The present invention relates to defense means, particularly to the field of non-lethal area denial devices, and to non-lethal devices for disabling, RFID tagging and marking enemy personnel, vehicles and robots. The present invention relates to devices such as land mines and other area denial devices that, after deployment, are armed or arm themselves through the action of an integrated component, and later are disarmed or disarm themselves through a similar process.
The following description of preferred embodiments will provide a summary description of the present invention.
Explosive anti-personnel landmines cause thousands of deaths and severe, life limiting injuries amongst insurgents and civilians every year. It is estimated that over 20,000 civilians, including many children, are permanently maimed or killed a year by anti-personnel landmines. As a result of wide-spread international concern about the high number of civilian injuries and deaths from these mines, there is general agreement among many Governments that it is necessary to restrict and eliminate these weapons. This has resulted in an international treaty known as the Ottawa Convention to ban explosive Anti-Personnel Landmines.
The United States is not at this time a signatory party to this treaty, and the United States military and most other military forces see the continuing need to deny enemy access to areas or to delay access until troops can occupy and mount defenses. The United States has maintained that United States anti-personnel mines are not the cause of civilian casualties since the anti-personnel mines in United States mine systems are intended to self-destruct during or shortly after combat.
The need for anti-personnel landmines will never go away. It is highly desirable to deny an enemy access to an area during battle. It is also highly desirable to deny access to approaches to camps and fortifications, both on a long and short-term basis. With an explosive anti-personnel landmine, the possibility of civilian injury and death is very high. The possibility of accidental injury or death to friendly forces is also high, both in the deployment and recovery of the landmine.
With the present invention landmine replacements can be deployed that are non-lethal yet pose a serious threat of injury and provide a strong deterrent to enemy personnel entering the area. These lance mines will cause a painful and temporally disabling injury, and provide options for tagging enemy personnel for identification. These lance mines provide for the use of electrical, chemical and biological means to have a further deterrent on the enemy personnel as desired.
The present invention provides a lance mine that will cause a non-lethal injury to enemy personnel by means of a spike penetrator that will pierce the body at the point of contact. The lance mine does not accomplish its deterrent action by exploding, but by driving a spike penetrator into the insurgent's foot. The spike penetrator will cause severe pain at the point of entry, but will not penetrate far enough to be life threatening. Further, the spike penetrator can be facilitated with an identification device, such as a Radio Frequency Identification Device, known generally as an RFID chip, that is inserted into the body of the enemy personnel and remains in the body of the enemy personnel even if the enemy personnel pulls the spike penetrator out. Other identification devices include those comprised of metal, magnetic material, radioactive material, biologicals, chemicals, drugs, paper, plastic, ceramic, glass, wood, or organic materials.
The spike penetrator is shaped and surfaced such that it will make ready entry into the body, and resist attempts to remove it by simply pulling or tugging. The spike penetrator may be ribbed or roughened, or barbed, or may have a shaped surface that requires expansion of the wound to facilitate removal. The spike penetrator may also be shaped as a screw. Any attempt to remove it could be easily complicated by making the shape a left hand screw, such that when an uninformed person attempts to remove the screw shaped penetrator the right hand turning action will simply drive the spike penetrator deeper into the foot of the enemy personnel. Spike penetrators that are thus shaped will discourage casual attempts at removal, and specialized tools for removal may be provided to authorities to encourage the enemy personnel to quickly surrender and seek medical attention.
The spike penetrator may also be equipped with an adhesive surface such that upon entry it rapidly ‘glues’ itself in place, forming a bond with the flesh of the enemy personnel and denying easy removal. For example, a fast acting cyanoacrylate coating on the spike penetrator would cause the spike penetrator to seal itself into the wound, eliminating the possibility of blood loss and reducing the possibility of removing the spike penetrator without medical attention. Any inserted RFID chip could be so equipped to prevent non-professional removal.
The lance mine will be relatively silent in its operation as the spike penetrator is directly impacting and penetrating the boot, and the expanding gas noise is muffled by the boot standing directly on top of the lance mine.
