The present invention relates in general to an arm apparatus for mounting electronic devices, and more specifically, to an extension arm having a system for internally managing the cables to and from the electronic device.
Adjustable extension arms for mounting electronic peripheral devices, such as computer monitors, notebook computers, Internet computers, VCR's, cameras, computer keyboards, televisions, other electronic devices and the like, are well known in the prior art. For example, there is known from O'Neill, U.S. Pat. No. 4,852,842; Greene, U.S. Pat. No. 5,584,596; and Voeller, et al., U.S. Pat. No. 5,743,503 various mechanical support arms. By way of one example, due to recent advances in flat-screen technology, there is a demand for adjustable extension arms that are particularly suited for use with flat-screen devices, such as flat-screen computer monitors and televisions.
To this end,
The combination of the upper and the lower channels 14, 16 and the first and the second endcaps 12, 18 form an adjustable parallelogram that permits a device coupled to the forearm extension 20 to be raised and lowered to a desirable height. The parallelogram retains its position by employing a gas spring 28, which is pivotably and adjustably attached to the first endcap 12 and the upper channel 14, as will be further described below. Generally, the gas spring 28, e.g., a gas type hydraulic cylinder and a retractable piston rod, is sized so as to have a fixed length until an upward or downward force is exerted at the second endcap 18 that exceeds the gas spring's designed resistance. Thus, the gas spring 28 causes the parallelogram to retain its position when the only force exerted at the second endcap 18 is the weight of the device, but permits the parallelogram to be adjusted when a user pushes the device coupled to the forearm extension 20 up or down.
Threadedly mounted on the threaded rod 38 is a clevis 48.
a) and 4(b) illustrate the upper channel 14, which comprises channel bottom 60 from which extend two channel sidewalls 62. Channel bottom 60 and sidewalls 62 are typically stamped from 13 gauge steel sheet in order to give the upper channel 14 a desired degree of structural rigidity. At each of the ends of the channel bottom 60, a semi-circular region 64 of the sidewalls 62 is cut out to accommodate cold-rolled steel rollers 66, which have a hole 68 therethrough for receiving the pins 24. The rollers 66 are rigidly attached to the upper channel 14 by MIG welding along the edge of the semi-circular cut out region 64 and along the ends of the channel bottom 60.
Additionally, the upper channel 14 comprises stiffener 70, which is welded to an inner surface of the channel bottom 60. Besides providing additional structural rigidity to the upper channel 14, the stiffener 70 has a hole disposed at one end with a threaded ball stud 72 placed within the hole and fixed in place by a nut 74. The ball stud 72 is configured and sized to receive one end of the gas spring 28. The longitudinal centerline 76 of the upper channel 14 is illustrated in
a) and 5(b) illustrate the lower channel 16 which comprises a channel bottom 78 from which extend two channel sidewalls 80. As with the upper channel 14, the channel bottom 78 and sidewalls 80 are typically stamped from 13 gauge steel sheet, which is relatively heavy in order to give the lower channel 16 a desired degree of structural rigidity. At opposite ends of the channel bottom 78, a semi-circular region 82 of the sidewalls 80 is cut out to accommodate cold-rolled steel rollers 84, which have a hole 86 therethrough for receiving the pins 24. The rollers 84 are rigidly attached to the lower channel 16 by MIG welding along the edge of the semi-circular cut out region 82 and along the ends of the channel bottom 78. The longitudinal centerline 88 of the lower channel 16 is illustrated on
Extension arms 10 of the prior art, such as the one shown in
Thus, there is a continued need for an extension arm suitable to mount an electronic device that enables the cables to and from the electronic device to be substantially hidden from view within the extension arm and thus protected from the elements.
The present invention, in accordance with one embodiment, relates to an extension arm suitable for mounting an electronic device, such as a computer monitor, notebook computers, Internet computers, VCR's, cameras, computer keyboards, televisions, other electronic devices and the like.
In accordance with one embodiment of the present invention there is described an adjustable extension arm for mounting an electronic device thereto, the extension arm comprising a forearm extension having a first end and a second end for attachment of a device thereto, the forearm extension having a first opening at the first end and a second opening adjacent the second end, the first and second openings in communication with each other through a channel provided within the forearm extension between the first and second ends, a first endcap having a first end rotationally attached to the first end of the forearm extension, the first endcap having an opening extending therethrough in communication with the first opening within the forearm extension, a second endcap having a first end attachable to a support structure, and elongated first and second channel members nested together to form a channel therebetween, the first and second channel members having first ends pivotably attached to the first endcap and second ends pivotably attached to the second endcap.
