ARMED CHIMERIC RECEPTORS AND METHODS OF USE THEREOF

Abstract
Described herein are immunoresponsive cells engineered to express cytokines, chimeric receptors, and synthetic transcription factor systems. Also described herein are nucleic acids, cells, and methods directed to the same.
Description
SEQUENCE LISTING

This application contains a Sequence Listing in computer readable form. The computer readable form is incorporated herein by reference. Said XML copy, created on Jan. 31, 2024, is named STB-029WOC1 and is 601,588 bytes in size.


BACKGROUND

Cell-based therapy platforms provide promising avenues for treating a variety of diseases. One such promising platform is CAR-T based therapies in the treatment of cancer. Given their promise, improvements in cell-based therapies are needed. An active area of exploration is engineering cell-based therapies to produce and/or secrete effector molecules such as cytokines, a process referred to as armoring, that enhance the cell-based therapy. For example, unarmored CAR-T therapies have poor efficacy in solid tumors and armoring can impact the entire cancer immunity cycle and boost the activity of CAR-T. However, uncontrolled or unregulated armoring strategies can have negative impacts on treatment, such as off-target effects and toxicity in subjects. Thus, additional methods of controlling and regulating the armoring of cell-based therapies, such as regulating production and/or secretion of payload effector molecules, are required.


SUMMARY

Provided herein, in some embodiments, is a cell-based therapy platform involving regulated armoring of the cell-based therapy, such as regulated secretion of payload effector molecules. Also provided herein, in some embodiments, is a combinatorial cell-based immunotherapy involving regulated armoring for the targeted treatment of cancer, such as ovarian cancer, breast cancer, colon cancer, lung cancer, and pancreatic cancer.


The therapy provided herein, however, can limit systemic toxicity of armoring. For example, the immunotherapy provided herein can be tumor-specific and effective while limiting systemic toxicity and/or other off-target effects due to armoring. These therapies deliver proteins of interest, such as immunomodulatory effector molecules, in a regulated manner, including regulation of secretion kinetics, cell state specificity, and cell or tissue specificity. The design of the delivery vehicle is optimized to improve overall function in cell-based therapies, such as cancer therapy, including, but not limited to, optimization of the membrane-cleavage sites, promoters, linkers, signal peptides, delivery methods, combination, regulation, and order of the immunomodulatory effector molecules.


Non-limiting examples of effector molecules encompassed by the present disclosure include cytokines, antibodies, chemokines, nucleotides, peptides, enzymes, and oncolytic viruses. For example, cells may be engineered to express and secrete in a regulated manner at least one, two, three or more of the following effector molecules: IL-12, IL-16, IFN-0, IFN-7, IL-2, IL-15, IL-7, IL-367, IL-18, IL-10, IL-21, OX40-ligand, CD40L, anti-PD-1 antibodies, anti-PD-L1 antibodies, anti-CTLA-4 antibodies, anti-TGFβ antibodies, anti-TNFR2, MIP1α (CCL3), MIP1 (CCL5), CCL21, CpG oligodeoxynucleotides, and anti-tumor peptides (e.g., anti-microbial peptides having anti-tumor activity, see, e.g., Gaspar, D. et al. Front Microbiol. 2013; 4: 294; Chu, H. et al. PLoS One. 2015; 10(5): e0126390, and website:aps.unmc.edu/AP/main.php).


Provide for herein is an immunoresponsive cell comprising: (a) a first engineered nucleic acid comprising a first expression cassette comprising a first promoter operably linked to a first, exogenous polynucleotide sequence encoding a first cytokine, and a second expression cassette comprising a second promoter operably linked to a second exogenous polynucleotide sequence encoding a chimeric antigen receptor (CAR) that binds to GPC3; and (b) a second engineered nucleic acid comprising a third expression cassette comprising a synthetic transcription factor-responsive promoter operably linked to a third exogenous polynucleotide sequence encoding a second cytokine, and a fourth expression cassette comprising a fourth promoter operably linked to a fourth exogenous polynucleotide sequence encoding an activation-conditional control polypeptide (ACP), wherein the ACP comprises a synthetic transcription factor comprising a DNA-binding domain and a transcriptional effector domain, wherein the ACP is capable of inducing expression of the third exogenous polynucleotide sequence by binding to the ACP-responsive promoter, wherein at least one of the first exogenous polynucleotide sequence and the third exogenous polynucleotide sequence encodes a membrane-cleavable chimeric protein, oriented from N-terminal to C-terminal, having the formula: S-C-MT or MT-C-S wherein S comprises a secretable effector molecule comprising the first and/or second cytokine, C comprises a protease cleavage site, and MT comprises a cell membrane tethering domain, and wherein S-C-MT or MT-C-C is configured to be expressed as a single polypeptide.


In some aspects, provided herein is an engineered nucleic acid comprising: a first expression cassette comprising a first promoter operably linked to a first, exogenous polynucleotide sequence encoding IL15, and a second expression cassette comprising a second promoter operably linked to a second exogenous polynucleotide sequence encoding a chimeric antigen receptor (CAR) that binds to GPC3, wherein the first exogenous polynucleotide sequence encodes a membrane-cleavable chimeric protein, oriented from N-terminal to C-terminal, having the formula: S-C-MT or MT-C-S wherein S comprises a secretable effector molecule comprising the IL15, C comprises a protease cleavage site, and MT comprises a cell membrane tethering domain, and wherein S-C-MT or MT-C-S is configured to be expressed as a single polypeptide.


In another aspect, provided herein is an engineered nucleic acid comprising: a first expression cassette comprising a synthetic transcription factor-responsive promoter operably linked to a first exogenous polynucleotide sequence encoding an IL12p70 fusion protein, and a second expression cassette comprising a second promoter operably linked to a second exogenous polynucleotide sequence encoding an activation-conditional control polypeptide (ACP), wherein the ACP comprises a synthetic transcription factor comprising a DNA-binding domain and a transcriptional effector domain, wherein the ACP is capable of inducing expression of the first exogenous polynucleotide sequence by binding to the ACP-responsive promoter, wherein the first exogenous polynucleotide sequence encodes a membrane-cleavable chimeric protein, oriented from N-terminal to C-terminal, having the formula: S-C-MT or MT-C-S


wherein S comprises a secretable effector molecule comprising the IL12p70 fusion protein, C comprises a protease cleavage site, and MT comprises a cell membrane tethering domain, and wherein S-C-MT or MT-C-S is configured to be expressed as a single polypeptide.


In some aspects, the first expression cassette is configured to be transcribed in an opposite orientation relative to transcription of the second expression cassette. In some aspects, the first expression cassette and the second expression cassette are oriented within the first engineered nucleic acid in a head-to-head directionality. In some aspects, the first expression cassette is configured to be transcribed in a same orientation relative to the transcription of the second expression cassette. In some aspects, the first expression cassette and the second expression cassette are oriented within the first engineered nucleic acid in a head-to-tail directionality.


In another aspect, provided herein is an engineered nucleic acid comprising: (a) a first engineered nucleic acid comprising a first expression cassette comprising a first promoter operably linked to a first exogenous polynucleotide sequence encoding a chimeric antigen receptor (CAR) that binds to GPC3 and a second exogenous polynucleotide sequence encoding a first cytokine; and (b) a second engineered nucleic acid comprising a second expression cassette comprising a synthetic transcription factor-responsive promoter operably linked to a third exogenous polynucleotide sequence encoding a second cytokine, and a third expression cassette comprising a third promoter operably linked to fourth exogenous polynucleotide sequence encoding an activation-conditional control polypeptide (ACP), wherein the ACP comprises a synthetic transcription factor comprising a DNA-binding domain and a transcriptional effector domain, wherein the ACP is capable of inducing expression of the third exogenous polynucleotide sequence by binding to the ACP-responsive promoter, wherein at least one of the second exogenous polynucleotide sequence and the third exogenous polynucleotide sequence encodes a membrane-cleavable chimeric protein, oriented from N-terminal to C-terminal, having the formula: S-C-MT or MT-C-S wherein S comprises a secretable effector molecule comprising the first and/or second cytokine, C comprises a protease cleavage site, and MT comprises a cell membrane tethering domain, and wherein S-C-MT or MT-C-S is configured to be expressed as a single polypeptide. In some aspects, transcription of the second expression cassette is oriented in the opposite direction relative to transcription of the third expression cassette within the first engineered nucleic acid. In some aspects, the second expression cassette and the third expression cassette are oriented within the second engineered nucleic acid in a head-to-head directionality.


In some aspects, the first promoter comprises a constitutive promoter, an inducible promoter, or a synthetic promoter. In some aspects, the first promoter is a constitutive promoter selected from the group consisting of: CAG, HLP, CMV, EFS, SFFV, SV40, MND, PGK, UbC, hEF1aV1, hCAGG, hEF1aV2, hACTb, heIF4A1, hGAPDH, hGRP78, hGRP94, hHSP70, hKINb, and hUBIb.


In some aspects, the second promoter comprises a constitutive promoter, an inducible promoter, or a synthetic promoter. In some aspects, the second promoter is a constitutive promoter selected from the group consisting of: CAG, HLP, CMV, EFS, SFFV, SV40, MND, PGK, UbC, hEF1aV1, hCAGG, hEF1aV2, hACTb, heIF4A1, hGAPDH, hGRP78, hGRP94, hHSP70, hKINb, and hUBIb.


In some aspects, the third expression cassette is configured to be transcribed in an opposite orientation relative to transcription of the fourth expression cassette within the second engineered nucleic acid. In some aspects, the third expression cassette and the fourth expression cassette are oriented within the second engineered nucleic acid in a head-to-head directionality. In some aspects, the third expression cassette and the fourth expression cassette are oriented within the second engineered nucleic acid in a tail-to-tail directionality.


In some aspects, the fourth promoter comprises a constitutive promoter, an inducible promoter, or a synthetic promoter. In some aspects, the fourth promoter is a constitutive promoter selected from the group consisting of: CAG, HLP, CMV, EFS, SFFV, SV40, MND, PGK, UbC, hEF1aV1, hCAGG, hEF1aV2, hACTb, heIF4A1, hGAPDH, hGRP78, hGRP94, hHSP70, hKINb, and hUBIb.


Also provided herein is an immunoresponsive cell comprising: a first engineered nucleic acid comprising a first expression cassette comprising a first promoter operably linked to a first exogenous polynucleotide sequence encoding a first cytokine and a second exogenous polynucleotide sequence encoding a chimeric antigen receptor (CAR) that binds to GPC3, and a second expression cassette comprising a synthetic transcription factor-responsive promoter operably linked to a third exogenous polynucleotide sequence encoding a second cytokine; and a second engineered nucleic acid comprising a third expression cassette comprising a third promoter operably linked to fourth exogenous polynucleotide sequence encoding an activation-conditional control polypeptide (ACP), wherein the ACP comprises a synthetic transcription factor comprising a DNA-binding domain and a transcriptional effector domain, wherein the ACP is capable of inducing expression of the third exogenous polynucleotide sequence by binding to the ACP-responsive promoter, wherein the ACP comprises a synthetic transcription factor, wherein at least one of the first exogenous polynucleotide sequence and the third exogenous polynucleotide sequence encodes a membrane-cleavable chimeric protein, oriented from N-terminal to C-terminal, having the formula: S-C-MT or MT-C-S wherein S comprises a secretable effector molecule comprising the first and/or second cytokine, C comprises a protease cleavage site, and MT comprises a cell membrane tethering domain, and wherein S-C-MT or MT-C-S is configured to be expressed as a single polypeptide.


In some aspects, transcription of the first expression cassette is oriented in the opposite direction relative to transcription of the second expression cassette within the first engineered nucleic acid. In some aspects, the first expression cassette and the second expression cassette are oriented within the first engineered nucleic acid in a head-to-head directionality. In some aspects, the first expression cassette is configured to be transcribed in a same orientation relative to transcription of the second expression cassette. In some aspects, the first expression cassette and the second expression cassette are oriented within the first engineered nucleic acid in a head-to-tail directionality.