Chemicals such as irritating and inflammatory agents may be attached to or embedded as an integral part of the spike penetrator. Agents such as pepper derivates (Oleoresin Capsicum and related compounds), alcohols, ketones, solvents, oils, mustards, halogenated organic compounds, metals, organics, inorganics, minerals, cyanoacrylates, and histamine producing or initiating compounds may be used to increase the discomfort level and encourage the enemy personnel to seek immediate medical attention.
Thermal agents may be incorporated that rapidly increase the temperature of the spike penetrator, and in this manner will encourage the enemy personnel to immediately cease battle activities. A pyrotechnic whistle or small explosive report may be incorporated in the lance mine or spike penetrator to alert friendly personnel to the proximity of a triggered lance mine.
Electrical agents, such as a battery powered device providing electrical shock, or a mechanical vibrator providing mechanical stimulation, may be integrated into the lance mine and spike penetrator to facilitate inhibitory action against the enemy personnel.
Drugs such as sedatives, tranquilizers or other inhibiting or stimulating medications may be incorporated for spike penetrator delivery. In this manner, the enemy personnel are disabled for ready apprehension.
Dyes, drugs or biological agents may be introduced that dye the skin of the enemy personnel for ready identification. As these dyeing agents are internal and systemic, they will be impossible to simply wash off as with externally applied agents. In the case where the penetrator is targeted against enemy personnel wearing shoes or boots, the penetrator may be so contrived as to penetrate the shoe and foot with a final mechanical stop, such as a nail or screw head, to stop the penetrator from passing completely through the shoe and therefore attaching or fastening the shoe to the foot.
Biological and chemical agents may be incorporated into the spike penetrator. Materials that produce an undesirable condition may be introduced in this manner. By equipping the spike penetrator in such a manner and providing an attached notice with instructions as to where and in what time period to seek proper medical attention, the enemy personnel will be highly encouraged to surrender to the designated authorities. Intelligence and other information gathering may be positively augmented in such a manner.
In all the possible incorporations and modifications of the spike penetrator and lance mine, it is always optional to have the lance mine and spike penetrator remain mechanically together, have the spike penetrator and lance mine attached using chain, wire, rope, fiber, cable, lanyard or other connecting medium to connect the spike penetrator to the buried lance mine, or have the lance mine and spike penetrator completely separate upon action. The spike penetrator and lance mine may be comprised of metal, non-metal, plastic, wood, stone, glass, ceramic, chemical agent, combination of chemical agents, or any material with properties sufficient to accomplish the penetration function.
The lance mine may power the spike penetrator by pyrotechnic propellant, propelling explosive, compressed gas, pyrolytic action, mechanical spring, gas spring, or mechanical action resulting from the pressure exerted by the enemy personnel against the mine. The present invention may be electronically equipped such that it may be remotely shut down and rearmed as desired.
The lance mine may be initiated by mechanical or pyrolytic action, or by remote control when so equipped. The lance mine may be fully electronically equipped for command, condition reporting and control as desired. The lance mine may be equipped with electronic proximity fuses for initiation.
The detonator, initiator, firing pin, shearable or breakable component, or other firing mechanism of the present invention may be made pressure sensitive such as to differentiate between the weight of a tank or other vehicle and that of enemy personnel, and made to detonate only at the weight range of enemy personnel.
It has been proposed to place landmines along border areas to reduce or prevent the crossing of illegal immigrants, drugs, and terrorists. Opponents have indicated that landmines kill or seriously maim, and that such severe injury is unreasonable for this situation. The present invention offers a painful but non-lethal deterrent, and a clear and reliable capability of identifying the injured personnel as illegal personnel.
After military missions or actions have been completed, it is often important to neutralize or deactivate mines in order to ensure that civilian personnel or friendly personnel are not harmed by munitions that have not been activated by enemy forces. It is an object of the present invention that the lance mine be equipped to self sterilize and deactivate at a predetermined time by the action of integrated chemical components.
By equipping the lance mines of the present invention with an embedded RFID chip, the lance mines can be easily cataloged and identified if removal ever becomes necessary. The RFID chip that is imbedded in an enemy personnel may be matched with the RFID of the delivering lance mine providing an exact location of the enemy personnel at the time of the lance mine activation. A single RFID in the spike penetrator may be used for both purposes.
It is an object of the present invention to provide a chemical device that operates independently and requires no battery and no additional intrusion detection sensors. It is a further object of the present invention to provide an anti-personnel lance mine that does not cause injury by explosive shock.