In accordance with another embodiment of the present invention there is described an adjustable extension arm for mounting an electronic device thereto, the extension arm comprising a forearm extension having an internal elongated channel opening upward and extending between first and second ends of the forearm extension, a device mounting assembly for mounting an electronic device to the second end of the forearm extension, a first endcap having a first end to which the first end of the forearm extension is rotationally mounted, the first endcap including an opening extending therethrough in communication with the internal elongated channel within the forearm extension, a second endcap attachable to a support structure, a nested pair of elongated members forming an internal elongated channel therein, one common end of the elongated members pivotably attached to the first endcap and another common end of the elongated members pivotably attached to the second endcap, wherein the extension arm has a cable pathway through the opening extending through the first endcap and the internal elongated channel within the forearm extension.
In accordance with another embodiment of the present invention there is described an adjustable extension arm for mounting an electronic device thereto, the extension arm comprising a forearm extension having a first end and a second end for attachment of an electronic device thereto, the first end having a through hole connected to the second end by a U-shaped member having a bottom wall and a pair of spaced apart sidewalls, the U-shaped member forming an elongated first channel in communication with the through hole, a cover releasably attachable to the forearm extension overlying the through hole and a portion of the U-shaped member for enclosing the elongated first channel, at least one opening in the forearm extension in either the bottom wall adjacent the second end or between the second end and a portion of the cover; a first endcap including a first end and a second end having a through hole extending between the first and second ends; a tubular member received within the through hole within the first endcap having an interior in communication with the first channel within the forearm extension, the tubular member having a sidewall provided with a cutout, the forearm extension rotatably attached to the first endcap by the tubular member being received within the through hole within the first end of the forearm extension; a second endcap having an end rotatably attachable to a support structure; and elongated first and second channel members nested together to form a channel therebetween, the first and second channel members having first ends pivotably attached to the first endcap and second ends pivotably attached to the second endcap, one of the channel members having an elongated opening between the first and second ends providing communication between the exterior of the channel member and the channel formed therein, wherein the extension arm forms a cable pathway extending through the through hole within the tubular member and the first channel within the forearm extension.
The above description, as well as further objects, features and advantages of the present invention will be more fully understood with reference to the following detailed description of an arm apparatus for mounting electronic devices with cable management system, when taken in conjunction with the accompanying drawings, wherein:
a and 4b illustrate the upper channel of an extension arm, in accordance with the prior art;
a and 5b illustrate the lower channel of an extension arm, in accordance with the prior art;
a–d illustrate several views of a first endcap, in accordance with one embodiment of the invention;
a–d illustrate several views of an upper channel, according to one embodiment of the invention;
a–e illustrate several views of a lower channel, according to one embodiment of the invention;
a–c illustrate several views of a partially enclosed housing of a second endcap, according to one embodiment of the invention;
a–b illustrates several views of a shaft assembly of a second endcap, according to one embodiment of the invention;
a and 16b illustrate a forearm extension, in accordance with one embodiment of the invention;
a–b, illustrate several views of a bushing used in a second female coupling of the extension arm illustrated in
a–b are a side and bottom view of an upper channel according to one embodiment of the invention;
In describing the preferred embodiments of the subject matter illustrated and to be described with respect to the drawings, specific terminology will be resorted to for the sake of clarity. However, the invention is not intended to be limited to the specific terms so selected, and is to be understood that each specific term includes all technical equivalence which operate in a similar manner to accomplish a similar purpose.
With reference to the drawings, in general, and
a and 10b illustrate the first endcap 102, in accordance with one embodiment of the invention. In the embodiment shown, the first endcap 102 includes a partially enclosed housing 112 which has flat, oppositely disposed endwalls 146 and 148 fixedly connected by a sidewall 150. The sidewall 150 extends partially around the partially enclosed housing 112 so as to permit manipulation of components to be assembled within the first endcap 102. In one embodiment, the endwalls 146 and 148 are semicircular in shape and are connected along a semicircular edge to the sidewall 150, which extends perpendicularly therebetween.
a illustrates the first endcap 102 having a shaft 114 disposed on the endwall 148. The shaft 114 is preferably integrally molded to the endwall 148 of the first endcap 102. Preferably the entire first endcap 102 (the partially enclosed housing 112 and the shaft 114) is molded from zinc. The endwall 146 has a hole 152 disposed therethrough. Within the partially enclosed housing 112 and integrally molded on the sidewall 150 are stops 156 disposed in proximity to the endwalls 146, 148; trough walls 158 disposed longitudinally along the inner surface of the sidewall 150 between the endwalls 146 and 148 so as to define a trough 160 therebetween; and shelves 162 disposed adjacent to the endwall 148.
