The present invention relates to an armature core where a plurality of coils are wound on each tooth, an armature where a plurality of coils are wound on the armature core, and an electric motor using the armature.
Priority is claimed on Japanese Patent Application No. 2014-042659, filed Mar. 5, 2014, the content of which is incorporated herein by reference.
For example, a DC motor with a brush, in which motor magnets are disposed on the inner peripheral surface of a bottomed cylindrical yoke and an armature is rotatably provided on the inside of the motor magnets in a radial direction, is known as an electric motor (for example, see PTL 1).
The armature includes an armature core, armature coils, and a commutator. The armature core includes a plurality of teeth that are provided on the outer periphery of an annular core body externally fitted and fixed to a rotating shaft and radially extend outward in the radial direction. The armature coil is wound on each tooth of the armature core via a slot between the teeth. The commutator is provided on the rotating shaft so as to rotate integrally with the armature core.
The commutator includes a plurality of segments that are disposed side by side in a circumferential direction in a state in which the segments are insulated from each other. Terminal portions of the respective armature coils are connected to these segments. Further, a plurality of brushes come into sliding contact with the segments. When DC current is supplied to each armature coil through the segment by the brushes, the armature and the rotating shaft are rotated by a magnetic attractive force or a repelling force that is generated between a magnetic field formed on the armature core and the motor magnets. Since the segments with which the brushes come into sliding contact are sequentially changed by the rotation of the armature and the rotating shaft, the switching of the direction of current flowing in the armature coil, that is, so-called rectification is performed. As a result, the armature is continuously rotated and a rotational output is taken out of the rotating shaft.
Incidentally, when the commutator rotates, the brushes repeatedly come into contact with the segments and are repeatedly separated from the segments. For this reason, when a voltage between the segments is high, electric discharge may be generated at the time of the separation of the brushes from the segments. As means for preventing this, there is, for example, a method that sets the number of the segments of the commutator to two or three times the number of the teeth of the armature core and lowers the voltage between the segments. In such a case, a plurality of winding wires are used to form a plurality of coils on each tooth of the armature core.
Here, in a case in which a plurality of coils are wound on each tooth, the coils are sequentially wound. For example, a second coil is wound after a first coil is wound. In a case in which there is a third coil, the third coil is wound after the second coil is wound. In this case, the second (second-layer) coil is wound such that at least a part of the second (second-layer) coil overlaps the first (first-layer) coil.
When the coil wound on the lower side slides due to the coil wound on the upper side, the slack of the lower coil can be caused. For this reason, winding collapse may be caused.
In
The invention provides an armature core that can prevent the winding collapse of coils when a plurality of coils are wound on teeth, an armature using the armature core, and an electric motor using the armature.
A first aspect of the invention provides an armature core including a plurality of teeth that are provided on an outer periphery of an annular core body and radially extend outward in a radial direction. A plurality of coils are wound on a winding drum portion of each tooth; a winding wire of a lower most side of at least a first-layer coil is wound so as to come into close contact with a winding surface of a base end side of the winding drum portion; a second-layer coil, which is to be wound later, is wound so that at least a part of the second-layer coil overlaps the first-layer coil; and a regulating portion, which regulates the positional deviation of the winding wire of the lowermost side of the first-layer coil in an extending direction of the tooth, is provided on at least a part of the winding surface for the first-layer coil on an outer periphery of the winding drum portion.
According to the armature core, the positional deviation of the winding wire of the lowermost side of the first-layer coil in the extending direction of the tooth can be regulated by the regulating portion. Accordingly, it is possible to prevent the winding collapse from being caused by the slack of the first-layer coil that occurs due to the sliding of the first-layer coil, which has been previously wound on the lower side, caused by the second-layer coil wound on the upper side of the first-layer coil. Therefore, since it is possible to increase a winding space in the slot of the armature core, it is possible to improve a coil space factor. Further, since the arrangement of the respective coils of each tooth can be uniformized through the prevention of the winding collapse of the coils, the balance of the armature can be improved.
A second aspect of the invention provides, in the armature core according to the first aspect of the invention, the regulating portion is provided on at least one side surface of both side surfaces of the winding drum portion in a width direction when seen in an axial direction of the core body.