The lance mine of the current invention is anti-personnel in nature, but does not produce a large explosion to incapacitate or kill the enemy personnel. The lance mine effects a deterrent action by driving a spike penetrator into the enemy personnel where, with certain preferred embodiments herein described, achieves by a variety of methods the incapacitation and deterrent of the enemy personnel to continue with the battle. The present invention is both incapacitating and nonlethal in its nature. The enemy personnel is placed in a position of requiring immediate and specialized medical attention, thereby encouraging the enemy personnel to leave the battlefield or surrender, all without the endangerment of life or property.
It is an embodiment of the present invention that should the lance mine accidentally activate during transportation, placement, or recovery, that injury to friendly personnel upon said activation can easily be avoided with simple technique and safety precautions.
The need for munitions such as mines and other devices placed or buried upon land to be safely placed and then rendered safe after a certain period of time is of great importance to the military. After military missions or actions have been completed, it is often important to neutralize or deactivate such mines in order to ensure that civilian personnel or friendly military personnel are not harmed by munitions that have not been activated by enemy forces. Because it is inherently unsafe to attempt to neutralize or deactivate such munitions, a great deal of effort has been put towards munitions that self-destruct or deactivate after a certain period of time has elapsed. There are problems associated, however, with placing a standard timer and actuator system within the mines, and any standard timer would require power to operate. This could be potentially unsafe, subject to failure and would allow such mines to be more easily detected. Therefore, the development of a simple interval timer and actuator system requiring no external power is necessary to accomplish this goal.
The present invention provides means by which it can be deployed in a safe or disarmed condition, and after deployment convert itself into an armed state through interaction with the environment. It is a further object of the present invention that the munition converts itself to a safe or disarmed condition at a later time through interaction with the environment. It is a further object of the present invention that the munition is recoverable, and that the recovered munition is reworkable into a condition suitable for redeployment.
The present invention is a propellant driven lance, such as a spike, that can incapacitate an insurgent as effectively as an anti-personnel landmine without inflicting death or life limiting injury.
A propellant powered spike provides a non-lethal anti-insurgent action on activation by piercing an enemy insurgent's foot with a spike penetrator. The spike penetrator may be equipped to insert an identifiable device or other payload into the insurgent's foot. The spike may be equipped for anti-vehicle and anti-robot action.
The spike penetrator is mounted in a propellant pressurizeable tube and is equipped to fire when stepped on. The propellant pressurizes the tube and propels the spike penetrator into the foot with enough force to overcome a shoe or boot sole, and enough force to overcome boot armor as desired. The spike penetrator is designed to stop in the boot or shoe sole or the bottom of a bare foot. When the lance mine is equipped for higher penetrating force, such as might be used against heavily armored boots, the lance mine tube may be further equipped with a pickup washer that is picked up on the propellant chamber shoulder of the spike penetrator and carried forward to increase the load distribution thereby stopping the spike penetrator at the proper position even in a bare foot. It is an embodiment that the spike penetrator can penetrate heavy armored boots and still stop in the correct position limiting injury to a barefoot civilian.
When the spike penetrator stops in a boot sole it effectively ‘nails’ the boot to the foot. The penetration of the foot by the lance causes immediate incapacitation of the insurgent and limits their ability to walk or function. The spike penetrator may also be tethered holding the insurgent in place using chain, wire, rope, fiber, cable or other connecting medium to connect the spike penetrator to the buried lance mine or other secured means. The puncture wound produced by the spike penetrator may be selected such that blood loss is restricted. With medical care, the spike penetrator can be extracted and the insurgent will have been removed from the battle in an effective manner without sustaining life limiting injury or death. In a similar manner civilians that step on and initiate the present invention will experience incapacitation but will not sustain life limiting injury.
The force required to fire the lance mine can be predetermined such that the weight of the anticipated target must be achieved before the lance mine will fire. It is an embodiment of the present invention that the force necessary to trigger the lance mine can be set at the time of manufacture. In this manner, a lance mine targeted for an adult insurgent would not fire when stepped on by a small child, and a lance mine intended for a heavier vehicle or robot would not fire when stepped on by an insurgent.
