to multiple optical fibers. The fibers can be routed to a patch panel 112 having fiber optic adapters 114 (i.e., structures for optically and mechanically interconnecting two fiber optic connectors 115). The first location 102 can also include a combined power/communication panel 116 having fiber optic adapters 117 paired with power adapters 118 (i.e., ports). Connectorized fiber optic patch cords 120 can be routed from the fiber optic adapters 114 to the fiber optic adapters 117.
The first location 102 can receive electrical power from a main power line 122. In one example the main power line 122 can be part of a mains power system that provides 100-240 nominal volt alternating current (example frequencies include 50 and 60 Hertz). The first location 102 can include a converter 124 for converting the electrical power from the first voltage (e.g., 100, 120v, 220v, 230v, 240v etc. nominal voltage) to a second voltage that is less than the first voltage. In one example, the second voltage is less than or equal to 60 volts and less than or equal to 100 Watts such that the output voltage complies with NEC Class II requirements. In one example, the converter 124 is an AC/DC converter that converts the electrical power from alternating current to direct current. Connectorized power cords 126 can be used to route electrical power having the second voltage from the converter 124 to the power adapters 118. In certain examples, the combined power/communications panel 116 can include at least 18, 24, 30 or 32 fiber optic adapters paired with corresponding power adapters 118. In certain examples, the converter 124 is large enough to provide NEC Class II compliant power through separate hybrid cables to at least 18, 24, 30 or 32 active devices. Of course, converter having smaller capacities could be used as well. Additionally, the converter 124 can be part of a voltage conversion package including overvoltage protection that provides protection/grounding in the event of lightning strikes and main crosses.
A hybrid cable 20 can be used to transmit electrical power and optical communication signals between the first and second locations 102, 106. The hybrid cable 20 can include an outer jacket 150 containing at least one optical fiber 152 for carrying the optical communication signals and electrical conductors 154 (e.g., wires such as ground and power wires) for transmitting the electrical power having the second voltage. The hybrid cable 20 can include a first end 156 and a second end 158. The first end 156 can include a first interface for connecting the hybrid cable to electrical power and fiber optic communication at the first location 102. In one example, the first interface can include a power connector 160 (e.g., a plug) that connects the electrical conductors 154 to one of the connectorized power cords 126 at the power/communications panel 116. The power connector 160 can be plugged into the adapter 118 and can be provided at a free end of a cord that extends outwardly from the outer jacket 150 at the first end of the hybrid cable 20. The cord can contain the electrical conductors 154. The first interface can also include a fiber optic connector 162 (e.g., an SC connector, LC connector, ST-style connector or other type of connector) that connects the optical fiber 152 to one of the patch cords 120. The fiber optic connector 162 can plug into one of the fiber optic adapters 117 and can be mounted at the free end of a cord that contains the optical fiber 152 and extends outwardly from the outer jacket 150 at the first end of the hybrid cable 20.
The second end 158 of the hybrid cable 20 can include a second interface for connecting the hybrid cable 20 to the active device 104 such that electrical power is provided to the active device 104 and such that fiber optic communication signals can be transmitted between the first and second locations 102, 106. The second interface includes an interface structure 164 including a power connection location 166 and a communication connection location 168. In one example, the interface structure 164 includes a power converter 170 for converting electrical power carried by the hybrid cable 20 to a direct current third voltage that is less than the second voltage. In one example, the third voltage corresponds to an electrical voltage requirement of the active device 104. In one example, the power converter 170 is a DC/DC converter. In one example, the third voltage is 12V, 24V or 48V. In examples where AC current is transmitted by the hybrid cable 20, the power converter 124 can be an AC/AC converter and the power converter 170 can be an AC/DC converter. In certain examples, the interface structure 164 can include an optical-to-electrical converter for converting the communications signals carried by the optical fiber 152 from an optical form to an electrical form. In other examples, optical-to-electrical conversion can be performed by the active device 104 or can take place between the active device 104 and the interface structure 164.
