The present invention relates lighting devices, and more particularly to portable workspace lighting devices.
The present invention provides, in one aspect, an area light including a power inlet connectable to a power source, a housing supporting a light assembly, and a user interface including control members configured to operate the light assembly between multiple modes of operation.
In accordance with some constructions, the power source is a battery, the light assembly is an array of LEDs, and the user interface includes a first control member for turning the light assembly on and off and a second control member for operating the light between two or more intensity levels.
In accordance with some constructions, the battery is a 5 amp/hour battery and is capable of providing power to the array of LEDs to produce between 5700 lumens and 7700 lumens for 1 to 3 hours. More specifically, the battery is configured to provide power to the array of LEDs to produce 6700 lumens for about 2 hours.
In accordance with some constructions, the light assembly is an array of 80 to 280 LEDs. More specifically, the light assembly is an array of 180 LEDs. This array of LEDs may be configured to emit light at approximately 3700-4300 Kelvin with a color rendering index (CRI) between about 50 and 100. More specifically, the light that is emitted by the LEDs is about 4000 Kelvin with a CRI of about 70.
In accordance with some constructions, the housing includes a lens surrounding the light assembly. The lens is configured to withstand a two meter drop test. The lens may be removably coupled to the housing. When the lens is coupled to the housing and surrounds the light assembly, approximately 3500-5500 lumens passes through the lens. More specifically, approximately 4500 lumens will pass through the lens.
In one construction, an area light includes a housing defining a central axis and including a first portion and a second portion, the second portion arranged to emit light. A lens is coupled to the housing, and a light assembly is disposed within the second portion. The light assembly includes a plurality of LEDs arranged to emit light through the lens and in a direction that extends 360 degrees around the central axis. A battery is selectively coupled to the housing and is arranged to provide power to the LEDs to allow for the emission of light at a level of at least 5700 lumens for at least two hours.
In another construction, an area light includes a housing defining a central axis and including a first portion and a second portion, a lens coupled to the housing and disposed substantially within the second portion, and a light assembly arranged to emit light from each of a plurality of sectors arranged around the central axis, the plurality of sectors cooperating to completely surround the central axis. A plurality of LEDs is arranged in each of the plurality of sectors, and a control unit is operable to control the distribution of electrical power to the plurality of LEDs, and to selectively direct power to all of the plurality of sectors or to a subset of the plurality of sectors.
In yet another construction, an area light includes a housing defining a central axis and a light assembly defining a plurality of sectors that extend 360 degrees around the central axis, each of the plurality of sectors including a plurality of LEDs arranged to emit light in a direction substantially normal to the central axis. A planar sector is arranged normal to the central axis and includes a plurality of top LEDs arranged to emit light in a direction substantially parallel to the central axis. A lens is coupled to the housing and covers the light assembly and the planar sector, a port is formed as part of the housing and sized to selectively receive a battery, and a power inlet is arranged to selectively receive electrical power from an AC source of power. A control unit is operable to control the distribution of electrical power from one of the port and the power inlet to the plurality of LEDs, and is operable to selectively direct power to all of the plurality of sectors or to a subset of the plurality of sectors.
Other features and aspects of the invention will become apparent by consideration of the following detailed description and accompanying drawings.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.
With reference to
The battery 26 and/or an external power source are configured to supply power to a light assembly 46 via the port 22 and the power inlet 30, respectively. In preferred constructions, the battery 26 is a power tool battery pack that can be inserted into the port 22 and removed from the port 22 without any disassembly of the light 10. In one construction, the light assembly 46 includes an array of LEDs. For example, the light assembly 46 may be an array of about 80-280 LEDs. More specifically, the light assembly 46 may be an array of 180 LEDs. In a specific example, the array of LEDs is configured to generate approximately 5700-7700 lumens for about two hours when powered by a 5 amp/hour battery. Further, the light that is emitted by the LEDs is approximately 3700-4300 Kelvin with a color rendering index (CRI) between about 50 and 100. More specifically, the light that is emitted is about 4000 Kelvin with a CRI of about 70.