In some aspects, the first promoter comprises a constitutive promoter, an inducible promoter, or a synthetic promoter. In some aspects, the first promoter is a constitutive promoter selected from the group consisting of: CAG, HLP, CMV, EFS, SFFV, SV40, MND, PGK, UbC, hEF1aV1, hCAGG, hEF1aV2, hACTb, heIF4A1, hGAPDH, hGRP78, hGRP94, hHSP70, hKINb, and hUBIb.


In some aspects, the first exogenous polynucleotide sequence and the second exogenous polynucleotide sequence are separated by a linker polynucleotide sequence. In some aspects, the linker polynucleotide sequence is operably associated with the translation of the first cytokine and the CAR as separate polypeptides. In some aspects, the linker polynucleotide sequence encodes one or more 2A ribosome skipping elements. In some aspects, the one or more 2A ribosome skipping elements are each selected from the group consisting of: P2A, T2A, E2A, and F2A. In some aspects, the one or more 2A ribosome skipping elements comprises an E2A/T2A. In some embodiments, the E2A/T2A comprises the amino acid sequence of SEQ ID NO: 281. In some aspects, the linker polynucleotide sequence encodes an Internal Ribosome Entry Site (IRES). In some aspects, the linker polynucleotide sequence encodes a cleavable polypeptide. In some aspects, the cleavable polypeptide comprises a furin polypeptide sequence.


In some aspects, the third promoter comprises a constitutive promoter, an inducible promoter, or a synthetic promoter. In some aspects, the third promoter is a constitutive promoter selected from the group consisting of: CAG, HLP, CMV, EFS, SFFV, SV40, MND, PGK, UbC, hEF1aV1, hCAGG, hEF1aV2, hACTb, heIF4A1, hGAPDH, hGRP78, hGRP94, hHSP70, hKINb, and hUBIb.


In some aspects, the first cytokine is IL-15. In some embodiments, the IL-15 comprises the amino acid sequence of SEQ ID NO: 285.


In some aspects, the second cytokine is selected from the group consisting of: IL12, an IL12p70 fusion protein, IL18, and IL21. In some aspects, the second cytokine is the IL12p70 fusion protein. In some embodiments, the IL12p70 fusion protein comprises the amino acid sequence of SEQ ID NO: 293.


In some aspects, the first cytokine is IL12 or an IL12p70 fusion protein. In some aspects, the second cytokine is selected from the group consisting of: IL15, IL18, and IL21.


In some aspects, the protease cleavage site is selected from the group consisting of: a Type 1 transmembrane protease cleavage site, a Type II transmembrane protease cleavage site, a GPI anchored protease cleavage site, an ADAM8 protease cleavage site, an ADAM9 protease cleavage site, an ADAM10 protease cleavage site, an ADAM12 protease cleavage site, an ADAM15 protease cleavage site, an ADAM17 protease cleavage site, an ADAM19 protease cleavage site, an ADAM20 protease cleavage site, an ADAM21 protease cleavage site, an ADAM28 protease cleavage site, an ADAM30 protease cleavage site, an ADAM33 protease cleavage site, a BACE1 protease cleavage site, a BACE2 protease cleavage site, a SIP protease cleavage site, an MT1-MMP protease cleavage site, an MT3-MMP protease cleavage site, an MT5-MMP protease cleavage site, a furin protease cleavage site, a PCSK7 protease cleavage site, a matriptase protease cleavage site, a matriptase-2 protease cleavage site, an MMP9 protease cleavage site, and an NS3 protease cleavage site. In some aspects, the protease cleavage site is cleavable by a protease selected from the group consisting of: a Type 1 transmembrane protease, a Type II transmembrane protease, a GPI anchored protease, an ADAM8 protease, an ADAM9 protease, an ADAM10 protease, an ADAM12 protease, an ADAM15 protease, an ADAM17 protease, an ADAM19 protease, an ADAM20 protease, an ADAM21 protease, an ADAM28 protease, an ADAM30 protease, an ADAM33 protease, a BACE1 protease, a BACE2 protease, a SIP protease, an MT1-MMP protease, an MT3-MMP protease, an MT5-MMP protease, a furin protease, a PCSK7 protease, a matriptase protease, a matriptase-2 protease, an MMP9 protease, and an NS3 protease.


In some aspects, the protease cleavage site is cleavable by an ADAM17 protease. In some aspects, the protease cleavage site comprises a first region having the amino acid sequence of PRAE (SEQ ID NO: 176). In some aspects, the protease cleavage site comprises a second region having the amino acid sequence of KGG (SEQ ID NO: 177). In some aspects, the first region is located N-terminal to the second region. In some aspects, the protease cleavage site comprises the amino acid sequence of PRAEXlX2KGG (SEQ ID NO: 178), wherein X1 is A, Y, P, S, or F, and wherein X2 is V, L, S, I, Y, T, or A. In some aspects, the protease cleavage site comprises the amino acid sequence of PRAEAVKGG (SEQ ID NO: 179). In some aspects, the protease cleavage site comprises the amino acid sequence of PRAEALKGG (SEQ ID NO: 180). In some aspects, the protease cleavage site comprises the amino acid sequence of PRAEYSKGG (SEQ ID NO: 181). In some aspects, the protease cleavage site comprises the amino acid sequence of PRAEPIKGG (SEQ ID NO: 182). In some aspects, the protease cleavage site comprises the amino acid sequence of PRAEAYKGG (SEQ ID NO: 183). In some aspects, the protease cleavage site comprises the amino acid sequence of PRAESSKGG (SEQ ID NO: 184). In some aspects, the protease cleavage site comprises the amino acid sequence of PRAEFTKGG (SEQ ID NO: 185). In some aspects, the protease cleavage site comprises the amino acid sequence of PRAEAAKGG (SEQ ID NO: 186). In some aspects, the protease cleavage site comprises the amino acid sequence of DEPHYSQRR (SEQ ID NO: 187). In some aspects, the protease cleavage site comprises the amino acid sequence of PPLGPIFNPG (SEQ ID NO: 188). In some aspects, the protease cleavage site comprises the amino acid sequence of PLAQAYRSS (SEQ ID NO: 189). In some aspects, the protease cleavage site comprises the amino acid sequence of TPIDSSFNPD (SEQ ID NO: 190). In some aspects, the protease cleavage site comprises the amino acid sequence of VTPEPIFSLI (SEQ ID NO: 191). In some aspects, the protease cleavage site comprises the amino acid sequence of ITQGLAVSTISSFF (SEQ ID NO: 198). In some aspects, the protease cleavage site is comprised within a peptide linker. In some aspects, the protease cleavage site is N-terminal to a peptide linker. In some embodiments, the peptide linker comprises a glycine-serine (GS) linker.


In some aspects, the cell membrane tethering domain comprises a transmembrane-intracellular domain or a transmembrane domain. In some aspects, the transmembrane-intracellular domain and/or transmembrane domain is derived from PDGFR-beta, CD8, CD28, CD3zeta-chain, CD4, 4-1BB, OX40, ICOS, CTLA-4, PD-1, LAG-3, 2B4, LNGFR, NKG2D, EpoR, TNFR2, B7-1, or BTLA. In some aspects, the transmembrane-intracellular domain and/or transmembrane domain is derived from B7-1. In some embodiments, the transmembrane-intracellular domain and/or transmembrane domain comprises the amino acid sequence of SEQ ID NO: 219. In some aspects, the cell membrane tethering domain comprises a cell surface receptor, or a cell membrane-bound portion thereof.


In some aspects, the cell membrane tethering domain comprises a post-translational modification tag, or motif capable of post-translational modification to modify the chimeric protein to include a post-translational modification tag, wherein the post-translational modification tag is capable of association with a cell membrane. In some aspects, the post-translational modification tag comprises a lipid-anchor domain, optionally wherein the lipid-anchor domain is selected from the group consisting of: a GPI lipid-anchor, a myristoylation tag, and a palmitoylation tag.


In some aspects, when expressed in a cell, the secretable effector molecule (e.g., any of the cytokines described herein) is tethered to a cell membrane of the cell. In some aspects, when expressed in a cell expressing a protease capable of cleaving the protease cleavage site, the secretable effector molecule is released from the cell membrane. In some aspects, the protease is expressed on the cell membrane of the cell.


In some aspects, the protease expressed on the cell membrane is endogenous to the cell. In some aspects, the protease is selected from the group consisting of: a Type 1 transmembrane protease, a Type II transmembrane protease, a GPI anchored protease, an ADAM8 protease, an ADAM9 protease, an ADAM10 protease, an ADAM12 protease, an ADAM15 protease, an ADAM17 protease, an ADAM19 protease, an ADAM20 protease, an ADAM21 protease, an ADAM28 protease, an ADAM30 protease, an ADAM33 protease, a BACE1 protease, a BACE2 protease, a SIP protease, an MT1-MMP protease, an MT3-MMP protease, an MT5-MMP protease, a furin protease, a PCSK7 protease, a matriptase protease, a matriptase-2 protease, and an MMP9 protease. In some aspects, the protease is an ADAM17 protease.


In some aspects, the protease expressed on the cell membrane is heterologous to the cell. In some aspects, the protease is hepatitis C virus (HCV) nonstructural protein 3 (NS3). In some aspects, the protease cleavage site comprises an NS3 protease cleavage site. In some aspects, the NS3 protease cleavage site comprises a NS3/NS4A, a NS4A/NS4B, a NS4B/NS5A, or a NS5A/NS5B junction cleavage site. In some aspects, the protease can be repressed by a protease inhibitor. In some aspects, the protease inhibitor is selected from the group consisting of: simeprevir, danoprevir, asunaprevir, ciluprevir, boceprevir, sovaprevir, paritaprevir, telaprevir, grazoprevir, glecaprevir, and voxiloprevir. In some aspects, expression and/or localization of the protease is capable of regulation. In some aspects, the expression and/or localization is regulated by a cell state of the cell.


In some aspects, the first exogenous polynucleotide sequence encodes a membrane-cleavable chimeric protein. In some aspects, the first exogenous polynucleotide sequence further comprises a polynucleotide sequence encoding a secretion signal peptide. In some aspects, the second exogenous polynucleotide sequence encodes a membrane-cleavable chimeric protein. In some aspects, the second exogenous polynucleotide sequence further comprises a polynucleotide sequence encoding a secretion signal peptide. In some aspects, the secretion signal peptide is derived from a protein selected from the group consisting of: IL-12, Trypsinogen-2, Gaussia Luciferase, CD5, IgKVII, VSV-G, prolactin, serum albumin preproprotein, azurocidin preproprotein, osteonectin (BM40), CD33, IL-6, IL-8, CCL2, TIMP2, VEGFB, osteoprotegerin, serpin-E1, GROalpha, CXCL12, IL-21, CD8, GMCSFRa, NKG2D, and IgE. In some aspects, the secretion signal peptide is derived from GMCSFRa. In some aspects, the secretion signal peptide comprises the amino acid sequence of SEQ ID NO: 216. In some aspects, wherein the secretion signal peptide is derived from IgE. In some embodiments, the secretion signal peptide comprises the amino acid sequence of SEQ ID NO: 218. In some aspects, the third exogenous polynucleotide sequence further comprises a polynucleotide sequence encoding a secretion signal peptide. In some aspects, the secretion signal peptide is operably associated with the second cytokine. In some aspects, the secretion signal peptide is native to the second cytokine. In some aspects, the secretion signal peptide is non-native to the second cytokine.


In some aspects, the third exogenous polynucleotide sequence encodes a membrane-cleavable chimeric protein. In some aspects, the first expression cassette further comprises a polynucleotide sequence encoding a secretion signal peptide. In some aspects, the secretion signal peptide is operably associated with the first cytokine. In some aspects, the secretion signal peptide is native to the first cytokine. In some aspects, the secretion signal peptide is non-native to the first cytokine.