In one example, the interface structure 164 includes a converter interface that allows power converters 170 with different conversion ratios to interface and be compatible with the interface structure 164. The conversion ratio of the particular power converter 170 used can be selected based on factors such as the voltage requirement of the active device 104 and the length of the hybrid cable 20. The power converters 170 can have a modular configuration can be installed within the interface structure 168 in the field or in the factory. In one example, the power converters 170 can have a “plug-and-play” interface with the interface structure. The modular configuration also allows the power converter 170 to be easily replaced with another power converter 170, if necessary. In certain examples, the interface structure 164 can include overvoltage protection and grounding arrangements such as fuses, metal oxide varistors, gas tubes or combinations thereof.
In one example, the electrical power having the third voltage can be output to the active device 104 through the power connection location 166. The power connection location 166 can include a power connector, a power port, a power cord or like structures for facilitating connecting power to the active device 104. In one example, the power connection location 166 can have a modular configuration that allows interface connectors having different form factors to be used.
In one example, the communications signals can be transferred between the hybrid cable 20 and the active device through the communication connection location 168. The communication connection location 168 can include a connector, a port, a cord or like structures for facilitating connecting to the active device 104. In one example, the communication connection location 168 can have a modular configuration that allows interface connectors having different form factors to be used. In the case where the optical to electrical converter is provided within the interface structure 164, the connection location can include electrical communication type connectors (e.g., plugs or jacks) such as RJ style connectors. In the case where the optical to electrical converter is provided at the active device 104, the communication connection location 168 can include fiber optic connectors and or fiber optic adapters (e.g., SC connectors/adapters; LC connectors/adapters, etc.). In certain examples, ruggedized, environmentally sealed connectors/adapters can be used (e.g., see U.S. Pat. Nos. 8,556,520; 7,264,402; 7,090,407; and 7,744,286 which are hereby incorporated by reference in their entireties. It will be appreciated that when the active devices include wireless transceivers, the active devices can receive wireless signals from the coverage area and such signals can be carried from the active devices to the base station 11 via the hybrid cables. Also, the active devices can covert signals received from the hybrid cables into wireless signals that are broadcasted/transmitted over the coverage area.
In one example, the second voltage is less than the first voltage and greater than the third voltage. The third voltage is the voltage required by the active device at the second location. In one example, the second voltage is sufficiently larger than the third voltage to account for inherent voltage losses that occur along the length of the hybrid cable.
Referring to
In other examples, electrical signals can be conveyed through the line 218. In such examples, the network interface device 214 can include a media converter (e.g., and electrical to optical converter) for converting the electrical signals received from the interface 216 to optical signals that are conveyed through an optical fiber of the hybrid cable 220 to the device interface 222 that interfaces with the small cell device 212. The media converter also converts optical signals received from the hybrid cable 220 to electrical signals sent to the interface 216 via the line 218. Signals received from the hybrid cable 220 by the small cell device 212 can be wirelessly transmitted by the small cell device 212 to the coverage area. Wireless signals received by the small cell device 212 can be transmitted back through the hybrid cable 220 and the line 218 to the interface 216.
The network interface device 214 also receives power from a small scale power supply 224. In one example, the small scale power supply 224 includes a small scale AC/DC converter 226 (e.g., a wall wart type device having a converter brick with an integrated or corded plug) that converts only enough power to support no more than 4, 3, 2 or 1 active devices. In one example, the small scale power supply supports only one active device per each AC/DC converter 226 provided. Thus, separate AC/DC converters 226 can be provided for each active device needed to be powered. In certain examples, each AC/DC converter 226 provides DC voltage that is less than or equal to 60 volts and less than or equal to 100 Watts. Each AC/DC converter 226 can interface with an uninterrupted power supply unit (UPS) 228 that receives power from a mains power system 230 (e.g., a power system/grid having AC power ranging from 100-240 volts). In certain examples, separate UPS 228 units can be provided for each AC/DC converter 226. The UPS 228 provides a battery back-up so that the power supply 224 continues to provide power for a predetermined amount of time even if power from the mains power system 230 is interrupted.