According to the above-mentioned structure, in a case in which the armature core is formed of a laminated body including a plurality of core plates having the same shape, it is possible to form the regulating portions in a state in which the armature core is formed of the laminated body, by only adding shape to be the regulating portion to corresponding portions of each core plate. Accordingly, it is possible to easily form the regulating portions.
A third aspect of the invention provides, in the armature core according to the first or second aspect of the invention, the regulating portion is formed in the middle of the winding drum portion in the extending direction or on an inner side of the middle of the winding drum portion in the extending direction.
According to the above-mentioned structure, the winding wire of the lowermost side of the first-layer coil is reliably held at an appropriate position by the position of the step.
A fourth aspect of the invention provides, in the armature core according to any one of the first to third aspects of the invention, the regulating portion is formed of a step that is provided at an end part of an outer side of the winding surface for the first-layer coil in the extending direction; and with the step as a boundary, a height of the winding surface for the first-layer coil on an inner side in the extending direction is set to be lower than a height of the winding surface on an outer side in the extending direction.
According to the above-mentioned structure, among the winding wires of the lowermost side of the first-layer coil wound on the winding surface for the first-layer coil of the inner side in the radial direction so as to come into close contact with the winding surface for the first-layer coil, the position of the winding wire which comes into contact with the step is regulated by the step. So, other winding wires coming into contact with the step are not moved towards the outer side in the extending direction of the winding drum portion. Accordingly, the positional deviation of the other winding wires of the lowermost side is not caused. Therefore, the positional deviation of the winding wires, which are wound on the upper side of the winding wires of the lowermost side, is also not caused. As a result, since it is possible to wind the second or later-layer coil without causing the slack or winding collapse of the first-layer coil, the winding state of the coils is stable.
A fifth aspect of the invention provides, in the armature core according to the fourth aspect of the invention, a difference in height of the step is set to be equal to or larger than the radius of the winding wire that forms the coil.
According to the above-mentioned structure, according to the armature core, the winding wire of the lowermost side of the first-layer coil is reliably held at an appropriate position by the height of the step.
A sixth aspect of the invention provides, in the armature core according to any one of the first to third aspects of the invention, the regulating portion is a concave portion to which the winding wire forming the coil is fitted and which is formed at the end part of the outer side of the winding surface for the first-layer coil in the extending direction; and a depth of the concave portion is set to be equal to or smaller than a radius of the winding wire.
According to the above-mentioned structure, when the winding wire is fitted to the concave portion that is formed on the winding surface, the winding wire itself serves a role of the step. Accordingly, it is possible to prevent the positional deviation of the winding wire of the lowermost side of the first-layer coil.
A seventh aspect of the invention provides an armature in which a plurality of coils are sequentially wound in a concentrated winding manner on the winding drum portion of each tooth of the armature core according to any one of the first to sixth aspects of the invention, and a second or later-layer coil is wound so that at least a part of the second or later-layer coil overlaps a first-layer coil after the first-layer coil is wound so that a winding wire of a lowermost side comes into close contact with the winding surface of the winding drum portion.
According to the above-mentioned structure, since the armature includes the above-mentioned armature core, it is possible to effectively prevent the winding collapse of the coils. Accordingly, it is possible to improve the coil space factor and to improve balance.
An eighth aspect of the invention provides an electric motor including the armature according to the seventh aspect of the invention and a magnet that generates a magnetic attractive force or a repelling force with respect to a magnetic field formed by the armature.
According to the above-mentioned structure, it is possible to provide a high-quality electric motor having a high coil space factor.
According to the armature core, the armature, and the electric motor, it is possible to prevent the winding collapse of coils in a case in which a plurality of coils are wound on each tooth. Accordingly, it is possible to improve the coil space factor of the armature and to improve the balance of the armature.
Next, a first embodiment of the invention will be described with reference to
As shown in
A cylinder portion 53 of the yoke 5 is formed in a substantially cylindrical shape, and four segment-type magnets 7 are provided on the inner peripheral surface of the cylinder portion 53. Meanwhile, the magnets 7 are not limited to segment-type magnets and a ring-shaped magnet may be used.