With the present invention area denial devices can be deployed and distributed while in a condition that prevents their initiation. This safe condition is temporary and will move to an armed condition in a predetermined or controlled time. The area denial device is then sensitive and may be easily initiated in a manner inherent to its design. After a predetermined or controlled time the area denial device will revert to a safe condition. The area denial device can then be abandoned in place or retrieved and reworked to once again be a deployable area denial device.
If a tire, such as a truck or automobile tire, runs over and initiates the lance mine, the fired spike penetrator will penetrate the tire much as a common nail and will remain in the tire. If the spike penetrator is RFID equipped the tire can be tracked and located. Alternatively, the spike penetrator can be equipped with means to allow the air to escape from the tire disabling the vehicle.
Anti-robot mines have not been disclosed as it is assumed an explosive mine will destroy or disable a robot. Robots can be designed to survive external explosions and the skin of a robot can deflect Electro Magnetic Pulses (EMP) around its sensitive electronics. The present invention penetrates the robot skin and can optionally explode producing high pressure inside the robot; can inject corrosives, acids, or adhesives inside the robot; can produce an overvoltage pulse or an EMP inside the robot; or can do all three. The present invention can lodge the lance into the robot's skin and tether the robot in place using chain, wire, rope, fiber, cable or other connecting medium to connect the spike penetrator to the buried lance mine or other secured means.
The arming and disarming processes of the present invention are accomplished through the use of environmentally reactive materials in the construction of the device. These reactive materials are structurally situated to act as retainers at selected mechanical release points. When these reactive materials react with environmental components they become non-structural and the component being retained comes apart or otherwise changes its functional arrangement to accomplish the desired condition of armed or unarmed. Alternatively the component itself may be constructed of an environmentally reactive material and the reaction that proceeds on exposure to the environment reacts the entire component to a nonstructural condition resulting in its failure and the accomplishment of the desired condition of armed or unarmed.
For example, by using a retaining ring assembly such that the detonator can not move, and therefore not operate, and by arranging the structure of that ring to be secured by selected reactive materials, then when the reactive materials release, the retaining ring assembly will fall or otherwise move away and the detonator mechanism will then be free to operate. In this manner the munition has transformed from a safe or disarmed condition to an armed condition.
In another example, the firing pin being retained as a whole and functional component secured by selected structural reactive materials, and said materials reacting at a predetermined interval such as to become nonstructural and release the retainment of the firing pin, the firing pin then becomes inoperative and the munition moves from an armed to a disarmed state.
In another example, the firing pin spring is retained by selected structural reactive materials, and said materials reacting at a predetermined interval such as to become nonstructural and release the retainment of the spring, the spring then expands and becomes inoperative and the munition moves from an armed to a disarmed state.
In another example, the retaining pin degrades and allows the penetrating spike initiator to contact the bottom of the lance mine tube, initiating the propellant charge and expelling the spike penetrator thereby deactivating the lance mine.
In another example, a retainer ring is made entirely of a reactive material that is structurally sound, and upon exposure to the environment the reactive material of the retainer ring becomes nonstructural and crumbles away causing a change of state between armed or disarmed in the munition.
In another example, the environmental seal fails after a given time and the initiator is optionally fired expelling the penetrator spike or degrades such that it will not fire.
By these means the area denial device or other munition can transform itself from safe to armed and back to safe. The area denial device can be safely recovered and reconfigured to a deployable state or abandoned as desired.
It is intended that the present invention will utilize one or more of the many different structural but environmentally reactive material possibilities to arm and disarm a munition or other area denial device, and the selection of a particular geometry will depend largely on the design of the munition.
It is an embodiment of the present invention that environmentally reactive materials are used to serve as attachment points and connecting members to secure the action of structural components of the munition. In this manner, the amount of material used will be minimized and the economic cost of making and refurbishing the munition lowered.
It is an embodiment of the present invention that the reactive materials, through interaction and reaction with environmental, factors, fail and transform the structural components into subcomponents that no longer perform the original function.
It is an embodiment of the present invention that the reactive materials have a known and predictable interval from initial exposure to the environment to the time of their structural failure as an attachment point.
An attachment point may be any type of structure including but not limited to rods, points, wires, brackets, bonds, sets, glues, lines, spheres, fasteners and other shapes and functions as desired. Attachment points may be comprised of a variety of chemical components wherein one of more are reactive with the environment and precipitate the desired change.