In some aspects, the first exogenous polynucleotide sequence encodes a first membrane-cleavable chimeric protein and the third exogenous polynucleotide sequence encodes a second membrane-cleavable chimeric protein. In some aspects, the second exogenous polynucleotide sequence encodes a first membrane-cleavable chimeric protein and the third exogenous polynucleotide sequence encodes a second membrane-cleavable chimeric protein.


In some aspects, the engineered nucleic acid is a single-stranded or double-stranded nucleic acid selected from the group consisting of: a DNA, cDNA, an RNA, an mRNA, and a naked plasmid.


In some aspects, the exogenous polynucleotide sequences encoded by the expression cassette further comprise a 3′untranslated region (UTR) comprising an mRNA-destabilizing element that is operably linked to the exogenous polynucleotide sequence. In some aspects, the mRNA-destabilizing element comprises an AU-rich element and/or a stem-loop destabilizing element (SLDE). In some aspects, the mRNA-destabilizing element comprises an AU-rich element. In some aspects, the AU-rich element includes at least two overlapping motifs of the sequence ATTTA (SEQ ID NO: 209). In some aspects, the AU-rich element comprises ATTTATTTATTTATTTATTTA (SEQ ID NO: 210). In some aspects, the mRNA-destabilizing element comprises a stem-loop destabilizing element (SLDE). In some aspects, the SLDE comprises CTGTTTAATATTTAAACAG (SEQ ID NO: 211). In some aspects, the mRNA-destabilizing element comprises at least one AU-rich element and at least one SLDE. In some aspects, the AuSLDE sequence comprises ATTTATTTATTTATTTATTTAacatcggttccCTGTTTAATATTTAAACAG (SEQ ID NO: 212). In some aspects, the mRNA-destabilizing element comprises a 2× AuSLDE. In some aspects, the 2× AuSLDE sequence is provided as ATTTATTTATTTATTTATTTAacatcggttccCTGTTTAATATTTAAACAGtgcggtaagcATTTA TTTATTTATTTATTTAacatcggttccCTGTTTAATATTTAAACAG (SEQ ID NO: 213).


In some aspects, the CAR comprises an antigen-binding domain comprising a heavy chain variable (VH) region and a light chain variable (VL) region, wherein the VH comprises: a heavy chain complementarity determining region 1 (CDR-H1) having the amino acid sequence of KNAMN (SEQ ID NO: 199), a heavy chain complementarity determining region 2 (CDR-H2) having the amino acid sequence of RIRNKTNNYATYYADSVKA (SEQ ID NO: 200), and a heavy chain complementarity determining region 3 (CDR-H3) having the amino acid sequence of GNSFAY (SEQ ID NO: 201), and wherein the VL comprises: a light chain complementarity determining region 1 (CDR-L1) having the amino acid sequence of KSSQSLLYSSNQKNYLA (SEQ ID NO: 202), a light chain complementarity determining region 2 (CDR-L2) having the amino acid sequence of WASSRES (SEQ ID NO: 203), and a light chain complementarity determining region 3 (CDR-L3) having the amino acid sequence of QQYYNYPLT (SEQ ID NO: 204).


In some aspects, the VH region comprises an amino acid sequence with at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the amino acid sequence of EVQLVETGGGMVQPEGSLKL SCAASGF TFNKNAMNWVRQAPGKGLEWVARIRNKTN NYATYYADSVKARFTISRDDSQSMLYLQMNNLKIEDTAMYYCVAGNSFA YWGQGTLVTVSA (SEQ ID NO: 205) or EVQLVESGGGLVQPGGSLRLSCAASGFTFNKNAMNWVRQAPGKGLEWVGRIRNKTNN YATYYADSVKARFTISRDDSKNSLYLQMNSLKTEDTAVYYCVAGNSFAYWGQGTLVT VSA (SEQ ID NO: 206). In some embodiments, the VH region comprises an amino acid sequence with at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the amino acid sequence of SEQ ID NO: 206.


In some aspects, the VL region comprises an amino acid sequence with at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the amino acid sequence of DIVMSQSPSSLVVSIGEKVTMTCKSSQSLLYSSNQKNYLAWYQQKPGQSPKLLIYWASS RESGVPDRFTGSGSGTDFTLTISSVKAEDLAVYYCQQYYNYPLTFGAGTKLELK (SEQ ID NO: 207), or DIVMTQSPDSLAVSLGERATINCKSSQSLLYSSNQKNYLAWYQQKPGQPPKLLIYWASS RESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYNYPLTFGQGTKLEIK (SEQ ID NO: 208). In some embodiments, the VL region comprises an amino acid sequence with at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the amino acid sequence of SEQ ID NO: 2NO: 208.


In some aspects, the antigen-binding domain comprises a single chain variable fragment (scFv). In some aspects, the VH and VL are separated by a peptide linker. In some aspects, the scFv comprises the structure VH-L-VL or VL-L-VH, wherein VH is the heavy chain variable domain, L is the peptide linker, and VL is the light chain variable domain. In some aspects, the peptide linker comprises a glycine-serine (GS) linker. In some embodiments, the GS linker comprises the amino acid sequence of (GGGGS)3 (SEQ ID NO: 223).


In some aspects, the CAR comprises one or more intracellular signaling domains, and each of the one or more intracellular signaling domains is selected from the group consisting of: a CD3zeta-chain intracellular signaling domain, a CD97 intracellular signaling domain, a CD11a-CD18 intracellular signaling domain, a CD2 intracellular signaling domain, an ICOS intracellular signaling domain, a CD27 intracellular signaling domain, a CD154 intracellular signaling domain, a CD8 intracellular signaling domain, an OX40 intracellular signaling domain, a 4-1BB intracellular signaling domain, a CD28 intracellular signaling domain, a ZAP40 intracellular signaling domain, a CD30 intracellular signaling domain, a GITR intracellular signaling domain, an HVEM intracellular signaling domain, a DAP10 intracellular signaling domain, a DAP12 intracellular signaling domain, a MyD88 intracellular signaling domain, a 2B4 intracellular signaling domain, a CD16a intracellular signaling domain, a DNAM-1 intracellular signaling domain, a KIR2DS1 intracellular signaling domain, a KIR3DS1 intracellular signaling domain, a NKp44 intracellular signaling domain, a NKp46 intracellular signaling domain, a FceRlg intracellular signaling domain, a NKG2D intracellular signaling domain, and an EAT-2 intracellular signaling domain. In some aspects, the one or more intracellular signaling domains comprises an OX40 intracellular signaling domain. In some aspects, the OX40 intracellular signaling domain comprises the amino acid sequence of SEQ ID NO: 269. In some aspects, the one or more intracellular signaling domains comprises a CD28 intracellular signaling domain. In some aspects, the CD28 intracellular signaling domain comprises the amino acid sequence of SEQ ID NO: 267. In some aspects, the one or more intracellular signaling domains comprises a CD3z intracellular signaling domain. In some aspects, the CD3z intracellular signaling domain comprises an amino acid sequence of SEQ ID NO: 277 or SEQ ID NO: 279.


In some aspects, the CAR comprises a transmembrane domain, and the transmembrane domain is selected from the group consisting of: a CD8 transmembrane domain, a CD28 transmembrane domain a CD3zeta-chain transmembrane domain, a CD4 transmembrane domain, a 4-1BB transmembrane domain, an OX40 transmembrane domain, an ICOS transmembrane domain, a CTLA-4 transmembrane domain, a PD-1 transmembrane domain, a LAG-3 transmembrane domain, a 2B4 transmembrane domain, a BTLA transmembrane domain, an OX40 transmembrane domain, a DAP10 transmembrane domain, a DAP12 transmembrane domain, a CD16a transmembrane domain, a DNAM-1 transmembrane domain, a KIR2DS1 transmembrane domain, a KIR3DS1 transmembrane domain, an NKp44 transmembrane domain, an NKp46 transmembrane domain, an FceRlg transmembrane domain, and an NKG2D transmembrane domain. In some aspects, the transmembrane domain is an OX40 transmembrane domain. In some aspects, the OX40 transmembrane domain comprises the amino acid sequence of SEQ ID NO: 244. In some aspects, the transmembrane domain is a CD8 transmembrane domain. In some aspects, the CD8 transmembrane domain comprises an amino acid sequence of SEQ ID NO: 236 or SEQ ID NO: 242.


In some aspects, the CAR comprises a spacer region between the antigen-binding domain and the transmembrane domain. In some aspects, the spacer region is derived from a protein selected from the group consisting of: CD8, CD28, IgG4, IgG1, LNGFR, PDGFR-beta, and MAG. In some aspects, the spacer region is a CD8 hinge. In some aspects, the CD8 hinge comprises the amino acid sequence of SEQ ID NO: 226 or SEQ ID NO: 228.


In some aspects, the ACP comprises a DNA binding domain and a transcriptional effector domain. In some aspects, the transcriptional effector domain comprises a transcriptional activator domain. In some aspects, the transcriptional activator domain is selected from the group consisting of: a Herpes Simplex Virus Protein 16 (VP16) activation domain; an activation domain comprising four tandem copies of VP16, a VP64 activation domain; a p65 activation domain of NFκB; an Epstein-Barr virus R transactivator (Rta) activation domain; a tripartite activator comprising the VP64, the p65, and the Rta activation domains (VPR activation domain); a histone acetyltransferase (HAT) core domain of the human E1A-associated protein p300 (p300 HAT core activation domain). In some aspects, the transcriptional activator domain comprises a VPR activation domain. In some aspects, the VPR activation domain comprises the amino acid sequence of SEQ ID NO: 325. In some aspects, the transcriptional effector domain comprises a transcriptional repressor domain. In some aspects, the transcriptional repressor domain is selected from the group consisting of: a Krüppel associated box (KRAB) repression domain; a truncated Krüppel associated box (KRAB) repression domain; a Repressor Element Silencing Transcription Factor (REST) repression domain; a WRPW motif (SEQ ID NO: 346) of the hairy-related basic helix-loop-helix repressor proteins, the motif is known as a WRPW repression domain; a DNA (cytosine-5)-methyltransferase 3B (DNMT3B) repression domain (SEQ ID NO: 346); and an HP1 alpha chromoshadow repression domain.


In some aspects, the DNA binding domain comprises a zinc finger (ZF) protein domain. In some aspects, the ZF protein domain is modular in design and comprises an array of zinc finger motifs. In some aspects, the ZF protein domain comprises an array of one to ten zinc finger motifs. In some aspects, the ZF protein domain comprises the amino acid sequence of SEQ ID NO: 320.


In some aspects, the ACP further comprises a repressible protease and one or more cognate cleavage sites of the repressible protease. In some aspects, the repressible protease is hepatitis C virus (HCV) nonstructural protein 3 (NS3). In some aspects, the NS3 protease comprises the amino acid sequence of SEQ ID NO: 321. In some aspects, the cognate cleavage site of the repressible protease comprises an NS3 protease cleavage site. In some aspects, the NS3 protease cleavage site comprises a NS3/NS4A, a NS4A/NS4B, a NS4B/NS5A, or a NS5A/NS5B junction cleavage site. In some aspects, the NS3 protease is repressible by a protease inhibitor. In some aspects, the protease inhibitor is selected from the group consisting of: simeprevir, danoprevir, asunaprevir, ciluprevir, boceprevir, sovaprevir, paritaprevir, telaprevir, grazoprevir, glecaprevir, and voxiloprevir. In some aspects, the protease inhibitor is grazoprevir (GRZ). In some aspects, the ACP further comprises a nuclear localization signal (NLS). In some aspects, the NLS comprises the amino acid sequence of SEQ ID NO: 296. In some aspects, the one or more cognate cleavage sites of the repressible protease are localized between the DNA binding domain and the transcriptional effector domain.