The stops 156 serve to stop upward or downward movement of the extension arm 100 when ends of the upper channel 104 and the lower channel 106, respectively, meet the stops 156 when the extension arm 100 is in extended positions. The trough 160 disposed between the trough walls 158 allows a clevis 120 to be moved therein, as discussed in more detail later.
The threaded rod 124 and the clevis 120 are now fabricated and assembled in the first endcap 102. The threaded rod 124 is employed within the first endcap 102 so as to adjustably support the clevis 120.
The threaded rod 124 also includes a threaded section 172 which is configured to threadingly engage the clevis 120. A second end 174 of threaded rod 124 is disposed in the groove 164 located between the shelves 162 of the first endcap 102. Preferably, the second end 174 of the threaded rod 124 has a circular cross-section having a diameter that is smaller than the size of the groove 164, such that the second end 174 is supported between the shelves 162 but is free to rotate therein.
As previously mentioned, threadedly mounted on the rod 124 is the clevis 120. The clevis 120 as illustrated in
When the first end 166 of the threaded rod 124 is engaged by a shaped key, the shaped key is employed so as to rotate the threaded rod 124 around its axial centerline. When the threaded rod 124 is rotated around this axis of rotation, the clevis 120 moves along the length of the threaded rod 124 in a direction that corresponds to the direction which the shaped key is turned. This movement of the clevis 120 permits the gas spring 122 to be adjusted.
The partially enclosed housing 112 is configured with, for example, holes 116 to receive a connection mechanism, such as pins 118, therethrough. The shaft 114 is configured to be inserted for pivotable rotation in a support mount (not shown), which may be a wall, desk or pole mount, or a configurable mount as shown and described in Applicant's co-pending U.S. patent application Ser. No. 09/406,531 entitled “Configurable Mount” filed on Sep. 27, 1999, the disclosure of which is incorporated herein by reference in its entirety.
a–d illustrate several views of the upper channel 104, according to one embodiment of the invention. The upper channel 104 includes a U-shaped body 130 and integrally cast rollers 132 disposed at opposite ends of the U-shaped body 130. The U-shaped body 130 comprises a channel bottom 180 from which extend two channel sidewalls 182. The channel bottom 180, the sidewalls 182 and the rollers 132 of the upper channel 104 are preferably integrally cast from zinc, which gives the upper channel 104 a lesser weight, and a degree of structural rigidity, more suitable for lighter-weight flat-screen devices than the prior art upper channel 14 which is stamped from heavy gauge steel. The rollers 132 have a hole 184 therethrough (either cast or subsequently drilled) for receiving a connection mechanism, such as the pins 118. Additionally, the upper channel 104 comprises a threaded hole 186 configured and sized to receive a threaded end of a ball stud 138. The threaded hole 186 is also integrally cast. The ball stud 138 is configured and sized to receive a second end of the gas spring 122.
Unlike the prior art upper channel 14 in which the U-shaped channel is formed by heating a piece of steel and bending the steel to form the channel bottom 60 and the sidewalls 62, the upper channel 104 of the invention is cast molded. The use of cast molding ensures the angle between the channel bottom 180 and the sidewalls 182 is exactly the same each and every time. Moreover, cast molding enables the sidewalls 182 to be tapered. As illustrated in
a–e illustrate several views of the lower channel 106, according to one embodiment of the invention. The lower channel 106 includes a U-shaped body 134 and integrally cast rollers 136 disposed at opposite ends of the U-shaped body 134. The U-shaped body 134 of the lower channel 106 comprises a channel bottom 190 from which extend two channel sidewalls 192. The channel bottom 190, the sidewalls 192 and the rollers 136 of the lower channel 106 are preferably integrally cast from zinc, which gives the lower channel 106 a lesser weight when compared to heavy gauge steel, and a degree of structural rigidity, more suitable for lighter-weight flat-screen devices. The rollers 136 have a hole 194 therethrough (either cast or subsequently drilled) for receiving a connection mechanism, such as the pins 118.