The network interface device 214 includes circuitry for electrically connecting the power from the small scale power supply 224 to electrical conductors of the hybrid cable 220. The electrical conductors of the hybrid cable 220 carry power to the device interface 222 which supplies power to the space cell device 212. The device interface 222 can include overvoltage protection and can include voltage conversion circuitry. For example, the device interface 222 can reduce the DC voltage from the hybrid cable to a lower voltage compatible with the small cell device 212. The network interface device 214 also includes circuitry for providing overvoltage protection. In certain examples, the level of overvoltage protection provided by the interface device 214 can be compatible with or equal to the levels of safety and protection of present POTS telephone systems. As depicted at
In certain examples, the AC/DC converter 226 and the UPS 228 are not housed within the housing of the network interface device 214. Instead a power line 235 directs power from the small scale power supply 224 to the network interface device 214. Conductors of the power line 235 are coupled to the conductors of the hybrid cable 220 at the network interface device 214.
Various modifications and alterations of this disclosure will become apparent to those skilled in the art without departing from the scope and spirit of this disclosure, and it should be understood that the scope of this disclosure is not to be unduly limited to the illustrative examples set forth herein.
This application is a National Stage of PCT International Patent application No. PCT/US2014/030969, filed 18 Mar. 2014 and claims benefit of U.S. Patent Application Ser. No. 61/802,989 filed on 18 Mar. 2013, the and which applications are incorporated herein by reference. To the extent appropriate, a claim of priority is made to each of the above disclosed applications.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/030969 | 3/18/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/197103 | 12/11/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4089585 | Slaughter | May 1978 | A |
4199225 | Slaughter | Apr 1980 | A |
4220812 | Ney et al. | Sep 1980 | A |
4359598 | Dey et al. | Nov 1982 | A |
4365865 | Stiles | Dec 1982 | A |
4467138 | Brorein | Aug 1984 | A |
4497537 | Dench | Feb 1985 | A |
4552432 | Anderson et al. | Nov 1985 | A |
4695127 | Ohlhaber et al. | Sep 1987 | A |
4723832 | Okazato et al. | Feb 1988 | A |
4729628 | Kraft et al. | Mar 1988 | A |
4761053 | Cogelia et al. | Aug 1988 | A |
4787705 | Shinmoto et al. | Nov 1988 | A |
4867527 | Dotti et al. | Sep 1989 | A |
4895426 | Pinson | Jan 1990 | A |
5268971 | Nilsson et al. | Dec 1993 | A |
5448670 | Blew et al. | Sep 1995 | A |
5469523 | Blew et al. | Nov 1995 | A |
5494461 | Bippus et al. | Feb 1996 | A |
5539851 | Taylor et al. | Jul 1996 | A |
5555336 | Winslow | Sep 1996 | A |
5555338 | Haag et al. | Sep 1996 | A |
5557698 | Gareis et al. | Sep 1996 | A |
5651081 | Blew et al. | Jul 1997 | A |
5677974 | Elms et al. | Oct 1997 | A |
5737470 | Nagano et al. | Apr 1998 | A |
5745627 | Arroyo et al. | Apr 1998 | A |
5778116 | Tomich | Jul 1998 | A |
5838858 | White | Nov 1998 | A |
5896480 | Scharf et al. | Apr 1999 | A |
5913003 | Arroyo et al. | Jun 1999 | A |