Environmental factors for the present invention include air, water, soil, sand, temperature, darkness, light, humidity, dryness and sunlight.
Reactive materials, for the purpose of the present invention, are defined as those substances which can, in contact with air, water or other environmental factors, experience or initiate a chemical change that results in their structural failure as an attachment point or component.
It is an embodiment of the present invention to use materials reactive with air. Air reactive chemicals are chemicals which react in contact with environmental air containing oxygen or with compounds containing oxygen. Air reactive chemicals that are spontaneously combustible are known as pyrophoric materials. Examples of air reactives are the alkali metals including lithium, sodium, potassium, rubidium, cesium and francium. The alkali metals form ionic solid oxides of composition M2O when they react with air. Sodium also forms the peroxide Na2O2 as the main product, and potassium forms the superoxide KO2, also as the main product.
The alkali metals and their compounds also react with atmospheric water vapor and liquid water. In contact with water they react with it to produce hydrogen and alkali hydroxides such as 2M(solid)+2H2O(vapor)>>2M(aqueous)+2OH(aqueous)+H2(gas). Alkali metal hydroxides are white ionic crystalline solids of formula MOH, and are soluble in water.
Finely divided metal dusts of nickel, zinc and titanium, and dendritic forms of these metals are useful as reactive materials and are preferred materials in the present invention. They; along with the hydrides such as barium hydrides, diborane, diisobutyl and aluminum hydrides; will react with oxygen in air and atmospheric moisture to form unstable bonds and structures. Air reactive materials also include the oxidizable metals in general, organic and inorganic materials, and materials that sublimate in air such as naphthalene and organometallic compounds such as nickelocene.
It is an embodiment of the present invention to use materials reactive with water, either as vapor, humidity, steam, condensate or liquid. Water reactive chemicals are chemicals which react in contact with environmental water. Water reactive materials react when in contact with water, wet surfaces, or even the moisture in the air. Examples and embodiments of the present invention include the alkali metals, anhydrides (such as acetic anhydrides), carbides (such as calcium carbide), halides (such as acetyl chloride, titanium chloride, stannous chloride and other salts), hydrides (such as sodium hydride), organometallics (such as tetramethyl aluminum and nickel carbonyl), oxides (such as sodium and calcium oxides), peroxides (such as sodium and barium peroxide), phosphides (such as aluminum, calcium and copper phosphide) and others such as chlorosulfonic acid and aluminum tribromide. Reactive materials with water also include all sugars and other water soluble organics, water soluble inorganics, and hygroscopic salts. Metals such as iron and zinc react with water and transition from structural metals to nonstructural oxides. All of these materials, when used as a reactive system or a thin film, can be accurately and reliably predicted to fail at a given interval after environmental exposure.
Peroxides, and materials that can form peroxides upon exposure to the environment, are useful when combined with otherwise stable materials as interval timers. Examples include the ethers such as isopropyl ether, ethyl ether and diethyl ether. It is an embodiment of the present invention that peroxides, peroxide producing materials, and materials combined with peroxides and peroxide producing materials form a desirable group of structural combination materials for use in the present invention.
Polymers and their associated polymerizers such as acrylic acid, butadiene, cyclopentadiene, ethylene, styrene (vinyl benzene), and vinyl chloride are useful when the exposure to air is controlled for the transition of structural plastics into a nonstructural material that easily crumbles. Several types of reactive plastics are applicable to the present invention. Plastic compositions consisting of ethylene-vinyl and polyvinyl alcohol, and similar compounds are readily reacted from structural materials to nonstructural materials by the action of sunlight and temperature. Cellulose-based resins and combination materials also represent an effective material choice for this invention. One skilled in the art of reactive plastics can provide a formulation offering the appropriate degree of structural to nonstructural transition depending upon the environmental and performance characteristics desired.
Melting point linkages made of materials such as Wood's metal (melting point 158 degrees F.), Cerrolow 117 (melting point 117 degrees F.) and waxes among other thermally reactive materials are useful in initiating a structural to nonstructural linkage change based on temperature. Land mines set to arm at temperature that are placed in the late winter could deny walking and other routes to an enemy moving in early spring or summer. The expansion of water changing to ice could be useful in initiating a thermally activated state change.