The channel bottom 190 additionally includes a cable channel 196 running longitudinally therealong. In the embodiment shown, a first end 197 of the cable channel 196 starts near an end of the channel bottom 190 that pivotably connects to the first endcap 102. The cable channel 196 then runs along the entire length of the channel bottom 190 to the end of the channel bottom 190 that pivotably connects to the second endcap 108. Thus, the second end 199, of the cable channel 196 is an opening between the roller 136 at the end of the channel bottom that pivotably connects to the second endcap 108. The first end 197 may be, for example, rounded to improve the rigidity of the lower channel 106. The cable channel 196 is configured to receive a cable cover 198 (illustrated in
As illustrated in
As illustrated in
The second endcap 108 includes a partially enclosed housing 250 and a shaft assembly 252. As illustrated in
As illustrated in
The upper and the lower channels 104, 106 and the first and the second endcaps 102, 108 are configured so as to form an adjustable parallelogram. When configured, the shaft 114 of the first endcap 102 and the hollow shaft 268 of the second endcap 108 point in opposite directions. For example, as illustrated in
Generally, the gas spring 122 is sized so as to have a fixed length until an upward or downward force is exerted at the second endcap 108 that exceeds the gas spring's designed resistance. Thus, the gas spring 122 retains the parallelogram shape when the only force exerted at the second endcap 108 is the weight of the flat-screen device. However, the gas spring 122 permits the parallelogram shape to be adjusted when a user pushes the flat-screen device coupled to the forearm extension 110 up or down.
With reference to
The first female coupling 142 preferably has a set screw 212 formed within a wall 214 thereof. The set screw 212 can be tightened to prevent the first female coupling 142 from rotating about the hollow shaft 268. Advantageously, the first female coupling 142 has a plurality of voids 217 formed in the wall 214, which saves on material costs and permits the forearm extension 110, when cast, to be cooled more quickly. The quicker cooling enables the production quantity to be increased.
A bushing 210 (
The body 140 preferably has an inverted U-shape with a topwall 207 and two sidewalls 208 so that a cable can be hidden therein. Advantageously attached within the U-shaped body 140, and preferably on the topwall 207, is a cable holder 278 (
The second female coupling 144 is for attachment to a device mounting (not shown), such as a tilter described in Applicant's co-pending patent application Ser. No. 09/406,530 filed on Sep. 27, 1999 which is incorporated herein by reference in its entirety, a platform, or other means for supporting a flat-screen device. Thus, the second female coupling 144 has an inner diameter 218 that is sized to rotatably engage a shaft of the device mount. A bushing 220 (
The embodiment of the forearm extension 110 illustrated in
The embodiment illustrated in
The present invention permits a flat-screen device which is mounted to a wall to be flattened against the wall while hiding the extension arm 100 within the shadow of the device. That is, the forearm extension 110 may be folded into a position which is directly above the upper and the lower channels 104, 106. As a result, the mounted device is flush to the mounting surface and substantially hides the parallelogram, formed by the first and the second endcaps 102, 108 and the upper and the lower channels 104, 106, as well as the forearm extension 110 from view. Thus, the aesthetic appeal of the extension arm 100 is increased and the space occupied by the extension arm 100 and the device is minimized.
Referring back to
Preferably, the cable 304 is inserted into the extension arm 100 as portions of the extension arm 100 are being assembled. That is, the cable 304 is placed under the U-shaped body 140 of the forearm extension 110 and is held in place by the cable holder 278. The cable is then passed through the cable slots 274, 276. The cable 304 including the plug 306 is then fed through the hole 260 in the second endcap 108. The second endcap 108 is now assembled by inserting the mounting end 270 of each endcap adapter 268 into the hole 260, thus surrounding the cable 304. The endcap adapters 268 are held together and within the hole 260 by tightening the set screws 264. The hollow shaft 268 is then placed within the first female coupling 142. The cable 304 is placed within the lower channel 106, prior to the lower channel 106 and the second endcap being secured together. This ensures that the cable 304 is above the roller 136 and is contained within the hollow bar formed by the upper channel 104 and the lower channel 106.