In some aspects, the ACP further comprises a hormone binding domain of estrogen receptor variant ERT2.


In some aspects, the ACP-responsive promoter is a synthetic promoter. In some aspects, the ACP-responsive promoter comprises an ACP binding domain sequence and a minimal promoter sequence. In some aspects, the ACP binding domain sequence comprises one or more zinc finger binding sites.


In some aspects, the first engineered nucleic acid comprises a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 309. In some aspects, the first engineered nucleic acid comprises a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 326. In some aspects, the first engineered nucleic acid comprises a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 310. In some aspects, the first engineered nucleic acid comprises a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 327. In some aspects, the first engineered nucleic acid comprises a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 314. In some aspects, the first the engineered nucleic acid comprises a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 315. In some aspects, the second engineered nucleic acid comprises a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 317. In some aspects, the second engineered nucleic acid comprises a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 318.


In another aspect, provided herein is an immunoresponsive cell comprising: (a) a first engineered nucleic acid comprising the nucleotide sequence of SEQ ID NO: 310; and (b) a second engineered nucleic acid comprising the nucleotide sequence of SEQ ID NO: 317.


In another aspect, provided herein is an immunoresponsive cell comprising: (a) a first engineered nucleic acid comprising the nucleotide sequence of SEQ ID NO: 327; and (b) a second engineered nucleic acid comprising the nucleotide sequence of SEQ ID NO: 317. In some aspects, the cell is selected from the group consisting of: a T cell, a CD8+ T cell, a CD4+ T cell, a gamma-delta T cell, a cytotoxic T lymphocyte (CTL), a regulatory T cell, a viral-specific T cell, a Natural Killer T (NKT) cell, a Natural Killer (NK) cell, a B cell, a tumor-infiltrating lymphocyte (TIL), an innate lymphoid cell, a mast cell, an eosinophil, a basophil, a neutrophil, a myeloid cell, a macrophage, a monocyte, a dendritic cell, an erythrocyte, a platelet cell, a human embryonic stem cell (ESC), an ESC-derived cell, a pluripotent stem cell, a mesenchymal stromal cell (MSC), an induced pluripotent stem cell (iPSC), and an iPSC-derived cell. In some aspects, the cell is a Natural Killer (NK) cell. In some aspects, the cell is autologous. In some aspects, the cell is allogeneic.


In some aspects, provided herein is an engineered nucleic acid comprising: a first expression cassette comprising a first promoter operably linked to a first, exogenous polynucleotide sequence encoding IL15, and a second expression cassette comprising a second promoter operably linked to a second exogenous polynucleotide sequence encoding a chimeric antigen receptor (CAR) that binds to GPC3, wherein the first exogenous polynucleotide sequence encodes a membrane-cleavable chimeric protein, oriented from N-terminal to C-terminal, having the formula: S-C-MT or MT-C-S wherein S comprises a secretable effector molecule comprising the IL15, C comprises a protease cleavage site, and MT comprises a cell membrane tethering domain, and wherein S-C-MT or MT-C-S is configured to be expressed as a single polypeptide.


In some aspects,

    • a. the first expression cassette and the second expression cassette are oriented within the first engineered nucleic acid in a head-to-tail directionality,
    • b. the first exogenous polynucleotide sequence and the second exogenous polynucleotide sequence are separated by a linker polynucleotide sequence comprising an E2A/T2A ribosome skipping element, and
    • c. the CAR that binds to GPC3 comprises a CD28 intracellular signaling domain or an OX40 intracellular signaling domain.


In another aspect, provided herein is engineered nucleic acid comprising: a first expression cassette comprising a first promoter operably linked to a first, exogenous polynucleotide sequence encoding a chimeric antigen receptor (CAR) that binds to GPC3 and a second exogenous polynucleotide sequence encoding IL15, wherein the first exogenous polynucleotide sequence encodes a membrane-cleavable chimeric protein, oriented from N-terminal to C-terminal, having the formula: S-C-MT or MT-C-S wherein S comprises a secretable effector molecule comprising the IL15, C comprises a protease cleavage site, and MT comprises a cell membrane tethering domain, and wherein S-C-MT or MT-C-S is configured to be expressed as a single polypeptide. In some aspects, a. the first exogenous polynucleotide sequence and the second exogenous polynucleotide sequence are separated by a linker polynucleotide sequence comprising an E2A/T2A ribosome skipping element, and b. the CAR that binds to GPC3 comprises a CD28 intracellular signaling domain or an OX40 intracellular signaling domain.


In some aspects, the engineered nucleic acid comprises a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 309. In some aspects, the engineered nucleic acid comprises a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 326. In some aspects, the engineered nucleic acid comprises a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 310. In some aspects, the engineered nucleic acid comprises a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 327. In some aspects, the engineered nucleic acid comprises a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 314. In some aspects, the engineered nucleic acid comprises a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 315.


In another aspect, provided herein is an engineered nucleic acid comprising the nucleotide sequence of SEQ ID NO: 310.


In another aspect, provided herein is an engineered nucleic acid comprising the nucleotide sequence of SEQ ID NO: 327.


In another aspect, provided herein is an engineered nucleic acid comprising: a first expression cassette comprising a synthetic transcription factor-responsive promoter operably linked to a first exogenous polynucleotide sequence encoding an IL12p70 fusion protein, and a second expression cassette comprising a second promoter operably linked to a second exogenous polynucleotide sequence encoding an activation-conditional control polypeptide (ACP), wherein the ACP comprises a synthetic transcription factor comprising a DNA-binding domain and a transcriptional effector domain, wherein the ACP is capable of inducing expression of the first exogenous polynucleotide sequence by binding to the ACP-responsive promoter, wherein the first exogenous polynucleotide sequence encodes a membrane-cleavable chimeric protein, oriented from N-terminal to C-terminal, having the formula: S-C-MT or MT-C-S wherein


S comprises a secretable effector molecule comprising the IL12p70 fusion protein, C comprises a protease cleavage site, and MT comprises a cell membrane tethering domain, and wherein S-C-MT or MT-C-S is configured to be expressed as a single polypeptide.


In some aspects,

    • a. the first expression cassette and the second expression cassette are oriented within the first engineered nucleic acid in a head-to-head directionality, and
    • b. the ACP comprises a DNA binding domain and a transcriptional effector domain, wherein the transcriptional activator domain comprises a VPR activation domain.


In some aspects, the engineered nucleic acid comprises a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 317. In some aspects, the engineered nucleic acid comprises a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 318.


In another aspect, provided herein is engineered nucleic acid comprising the nucleotide sequence of SEQ ID NO: 317.


In another aspect, provided herein is an expression vector comprising any one of the engineered nucleic acids described herein.


In some aspects, provided herein is an immunoresponsive cell comprising the engineered nucleic acid or expression vector of any one of the above aspects.


Also provided herein is a pharmaceutical composition comprising any of the immunoresponsive cells described herein, any one of the engineered nucleic acids described herein, and/or any one of the expression vectors described herein and a pharmaceutically acceptable carrier, pharmaceutically acceptable excipient, or a combination thereof.


Also provided herein is a method of treating a subject in need thereof, the method comprising administering a therapeutically effective dose of any of the immunoresponsive cells described herein, any one of the engineered nucleic acids described herein, any one of the expression vectors described herein, and/or pharmaceutical compositions described herein.


Also provided herein is a method of stimulating a cell-mediated immune response to a tumor cell in a subject, the method comprising administering to a subject having a tumor a therapeutically effective dose of any of the immunoresponsive cells described herein, any one of the engineered nucleic acids described herein, any one of the expression vectors described herein, and/or pharmaceutical compositions described herein.


Also provided herein is a method of reducing tumor volume in a subject, the method comprising administering to a subject having a tumor a composition comprising any of the immunoresponsive cells described herein, any one of the engineered nucleic acids described herein, any one of the expression vectors described herein, and/or pharmaceutical compositions described herein.


Also provided herein is a method of providing an anti-tumor immunity in a subject, the method comprising administering to a subject in need thereof a therapeutically effective dose of any of the immunoresponsive cells described herein, any one of the engineered nucleic acids described herein, any one of the expression vectors described herein, and/or pharmaceutical compositions described herein.


In some aspects, the tumor comprises a GPC3-expressing tumor. In some aspects, the tumor is selected from the group consisting of: hepatocellular carcinoma (HCC), ovarian clear cell carcinoma, melanoma, squamous cell carcinoma of the lung, hepatoblastoma, nephroblastoma (Wilms tumor), and yolk sac tumor.


A method of treating a subject having cancer, the method comprising administering a therapeutically effective dose of any of the immunoresponsive cells described herein, any one of the engineered nucleic acids described herein, any one of the expression vectors described herein, and/or pharmaceutical compositions described herein. In some aspects, the cancer comprises a GPC3-expressing cancer. In some aspects, the cancer is selected from the group consisting of: hepatocellular carcinoma (HCC), ovarian clear cell carcinoma, melanoma, squamous cell carcinoma of the lung, hepatoblastoma, nephroblastoma (Wilms tumor), and yolk sac tumor.


In some aspects, the administering comprises systemic administration. In some aspects, the administering comprises intratumoral administration. In some aspects, the immunoresponsive cell is derived from the subject. In some aspects, the immunoresponsive cell is allogeneic with reference to the subject.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1D illustrate schematics of cytokine-CAR bidirectional constructs: in head-to-head directionality (FIG. 1A), head-to-tail directionality (FIG. 1B), tail-to-tail directionality (FIG. 1C), and an exemplary anti-GPC3 CAR+IL15 bidirectional construct (FIG. 1D).



FIG. 2 provides CAR expression plots assessed by flow cytometry for cells transduced with lentivirus encoding a CAR+IL15 bidirectional construct and cells transduced with a lentivirus encoding the CAR-only (day 7).



FIG. 3 provides CAR expression plots assessed by flow cytometry for cells transduced with retrovirus encoding a CAR+IL15 bidirectional construct and cells transduced with a retrovirus encoding the CAR-only (day 7).



FIG. 4 provides CAR expression plots assessed by flow cytometry for cells transduced with lentivirus encoding a CAR+IL15 bidirectional construct and cells transduced with a lentivirus encoding the CAR-only (day 15).



FIG. 5 provides CAR expression plots assessed by flow cytometry for cells transduced with retrovirus encoding a CAR+IL15 bidirectional construct and cells transduced with a retrovirus encoding the CAR-only (day 15).



FIG. 6 provides IL15 levels assessed by immunoassay for NK cells transduced with lentiviruses encoding CAR+IL15 bidirectional construct (“Lenti”) or γ-retroviruses encoding CAR+IL15 bidirectional constructs (“SinVec”).



FIG. 7 provides killing by NK cells transduced with lentiviruses encoding CAR-only or CAR+IL15 bidirectional constructs, as assessed by a co-culture killing assay.



FIG. 8 provides killing by NK cells transduced with γ-retroviruses encoding CAR-only or CAR+IL15 bidirectional constructs, as assessed by a co-culture killing assay.



FIG. 9 illustrates schematics for bidirectionally orientated constructs, including IL12 expression cassettes having mRNA destabilization elements in the 3′ untranslated region.



FIG. 10 provides IL12 levels assessed by immunoassay for NK cells transduced with bidirectional constructs including an inducible IL12 expression cassette and an expression cassette encoding a synthetic transcription factor.



FIG. 11 illustrates a schematic of bidirectional construct encoding a cleavable release IL15.



FIG. 12 provides a summary of IL15 bicistronic constructs tested and performance in functional assays.



FIG. 13A and FIG. 13B provide expression plots as assessed by flow cytometry for NK cells transduced with SB06251, SB06257, and SB06254, for GPC3 CAR and IL15. Two independent replicates are shown (FIG. 13A and FIG. 13B).