To safeguard against the premature initiation of the reactive process, munitions in storage, transport or those awaiting use in the field should be protected from environmental influences. This is readily and inexpensively addressed by employing enhanced environmental protection in their shipping containers and in the munitions packaging. It is an embodiment of the current invention that the reactive materials are packaged such that their exposure to reactive environmental factors be controlled and exactly known during deployment.
While the method of this invention has been shown and described with reference to specific embodiments it will be understood by those skilled in the art that many deviations, derivations and variations in form and specific details may be made therein without departing from the scope of the invention which is limited only by the claims annexed hereto.
Historically, unexploded munitions have posed a serious threat to military and civilian personnel. Once located, the generally employed method of dealing with these dangerous devices is to detonate them where they lie or to transport them to a safer location for detonation or burning. Destruction is typically accomplished by placing explosive charges among the unexploded ordnance items and then initiating the explosion and ensuing destruction from a safe distance. Devices too dangerous to handle or transport, such as armed mines, may be neutralized by overcrossing the area with rollers or dragging chains. This is an expensive and time-consuming procedure, and one which normally requires re-working the area with heavier follow-up rollers to destroy deeper laid devices and to confirm the effectiveness of the neutralization process prior to returning the land to general use.
To facilitate the identification and neutralization of unexploded ordnance a number of methods have evolved. One, as described in U.S. Pat. No. 4,711,179 embodies a land mine which, upon deployment in an armed state will, after a predetermined length of time, disarm itself and eject a marker to identify the location of the disarmed mine. The disarming mechanism and the spotting charge used in the ejecting stage require numerous electronic and mechanical components, including a timer, battery, and motor. These items increase the expense and complexity of the munition. Additionally, the highly visible marker is more likely to be discovered by enemy forces than not.
U.S. Pat. No. 6,629,499 describes a mechanical timer device that depends upon ambient temperature fluctuations to count down and is used to render safe a mine or other ordnance device after a certain period of time. Repetitive temperature flux is questionable, or at least limits the environment in which the mine timer can operate, and the large amount of metal makes the mine easy to find by standard techniques.
U.S. Pat. No. 3,447,461 reveals an antipersonnel mine which is self-neutralizing through the utilization of an internal water reservoir or through the admission of atmospheric moisture to the interior of the device via numerous apertures. The dispersion of the moisture within the confines of the mine causes a suitable medium to become engorged and enlarged, thus initiating a series of events culminating in the movement of an obstruction between the firing pin and the detonator.
A deactivation means is incorporated into the design offered in U.S. Pat. No. 3,464,354. The disarming mechanism relies upon the device's loss of pressurization over time. The time interval for the deactivation is not known. Deactivation relies upon the assumption that a permanent air pressure seal is unachievable. The premise is that once deployed, the device's pressurization will last no longer than a few years. The pressurization is also the force used to drive the firing pin into the detonator. Consequently, once pressure is lost, there no longer exists the required energy to propel the firing pin; and the device becomes deactivated. This device leaves behind a significant amount of explosive material whereas the present invention does not contain significant explosive material.
U.S. Pat. No. 6,014,932 describes a mine that can be remotely armed after placement. The patent describes a system for remotely arming a land mine via satellite or an airborne vehicle, and a corresponding method. This added expense for communication, command and control will significantly increase the cost of the munition.
U.S. Pat. No. 3,667,387 discloses a self-destructing land mine. The self-neutralizing process is initiated by the rupturing of internally contained glass vials containing a solvent. This solvent reacts with a nitrocellulose outer film. The eventual dissolution of the nitrocellulose film causes the confined phosphorus to become exposed to the atmosphere, thus initiating the violent destruction of the mine. This land mine is so dangerous that it must be stored and transported submerged in water. Otherwise, should one or more of the internal glass vials rupture, the ensuing atmospheric exposure of the phosphorus will have catastrophic results. Logistically, it is unrealistic to transport large quantities of this device in a hostile environment while maintaining them submerged in water.