A bearing housing 19, which protrudes outward in an axial direction, is formed at a radially central portion of a bottom wall (an end part) 51 of the yoke 5, and a sliding bearing 18, by which one end of the rotating shaft 3 is rotatably supported, is provided in the bearing housing 19. The sliding bearing 18 has a function to align the rotating shaft 3.
An outer flange 52 is provided at an opening of the cylinder portion 53, and an end part of a gear housing 23 of the speed reduction mechanism 4 is fixed to the outer flange 52. Accordingly, the electric motor 2 and the speed reduction mechanism 4 are integrally connected to each other.
(Armature)
As shown in
The armature body 80 includes an armature core 8 and an armature coil 9 that is wound on the armature core 8. The armature core 8 is formed of a laminated core in which core plates punched by pressing or the like and made of a magnetic material are laminated in the axial direction. Meanwhile, a dust core, which is press-molded with soft magnetic powder, can also be used as the armature core 8.
(Armature Core)
Here, terms about directions to be used will be defined below. First, an “axial direction” is the axial direction of the armature 6, that is, the axial direction of the rotating shaft 3. A “radial direction” is the radial direction of the armature 6. “Inner side in the radial direction” is the side facing the rotating shaft 3 in the radial direction of the armature 6, and “outer side in the radial direction” is the side opposite thereto. Further, a “circumferential direction” is the circumferential direction of the armature 6 and is the circumferential direction of the rotating shaft 3.
Furthermore, in a case of describing armature cores irrespective of a small difference in the shape, the armature cores are denoted by common reference numeral “8”. In a case of describing armature cores of embodiments by distinguishing from each other through a small difference in the shape, each armature core is denoted by common reference numeral “8” and an alphabet written in capital added thereto.
(Armature Core)
As shown in
According to this structure, six slots 13 are formed among adjacent teeth 12. Further, winding wires 14 coated with enamel pass through these slots 13 and the winding wires 14 are wound on the outer peripheries of the winding drum portions 12a of the teeth 12 in a concentrated winding manner as shown in
(Armature Coil)
In this case, as shown in
(Three Coils)
The above-mentioned first-layer coil 91 is formed by winding the winding wires 14 on the winding surfaces of the inner side of the winding drum portion 12a of each of the teeth 12 in the radial direction (an extending direction). Further, the second-layer coil 92 is formed by winding the winding wires 14 over the first-layer coil 91 which is previously wound at a position closer to the outside in the radial direction so as to partially overlap the first-layer coil 91. Furthermore, the third-layer coil 93 is formed by winding the winding wires 14 further over the second-layer coil 92 which is previously wound at a position even closer to the outside in the radial direction so as to partially overlap the second-layer coil 92. Here, the first-layer coil 91 is wound in a state in which the winding wires 14 of lowermost sides of the first-layer coil 91 come into close contact with base end parts of the winding surfaces of the winding drum portion 12a.
When the winding wires 14 forming the respective coils 91, 92, and 92 are sequentially wound in this way, the winding wires 14 of the first-layer coil 91 slide on the winding drum portion 12a due to a force generated while winding the second-layer coil 92 on the first-layer coil 91 as described above and cause the slack. For this reason, there is a concern that winding collapse may occur on all the coils.
(Regulating Portion)
Here, in the armature core 8A of this embodiment, as shown in
(Step as Regulating Portion)
The regulating portion 12a1 of the armature core 8A of this embodiment is formed by a step 12a1 (that is denoted by the same reference numeral as the regulating portion) that is provided at an end part of the outer side of the winding surface for the first-layer coil 91 in the radial direction. Further, with the step 12a1 as a boundary, a height of the winding surface for the first-layer coil 91 on an inner side in the radial direction is set to be lower than a height of the winding surface for other coils 92 and 93 on an outer side in the radial direction. That is, the step 12a1 is formed by changing the width dimension of the tooth 12.
As shown in
Further, as shown in
(Effect of Step)
Since the armature core 8A is formed as described above, it is possible to form the armature coil 9, which includes three coils 91, 92, and 93 without winding collapse, by sequentially winding the winding wires 14 of the first coil 91, the winding wires 14 of the second coil 92, and the winding wires 14 of the third coil 93 on the winding drum portion 12a of each of the teeth 12 of the armature core 8A.