FIG. 14A and FIG. 14B provides secreted IL15 levels as assessed by immunoassay for NK cells transduced with SB06251, SB06257, and SB06254. Two independent replicates are shown (FIG. 14A and FIG. 14B).



FIG. 15A and FIG. 15B provide cell growth of target cell population following co-culture with NK cells transduced with SB06251, SB06257, and SB06254. Two independent replicates are shown (FIG. 15A and FIG. 15B).



FIG. 16 provides target cell counts in a serial-killing assay when co-cultured with NK cells transduced with SB06251, SB06257, and SB06254.



FIG. 17A and FIG. 17B provide expression plots as assessed by flow cytometry for NK cells transduced with SB06252, SB06258, and SB06255, for GPC3 CAR and IL15. Two independent replicates are shown (FIG. 17A and FIG. 17B).



FIG. 18A and FIG. 18B provide secreted IL15 levels as assessed by immunoassay for NK cells transduced with SB06252, SB06258, and SB06255. Two independent replicates are shown (FIG. 18A and FIG. 18B).



FIG. 19A and FIG. 19B provide cell growth of target cell population following co-culture with NK cells transduced with SB06252, SB06258, and SB06255. Two independent replicates are shown (FIG. 19A and FIG. 19B).



FIG. 20 provides target cell counts in a serial-killing assay when co-cultured with NK cells transduced with SB06252, SB06258, and SB06255.



FIG. 21A and FIG. 21B provide expression plots as assessed by flow cytometry for NK cells transduced with bicistronic constructs SB06261, SB6294, and SB6298, for GPC3 CAR and IL15. Two independent replicates are shown (FIG. 21A and FIG. 21B).



FIG. 22A and FIG. 22B provide secreted IL15 levels as assessed by immunoassay for NK cells transduced with SB06261, SB6294, and SB6298. Two independent replicates are shown (FIG. 22A and FIG. 22B).



FIG. 23A and FIG. 23B provide cell growth of target cell population following co-culture with NK cells transduced with SB06252, SB06258, and SB06255. Two independent replicates are shown (FIG. 23A and FIG. 23B).



FIG. 24A and FIG. 24B provide characterization of cleavable release IL15 bicistronic constructs SB06691, SB06692, and SB06693. Expression plots as assessed by flow cytometry for NK cells transduced with SB06691, SB06692, and SB06693, for GPC3 CAR and IL15, are shown in FIG. 24A. Secreted IL15 levels as assessed by immunoassay for NK cells transduced with SB06691, SB06692, and SB06693 are shown in FIG. 24B.



FIG. 25 illustrates a schematic of a bidirectional construct encoding a cleavable release IL12.



FIG. 26 provides a dose-response curve of IL12 secretion for NK cells following treatment with grazoprevir (GRZ).



FIG. 27A and FIG. 27B provide in vivo mouse data demonstrating IL12 levels in mouse blood following injection with NK cells transduced with SB04599, SB05042, and SB05058. IL12 levels are shown in FIG. 27A and IL12 fold change is shown in FIG. 27B.



FIGS. 28A-C provide characterization of cells transduced with different constructs expressing the GPC3 CAR and IL15. FIG. 28A shows flow cytometry plots demonstrating expression of GPC3 CAR, membrane bound IL15, and respective copy numbers on NK cells transduced with different GPC3 CAR/IL15 expression constructs. FIG. 28B shows measurement of secreted IL-15. FIG. 28C shows cell killing of HepG2 as assessed by a serial killing assay.



FIG. 29A and FIG. 29B provide additional data of serial killing using transduced NK Cells. FIG. 29A shows serial killing of HepG2 cells. FIG. 29B shows serial killing of HuH-7 cells.



FIG. 30A and FIG. 30B provide data assessing transduced NK cell function using rapid expansion (G-Rex). FIG. 30A shows expression of GPC3 CAR, membrane bound IL 15 (mIL15), and secreted IL15 (sIL15). FIG. 30B shows serial killing of the transduced NK cells.



FIG. 31 provides results from a xenograft tumor model as measured by bioluminescence imaging, in which mice are injected with NK cells.



FIG. 32A and FIG. 32B provide the results of a xenograft tumor model in mice that are injected with NK cells and summary. FIG. 32A provides a survival curve of mice treated with NK cells. FIG. 32B provides a summary of the median survival of mice treated with the NK cells.



FIG. 33 provides results of a BLI experiment to assess tumor reduction in mice injected with NK cells.



FIG. 34 provides a quantification of each condition in terms of BLI measurements that were normalized to day 10.



FIG. 35A and FIG. 35B provide results from a xenograft tumor (HepG2) mouse model in which mice were injected three times with NK cells over the course of the study. FIG. 35A provides results of mice that were imaged using BLI. FIG. 35B provides a time course of fold change of BLI over the course of the study.



FIG. 36A and FIG. 36B provide the fold change BLI in mice injected with transduced NK cells. FIG. 36A provides results corresponding to measurements performed 13 days after tumor implantation. FIG. 36B provides results corresponding to measurements performed 20 days after tumor implantation.



FIG. 37A and FIG. 37B provide results of tumor reduction in a xenograft model. FIG. 37A shows a summary of the BLI Fold change in two different in vivo experiments. FIG. 37B shows a summary of the normalized mean BLI Fold change in two different in vivo experiments, but the treatment groups are separated, and animal are tracked individually.



FIG. 38A and FIG. 38B provide results from a xenograft tumor model in which NK cells are injected intratumorally. FIG. 38A provides measurements of tumor volume. FIG. 38B shows a survival curve.



FIG. 39A and FIG. 39B provide results for expression of IL-12 in the presence or absence of grazoprevir. FIG. 39A provides measurements of concentration and fold change 24 hours after induction with grazoprevir. FIG. 39B provides measurements of concentration and fold change 72 hours after induction.



FIG. 40 provides results from a mouse that was injected NK cells expressing regulated IL12 at different concentrations and throughout the experiment.



FIG. 41 provides expression (GPC3 CAR and IL15) results of co-transduction with the IL-12 and GPC3 CAR/IL15 constructs into NK cells.



FIG. 42A and FIG. 42B provide results of secreted IL15 and secreted IL12 expression in the presence or absence of grazoprevir. FIG. 42A provides measurements of secreted IL15 concentration. FIG. 42B provides measurements of secreted IL12 expression.



FIG. 43 provides measurements of secreted IL15 and secreted IL12 of NK cells during a serial killing assay.



FIGS. 44A-D provide results of a serial killing assay for different co-transductions in NK cells for cell killing of Huh-7 and HepG2 cells. FIG. 44A provides the serial killing results for NK cells co-transduced with SB05042+SB06258. FIG. 44B provides the serial killing results for NK cells co-transduced with SB05042+SB06257. FIG. 44C provides the serial killing results for NK cells co-transduced with SB05042+SB06294. FIG. 44D provides a combination of the results in FIGS. 44A-C.



FIGS. 45A-C provide results from assessment of the clonal selection of NK cells expressing the GPC3 CAR. FIG. 45A provides results on copies per cell. FIG. 45B provides results of GCP3 CAR expression. FIG. 45C provides results for IL15 expression. FIG. 45D provides measurement of secreted IL15.



FIG. 46A and FIG. 46B provide flow cytometry data of GPC3 CAR and IL15 expression on selected clones transduced with SB06258. FIG. 46A provides results of selected clones. FIG. 46B provides results of selected clones further transduced with SB05042 (IL12).





DETAILED DESCRIPTION

Immunoresponsive cells are provided for herein.


In a first instance, immunoresponsive cells are engineered to have the following:

    • (a) a first engineered nucleic acid comprising a first expression cassette comprising a first promoter operably linked to a first, exogenous polynucleotide sequence encoding a first cytokine, and a second expression cassette comprising a second promoter operably linked to a second exogenous polynucleotide sequence encoding a chimeric antigen receptor (CAR) that binds to GPC3; and
    • (b) a second engineered nucleic acid comprising
    • a third expression cassette comprising a synthetic transcription factor-responsive promoter operably linked to a third exogenous polynucleotide sequence encoding a second cytokine, and a fourth expression cassette comprising a fourth promoter operably linked to a fourth exogenous polynucleotide sequence encoding an activation-conditional control polypeptide (ACP), wherein the ACP comprises a synthetic transcription factor comprising a DNA-binding domain and a transcriptional effector domain,
      • wherein the ACP is capable of inducing expression of the third exogenous polynucleotide sequence by binding to the ACP-responsive promoter,
    • wherein at least one of the first exogenous polynucleotide sequence and the third exogenous polynucleotide sequence encodes a membrane-cleavable chimeric protein, oriented from N-terminal to C-terminal, having the formula: S-C-MT or MT-C-S configured to be expressed as a single polypeptide.


In a second instance, immunoresponsive cells are engineered to have the following:

    • (a) a first engineered nucleic acid comprising
    • a first expression cassette comprising a first promoter operably linked to a first exogenous polynucleotide sequence encoding a first cytokine and a second exogenous polynucleotide sequence encoding a chimeric antigen receptor (CAR) that binds to GPC3, and
    • a second expression cassette comprising a synthetic transcription factor-responsive promoter operably linked to a third exogenous polynucleotide sequence encoding a second cytokine; and
    • (b) a second engineered nucleic acid comprising
    • a third expression cassette comprising a third promoter operably linked to fourth exogenous polynucleotide sequence encoding an activation-conditional control polypeptide (ACP), wherein the ACP comprises a synthetic transcription factor comprising a DNA-binding domain and a transcriptional effector domain,
      • wherein the ACP is capable of inducing expression of the third exogenous polynucleotide sequence by binding to the ACP-responsive promoter, wherein the ACP comprises a synthetic transcription factor,
      • wherein at least one of the first exogenous polynucleotide sequence and the third exogenous polynucleotide sequence encodes a membrane-cleavable chimeric protein, oriented from N-terminal to C-terminal, having the formula: S-C-MT or MT-C-S configured to be expressed as a single polypeptide.
      • S refers to a secretable effector molecule. C refers to a protease cleavage site. MT refers to a cell membrane tethering domain.


The ACP of the immunoresponsive cells includes a synthetic transcription factor. A synthetic transcription factor is a non-naturally occurring protein that includes a DNA-binding domain and a transcriptional effector domain and is capable of modulating (i.e., activating or repressing) transcription through binding to a cognate promoter recognized by the DNA-binding domain (an ACP-responsive promoter). In some embodiments, the ACP is a transcriptional repressor. In some embodiments, the ACP is a transcriptional activator.


The membrane-cleavable chimeric protein is engineered such that secretion of the effector molecule can be regulated in a protease-dependent manner. Specifically, the membrane-cleavable chimeric protein is engineered such that secretion of the effector molecule can be regulated as part of a “Membrane-Cleavable” system, where incorporation of a protease cleavage site (“C”) and a cell membrane tethering domain (“MT”) allow for regulated secretion of an effector molecule in a protease-dependent manner. Without wishing to be bound by theory, the components of the Membrane-Cleavable system present in the membrane-cleavable chimeric protein generally regulate secretion through the below cellular processes:

    • MT: The cell membrane tethering domain contains a transmembrane domain (or a transmembrane-intracellular domain) that directs cellular-trafficking of the chimeric protein such that the protein is inserted into, or otherwise associated with, a cell membrane (“tethered”)
    • C: Following expression and localization of the chimeric protein into the cell membrane, the protease cleavage site directs cleavage of the chimeric protein such that the effector molecule is released (“secreted”) into the extracellular space. Generally, the protease cleavage site is protease-specific, including sites engineered to be protease-specific. The protease cleavage site can be selected or engineered to achieve optimal protein expression, cell-type specific cleavage, cell-state specific cleavage, and/or cleavage and release of the payload at desired kinetics (e.g., ratio of membrane-bound to secreted chimeric protein levels)


In some aspects, membrane-cleavable chimeric proteins (or engineered nucleic acids encoding the membrane-cleavable chimeric proteins) are provided for herein having a protein of interest (e.g., any of the effector molecules described herein), a protease cleavage site, and a cell membrane tethering domain.