Another method of eliminating the dangers of unexploded ordnance is described in U.S. Pat. No. 4,493,239. The patent discloses a process of enhanced oxidation of buried aluminum and ferrous ordnance through the establishment of a continuous flow of direct current electricity through the soil medium. This continuous flow of electricity may be enhanced through the constant saturation of the ground up to a depth of three feet with a saline solution to enhance the oxidation process. Completion of the process may take up to ten years. This prolonged process is impractical for use in most locations and prohibitively expensive where it could be employed. The present invention does not contain an explosive and is very small having little effect on the land once it is abandoned. It causes immediate injury that the affected person will have to recover from but with medical attention will not cause life altering injury or death.
Electronic munitions that self destruct at the end of their battery life are also known. Devices of this type are usually expensive and are readily detected due to their electronic emissions and battery mass.
The need for an effective and self arming/disarming munition is exemplified by the proliferation of attempts to produce self-neutralizing anti-personnel ordnance. Under the present invention, a simpler, more efficient, reliable, and less costly method of achieving this end is disclosed.
It has been a matter of considerable effort to devise an effective landmine that at the same time can be rendered harmless. More recent work has centered on nonlethal mines that repel or mark an enemy personnel.
In 1999, the Ottawa treaty went into force to prohibit the use, stockpiling, production and transfer of explosive anti-personnel landmines. The U.S. did not sign this treaty as it desires to use anti-personnel landmines in military operations. It is widely understood that the U.S. wants to be able to be compliant with the Ottawa treaty. The dilemma is how to preserve the effectiveness of minefields while eliminating the explosive anti-personnel landmine.
To achieve this desired outcome many technologies have been proposed.
U.S. Pat. No. 6,640,721 describes a non-lethal airbag munition which can be used alone or in combination with anti-tank landmines to prevent target pedestrians and vehicles from entering a specific area or following a particular route for a period of time is disclosed. The munition can inflict severe ankle and foot injuries to target pedestrians but discriminates based upon the weight of the target. This method may or may not remove an insurgent from the battle. This method produces injury that may or may not incapacitate the subject personnel. In addition, injury levels may include ankle or knee damage that may be a life altering injury. The present invention initiates a simple puncture wound which, even if through a joint or bone, with prompt medical attention the personnel should expect a full recovery.
U.S. Pat. No. 5,936,183 describes a non-lethal alternative to the anti-personnel landmine. The TASER® alternative uses electronic stun capability in combination with a landmine housing and deployment system. The device can cover a radius of 15 feet (30 feet possible) and can be triggered by various sensors. Although the TASER® non-lethal area denial device would cause no deaths or injuries if accidentally triggered by friendly forces, it can also be permanently disabled when no longer needed, by remotely using a secure code to shut down the TASER® system. When triggered, the device launches darts in multiple directions at 10 or 20 degree intervals in a direction generally facing the enemy. The darts temporarily incapacitate any persons within an inch of the darts by causing uncontrollable spasms of the near surface motor control muscles causing temporary loss of the subject's motor control functions. The subject will fall and temporarily be completely incapacitated. The device will take down persons wearing soft body armor because high voltage electricity readily arcs through the fabric weaving holes. A timing circuit keeps the subjects incapacitated until they can be taken into custody by nearby troops. After the very low power signal is turned off, the subject will recover within minutes. The TASER® device produces no collateral damage and poses no lethal threat to friendly forces even if accidentally triggered. The TASER® does nor produce an injury that would remove an insurgent from the battlefield. While the experience may be undesirable, the insurgent will make a rapid recovery and return to the fight within minutes of the event. The device may be remotely shut down permanently via an encrypted security code. The present invention may also be remotely shut down permanently or temporarily via an encrypted security code. The present invention also produces no collateral damage and poses no lethal threat to friendly forces even if accidentally triggered. The present invention has the advantage of causing painful and debilitating injury causing the enemy personnel to be removed from the battlefield. The affected personnel will require specialized and immediate medical attention and will be unfit for combat for an extended period of time. Knowledge that the lance may be specialized in some manner such as incorporating an RFID chip that requires specialized medical attention may give cause for affected enemy personnel to surrender themselves to the proper authorities providing the opportunity for intelligence gathering.