That is, as shown in
Then, after the first-layer coil 91 is wound, the second layer coil 92 and the third-layer coil 93 are sequentially wound while partially overlapping the coil that is positioned therebeneath. As a result, the armature coil 9 is completed. In this case, even when the second-layer coil 92 or the third-layer coil 93 is wound, the positions of the winding wires 14 of the lowermost side of the first-layer coil 91 are regulated by the step 12a1. For this reason, since the slack of the winding wires 14 by the sliding of the winding wire 14 is not caused and the winding collapse of all the coils will not occur, thus the winding states of the coils 91, 92, and 93 are stable. As a result, since a winding space in the slots 13 of the armature core 8A is increased, a coil space factor is improved. Further, since the arrangement of the respective coils 91, 92, and 93 of each tooth 12 is uniformized through the prevention of the winding collapse of the coils 91, 92, and 93, the balance of the armature 6 can be improved.
Furthermore, in a case in which the steps 12a1 as the regulating portions are formed on both side surfaces of each tooth 12 in the width direction, it is possible to easily form the regulating portions by only adding the steps 12a1 to be the regulating portions, to corresponding portions of each of the core plates that form the armature core 8A. Moreover, it is possible to reliably hold the winding wires 14 of the lowermost side of the first-layer coil 91 at appropriate positions, that is, to prevent the winding wires 14 of the lowermost side of the first-layer coil 91 from getting onto the step 12a1 by the setting of a position where the step 12a1 is to be provided (the position regulated by the length L2) or a difference H in height. For this reason, it is possible to reliably prevent the winding collapse of the coils 91, 92, and 93.
(Commutator)
Next, another structure of the armature will be described.
As shown in
Further, a riser 16, which is bent so as to be folded back toward the outer diameter side, is molded integrally with an end part of each segment 15 facing the armature core 8. Terminal portions of the armature coil 9 are wound around the risers 16 and are fixed to the risers 16 by fusing or the like. Accordingly, the segment 15 and the armature coil 9 corresponding thereto are electrically connected to each other.
Furthermore, connecting wires 17 (to be described below) are wound around the risers 16 corresponding to the segments 15 having the same electric potential, and the connecting wires 17 are fixed to the risers 16 by fusing. The connecting wires 17 are used to allow the segments 15, which have the same electric potential, to short-circuit. The connecting wires 17 are routed between the commutator 10 and the armature core 8.
As shown in
A brush 21 is housed in the brush housing portion 22 so as to freely protrude/recede through a holder stay or a brush holder (not shown). The brush 21 is used to supply power from an external power source (for example, a battery mounted on an automobile, or the like) to the commutator 10. The brush 21 is biased toward the commutator 10 by a spring (not shown), and an end of the brush 21 comes into sliding contact with the segments 15.
(Method of Forming Armature Coil)
Next, an example of a method of forming the armature coil 9 will be described with reference to
As shown in
Meanwhile, in
First, for example, in a case in which a winding start end 14a of the winding wire 14 starts to be wound from the first segment 15, the winding wire 14 is led into the slot 13 between the first and sixth teeth 12 existing near the first segment 15. Further, in a case in which the winding wire 14 is wound on each of the teeth 12 n times (n is a natural number and a multiple of 3), the winding wire 14 is wound on the first tooth 12 n/3 times in the forward direction in a concentrated winding manner.
Subsequently, the winding wire 14 is led out of the slot 13 between the first and second teeth 12, and is wound around the riser 16 of the second segment 15 adjacent to the first segment 15. Then, a winding terminal end 14b is connected to the second segment 15. Accordingly, a U-phase first coil 91, which is wound on the first tooth 12 in the forward direction, is formed between the first and second segments 15.
Further, the winding wire 14 of which the winding start end 14a is wound around the riser 16 of the fifth segment 15 is led into the slot 13 between the first and second teeth 12. Then, the winding wire 14 is wound on the first tooth 12 n/3 times in the reverse direction in a concentrated winding manner.
Subsequently, the winding wire 14 is led out of the slot 13 between the first and sixth teeth 12, and is wound around the riser 16 of the sixth segment 15 adjacent to the fifth segment 15. Then, the winding terminal end 14b is connected to the sixth segment 15. Accordingly, a “−U”-phase second coil 92, which is wound on the first tooth 12 in the reverse direction, is formed between the fifth and sixth segments 15.
