In the technology of swim starting platforms, there is a continual need for improvements. U.S. Pat. No. 5,660,013 is directed to one type of improvement for swim starting platforms. Specifically, that patent describes and claims a technological advance concerning an anchor lock system for a removable platform. The system makes use of a base plate that has four projections that, together, provide four distinct corners of a pyramidal outline. The advancement provided by the invention of the above-mentioned patent is significant. As will be appreciated, the advancement provided by the invention of the above-mentioned patent, is associated with rectangular construction configurations. As such, rectangular construction considerations, etc. must be adhered to during manufacture of systems in accordance with the invention of the above-mentioned patent.
In accordance with one aspect, the present invention provides an anchor assembly for supporting a post. The assembly includes a hollow tubular anchor body that extends along an axis and that has an arcuate interior cross-sectional area. The anchor body is configured to receive an axially-elongate tubular post that has an arcuate exterior profile and that has at least a hollow lower end bounded by an interior surface. A base plate of the assembly is connected to and closes one end of the anchor body. The base plate has an arcuate portion that is shaped congruent to the arcuate cross-sectional area of the anchor body and that is mated into the cross-sectional area of the anchor body. The base plate has an upstanding arcuate conical portion. The conical portion has a cross-sectional area that is complementary to the hollow lower end of the post and has a greatest radial dimension at a base of the conical portion. The greatest radial dimension is greater than a complementary dimension of the interior surface of the post to cause the interior surface of the post to slide over the conical portion and the conical portion to frictionally engage the post to prevent lateral movement of the post relative to the base plate.
In accordance with another aspect, the present invention provides a base plate insert for use with an axially-elongate tubular anchor body within an anchor assembly for supporting an axially-elongate tubular post. The anchor body has an arcuate interior cross-sectional area. The tubular post has an arcuate exterior profile and has at least a hollow lower end bounded by an interior surface. The base plate is for connection to and closing of one end of the anchor body. The base plate includes an arcuate portion shaped congruently to the arcuate cross-sectional area of the anchor body for mating into the cross-sectional area of the anchor body. The base plate includes an upstanding arcuate conical portion. The conical portion has a cross-sectional area that is complementary to the hollow lower end of the post and has a greatest radial dimension at a base of the conical portion. The greatest radial dimension is greater than a complementary dimension of the interior surface of the post to cause the interior surface of the post to slide over the conical portion and the conical portion to frictionally engage the post to prevent lateral movement of the post relative to the base plate.
The foregoing and other features and advantages of the present invention will become apparent to those skilled in the art to which the present invention relates upon reading the following description with reference to the accompanying drawings wherein:
An example anchor assembly 10, in accordance with the present invention, for supporting a swim start platform post 12 is shown in
The post 12 is tubular and elongate, at least for a segment that needs to be considered herein, along an axis 16. An exterior surface 18 of the post 12 is arcuate. Thus, the post 12 has an arcuate exterior profile. In one example, the arcuate exterior surface 18 is cylindrical about the axis 16 such that the exterior surface bounds a circle when viewed along a cross-section of the post 12 (e.g., has a circular cross-section). Also, the post 12 has at least a hollow lower end 22 bounded by an interior surface 24. However, it is to be appreciated that the post 12 may be hollow for a significant portion of its overall length. The interior surface 24 of the hollow lower end 22 is arcuate. In the shown example, similar to the exterior surface 18, the interior surface 24 is cylindrical about the axis 16 such that the interior surface bounds a circle (e.g., has a circular cross-section).
A hollow tubular anchor body 28 of the assembly 10 extends along the same axis 16 when the post 12 is located within the anchor body 28. As such, the anchor body 28 is axially elongate. An interior surface 30 of the anchor body 28 is arcuate about the axis 16. In one example, the interior surface 30 is cylindrical and thus bounds a circle when viewed along a cross-section of the anchor body 28 (e.g., has a circular cross-section). The interior surface 30 of the anchor body 28 is dimensioned to be only slightly larger than the exterior surface 18 of the post 12. As such, the post 12 is insertable and removable (i.e., vertical movement) with respect to the anchor body 28. However, the fit of the post 12 into the anchor body 28 is somewhat snug to aid in prevention of lateral (i.e., side to side) movement relative to the anchor body 28. It is to be appreciated that the anchor body 28 may have surface contouring (e.g., ridges, projections, etc.) and/or other means to aid in the prevention of lateral movement of the post 12 and yet permit vertical movement for insertion and removal of the post.
