The present invention relates to an arm bearing for an articulated-arm awning having a pillow block, that is hinged on a bracket so as to tilt about a tilting axis and that is provided on one of its ends with at least one bearing eye for receiving one awning arm in rotary fashion, and having further a threaded rod for limiting the maximum tilting angle between the bracket and the pillow block, a first end of the threaded rod being adjustably screwed into a locating opening in the bracket and a second end of the threaded rod being provided with a head that rests against a stop on the pillow block in the maximally tilted position, and having finally a locking member by means of which the head of the threaded rod can be fixed on the stop in the maximally tilted angular position.
An arm bearing of this kind is known from German Utility Patent No. G 87 09 415 U1.
In the case of the known arm bearing, also known as tilting joint because of the pivoting connection between the pillow block and the bracket, the locking member consists of an angle element which has one of its ends connected to the rotatable end of the awning arm, while its other end projects freely. The arrangement is sized so that any rotation of the awning arm will cause the second leg of the angle element to be rotated over the head of the threaded rod whereby the latter is fixed on the stop of the pillow block. One thereby implements an upthrust protection which prevents the tilted pillow block from returning inadvertently into a non-tilted position. This might otherwise happen, for example, when the awning is fully extended and when a gust of wind hits against the awning fabric from below.
The design of the known arm bearing is comparatively simple. It does not, however, provide the possibility to decouple the fixed condition of the threaded rod from the rotary position of the awning arm if this should become necessary. It is for this reason that the known arm bearing as such cannot be used as a rigid arm bearing with adjustable tilting angle.
EP 0 397 906 A1 likewise discloses an arm bearing for an articulated-arm awning where the pillow block and the bracket are arranged to be pivoted about a tilting axis one relative to the other. The upthrust protection is again constituted by a locking member, configured in this case as a linearly movable locking slide. In view to the problem underlying that publication, that slide is independent of a stop, which may be additionally provided, and is easy to produce. An alternative use of that tilting-joint arm bearing as a rigid arm bearing with adjustable tilting angle is, however, not envisaged.
It is the object of the present invention to improve an arm bearing of the before-mentioned kind so that it can be used easily as either a tilting-joint arm bearing or a rigid arm bearing with adjustable tilting angle.
This object is achieved, in the case of the arm bearing described at the outset, by the fact that the locking member comprises a linearly movable locking slide that can be coupled with the awning arm via a connection element, which latter translates the rotary movement of the awning arm to a linear movement of the locking slide.
The present arm bearing distinguishes itself from the known arm bearings in that a connection element is provided which when eliminated or removed results in the locking slide being decoupled from the movement of the awning arm. This in turn has the result that the locking slide is capable of fixing the head of the threaded rod on the stop, irrespective of the rotary position of the awning arm, so that the awning arm will retain the tilting angle once adjusted, irrespective of the position of the awning arm. This is the function of a rigid awning arm whose tilting angle can be adjusted with the aid of the threaded rod.
In contrast, when the connection element is used, then the rotary position of the awning arm will influence the linear position of the locking slide. This then results in the locking slide releasing the tilting joint between the pillow block and the bracket, as a function of the angular position of the awning arm, so that the pillow block can be turned up. The arrangement then acts as a tilting-joint arm bearing in that operating mode.
From the above it results that the arm bearing according to the invention can be converted from a tilting-joint arm bearing to a rigid arm bearing and vice versa simply by the optional use of the connection element. As will be apparent from the embodiments that will be described hereafter, the possibility to use the connection element optionally can be implemented in a very simple way, in technical and constructional terms. Consequently, the arm bearing according to the invention can be optionally used as a tilting-joint arm bearing or a rigid arm bearing with the same ease.
The object underlying the present invention is thus perfectly achieved.
The arm bearing according to the invention offers a number of additional advantages, especially when employed in the preferred embodiments defined in the dependent claims. Specifically, the production costs of the arm bearing according to the invention can be kept low due to the fact that the dual use now permits the production numbers to be increased considerably. Further, it is now possible due to the measure according to the invention to convert such an arm bearing to the respective alternative use even after several years of operation. And in addition, the preferred embodiments of the arm bearing according to the invention also have very small overall dimensions and are particularly simple and robust.
It is understood that the features recited above and those yet to be explained below can be used not only in the respective combination indicated, but also in other combinations or in isolation, without leaving the context of the present invention.
Exemplary embodiments of the invention are shown in the drawings and are explained in more detail in the description which follows. In the drawings:
In
The arm bearing 10 comprises a bracket 12 with a pillow block 14 arranged thereon to pivot about the tilting axis 16 in a direction indicated by arrow 18. The bracket 12 and the pillow block 14 comprise for this purpose bores that are aligned one with the other and through which a bolt 20 is passed in the direction of the tilting axis 16.
The end of the pillow block 14 is provided with a bearing eye 22 on which is rotatably seated a link rod 24 of an awning arm nor shown in detail. The awning arm consists, in the conventional way, of a hollow aluminium section fitted on the link rod 24. The link rod 24 is thereby connected with the awning arm so intimately that the terms “link rod” and “awning arm” will be used hereafter as synonyms for the sake of simplicity.
The awning arm 24 is seated in the bearing eye 22 for rotation about a rotary axis 26 in the direction indicated by arrow 28. That rotary movement takes place when the awning is extended.