With reference to
In some constructions, the lens 50 is be configured to withstand a two meter drop test without any adverse functional effects. This may be accomplished by having a certain lens thickness or by constructing the lens 50 from various materials. In addition, the lens 50 is also configured to have specific light transmission properties—that is, the lens 50 may be configured to transmit a certain percentage, color, or other light characteristic from the light assembly 46 to the surrounding workspace. In a specific example, the lens 50 is configured to transmit approximately 3500-5500 lumens from the light assembly to the work space. More specifically, the lens 50 is configured to transmit 4500 lumens from the light assembly 46 to the work space. The lens also shifts the color temperature of the light by about 200 Kelvin such that the light exiting the lens has a color temperature between about 3500 Kelvin and 4100 Kelvin.
With reference to
The area light 10 also includes an internal control unit 66, such as a microcontroller or memory unit storing information and executable functions. The internal control unit 66 is configured to store the state of the light as set by the second and third control members 58, 62 when the light assembly 46 is powered on and off by the first control member 54. This results in a light 10 that may be turned on and off while maintaining the most recent state of the light (e.g., the section of the light turned on and the intensity level), thereby allowing the user to turn the light on with the last settings without having to adjust the light.
With reference to
With reference to
In operation, the handle 70, the pivotable hook 74, and the slot 82 allow a user to couple the area light 10 to a support member in the work space. Using the user interface 14, the user may energize the light assembly 46 using the first control member 54 and adjust other light assembly characteristics using the second and third control members 58, 62. For example, the user may operate the light assembly at a desired intensity while also energizing only a portion of the light.
The light may also include a power control circuit that allows the light to select the power source from which, or to which power is delivered. For example, the power control circuit could be arranged to deliver power to the LEDs from the external power source when that power source is available and to automatically switch to or select the battery as the source when the external source is not available. In addition, the battery could be charged by the external power source while the external power source delivers power to the LEDs.
As illustrated in
Although the invention has been described in detail with reference to certain preferred embodiments, variations and modifications exist within the scope and spirit of one or more independent aspects of the invention as described.
The present application claims priority to U.S. Provisional Application No. 62/299,757 filed Feb. 25, 2016 and U.S. Provisional Application No. 62/187,539 filed Jul. 1, 2015.
Number | Name | Date | Kind |
---|---|---|---|