A base plate 34 (
Located above the flange 36 is an arcuate portion 40 of the base plate 34 that, in the shown example, is circular. Specifically, a radially outer (i.e., exterior) surface 42 of the arcuate portion 40 is circular. It will be appreciated that the circular shape is congruent to the circular cross-sectional area of the anchor body 28. The outer radial dimension of the arcuate (circular) portion 40 is less than the outer radial dimension of the flange 36. Also, the outer radial dimension of the arcuate portion 40 is the same as or just slightly smaller than the radial dimension of the interior surface 30 of the anchor body 28. As such, the arcuate portion 40 fits into, i.e., mates with, the lowermost end of the anchor body 28. In the shown example, the anchor body 28 is affixed to the base plate 34 at the arcuate portion 40 via welding or other means of connection.
Extending upward from the arcuate portion 40 of the base plate 34 is an arcuate conical portion 44 of the base plate 34. It is to be appreciated that the upward extend of the conical portion 44 is considered to provide an upstanding portion with regard to the rest of the base plate 34. The conical portion 44 has a cross-sectional area that is complementary to the hollow lower end 22 of the post 12. In the shown example, the conical portion 44 of the base plate 34 has a circular cross-section. As such, a radially outer (i.e., exterior) surface 46 is shaped as a circular conic. Also, in the shown example, the conical portion 44 is a truncated conic.
The conical portion 44 has a greatest radial dimension at a base 48 of the conical portion, which is adjacent to the arcuate portion 40. The greatest radial dimension of the conical portion 44 is less than the radial extent of the arcuate portion 40. Also, the greatest radial dimension of the conical portion 44 is greater than a complementary dimension of the interior surface 24 of the post 12. This relative dimensioning of the conical portion 44 and the post 12 causes the interior surface 24 of the post to move past/slide over an upper portion 50 of the conical portion 44. The relative dimensioning also results in frictional engage between the conical portion 44 and the post 12 at some location toward the base 48 of the conical portion to prevent lateral movement of the post 12 relative to the base plate 34.
In the shown example, the greatest radial dimension of the conical portion 44 of the base plate 34 is sufficiently large to cause the frictional engagement with the post 12 at a location of the post that is spaced from the arcuate portion 40 of the base plate. Further, the post 12 is entrapped or squeezed between the conical portion 44 and the anchor body 28 at the location of frictional engagement with the conical portion.
In the shown example, the anchor assembly 10 is made of at least two parts, i.e., the anchor body 28 and the base plate 34. However, it is to be appreciated that the assembly 10 may be made via unitary construction. Also, additional parts may be included in the assembly 10 without deviating form the scope of the present invention.
Turning the mounting of the anchor assembly 10 into the floor 14 adjacent to the pool, the floor may be made of any material. However, the floor 14 is typically made of a cement/concrete material with a sealant coating. In the shown example, the anchor assembly 10 is embedded into the material of the floor 14. The flange 36 provides aid in retaining the anchor assembly 10 in the floor 14.
The anchor assembly 10 may have additional structure(s) to aid in retaining the assembly in the floor 14. In the shown example, the base plate 34 has an axially aligned through hole 54 that extends from a top of the conical portion 44 all the way through the bottom of the flange 36. A fastener 56 extends through the base plate 34 and into the material of the floor 14. In one example, a threaded screw may be used as the fastener 56. However, it is to be appreciated that any suitable fastener may be employed. Also, it is to be noted that an anchor member 58, such as a molley anchor, may also be used in the material of the floor to provide a location for the fastener to engage.
From the above description of the invention, those skilled in the art will perceive improvements, changes and modifications. Such improvements, changes and modifications within the skill the of the art are intended to be covered by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
1947413 | Hay | Feb 1934 | A |
2826470 | Denton | Mar 1958 | A |
3312440 | Walter | Apr 1967 | A |
3391660 | Stewart | Jul 1968 | A |
3401908 | Rapata | Sep 1968 | A |
D262093 | Bush et al. | Dec 1981 | S |
4673157 | Wells | Jun 1987 | A |
D337258 | Mansau | Jul 1993 | S |
5499737 | Kraus | Mar 1996 | A |
5605023 | Biernazki | Feb 1997 | A |
5660013 | Saldarelli et al. | Aug 1997 | A |
5706559 | Oliver et al. | Jan 1998 | A |
5890333 | Boroviak | Apr 1999 | A |
5901525 | Doeringer et al. | May 1999 | A |
6032695 | Wellen et al. | Mar 2000 | A |
6210069 | Speck | Apr 2001 | B1 |
6336620 | Belli | Jan 2002 | B1 |
6588717 | Carnahan et al. | Jul 2003 | B1 |
6745530 | Nesbitt | Jun 2004 | B1 |
Number | Date | Country | |
---|---|---|---|
20050016085 A1 | Jan 2005 | US |