Referring back to
Referring to
Referring to
The upper and lower channels 104, 106 are nested together to permit relative sliding movement therebetween in both longitudinal and transverse direction. The upper and lower channels 104, 106 by virtue of their general U-shaped construction form therebetween an internal channel extending therethrough. The common ends of the upper and lower channels 104, 106 are pivotably attached to the first endcap 102 by means of pins 118 as previously described. Similarly, the other common ends of the upper and lower channels 104, 106 are pivotably attached to the second endcap 108 by means of pins 118. A gas spring 122 of the hydraulic type is received within the channel formed between the upper and lower channels 104, 106 and attached to the clevis 120 and upper channel 104 as previously described. The forearm extension 110 is rotatably mounted to the second endcap 108 about a hollow tubular member 406 as to be described hereinafter.
As shown in
Turning to
The channel bottom 190 additionally includes a cable channel 196 running longitudinally therealong. In the embodiment shown, the cable channel 196 extends along the length of the channel bottom 190, terminating inwardly and adjacent the rollers 136. One or both of the ends of the cable channel 136 may be rounded or having a key-hole shape. The cable channel 196 is configured to receive a cable cover 412 as shown in
As shown in
The cable cover 412 forms an elongated opening 422 overlying the cable channel 196. It is contemplated that in certain applications, a cable 304 may be strung through the interior of the lower channel 106 when assembling the extension arm 404. In certain other applications, the construction of the lower channel 106 and gas spring 120 will limit the space within the lower channel for accommodating a cable 304. In this regard, the cable channel 196 and opposing opening 422 will provide additional space for receiving the cable. Further in this regard, in an application where the extension arm 404 is fully assembled, it might not be possible to thread a cable through the lower channel 106. As such, the cable 304 can be extended overlying the cable channel 196 and contained within the opening 422 of the cable cover 412. It is also further contemplated that the cable 304 can be threaded through the interior of the lower channel 106 and directly into the interior of the second endcap 108 or outwardly through the cable channel 196. This is particularly facilitated when installing cable 304 during the assembly of the extension arm 404 as to be described hereinafter.
The opening 428 which extends through the forearm extension 110 is wholly or partially closed by a removable cable cover 430 as shown in
The forearm extension 110 is pivotably mounted to the second endcap 108 by rotationally receiving therein the free end of the tubular member 406 as shown in
As shown in
The tubular member 406 is inserted into the opening 450 within the second endcap 108 as shown in
Referring once again to
The cable 304 extends into the interior of the forearm extension 110 through the first female coupling 142 to a location adjacent the free end where the tilter 302 is rotationally supported. The cable 304 exits from the forearm extension 110 through either of the openings 426, 442. The openings 426, 444 and the tubular member 406 are sized to allow the pin connector attached to the cable 304 for the electronic device to pass therethrough. The extension arms 100, 404 as thus far described provide a construction for the internal management of cables 304 to and from a support electronic device 408.
Turning now to
Turning to
As shown in
Turning to
Referring to
The friction pellet 466 is inserted into the bottom end of the threaded hole 480 in the swivel bolt 460 where it is supported by its engagement with the upper end 496 of the swivel lug 462. The threaded set screw 468 is inserted into the threaded hole 480 such that its end is in engagement with the upper surface of the friction pellet 466. Rotation of the set screw 468 will apply pressure on the friction pellet 466 which, in turn, will apply pressure to the swivel lug 462. The friction pellet 466 is preferably constructed of a polymer material so as to be resilient and capable of withstanding the forces imparted by the set screw 468. Upon applying sufficient force, the pivotable action of the swivel lug 462 may be arrested for adjustment purposes as to be described hereinafter.
The assembly as thus far described, i.e., the swivel bolt 460 and swivel lug 462, may be inserted into an adapter receiving support 474. As shown in
The free end of the swivel lug 462 is inserted into the rectangular-shaped opening 512 within the adapter 470. The swivel lug 462 is secured thereat by threaded bolt 472 which is threaded into the threaded hole 500 of the swivel lug. The completed assembly of the tilter 458 is shown in
The adapter 470 is releasably attached to a device mounting bracket 475. As shown in
The plate 526 is provided at one end with a configured wall 530 which defines a T-shaped opening 532. The T-shaped opening 532 is sized and configured so as to receive the T-shaped extension 506 on the adapter 470. As shown in
Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.