3331958 | Adler | Jul 1967 | A |
3755668 | Moreschini | Aug 1973 | A |
4032771 | Ilzig | Jun 1977 | A |
4228489 | Martin | Oct 1980 | A |
4268894 | Bartunek et al. | May 1981 | A |
4324477 | Miyazaki | Apr 1982 | A |
5203621 | Weinmeister et al. | Apr 1993 | A |
5207747 | Gordin et al. | May 1993 | A |
5351172 | Attree et al. | Sep 1994 | A |
5400234 | Yu | Mar 1995 | A |
5428520 | Skief | Jun 1995 | A |
5630660 | Chen | May 1997 | A |
5860729 | Bamber | Jan 1999 | A |
5934628 | Bosnakovic | Aug 1999 | A |
5964524 | Qian | Oct 1999 | A |
6045240 | Hochstein | Apr 2000 | A |
D428176 | Bamber et al. | Jul 2000 | S |
6092911 | Baker, III et al. | Jul 2000 | A |
6099142 | Liu | Aug 2000 | A |
6149283 | Conway et al. | Nov 2000 | A |
6183114 | Cook et al. | Feb 2001 | B1 |
6213626 | Qian | Apr 2001 | B1 |
6255786 | Yen | Jul 2001 | B1 |
6265969 | Shih | Jul 2001 | B1 |
D452022 | Osiecki et al. | Dec 2001 | S |
6367949 | Pederson | Apr 2002 | B1 |
6379023 | Passno | Apr 2002 | B1 |
6461017 | Selkee | Oct 2002 | B2 |
6474844 | Ching | Nov 2002 | B1 |
6554459 | Yu et al. | Apr 2003 | B2 |
6637904 | Hernandez | Oct 2003 | B2 |
6824297 | Lee | Nov 2004 | B1 |
6854862 | Hoof | Feb 2005 | B1 |
6857756 | Reiff et al. | Feb 2005 | B2 |
6873249 | Chu | Mar 2005 | B2 |
6877881 | Tsao | Apr 2005 | B2 |
6899441 | Chen | May 2005 | B2 |
D506847 | Hussaini et al. | Jun 2005 | S |
6902294 | Wright | Jun 2005 | B2 |
6926428 | Lee | Aug 2005 | B1 |
7001044 | Leen | Feb 2006 | B2 |
7001047 | Holder et al. | Feb 2006 | B2 |
7011280 | Murray et al. | Mar 2006 | B2 |
7063444 | Lee et al. | Jun 2006 | B2 |
7073926 | Kremers et al. | Jul 2006 | B1 |
D532536 | Krieger et al. | Nov 2006 | S |
7152997 | Kovacik et al. | Dec 2006 | B1 |
7153004 | Galli | Dec 2006 | B2 |
7194358 | Callaghan et al. | Mar 2007 | B2 |
7195377 | Tsai | Mar 2007 | B2 |
7224271 | Wang | May 2007 | B2 |
D553281 | Rugendyke et al. | Oct 2007 | S |
D553771 | Watson et al. | Oct 2007 | S |
7278761 | Kuan | Oct 2007 | B2 |
7350940 | Haugaard et al. | Apr 2008 | B2 |
7364320 | Van Deursen et al. | Apr 2008 | B2 |
7367695 | Shiau | May 2008 | B2 |
7470036 | Deighton et al. | Dec 2008 | B2 |
7484858 | Deighton et al. | Feb 2009 | B2 |
7503530 | Brown | Mar 2009 | B1 |
7566151 | Whelan et al. | Jul 2009 | B2 |
7618154 | Rosiello | Nov 2009 | B2 |
7638970 | Gebhard et al. | Dec 2009 | B1 |
D612965 | Extrand | Mar 2010 | S |
7670034 | Zhang et al. | Mar 2010 | B2 |
D621536 | Lee | Aug 2010 | S |
D622430 | Chilton | Aug 2010 | S |
7798684 | Boissevain | Sep 2010 | B2 |
7828465 | Roberge et al. | Nov 2010 | B2 |
7857486 | Long et al. | Dec 2010 | B2 |
7914178 | Xiang et al. | Mar 2011 | B2 |
7914182 | Mrakovich et al. | Mar 2011 | B2 |
7972036 | Schach et al. | Jul 2011 | B1 |
D643138 | Kawase et al. | Aug 2011 | S |
7988335 | Liu et al. | Aug 2011 | B2 |
7990062 | Liu | Aug 2011 | B2 |
7997753 | Walesa et al. | Aug 2011 | B2 |
8007128 | Wu et al. | Aug 2011 | B2 |
8007145 | Leen | Aug 2011 | B2 |
8029169 | Liu | Oct 2011 | B2 |
8047481 | Shen | Nov 2011 | B2 |
8087797 | Pelletier et al. | Jan 2012 | B2 |
8142045 | Peak | Mar 2012 | B2 |