U.S. Pat. No. 7,458,321 describes a non-lethal anti-personnel landmine comprising a sealed container having a first chemical reactant contained therein, and a second container having a second chemical reactant contained therein, the container being positioned within the mine to assure that a stepping action on the mine will result in the opening of the container and the release of the contents thereof into contact with the second chemical reactant, whereby the contact results in a fast chemical reaction non-lethal to the person stepping on the mine. This chemical reaction will get hot, smoke, make a noise, emit light, release an irritant or release a dye. These actions may or may not cause the enemy personnel enough of an injury to require removal from the battlefield. The present invention will incapacitate the enemy personnel in a nonlethal manner, and will necessitate the enemy personnel be removed from the battlefield and seek medical attention at once.
U.S. Pat. No. 7,137,340 describes the Mixed Mine Alternative (MMA) System. This system is a tilitary system designed for use in mechanized warfare. The MMA System has three components, MMA smart Antitank mines, MMA Antihandling Sensors linked to the MMA smart Antitank mines, and MMA Remote Control Units (RCU). The MMA smart Antitank (AT) mines contain a primary sensor system hardened against countermeasures and a kill mechanism similar to existing scatterable AT mines. The MMA AT mine is capable of transmit and receive communications with a Remote Control Unit and with the MMA Antihandling Sensors (AH). The communications capabilities and processors in the MMA AT and the MMA AH allow the system to establish MMA AT to MMA AH links after the mines have been scattered. MMA AT will be linked to MMA AH that are within their lethal radius. The MMA AT mine processors allow the mine primary antitank sensor to be on or off. The mine may receive and act on detonate instructions from the primary antitank sensor, from the antihandling sensors, or from the MMA RCU. If in an off status the MMA AT mine may relay the detonate signal received from an MMA AH sensor to the RCU. The RCU includes a computer that maintains status information on the mines. Receipt of a relayed AH sensor detonate signal provides situational awareness information that the RCU brings to the user's attention on the screen and with an audible and/or visual signal. Essentially this system uses sensors that cause the antitank landmine to explode as a result of sensors detecting enemy personnel. This may not satisfy the requirements of the Ottawa Treaty. The present invention directly substitutes for explosive anti-personnel mines that protect anti tank landmines, wherein an enemy personnel stepping on the lance will initiate the anti-personnel penetrator and sustain a direct and serious injury that will incapacitate the personnel and require the personnel to be removed from the battlefield.
U.S. Pat. No. 6,014,932 describes a mine that can be remotely armed after placement. The patent describes a system for remotely arming a landmine via satellite or an airborne vehicle, and a corresponding method. This added expense for communication, command and control will significantly increase the cost of the munitions. The hazards associated with the present invention are minimal, and significant injury can be avoided during transport, placement and recovery with minimal training and adherence to procedure.
The need for an effective and safe anti-personnel landmine is exemplified by the proliferation of attempts to produce such ordnance. Under the present invention, a simpler, more efficient, reliable, and less costly method of achieving this end is disclosed.
The invention will now be described by way of example only, with reference to the accompanying drawings in which:
It is a preferred embodiment that spike penetrator 10 be sized between 0.001 mm to 50.0 centimeters in diameter, and from 0.01 millimeters to 100 centimeters in length, and any combination thereof.
The lance mine and spike penetrator 10 may be comprised of various materials and combinations of materials including plastic, metal, non-metal, wood, paper, fiber, pulp, granules, glass, stone, ceramic, chemical, chemicals, chemical agent, combination of chemical agents, or any material with properties sufficient to accomplish the penetration function. Making the penetrator 10 of a porous material such as wood is highly desirable due to cost and suitability of the material to deliver chemistry to the enemy personnel.
The base 15 provides for an area that extends beyond tube 12 providing a lip 20. Lip 20 is provided to facilitate the placement of the lance mine without putting pressure on tube 12.
While the present invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with considerable modification within the spirit and scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
1670078 | Pratt | May 1928 | A |
2805067 | Ryan | Sep 1957 | A |
3964392 | Kintish et al. | Jun 1976 | A |
5904443 | Soleau | May 1999 | A |
20030133758 | Dever | Jul 2003 | A1 |
20120186479 | Skidmore et al. | Jul 2012 | A1 |
20130068122 | Mitchell | Mar 2013 | A1 |
20130206028 | Burdine et al. | Aug 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20130206028 A1 | Aug 2013 | US |