Reference numeral 30 designates a threaded rod which, in the present case, extends crosswise to the tilting axis 16, from the pillow block 14 to the bracket 12. The first end 32 of the threaded rod 30 is screwed into a transverse bore in a bolt 34 with a corresponding internal thread, not visible in this representation. The bolt 34 thus forms a seat for the threaded rod 30.
Additionally, the threaded rod 30 is fixed in its respective instantaneous position by a spring element not shown in the drawing, which urges a pin laterally into the thread of the threaded rod 30. This arrangement works as a protection against torsion. Alternatively, the latter may, however, be implemented also in the conventional way, using a grub screw.
The bolt 34 is received in mutually aligned bores 36 arranged in parallel to the tilting axis 16, but above the latter, in mutually parallel legs 38, 40 of the bracket 12. The threaded rod 30 therefore has its first end 32 extending between the two legs 38, 40 of the two-piece bracket 12.
The second end of the threaded rod 30 carries a head 42 with a hexagon socket 44 provided in its end face. The hexagon socket 44 is capable of receiving a hexagon wrench by means of which the threaded rod 30 can be threaded a greater or lesser length into the bolt 34.
As can be seen in
As can be seen in the representation of
Reference numeral 60 designates a locking member assembly which acts to fix the head 42 of the arm bearing 30 on the stop 50 in the tilted position of the awning arm 10 illustrated in
In the present case, the locking member 60 comprises a locking slide 60 that can be moved linearly in a bore in the pillow block 14, in parallel to the tilting axis 16. The locking slide 62 is formed in the present case by a solid circular bolt made from stainless steel. It is connected via a cross-member 64 with a push rod 66 that extends in the pillow block 14, likewise in parallel to the tilting axis 16. The push rod 66 is biased by a spring 68 bearing against a projection 70 in the pillow block 14. The free end 72 of the push rod 66 projects from the housing element 48 of the pillow block 14 and rests against an eccentric, in the present case cam-shaped, outer contour 74 of the link rod 24.
In the case of the illustrated arm bearing, the locking slide 62 and the push rod 66 form a single piece, connected via the cross-member 64. In a different embodiment not shown in the drawings, the locking slide 62 may alternatively be connected with the cross-member 64 in detachable fashion so that the connection element can be removed without any necessity to exchange the locking slide 62.
In contrast, in the representations of
As appears from the representation of
The push rod 66 and the cross-member 64 form together a connection element that establishes an operative connection between the locking slide 62 and the link rod 24 so that the angular position of the link rod 24 about the rotary axis 26 influences the linear position of the locking slide 62. In the absence of such operative connection, the locking slide 62 remains in its respective linear position, irrespective of the rotary position of the link rod 24.
This relationship has been utilized in the embodiment of the arm bearing, that will be described hereafter with reference to
In
The arm bearing 80 differs from the arm bearing 10 described before essentially by the fact that the connection element comprising the cross-member 64 and the push rod 66 is missing. The bore 82, in which the push rod 66 of the arm bearing 10 was guided, is therefore empty.
Given the fact that there is no operative connection between the link rod 24 and the locking slide 62, the head 42 of the threaded rod 30 will remain fixed on the stop 50, irrespective of the particular position of the link rod 24. The pillow block 14 therefore retains the adjusted tilting angle α irrespective of the position of the link rod 24. In the representation of
The arm bearing 80, therefore, constitutes a rigid arm bearing whose tilting angle α can be adjusted using the threaded rod 30 by screwing the threaded rod 30 a greater or shorter length into the bolt 34.
The standard drive mechanism 90 can be operated in the known way via its annular operating element 96 using a crank not shown in the drawing. It then transfers the rotary movement of the crank to the coupling pin 92 and, thus, to the threaded rod 30.
According to a further embodiment, a mounting plate carrying a cardan joint is arranged on the end face of the pillow block 14. One end of the cardan joint is equipped with a hexagon pin that can be fitted in the hexagon socket 44 of the threaded rod 30, while an operating element, such as the operating element 96, can be fitted on the other end for driving the cardan joint.
Number | Date | Country | Kind |
---|---|---|---|
299 18 156 U | Oct 1999 | DE | national |
This application is a continuation of U.S. application Ser. No. 10/110,803 filed on Dec. 2, 2002, now abandoned which is a continuation national phase entry in the United States under 35 U.S.C. § 371 of pending international application PCT/EP00/09621 filed on Sep. 30, 2000 which designates the U.S. and which claims priority of German utility model No. 299 18 156.1 filed on Oct. 14, 1999.
Number | Name | Date | Kind |
---|---|---|---|
1871957 | Chryst | Aug 1932 | A |
3782443 | Clauss et al. | Jan 1974 | A |
4566516 | Lohausen | Jan 1986 | A |
4673017 | Lauzier | Jun 1987 | A |
5029363 | Hesener | Jul 1991 | A |
5133397 | Lohausen | Jul 1992 | A |
5394921 | Lohausen | Mar 1995 | A |
Number | Date | Country |
---|---|---|
G 87 09 415 | Nov 1987 | DE |
89 07 928.0 | Jun 1989 | DE |
196 18 460 | Nov 1997 | DE |
0 397 906 | Nov 1990 | EP |
0 593 389 | Apr 1994 | EP |
900 2439 | Jun 1992 | NL |
Number | Date | Country | |
---|---|---|---|
20030108259 A1 | Jun 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10110803 | Dec 2002 | US |
Child | 10305819 | US | |
Parent | PCT/EP00/09621 | Sep 2000 | US |
Child | 10110803 | US |