5982966 | Bonicel | Nov 1999 | A |
6142802 | Berg et al. | Nov 2000 | A |
6169834 | Keller | Jan 2001 | B1 |
6195487 | Anderson et al. | Feb 2001 | B1 |
6236789 | Fitz | May 2001 | B1 |
6343172 | Schiestle | Jan 2002 | B1 |
6347172 | Keller et al. | Feb 2002 | B1 |
6363192 | Spooner | Mar 2002 | B1 |
6370303 | Fitz et al. | Apr 2002 | B1 |
6463198 | Coleman | Oct 2002 | B1 |
6493491 | Shen et al. | Dec 2002 | B1 |
6542674 | Gimblet | Apr 2003 | B1 |
6567592 | Gimblet et al. | May 2003 | B1 |
6599025 | Deutsch | Jul 2003 | B1 |
6621964 | Quinn et al. | Sep 2003 | B2 |
6687437 | Starnes et al. | Feb 2004 | B1 |
6719461 | Cull | Apr 2004 | B2 |
6738547 | Spooner | May 2004 | B2 |
6755575 | Kronlund et al. | Jun 2004 | B2 |
6758693 | Inagaki et al. | Jul 2004 | B2 |
6836603 | Bocanegra et al. | Dec 2004 | B1 |
6847767 | Hurley et al. | Jan 2005 | B2 |
6931183 | Panak et al. | Aug 2005 | B2 |
6965718 | Koertel | Nov 2005 | B2 |
7006740 | Parris | Feb 2006 | B1 |
7158703 | Mjelstad | Jan 2007 | B2 |
7218821 | Bocanegra et al. | May 2007 | B2 |
7225534 | Kachmar | Jun 2007 | B2 |
7272281 | Stahulak et al. | Sep 2007 | B2 |
7310430 | Mallya et al. | Dec 2007 | B1 |
7362936 | Stark et al. | Apr 2008 | B2 |
7371014 | Willis et al. | May 2008 | B2 |
7387517 | Kusuda et al. | Jun 2008 | B2 |
7401985 | Aronson et al. | Jul 2008 | B2 |
7445389 | Aronson | Nov 2008 | B2 |
7494287 | Wang et al. | Feb 2009 | B2 |
7499616 | Aronson et al. | Mar 2009 | B2 |
7643631 | Kennedy | Jan 2010 | B2 |
7643713 | Bëthe et al. | Jan 2010 | B2 |
7692098 | Wyatt, II et al. | Apr 2010 | B2 |
7712976 | Aronson et al. | May 2010 | B2 |
7744288 | Lu et al. | Jun 2010 | B2 |
7762727 | Aronson | Jul 2010 | B2 |
7778510 | Aronson et al. | Aug 2010 | B2 |
7876989 | Aronson et al. | Jan 2011 | B2 |
7897873 | Gemme et al. | Mar 2011 | B2 |
7918609 | Melton et al. | Apr 2011 | B2 |
8041166 | Kachmar | Oct 2011 | B2 |
8059929 | Cody et al. | Nov 2011 | B2 |
8083417 | Aronson et al. | Dec 2011 | B2 |
8155525 | Cox | Apr 2012 | B2 |
8175433 | Caldwell et al. | May 2012 | B2 |
8184935 | Kachmar | May 2012 | B2 |
8204348 | Keller et al. | Jun 2012 | B2 |
8238706 | Kachmar | Aug 2012 | B2 |
8244087 | Sales Casals et al. | Aug 2012 | B2 |
8249410 | Andrus et al. | Aug 2012 | B2 |
8270838 | Cox | Sep 2012 | B2 |
8290320 | Kachmar | Oct 2012 | B2 |
8297854 | Bickham et al. | Oct 2012 | B2 |
8301003 | de los Santos Campos et al. | Oct 2012 | B2 |
8328433 | Furuyama | Dec 2012 | B2 |
8363994 | Kachmar | Jan 2013 | B2 |
8480312 | Smith et al. | Jul 2013 | B2 |
20020126967 | Panak et al. | Sep 2002 | A1 |
20020136510 | Heinz et al. | Sep 2002 | A1 |
20020147978 | Dolgonos et al. | Oct 2002 | A1 |
20030108351 | Feinberg et al. | Jun 2003 | A1 |
20030202756 | Hurley et al. | Oct 2003 | A1 |
20030215197 | Simon et al. | Nov 2003 | A1 |
20040258165 | Peltonen | Dec 2004 | A1 |
20050002622 | Sutehall et al. | Jan 2005 | A1 |
20050185903 | Koertel | Aug 2005 | A1 |
20060153516 | Napiorkowski et al. | Jul 2006 | A1 |
20060165355 | Greenwood et al. | Jul 2006 | A1 |
20070248358 | Sauer | Oct 2007 | A1 |
20070269170 | Easton et al. | Nov 2007 | A1 |
20080037941 | Mallya | Feb 2008 | A1 |
20080131132 | Solheid et al. | Jun 2008 | A1 |
20080219621 | Aldeghi et al. | Sep 2008 | A1 |
20080260389 | Zheng | Oct 2008 | A1 |