8167466 | Liu | May 2012 | B2 |
D661417 | Kung | Jun 2012 | S |
8201979 | Deighton et al. | Jun 2012 | B2 |
D665521 | Werner et al. | Aug 2012 | S |
8235552 | Tsuge | Aug 2012 | B1 |
8262248 | Wessel | Sep 2012 | B2 |
8294340 | Yu et al. | Oct 2012 | B2 |
8322892 | Scordino et al. | Dec 2012 | B2 |
8328398 | Van Deursen | Dec 2012 | B2 |
8330337 | Yu et al. | Dec 2012 | B2 |
8360607 | Bretschneider et al. | Jan 2013 | B2 |
8366290 | Maglica | Feb 2013 | B2 |
8403522 | Chang | Mar 2013 | B2 |
8425091 | Chen | Apr 2013 | B2 |
8439531 | Trott et al. | May 2013 | B2 |
8465178 | Wilcox et al. | Jun 2013 | B2 |
8485691 | Hamel et al. | Jul 2013 | B2 |
D687591 | Chilton et al. | Aug 2013 | S |
8547022 | Summerford et al. | Oct 2013 | B2 |
D694445 | Shiu | Nov 2013 | S |
D695434 | Shen | Dec 2013 | S |
8599097 | Intravatola | Dec 2013 | B2 |
D698471 | Poon | Jan 2014 | S |
D699874 | Chilton et al. | Feb 2014 | S |
8651438 | Deighton et al. | Feb 2014 | B2 |
8659433 | Petrou | Feb 2014 | B2 |
8692444 | Patel et al. | Apr 2014 | B2 |
8696177 | Frost | Apr 2014 | B1 |
D705467 | Aglassinger | May 2014 | S |
D706968 | McDonough et al. | Jun 2014 | S |
D708376 | Crowe et al. | Jul 2014 | S |
8801226 | Moore | Aug 2014 | B2 |
8851699 | McMillan | Oct 2014 | B2 |
8858016 | Strelchuk | Oct 2014 | B2 |
8858026 | Lee et al. | Oct 2014 | B2 |
8939602 | Wessel | Jan 2015 | B2 |
8979331 | Lee et al. | Mar 2015 | B2 |
D726354 | Davies | Apr 2015 | S |
D728402 | Case | May 2015 | S |
9068736 | Lee et al. | Jun 2015 | B2 |
9182088 | Workman et al. | Nov 2015 | B2 |
D747263 | Lafferty | Jan 2016 | S |
9713216 | Urry et al. | Jul 2017 | B2 |
9851088 | Harvey | Dec 2017 | B2 |
D809687 | Krantz | Feb 2018 | S |
D822246 | Hou | Jul 2018 | S |
D828939 | Bo | Sep 2018 | S |
20020136005 | Lee | Sep 2002 | A1 |
20020167814 | Ching | Nov 2002 | A1 |
20020191396 | Reiff | Dec 2002 | A1 |
20030090904 | Ching | May 2003 | A1 |
20030137847 | Cooper | Jul 2003 | A1 |
20030174503 | Yueh | Sep 2003 | A1 |
20050265035 | Brass et al. | Dec 2005 | A1 |
20060007682 | Reiff, Jr. et al. | Jan 2006 | A1 |
20060067077 | Kumthampinij et al. | Mar 2006 | A1 |
20060146550 | Simpson et al. | Jul 2006 | A1 |
20060203478 | Waters | Sep 2006 | A1 |
20060279948 | Tsai | Dec 2006 | A1 |
20060285323 | Fowler | Dec 2006 | A1 |
20070211470 | Huang | Sep 2007 | A1 |
20070297167 | Greenhoe | Dec 2007 | A1 |
20080112170 | Trott et al. | May 2008 | A1 |
20080158887 | Zhu et al. | Jul 2008 | A1 |
20080165537 | Shiau | Jul 2008 | A1 |
20080198588 | O'Hern | Aug 2008 | A1 |
20080253125 | Kang et al. | Oct 2008 | A1 |
20080302933 | Cardellini | Dec 2008 | A1 |
20090080205 | Chang et al. | Mar 2009 | A1 |
20090134191 | Phillips | May 2009 | A1 |
20090135594 | Yu et al. | May 2009 | A1 |
20090303717 | Long et al. | Dec 2009 | A1 |
20100027260 | Liu | Feb 2010 | A1 |
20100027269 | Lo et al. | Feb 2010 | A1 |
20100072897 | Zheng | Mar 2010 | A1 |
20100080005 | Gattari | Apr 2010 | A1 |
20100091495 | Patrick | Apr 2010 | A1 |
20100142213 | Bigge et al. | Jun 2010 | A1 |
20100315824 | Chen | Dec 2010 | A1 |
20100328951 | Boissevain | Dec 2010 | A1 |