An “effector molecule,” refers to a molecule (e.g., a nucleic acid such as DNA or RNA, or a protein (polypeptide) or peptide) that binds to another molecule and modulates the biological activity of that molecule to which it binds. For example, an effector molecule may act as a ligand to increase or decrease enzymatic activity, gene expression, or cell signaling. Thus, in some embodiments, an effector molecule modulates (activates or inhibits) different immunomodulatory mechanisms. By directly binding to and modulating a molecule, an effector molecule may also indirectly modulate a second, downstream molecule.


In general, for all membrane-cleavable chimeric proteins described herein, an effector molecule is a cytokine or active fragment thereof (the secretable effector molecule referred to as “S” in the formula S-C-MT or MT-C-S) that includes a cytokine or active fragments thereof.


The term “modulate” encompasses maintenance of a biological activity, inhibition (partial or complete) of a biological activity, and stimulation/activation (partial or complete) of a biological activity. The term also encompasses decreasing or increasing (e.g., enhancing) a biological activity. Two different effector molecules are considered to “modulate different tumor-mediated immunosuppressive mechanisms” when one effector molecule modulates a tumor-mediated immunosuppressive mechanism (e.g., stimulates T cell signaling) that is different from the tumor-mediated immunosuppressive mechanism modulated by the other effector molecule (e.g., stimulates antigen presentation and/or processing).


Modulation by an effector molecule may be direct or indirect. Direct modulation occurs when an effector molecule binds to another molecule and modulates activity of that molecule. Indirect modulation occurs when an effector molecule binds to another molecule, modulates activity of that molecule, and as a result of that modulation, the activity of yet another molecule (to which the effector molecule is not bound) is modulated.


In some embodiments, modulation of a tumor-mediated immunosuppressive mechanism by at least one effector molecule results in an increase in an immunostimulatory and/or anti-tumor immune response (e.g., systemically or in the tumor microenvironment) by at least 10% (e.g., 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, or 200%). For example, modulation of a tumor-mediated immunosuppressive mechanism may result in an increase in an immunostimulatory and/or anti-tumor immune response by at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 100%. In some embodiments, modulation of a tumor-mediated immunosuppressive mechanism results in an increase in an immunostimulatory and/or anti-tumor immune response 10-20%, 10-30%, 10-40%, 10-50%, 10-60%, 10-70%, 10-80%, 10-90%, 10-100%, 10-200%, 20-30%, 20-40%, 20-50%, 20-60%, 20-70%, 20-80%, 20-90%, 20-100%, 20-200%, 50-60%, 50-70%, 50-80%, 50-90%, 50-100%, or 50-200%. It should be understood that “an increase” in an immunostimulatory and/or anti-tumor immune response, for example, systemically or in a tumor microenvironment, is relative to the immunostimulatory and/or anti-tumor immune response that would otherwise occur, in the absence of the effector molecule(s).


In some embodiments, modulation of a tumor-mediated immunosuppressive mechanism by at least one effector molecule results in an increase in an immunostimulatory and/or anti-tumor immune response (e.g., systemically or in the tumor microenvironment) by at least 2 fold (e.g., 2, 3, 4, 5, 10, 25, 20, 25, 50, or 100 fold). For example, modulation of a tumor-mediated immunosuppressive mechanism may result in an increase in an immunostimulatory and/or anti-tumor immune response by at least 3 fold, at least 5 fold, at least 10 fold, at least 20 fold, at least 50 fold, or at least 100 fold. In some embodiments, modulation of a tumor-mediated immunosuppressive mechanism results in an increase in an immunostimulatory and/or anti-tumor immune response by 2-10, 2-20, 2-30, 2-40, 2-50, 2-60, 2-70, 2-80, 2-90, or 2-100 fold.


Non-limiting examples of immunostimulatory and/or anti-tumor immune mechanisms include T cell signaling, activity and/or recruitment, antigen presentation and/or processing, natural killer cell-mediated cytotoxic signaling, activity and/or recruitment, dendritic cell differentiation and/or maturation, immune cell recruitment, pro-inflammatory macrophage signaling, activity and/or recruitment, stroma degradation, immunostimulatory metabolite production, stimulator of interferon genes (STING) signaling (which increases the secretion of IFN and Th1 polarization, promoting an anti-tumor immune response), and/or Type I interferon signaling. An effector molecule may stimulate at least one (one or more) of the foregoing immunostimulatory mechanisms, thus resulting in an increase in an immunostimulatory response. Changes in the foregoing immunostimulatory and/or anti-tumor immune mechanisms may be assessed, for example, using in vitro assays for T cell proliferation or cytotoxicity, in vitro antigen presentation assays, expression assays (e.g., of particular markers), and/or cell secretion assays (e.g., of cytokines).


In some embodiments, modulation of a tumor-mediated immunosuppressive mechanism by at least one effector molecule results in a decrease in an immunosuppressive response (e.g., systemically or in the tumor microenvironment) by at least 10% (e.g., 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, or 200%). For example, modulation of a tumor-mediated immunosuppressive mechanism may result in a decrease in an immunosuppressive response by at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 100%. In some embodiments, modulation of a tumor-mediated immunosuppressive mechanism results in a decrease in an immunosuppressive response 10-20%, 10-30%, 10-40%, 10-50%, 10-60%, 10-70%, 10-80%, 10-90%, 10-100%, 10-200%, 20-30%, 20-40%, 20-50%, 20-60%, 20-70%, 20-80%, 20-90%, 20-100%, 20-200%, 50-60%, 50-70%, 50-80%, 50-90%, 50-100%, or 50-200%. It should be understood that “a decrease” in an immunosuppressive response, for example, systemically or in a tumor microenvironment, is relative to the immunosuppressive response that would otherwise occur, in the absence of the effector molecule(s).


In some embodiments, modulation of a tumor-mediated immunosuppressive mechanism by at least one effector molecule results in a decrease in an immunosuppressive response (e.g., systemically or in the tumor microenvironment) by at least 2 fold (e.g., 2, 3, 4, 5, 10, 25, 20, 25, 50, or 100 fold). For example, modulation of a tumor-mediated immunosuppressive mechanism may result in a decrease in an immunosuppressive response by at least 3 fold, at least 5 fold, at least 10 fold, at least 20 fold, at least 50 fold, or at least 100 fold. In some embodiments, modulation of a tumor-mediated immunosuppressive mechanism results in a decrease in an immunosuppressive response by 2-10, 2-20, 2-30, 2-40, 2-50, 2-60, 2-70, 2-80, 2-90, or 2-100 fold.


Non-limiting examples of immunosuppressive mechanisms include negative costimulatory signaling, pro-apoptotic signaling of cytotoxic cells (e.g., T cells and/or NK cells), T regulatory (Treg) cell signaling, tumor checkpoint molecule production/maintenance, myeloid-derived suppressor cell signaling, activity and/or recruitment, immunosuppressive factor/metabolite production, and/or vascular endothelial growth factor signaling. An effector molecule may inhibit at least one (one or more) of the foregoing immunosuppressive mechanisms, thus resulting in a decrease in an immunosuppressive response. Changes in the foregoing immunosuppressive mechanisms may be assessed, for example, by assaying for an increase in T cell proliferation and/or an increase in IFNγ production (negative co-stimulatory signaling, Treg cell signaling and/or MDSC); Annexin V/PI flow staining (pro-apoptotic signaling); flow staining for expression, e.g., PDL1 expression (tumor checkpoint molecule production/maintenance); ELISA, LUMINEX®, RNA via qPCR, enzymatic assays, e.g., IDO tryptophan catabolism (immunosuppressive factor/metabolite production); and phosphorylation of PI3K, Akt, p38 (VEGF signaling).


In some embodiments, effector molecules function additively: the effect of two effector molecules, for example, may be equal to the sum of the effect of the two effector molecules functioning separately. In other embodiments, effector molecules function synergistically: the effect of two effector molecules, for example, may be greater than the combined function of the two effector molecules.


Effector molecules that modulate tumor-mediated immunosuppressive mechanisms and/or modify tumor microenvironments may be any of the cytokines described herein.


In some embodiments, at least one of the effector molecules stimulates an immunostimulatory mechanism in the tumor microenvironment and/or inhibits an immunosuppressive mechanism in the tumor microenvironment.


In some embodiments, at least one of the effector molecules (a) stimulates T cell signaling, activity and/or recruitment, (b) stimulates antigen presentation and/or processing, (c) stimulates natural killer cell-mediated cytotoxic signaling, activity and/or recruitment, (d) stimulates dendritic cell differentiation and/or maturation, (e) stimulates immune cell recruitment, (f) stimulates pro-inflammatory macrophage signaling, activity and/or recruitment or inhibits anti-inflammatory macrophage signaling, activity and/or recruitment, (g) stimulates stroma degradation, (h) stimulates immunostimulatory metabolite production, (i) stimulates Type I interferon signaling, (j) inhibits negative costimulatory signaling, (k) inhibits pro-apoptotic signaling of anti-tumor immune cells, (l) inhibits T regulatory (Treg) cell signaling, activity and/or recruitment, (m) inhibits tumor checkpoint molecules, (n) stimulates stimulator of interferon genes (STING) signaling, (o) inhibits myeloid-derived suppressor cell signaling, activity and/or recruitment, (p) degrades immunosuppressive factors/metabolites, (q) inhibits vascular endothelial growth factor signaling, and/or (r) directly kills tumor cells.


Non-limiting examples of cytokines are listed in Table 1 and specific sequences encoding exemplary effector molecules are listed in Table 2. Effector molecules can be human, such as those listed in Table 1 or Table 2 or human equivalents of murine effector molecules listed in Table 1 or Table 2. Effector molecules can be human-derived, such as the endogenous human effector molecule or an effector molecule modified and/or optimized for function, e.g., codon optimized to improve expression, modified to improve stability, or modified at its signal sequence (see below). Various programs and algorithms for optimizing function are known to those skilled in the art and can be selected based on the improvement desired, such as codon optimization for a specific species (e.g., human, mouse, bacteria, etc.).