The present application is a divisional application of U.S. Application No. 09/776,355, filed Feb. 2, 2001, now U.S. Pat. No. 6,609,691 which claims the benefit of U.S. patent application No. 09/406,006 filed Sep. 24, 1999, now U.S. Pat. No. 6,409,134 which claims the benefit of U.S. Provisional Application No. 60/138,120 filed on Jun. 7, 1999; and U.S. Provisional Application No. 60/191,266 filed on Mar. 22, 2000, the disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
376617 | Vance | Jan 1888 | A |
999283 | White | Aug 1911 | A |
1551332 | Schramm | Aug 1925 | A |
2151877 | Walker | Mar 1939 | A |
3072374 | Bodian | Jan 1963 | A |
3131900 | Anderson et al. | May 1964 | A |
3322886 | Warshawsky | May 1967 | A |
3348799 | Junkel et al. | Oct 1967 | A |
3409261 | Leporati | Nov 1968 | A |
3424419 | Siegel | Jan 1969 | A |
3436046 | Valeska | Apr 1969 | A |
3489383 | Anson | Jan 1970 | A |
4082244 | Groff | Apr 1978 | A |
4159093 | Hamilton | Jun 1979 | A |
4266747 | Souder, Jr. et al. | May 1981 | A |
4437638 | Scheibenpflug | Mar 1984 | A |
4447031 | Souder, Jr. et al. | May 1984 | A |
4459650 | Pike | Jul 1984 | A |
4494177 | Matthews | Jan 1985 | A |
4523732 | Biber et al. | Jun 1985 | A |
4562987 | Leeds et al. | Jan 1986 | A |
4564179 | Hollingsworth | Jan 1986 | A |
4610630 | Betush | Sep 1986 | A |
4616798 | Smeenge et al. | Oct 1986 | A |
4687167 | Skalka et al. | Aug 1987 | A |
4695024 | Haven | Sep 1987 | A |
4706919 | Soberalski et al. | Nov 1987 | A |
4708312 | Rohr | Nov 1987 | A |
4768744 | Leeds | Sep 1988 | A |
4770384 | Kuwazima et al. | Sep 1988 | A |
4783036 | Vossoughi | Nov 1988 | A |
4821159 | Pike | Apr 1989 | A |
4836486 | Vossoughi et al. | Jun 1989 | A |
4844387 | Sorgi et al. | Jul 1989 | A |
4852500 | Ryburg et al. | Aug 1989 | A |
4852842 | O'Neill | Aug 1989 | A |
5123621 | Gates | Jun 1992 | A |
5174531 | Perakis | Dec 1992 | A |
5258898 | Thornton | Nov 1993 | A |
5348260 | Acevedo | Sep 1994 | A |
5357414 | Dane et al. | Oct 1994 | A |
5379205 | Peng | Jan 1995 | A |
5390685 | McCoy | Feb 1995 | A |
5437427 | Johnson | Aug 1995 | A |
5584596 | Greene | Dec 1996 | A |
5642819 | Ronia | Jul 1997 | A |
5664750 | Cohen | Sep 1997 | A |
5697588 | Gonzalez et al. | Dec 1997 | A |
5743503 | Voeller et al. | Apr 1998 | A |
5848556 | Ryu et al. | Dec 1998 | A |
5876008 | Sweere et al. | Mar 1999 | A |
6012693 | Voeller et al. | Jan 2000 | A |
6076785 | Oddsen, Jr. | Jun 2000 | A |
6095468 | Chirico et al. | Aug 2000 | A |
D435852 | Oddsen, Jr. | Jan 2001 | S |
6179263 | Rosen et al. | Jan 2001 | B1 |
6283428 | Maples et al. | Sep 2001 | B1 |
6478274 | Oddsen, Jr. | Nov 2002 | B1 |
6601811 | Van Lieshout et al. | Aug 2003 | B1 |
6695270 | Smed | Feb 2004 | B1 |
D488163 | Hunt | Apr 2004 | S |
6736364 | Oddsen, Jr. | May 2004 | B1 |
Number | Date | Country |
---|---|---|
10-254581 | Sep 1998 | JP |
11-085315 | Mar 1999 | JP |
Number | Date | Country | |
---|---|---|---|
20030234328 A1 | Dec 2003 | US |
Number | Date | Country | |
---|---|---|---|
60191266 | Mar 2000 | US | |
60138120 | Jun 1999 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09776355 | Feb 2001 | US |
Child | 10448769 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09406006 | Sep 1999 | US |
Child | 09776355 | US |