In addition, the winding wire 14 of which the winding start end 14a is wound around the riser 16 of the sixth segment 15 is led into the slot 13 between the first and second teeth 12. Then, the winding wire 14 is wound on the first tooth 12 n/3 times in the reverse direction in a concentrated winding manner.
Subsequently, the winding wire 14 is led out of the slot 13 between the first and sixth teeth 12, and is wound around the riser 16 of the seventh segment 15 adjacent to the sixth segment 15. Then, the winding terminal end 14b is connected to the seventh segment 15. Accordingly, a “−U”-phase third coil 93, which is wound on the first tooth 12 in the reverse direction, is formed between the sixth and seventh segments 15.
Therefore, an n-time winding armature coil 9, which includes the U-phase first coil 91, the “−U”-phase second coil 92, and the “−U”-phase third coil 93, is formed on the first tooth 12 corresponding to a U phase. The U-phase first coil 91 is formed of the winding wire 14 that is wound n/3 times in the forward direction; and the “−U”-phase second coil 92 and the “−U”-phase third coil 93 are formed of the winding wires 14 that are wound n/3 times in the reverse direction.
Then, when this is sequentially performed between the segments 15 corresponding to the respective phases, the armature coil 9 having a 3-phase structure including the first coil 91, the second coil 92, and the third coil 93 is formed on the armature core 8. Accordingly, the coils 91 to 93, which correspond to a U phase, a “−W” phase, a “−W” phase, a V phase, a “−U” phase, a “−U” phase, a W phase, a “−V” phase, and a “−V” phase, are electrically and sequentially connected in this order between the adjacent segments 15.
Meanwhile, at portions where the winding start end 14a and the winding terminal end 14b of the winding wire 14, which forms the coils 91 to 93 corresponding to the respective phases, are connected to the segments 15, the coils 91 to 93, which correspond to a U phase, a “−W” phase, a “−W” phase, a V phase, a “−U” phase, a “−U” phase, a W phase, a “−V” phase, and a “−V” phase, may be electrically and sequentially connected in this order between the adjacent segments 15.
(Operation of Electric Motor)
Next, the operation of the electric motor 2 will be described with reference to
For example, a case in which a brush 21 is disposed between the first and second segments 15 and a brush 21 is disposed on the sixth segment 15 as shown in
In this case, the U-phase first coil 91 short-circuits. Then, current flows in the “−U”-phase second coil 92 in the reverse direction (a counterclockwise direction in
In contrast, current flows in the V-phase first coil 91, the “−V”-phase second coil 92, and the “−V”-phase third coil 93 in the forward direction. Further, current flows in the “−W”-phase first coil 91, the “−W”-phase second coil 92, and the “−W”-phase third coil 93 in the reverse direction.
Accordingly, a magnetic field is formed on each of the second, third, fifth, and sixth teeth 12. The directions of these magnetic fields are in series in the circumferential direction. For this reason, a magnetic attractive force or a repelling force between the magnetic field formed on each tooth 12 and the motor magnet 7 acts in the same direction at symmetrical positions with respect to the rotating shaft 3 as a center. Then, the rotating shaft 3 is rotated by the magnetic attractive force or the repelling force.
Additionally, in the description of the operation of the above-mentioned electric motor 2, it is also possible to rotate the rotating shaft 3 at a high speed by the advance of the brush 21 that is disposed between the first and second segments 15.
(First Modification)
As shown in
Further, the armature coil 9 having a 3-phase structure including three coils 91 to 93, that is, the first coil 91, the second coil 92, and the third coil 93 is formed on the armature core 8 that forms the armature of the first embodiment. In contrast, an armature coil 209 having a 3-phase structure including two coils, that is, a first coil 91 and a second coil 92 is formed on an armature core 8 that forms an armature of the first modification. In this regard, the first modification is different from the above-mentioned first embodiment.