TABLE 1







Exemplary Effector Molecules











Effector name
Category
Function







IFNbeta
Cytokine
T cell response,





tumor cell killing



IFNgamma
Cytokine
T cell response,





tumor cell killing



IL-12 (e.g.,
Cytokine
T cells, NK cells



IL12p70 fusion)





IL-1beta
Cytokine
T cells, NK cells



IL-15
Cytokine
Stimulates T-cells and NK



IL-2
Cytokine
Stimulates T-cells and NK



IL-21
Cytokine
Stimulates T-cells



IL-24
Cytokine
Stimulates T-cells



IL36-gamma
Cytokine
Stimulates T-cells



IL-7
Cytokine
Stimulates T-cells



IL-22
Cytokine
Stimulates T-cells



IL-18
Cytokine
Stimulates T-cells

















TABLE 2





Sequences encoding exemplary effector molecules















IL-12 (Human)(SEQ ID NO: 56)


ATGTGCCATCAGCAGCTTGTCATATCTTGGTTTTCACTTGTATTCCTGGCCAGCCCTTTGGTTGCGAT


CTGGGAGCTCAAGAAGGATGTGTACGTTGTAGAGCTGGACTGGTACCCCGATGCTCCCGGTGAGAT


GGTCGTTTTGACATGTGACACTCCAGAAGAGGACGGTATTACGTGGACTCTGGACCAGTCCTCCGA


AGTTCTTGGTTCTGGTAAGACTCTGACTATCCAGGTGAAAGAATTTGGGGATGCGGGACAATACAC


ATGCCACAAGGGAGGCGAGGTGTTGTCTCATAGTTTGCTGCTTCTCCACAAGAAAGAGGATGGAAT


CTGGAGCACCGACATACTCAAGGATCAAAAGGAACCCAAAAATAAGACATTTCTGCGATGTGAGGC


TAAGAACTATAGTGGCCGCTTCACTTGTTGGTGGCTGACTACCATCAGCACAGATCTCACGTTTTCA


GTAAAAAGTAGTAGAGGTTCAAGTGATCCTCAAGGGGTAACGTGCGGTGCTGCAACACTGTCTGCT


GAACGCGTAAGAGGAGATAATAAGGAGTACGAGTATTCCGTAGAATGCCAAGAGGACAGTGCTTGT


CCTGCGGCCGAGGAGTCTCTCCCAATAGAAGTGATGGTGGACGCGGTGCATAAACTGAAATATGAG


AACTACACAAGCAGTTTTTTTATAAGAGATATCATCAAGCCCGATCCGCCGAAGAATTTGCAACTTA


AACCGCTTAAAAACTCACGCCAGGTTGAAGTATCCTGGGAGTATCCGGATACATGGTCAACACCAC


ACAGCTATTTTTCCCTTACCTTCTGTGTGCAGGTCCAAGGGAAGAGCAAAAGGGAGAAGAAGGACA


GGGTATTCACTGATAAAACTTCCGCGACGGTCATCTGCCGAAAAAACGCTAGTATATCTGTACGGG


CGCAGGATAGGTACTATAGTTCTTCTTGGTCTGAGTGGGCCTCAGTTCCGTGCTCTGGGGGAGGAAG


TGGAGGAGGGTCCGGCGGTGGAAGCGGGGGAGGGAGTCGCAACTTGCCAGTGGCTACACCAGATC


CAGGCATGTTTCCATGTCTGCATCATTCCCAGAATCTCCTGAGAGCGGTGTCAAATATGCTCCAAAA


AGCGAGACAAACACTGGAATTTTACCCGTGTACCAGTGAGGAGATTGATCACGAGGACATAACCAA


GGACAAGACCTCAACTGTAGAAGCGTGTTTGCCGCTGGAGTTGACTAAGAATGAGTCCTGCCTCAA


TTCCAGAGAAACTTCATTCATTACTAACGGCAGTTGTCTTGCATCCCGGAAAACGTCCTTTATGATG


GCCCTTTGCCTTAGTTCAATTTACGAGGATCTTAAAATGTATCAAGTGGAGTTTAAAACCATGAATG


CTAAACTTCTTATGGACCCCAAACGACAAATTTTTCTGGATCAGAATATGCTTGCCGTGATAGACGA


ACTCATGCAGGCGCTTAATTTTAACTCCGAAACAGTTCCACAAAAATCTAGCCTTGAAGAACCTGAT


TTTTATAAAACGAAGATTAAACTGTGTATCCTGCTGCATGCCTTTCGCATCCGAGCTGTCACAATCG


ATAGGGTTATGTCCTACCTTAACGCGAGCtaG





IL-12p70 (Human; codon optimized; bold denotes signal sequence)(SEQ ID NO: 57)



ATGTGCCATCAGCAACTCGTCATCTCCTGGTTCTCCCTTGTGTTCCTCGCTTCCCCTCTGGTCG




CCATTTGGGAACTGAAGAAGGACGTCTACGTGGTCGAGCTGGATTGGTACCCGGACGCCCCTGGAG



AAATGGTCGTGCTGACTTGCGATACGCCAGAAGAGGACGGCATAACCTGGACCCTGGATCAGAGCT


CCGAGGTGCTCGGAAGCGGAAAGACCCTGACCATTCAAGTCAAGGAGTTCGGCGACGCGGGCCAGT


ACACTTGCCACAAGGGTGGCGAAGTGCTGTCCCACTCCCTGCTGCTGCTGCACAAGAAAGAGGATG


GAATCTGGTCCACTGACATCCTCAAGGACCAAAAAGAACCGAAGAACAAGACCTTCCTCCGCTGCG


AAGCCAAGAACTACAGCGGTCGGTTCACCTGTTGGTGGCTGACGACAATCTCCACCGACCTGACTTT


CTCCGTGAAGTCGTCACGGGGATCAAGCGATCCTCAGGGCGTGACCTGTGGAGCCGCCACTCTGTC


CGCCGAGAGAGTCAGGGGAGACAACAAGGAATATGAGTACTCCGTGGAATGCCAGGAGGACAGCG


CCTGCCCTGCCGCGGAAGAGTCCCTGCCTATCGAGGTCATGGTCGATGCCGTGCATAAGCTGAAAT


ACGAGAACTACACTTCCTCCTTCTTTATCCGCGACATCATCAAGCCTGACCCCCCCAAGAACTTGCA


GCTGAAGCCACTCAAGAACTCCCGCCAAGTGGAAGTGTCTTGGGAATATCCAGACACTTGGAGCAC


CCCGCACTCATACTTCTCGCTCACTTTCTGTGTGCAAGTGCAGGGAAAGTCCAAACGGGAGAAGAA


AGACCGGGTGTTCACCGACAAAACCTCCGCCACTGTGATTTGTCGGAAGAACGCGTCAATCAGCGT


CCGGGCGCAGGATAGATACTACTCGTCCTCCTGGAGCGAATGGGCCAGCGTGCCTTGTTCCGGTGG


CGGATCAGGCGGAGGTTCAGGAGGAGGCTCCGGAGGAGGTTCCCGGAACCTCCCTGTGGCAACCCC


CGACCCTGGAATGTTCCCGTGCCTACACCACTCCCAAAACCTCCTGAGGGCTGTGTCGAACATGTTG


CAGAAGGCCCGCCAGACCCTTGAGTTCTACCCCTGCACCTCGGAAGAAATTGATCACGAGGACATC


ACCAAGGACAAGACCTCGACCGTGGAAGCCTGCCTGCCGCTGGAACTGACCAAGAACGAATCGTGT


CTGAACTCCCGCGAGACAAGCTTTATCACTAACGGCAGCTGCCTGGCGTCGAGAAAGACCTCATTC


ATGATGGCGCTCTGTCTTTCCTCGATCTACGAAGATCTGAAGATGTATCAGGTCGAGTTCAAGACCA


TGAACGCCAAGCTGCTCATGGACCCGAAGCGGCAGATCTTCCTGGACCAGAATATGCTCGCCGTGA


TTGATGAACTGATGCAGGCCCTGAATTTCAACTCCGAGACTGTGCCTCAAAAGTCCAGCCTGGAAG


AACCGGACTTCTACAAGACCAAGATCAAGCTGTGCATCCTGTTGCACGCTTTCCGCATTCGAGCCGT


GACCATTGACCGCGTGATGTCCTACCTGAACGCCAGT





IL-12 (Mouse)(SEQ ID NO: 58)


ATGTGTCCACAGAAGCTGACAATAAGTTGGTTTGCCATTGTCCTCCTGGTGAGCCCACTCATGGCAA


TGTGGGAACTCGAAAAGGATGTCTACGTGGTAGAAGTAGATTGGACTCCAGACGCGCCAGGGGAG


ACAGTGAATTTGACATGTGACACACCAGAAGAAGATGACATTACATGGACATCTGACCAACGCCAT


GGCGTAATAGGGAGTGGGAAAACACTCACGATCACAGTTAAAGAGTTCTTGGATGCTGGTCAATAT


ACTTGCCATAAAGGCGGCGAGACACTCAGCCACTCACATTTGCTTTTGCATAAAAAAGAGAATGGC


ATTTGGAGCACTGAAATACTTAAGAACTTTAAGAACAAGACATTTCTCAAGTGTGAGGCCCCTAATT


ACAGCGGCAGGTTCACGTGCTCATGGCTGGTCCAGCGCAACATGGACCTCAAGTTTAACATAAAAT


CTTCTTCCTCTTCACCTGACTCCAGAGCTGTTACTTGCGGCATGGCTTCTCTGAGCGCAGAAAAAGT


AACGTTGGATCAAAGAGACTACGAAAAGTACTCTGTTTCTTGTCAAGAGGATGTTACGTGCCCGAC


GGCCGAAGAAACGCTTCCAATTGAACTCGCGTTGGAAGCTCGCCAACAAAACAAGTATGAAAACTA


CAGTACAAGCTTCTTTATACGGGATATAATTAAACCCGATCCCCCCAAGAACTTGCAAATGAAACC


ACTTAAGAACAGCCAGGTGGAAGTTTCCTGGGAGTATCCAGACTCATGGAGTACTCCTCACAGCTA


TTTTTCTCTGAAATTCTTTGTAAGGATACAACGGAAGAAAGAGAAGATGAAAGAGACCGAGGAGGG


TTGTAATCAGAAGGGAGCGTTTCTCGTGGAGAAAACGTCTACCGAAGTCCAATGTAAAGGTGGCAA


TGTGTGCGTCCAAGCTCAGGATAGATACTATAATTCAAGTTGCTCCAAGTGGGCCTGTGTTCCATGC


CGCGTTCGGAGCGGGGGAGGTAGCGGAGGAGGTAGTGGGGGTGGGTCAGGAGGAGGGAGTCGAGT


TATCCCGGTGTCAGGCCCCGCACGCTGCTTGAGCCAGAGTCGCAACCTCCTTAAGACAACAGATGA


CATGGTGAAAACAGCACGCGAAAAGCTTAAACACTACTCTTGTACGGCGGAGGATATTGATCACGA


GGATATTACCCGAGACCAAACTAGCACTTTGAAAACCTGTCTGCCCCTTGAACTTCATAAAAATGAG


AGCTGTCTGGCTACACGAGAGACGTCAAGTACGACTAGGGGCAGCTGTCTCCCGCCGCAAAAGACA


AGCCTCATGATGACGCTCTGTTTGGGTTCCATTTACGAGGACTTGAAAATGTATCAAACGGAGTTCC


AGGCTATAAATGCGGCGTTGCAGAACCATAACCATCAACAAATTATACTTGATAAAGGCATGTTGG


TGGCGATTGATGAACTCATGCAGAGTCTCAATCACAACGGGGAAACGTTGAGACAGAAACCCCCAG


TCGGTGAAGCGGACCCATATCGAGTAAAAATGAAGCTCTGCATTCTGCTTCACGCATTCAGCACTAG


AGTTGTTACCATCAACCGGGTAATGGGATATCTCTCCAGTGCGtaG





IL21 (Human; codon optimized; bold denotes signal sequence)(SEQ ID NO: 59)



ATGGAACGCATTGTGATCTGCCTGATGGTCATCTTCCTGGGCACCTTAGTGCACAAGTCGAGC




AGCCAGGGACAGGACAGGCACATGATTAGAATGCGCCAGCTCATCGATATCGTGGACCAGTTGAA



GAACTACGTGAACGACCTGGTGCCCGAGTTCCTGCCGGCCCCCGAAGATGTGGAAACCAATTGCGA


ATGGTCGGCATTTTCCTGCTTTCAAAAGGCACAGCTCAAGTCCGCTAACACCGGGAACAACGAACG


GATCATCAACGTGTCCATCAAAAAGCTGAAGCGGAAGCCTCCCTCCACCAACGCCGGACGGAGGCA


GAAGCATAGGCTGACTTGCCCGTCATGCGACTCCTACGAGAAGAAGCCGCCGAAGGAGTTCCTGGA


GCGGTTCAAGTCGCTCCTGCAAAAGATGATTCATCAGCACCTGTCCTCCCGGACTCATGGGTCTGAG


GATTCA





IL-12p70_T2A_IL21 (Human; codon optimized; bold denotes signal sequences)(SEQ ID NO: 60)