20090041413 | Hurley | Feb 2009 | A1 |
20090297104 | Kachmar | Dec 2009 | A1 |
20100150556 | Soto et al. | Jun 2010 | A1 |
20100200270 | Gemme et al. | Aug 2010 | A1 |
20100209058 | Ott | Aug 2010 | A1 |
20100290787 | Cox | Nov 2010 | A1 |
20100321591 | Onomatsu | Dec 2010 | A1 |
20110021069 | Hu et al. | Jan 2011 | A1 |
20110038582 | DiFonzo et al. | Feb 2011 | A1 |
20110091174 | Kachmar | Apr 2011 | A1 |
20110188815 | Blackwell, Jr. et al. | Aug 2011 | A1 |
20110268446 | Cune | Nov 2011 | A1 |
20110268452 | Beamon et al. | Nov 2011 | A1 |
20110280527 | Tamura | Nov 2011 | A1 |
20110293227 | Wu | Dec 2011 | A1 |
20110311191 | Hayashishita et al. | Dec 2011 | A1 |
20120008904 | Han et al. | Jan 2012 | A1 |
20120008905 | Han et al. | Jan 2012 | A1 |
20120008906 | Han et al. | Jan 2012 | A1 |
20120057821 | Aronson et al. | Mar 2012 | A1 |
20120080225 | Kim et al. | Apr 2012 | A1 |
20120114288 | Wu | May 2012 | A1 |
20120191997 | Miller | Jul 2012 | A1 |
20120230637 | Kachmar | Sep 2012 | A1 |
20120281952 | McColloch | Nov 2012 | A1 |
20120281953 | Choi et al. | Nov 2012 | A1 |
20120288245 | Hurley et al. | Nov 2012 | A1 |
20120295486 | Petersen et al. | Nov 2012 | A1 |
20130011106 | Congdon, II et al. | Jan 2013 | A1 |
20130022318 | Fingler et al. | Jan 2013 | A1 |
20130287349 | Faulkner et al. | Oct 2013 | A1 |
20130330086 | Berlin | Dec 2013 | A1 |
20140072264 | Schroder et al. | Mar 2014 | A1 |
20140087742 | Brower et al. | Mar 2014 | A1 |
20140258742 | Chien et al. | Sep 2014 | A1 |
20140314412 | Soto | Oct 2014 | A1 |
20140338968 | Kachmar et al. | Nov 2014 | A1 |
20150125146 | Erreygers et al. | May 2015 | A1 |
20150309271 | Huegerich et al. | Oct 2015 | A1 |
20150378118 | Huegerich et al. | Dec 2015 | A1 |
20160020911 | Sipes et al. | Jan 2016 | A1 |
Number | Date | Country |
---|---|---|
0 629 889 | Dec 1994 | EP |
1 650 888 | Apr 2006 | EP |
2 393 220 | Jul 2011 | EP |
2 393 222 | Dec 2011 | EP |
2 676 161 | Dec 2013 | EP |
10-1997-0060748 | Aug 1997 | KR |
20-0273482 | Apr 2002 | KR |
2010102201 | Sep 2010 | WO |
2011146720 | Nov 2011 | WO |
2012112532 | Aug 2012 | WO |
2013117598 | Aug 2013 | WO |
Entry |
---|
“GE—Critical Power, DAS and Small Cell Powering Architectures,” DAS and Small Cell Congress, May 1, 2013; 22 pages. |
International Search Report and Written Opinion for PCT/US2014/046678 dated Nov. 6, 2014. |
International Search Report and Written Opinion for PCT/US2014/030969 dated Nov. 26, 2014. |
OneReach PoE Extender System brochure from Berk-Tek, 8 pages (Jan. 2011). |
European Search Report for EP application No. 14808346.2 dated Oct. 26, 2016 (11 pages). |
European Search Report for EP application No. 14825675.3 dated Jan. 30, 2017 (7 pages). |
Silvertel, “Ag5700 200W Powered Device Module” datasheet, dated Aug. 2012. Retrieved from http://www.silvertel.com/images/datasheets/Ag5700-datasheet-200W-Power-over-Ethernet-PoE-PD.pdf. |
Littelfuse Inc., “Transient Suppression Devices and Principles” application note AN9768, dated Jan. 1998. Retrieved from http://www.littelfuse.com/-/media/electronics—technical/application—notes/varistors/littelfuse—transient—suppression—devices—and—principles—application—note.pdf. |
Number | Date | Country | |
---|---|---|---|
20160294475 A1 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
61802989 | Mar 2013 | US |