(Method of Forming Armature Coil)
An example of a method of forming the armature coil 209 will be described with reference to
As shown in
First, for example, in a case in which a winding start end 14a of the winding wire 14 starts to be wound from the first segment 15, the winding wire 14 is led into the slot 13 between the first and sixth teeth 12 existing near the first segment 15. Further, in a case in which the winding wire 14 is wound on each of the teeth 12 n times (n is a natural number and a multiple of 2), the winding wire 14 is wound on the first tooth 12 n/2 times in the forward direction in a concentrated winding manner.
Subsequently, the winding wire 14 is led out of the slot 13 between the first and second teeth 12, and is wound around the riser 16 of the second segment 15 adjacent to the first segment 15. Then, a winding terminal end 14b is connected to the second segment 15. Accordingly, a U-phase first coil 291, which is wound on the first tooth 12 in the forward direction, is formed between the first and second segments 15.
Further, the winding wire 14 of which the winding start end 14a is wound around the riser 16 of the fourth segment 15 is led into the slot 13 between the first and second teeth 12. Then, the winding wire 14 is wound on the first tooth 12 n/2 times in the reverse direction in a concentrated winding manner.
Subsequently, the winding wire 14 is led out of the slot 13 between the first and sixth teeth 12, and is wound around the riser 16 of the fifth segment 15 adjacent to the fourth segment 15. Then, the winding terminal end 14b is connected to the fifth segment 15. Accordingly, a “−U”-phase second coil 292, which is wound on the first tooth 12 in the reverse direction, is formed between the fourth and fifth segments 15.
Therefore, an n-time winding armature coil 209, which includes the U-phase first coil 91 and the “−U”-phase second coil 92, is formed on the first tooth 12 corresponding to a U phase. The U-phase first coil 91 is formed of the winding wire 14 that is wound n/2 times in the forward direction; and the “−U”-phase second coil 92 is formed of the winding wire 14 that is wound n/2 times in the reverse direction.
Then, when this is sequentially performed between the segments 15 corresponding to the respective phases, the armature coil 209 having a 3-phase structure including the first coil 91 and the coil 292 is formed on the armature core 8. Accordingly, the coils 91 and 92, which correspond to a U phase, a “−W” phase, a V phase, a “−U” phase, a W phase, and a “−V” phase, are electrically and sequentially connected in this order between the adjacent segments 15.
Meanwhile, at portions where the winding start end 14a and the winding terminal end 14b of the winding wire 14, which forms the coils 91 and 92 corresponding to the respective phases, are connected to the segments 15, the coils 91 and 92, which correspond to a U phase, a “−W” phase, a V phase, a “−U” phase, a W phase, and a “−V” phase, may be electrically and sequentially connected in this order between the adjacent segments 15.
(Second Modification)
The number of magnetic poles has been four (the number of the pairs of magnetic poles has been two) in the first modification. In contrast, as shown in
Further, in the second modification, the winding wire 14 is continuously wound on the teeth 12 corresponding to the same phase. In this regard, the above-mentioned first modification and the second modification are different from each other. That is, in the second modification, the winding wire 14, which is wound on one tooth 12, is not connected to the segment 15 and is wound on the teeth 12 corresponding to the same phase (for example, the first tooth 12, the fourth tooth 12, and the seventh tooth 12). After the winding wire 14 is wound on all the teeth 12 corresponding to the same phase and forms the coils 91 and 92, then a winding terminal end of the winding wire 14 is connected to a predetermined segment 15.
As shown in
As shown in
Further, as shown in
As shown in
As shown in
As shown in
Meanwhile, the invention is not limited to the above-mentioned embodiments, and also includes various modifications of the above-mentioned embodiments without departing from the scope of the invention.
For example, cases in which the armature cores 8 and 8A to 8F of the motor 1 with a speed reducer used to drive the windshield wipers of an automobile are provided with various regulating portions for preventing the winding collapse of the winding wire 14 have been described in the above-mentioned embodiments. However, the invention is not limited to the embodiments, and the regulating portions of the above-mentioned embodiments can be applied to armature cores of various electric motors.
According to the armature core, the armature, and the electric motor, it is possible to prevent the winding collapse of coils when a plurality of coils are wound on each tooth. Accordingly, it is possible to improve the coil space factor of the armature and to improve the balance of the armature.
Number | Date | Country | Kind |
---|---|---|---|
2014-042659 | Mar 2014 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2015/056345 | 3/4/2015 | WO | 00 |