20110031887 | Stoll et al. | Feb 2011 | A1 |
20110038144 | Chang | Feb 2011 | A1 |
20110050070 | Pickard | Mar 2011 | A1 |
20110058367 | Shiau et al. | Mar 2011 | A1 |
20110075404 | Allen et al. | Mar 2011 | A1 |
20110089838 | Pickard et al. | Apr 2011 | A1 |
20110121727 | Sharrah et al. | May 2011 | A1 |
20110156584 | Kim | Jun 2011 | A1 |
20110228524 | Greer | Sep 2011 | A1 |
20110286216 | Araman | Nov 2011 | A1 |
20110317420 | Jeon et al. | Dec 2011 | A1 |
20120026729 | Sanchez et al. | Feb 2012 | A1 |
20120033400 | Remus et al. | Feb 2012 | A1 |
20120033429 | Van De Ven | Feb 2012 | A1 |
20120044707 | Breidenassel | Feb 2012 | A1 |
20120048511 | Moshtagh | Mar 2012 | A1 |
20120049717 | Lu | Mar 2012 | A1 |
20120057351 | Wilcox et al. | Mar 2012 | A1 |
20120087118 | Bailey et al. | Apr 2012 | A1 |
20120087125 | Liu | Apr 2012 | A1 |
20120098437 | Smed | Apr 2012 | A1 |
20120120674 | Jonker | May 2012 | A1 |
20120140455 | Chang | Jun 2012 | A1 |
20120155104 | Jonker | Jun 2012 | A1 |
20120212963 | Jigamian | Aug 2012 | A1 |
20120234519 | Lee | Sep 2012 | A1 |
20120236551 | Sharrah et al. | Sep 2012 | A1 |
20120247735 | Ito et al. | Oct 2012 | A1 |
20120262917 | Courcelle | Oct 2012 | A1 |
20120300487 | Jonker | Nov 2012 | A1 |
20130032323 | Hsu | Feb 2013 | A1 |
20130058078 | Meng | Mar 2013 | A1 |
20130077296 | Goeckel et al. | Mar 2013 | A1 |
20130128565 | Cugini et al. | May 2013 | A1 |
20130176713 | Deighton et al. | Jul 2013 | A1 |
20130187785 | McIntosh et al. | Jul 2013 | A1 |
20130258645 | Weber | Oct 2013 | A1 |
20130265780 | Choski et al. | Oct 2013 | A1 |
20130322073 | Hamm et al. | Dec 2013 | A1 |
20140140050 | Wong | May 2014 | A1 |
20140192543 | Deighton et al. | Jul 2014 | A1 |
20140218936 | Mahling et al. | Aug 2014 | A1 |
20140268775 | Kennemer et al. | Sep 2014 | A1 |
20140301066 | Inskeep | Oct 2014 | A1 |
20140307443 | Clifford et al. | Oct 2014 | A1 |
20140376216 | McLoughlin et al. | Dec 2014 | A1 |
20150023771 | Carr et al. | Jan 2015 | A1 |
20150233569 | Xue et al. | Aug 2015 | A1 |
20150233571 | Inan et al. | Aug 2015 | A1 |
20150267902 | Zhang | Sep 2015 | A1 |
20160348879 | Young et al. | Dec 2016 | A1 |
20160360585 | Urry et al. | Dec 2016 | A1 |
20170280528 | Urry et al. | Sep 2017 | A1 |
Number | Date | Country |
---|---|---|
0193756 | Sep 1986 | EP |
1205428 | May 2002 | EP |
2436641 | Apr 2012 | EP |
2424694 | Oct 2006 | GB |
20100089371 | Aug 2010 | KR |
20100116933 | Nov 2010 | KR |
2002044503 | Jun 2002 | WO |
WO-2011073828 | Jun 2011 | WO |
WO-2011112005 | Sep 2011 | WO |
2014083117 | Jun 2014 | WO |
2014207595 | Dec 2014 | WO |
Entry |
---|
International Search Report and Written Opinion for Application No. PCT/US2017/018412 dated May 23, 2017 (13 pages). |
European Patent Office Partial Supplementary Search Report for Application No. 17757035.5 dated Sep. 19, 2019 (14 pages). |
European Patent Office Extended Search Report for Application No. 17757035.5 dated Jan. 3, 2020 (11 pages). |
Number | Date | Country | |
---|---|---|---|
20170003009 A1 | Jan 2017 | US |
Number | Date | Country | |
---|---|---|---|
62299757 | Feb 2016 | US | |
62187539 | Jul 2015 | US |