ATGTGCCATCAGCAACTCGTCATCTCCTGGTTCTCCCTTGTGTTCCTCGCTTCCCCTCTGGTCG




CCATTTGGGAACTGAAGAAGGACGTCTACGTGGTCGAGCTGGATTGGTACCCGGACGCCCCTGGAG



AAATGGTCGTGCTGACTTGCGATACGCCAGAAGAGGACGGCATAACCTGGACCCTGGATCAGAGCT


CCGAGGTGCTCGGAAGCGGAAAGACCCTGACCATTCAAGTCAAGGAGTTCGGCGACGCGGGCCAGT


ACACTTGCCACAAGGGTGGCGAAGTGCTGTCCCACTCCCTGCTGCTGCTGCACAAGAAAGAGGATG


GAATCTGGTCCACTGACATCCTCAAGGACCAAAAAGAACCGAAGAACAAGACCTTCCTCCGCTGCG


AAGCCAAGAACTACAGCGGTCGGTTCACCTGTTGGTGGCTGACGACAATCTCCACCGACCTGACTTT


CTCCGTGAAGTCGTCACGGGGATCAAGCGATCCTCAGGGCGTGACCTGTGGAGCCGCCACTCTGTC


CGCCGAGAGAGTCAGGGGAGACAACAAGGAATATGAGTACTCCGTGGAATGCCAGGAGGACAGCG


CCTGCCCTGCCGCGGAAGAGTCCCTGCCTATCGAGGTCATGGTCGATGCCGTGCATAAGCTGAAAT


ACGAGAACTACACTTCCTCCTTCTTTATCCGCGACATCATCAAGCCTGACCCCCCCAAGAACTTGCA


GCTGAAGCCACTCAAGAACTCCCGCCAAGTGGAAGTGTCTTGGGAATATCCAGACACTTGGAGCAC


CCCGCACTCATACTTCTCGCTCACTTTCTGTGTGCAAGTGCAGGGAAAGTCCAAACGGGAGAAGAA


AGACCGGGTGTTCACCGACAAAACCTCCGCCACTGTGATTTGTCGGAAGAACGCGTCAATCAGCGT


CCGGGCGCAGGATAGATACTACTCGTCCTCCTGGAGCGAATGGGCCAGCGTGCCTTGTTCCGGTGG


CGGATCAGGCGGAGGTTCAGGAGGAGGCTCCGGAGGAGGTTCCCGGAACCTCCCTGTGGCAACCCC


CGACCCTGGAATGTTCCCGTGCCTACACCACTCCCAAAACCTCCTGAGGGCTGTGTCGAACATGTTG


CAGAAGGCCCGCCAGACCCTTGAGTTCTACCCCTGCACCTCGGAAGAAATTGATCACGAGGACATC


ACCAAGGACAAGACCTCGACCGTGGAAGCCTGCCTGCCGCTGGAACTGACCAAGAACGAATCGTGT


CTGAACTCCCGCGAGACAAGCTTTATCACTAACGGCAGCTGCCTGGCGTCGAGAAAGACCTCATTC


ATGATGGCGCTCTGTCTTTCCTCGATCTACGAAGATCTGAAGATGTATCAGGTCGAGTTCAAGACCA


TGAACGCCAAGCTGCTCATGGACCCGAAGCGGCAGATCTTCCTGGACCAGAATATGCTCGCCGTGA


TTGATGAACTGATGCAGGCCCTGAATTTCAACTCCGAGACTGTGCCTCAAAAGTCCAGCCTGGAAG


AACCGGACTTCTACAAGACCAAGATCAAGCTGTGCATCCTGTTGCACGCTTTCCGCATTCGAGCCGT


GACCATTGACCGCGTGATGTCCTACCTGAACGCCAGTAGACGGAAACGCGGAAGCGGAGAGGGCA


GAGGCTCGCTGCTTACATGCGGGGACGTGGAAGAGAACCCCGGTCCGATGGAACGCATTGTGATC



TGCCTGATGGTCATCTTCCTGGGCACCTTAGTGCACAAGTCGAGCAGCCAGGGACAGGACAGG



CACATGATTAGAATGCGCCAGCTCATCGATATCGTGGACCAGTTGAAGAACTACGTGAACGACCTG


GTGCCCGAGTTCCTGCCGGCCCCCGAAGATGTGGAAACCAATTGCGAATGGTCGGCATTTTCCTGCT


TTCAAAAGGCACAGCTCAAGTCCGCTAACACCGGGAACAACGAACGGATCATCAACGTGTCCATCA


AAAAGCTGAAGCGGAAGCCTCCCTCCACCAACGCCGGACGGAGGCAGAAGCATAGGCTGACTTGC


CCGTCATGCGACTCCTACGAGAAGAAGCCGCCGAAGGAGTTCCTGGAGCGGTTCAAGTCGCTCCTG


CAAAAGATGATTCATCAGCACCTGTCCTCCCGGACTCATGGGTCTGAGGATTCA





IL-12_2A_CCL21a (Human)(SEQ ID NO: 61)


ATGTGCCATCAGCAGCTTGTCATATCTTGGTTTTCACTTGTATTCCTGGCCAGCCCTTTGGTTGCGAT


CTGGGAGCTCAAGAAGGATGTGTACGTTGTAGAGCTGGACTGGTACCCCGATGCTCCCGGTGAGAT


GGTCGTTTTGACATGTGACACTCCAGAAGAGGACGGTATTACGTGGACTCTGGACCAGTCCTCCGA


AGTTCTTGGTTCTGGTAAGACTCTGACTATCCAGGTGAAAGAATTTGGGGATGCGGGACAATACAC


ATGCCACAAGGGAGGCGAGGTGTTGTCTCATAGTTTGCTGCTTCTCCACAAGAAAGAGGATGGAAT


CTGGAGCACCGACATACTCAAGGATCAAAAGGAACCCAAAAATAAGACATTTCTGCGATGTGAGGC


TAAGAACTATAGTGGCCGCTTCACTTGTTGGTGGCTGACTACCATCAGCACAGATCTCACGTTTTCA


GTAAAAAGTAGTAGAGGTTCAAGTGATCCTCAAGGGGTAACGTGCGGTGCTGCAACACTGTCTGCT


GAACGCGTAAGAGGAGATAATAAGGAGTACGAGTATTCCGTAGAATGCCAAGAGGACAGTGCTTGT


CCTGCGGCCGAGGAGTCTCTCCCAATAGAAGTGATGGTGGACGCGGTGCATAAACTGAAATATGAG


AACTACACAAGCAGTTTTTTTATAAGAGATATCATCAAGCCCGATCCGCCGAAGAATTTGCAACTTA


AACCGCTTAAAAACTCACGCCAGGTTGAAGTATCCTGGGAGTATCCGGATACATGGTCAACACCAC


ACAGCTATTTTTCCCTTACCTTCTGTGTGCAGGTCCAAGGGAAGAGCAAAAGGGAGAAGAAGGACA


GGGTATTCACTGATAAAACTTCCGCGACGGTCATCTGCCGAAAAAACGCTAGTATATCTGTACGGG


CGCAGGATAGGTACTATAGTTCTTCTTGGTCTGAGTGGGCCTCAGTTCCGTGCTCTGGGGGAGGAAG


TGGAGGAGGGTCCGGCGGTGGAAGCGGGGGAGGGAGTCGCAACTTGCCAGTGGCTACACCAGATC


CAGGCATGTTTCCATGTCTGCATCATTCCCAGAATCTCCTGAGAGCGGTGTCAAATATGCTCCAAAA


AGCGAGACAAACACTGGAATTTTACCCGTGTACCAGTGAGGAGATTGATCACGAGGACATAACCAA


GGACAAGACCTCAACTGTAGAAGCGTGTTTGCCGCTGGAGTTGACTAAGAATGAGTCCTGCCTCAA


TTCCAGAGAAACTTCATTCATTACTAACGGCAGTTGTCTTGCATCCCGGAAAACGTCCTTTATGATG


GCCCTTTGCCTTAGTTCAATTTACGAGGATCTTAAAATGTATCAAGTGGAGTTTAAAACCATGAATG


CTAAACTTCTTATGGACCCCAAACGACAAATTTTTCTGGATCAGAATATGCTTGCCGTGATAGACGA


ACTCATGCAGGCGCTTAATTTTAACTCCGAAACAGTTCCACAAAAATCTAGCCTTGAAGAACCTGAT


TTTTATAAAACGAAGATTAAACTGTGTATCCTGCTGCATGCCTTTCGCATCCGAGCTGTCACAATCG


ATAGGGTTATGTCCTACCTTAACGCGAGCCGGCGCAAGAGGGGTTCCGGAGAGGGAAGGGGTAGTC


TGCTCACCTGCGGCGATGTTGAAGAAAATCCTGGTCCCATGGCGCAAAGTCTGGCTCTTTCACTCCT


GATCCTGGTCTTGGCCTTCGGGATTCCGAGGACCCAAGGAAGTGATGGTGGCGCCCAAGATTGTTG


CCTTAAATACAGCCAGCGGAAAATACCCGCGAAAGTGGTCAGGAGTTATAGAAAACAGGAGCCTTC


CCTGGGTTGTAGTATCCCCGCCATACTTTTCCTCCCGAGAAAACGGAGCCAGGCCGAACTGTGCGCT


GACCCTAAGGAACTTTGGGTGCAACAACTTATGCAACACCTGGATAAGACACCTTCTCCTCAAAAG


CCAGCTCAGGGCTGCCGAAAAGATAGAGGCGCCTCAAAAACCGGAAAAAAGGGCAAAGGTTCTAA


AGGATGTAAGCGGACTGAACGCTCTCAAACGCCTAAAGGGCCGtaG





IL-12_2A_CCL21a (Mouse)(SEQ ID NO: 62)


ATGTGTCCACAGAAGCTGACAATAAGTTGGTTTGCCATTGTCCTCCTGGTGAGCCCACTCATGGCAA


TGTGGGAACTCGAAAAGGATGTCTACGTGGTAGAAGTAGATTGGACTCCAGACGCGCCAGGGGAG


ACAGTGAATTTGACATGTGACACACCAGAAGAAGATGACATTACATGGACATCTGACCAACGCCAT


GGCGTAATAGGGAGTGGGAAAACACTCACGATCACAGTTAAAGAGTTCTTGGATGCTGGTCAATAT


ACTTGCCATAAAGGCGGCGAGACACTCAGCCACTCACATTTGCTTTTGCATAAAAAAGAGAATGGC


ATTTGGAGCACTGAAATACTTAAGAACTTTAAGAACAAGACATTTCTCAAGTGTGAGGCCCCTAATT


ACAGCGGCAGGTTCACGTGCTCATGGCTGGTCCAGCGCAACATGGACCTCAAGTTTAACATAAAAT


CTTCTTCCTCTTCACCTGACTCCAGAGCTGTTACTTGCGGCATGGCTTCTCTGAGCGCAGAAAAAGT


AACGTTGGATCAAAGAGACTACGAAAAGTACTCTGTTTCTTGTCAAGAGGATGTTACGTGCCCGAC


GGCCGAAGAAACGCTTCCAATTGAACTCGCGTTGGAAGCTCGCCAACAAAACAAGTATGAAAACTA


CAGTACAAGCTTCTTTATACGGGATATAATTAAACCCGATCCCCCCAAGAACTTGCAAATGAAACC


ACTTAAGAACAGCCAGGTGGAAGTTTCCTGGGAGTATCCAGACTCATGGAGTACTCCTCACAGCTA


TTTTTCTCTGAAATTCTTTGTAAGGATACAACGGAAGAAAGAGAAGATGAAAGAGACCGAGGAGGG


TTGTAATCAGAAGGGAGCGTTTCTCGTGGAGAAAACGTCTACCGAAGTCCAATGTAAAGGTGGCAA


TGTGTGCGTCCAAGCTCAGGATAGATACTATAATTCAAGTTGCTCCAAGTGGGCCTGTGTTCCATGC


CGCGTTCGGAGCGGGGGAGGTAGCGGAGGAGGTAGTGGGGGTGGGTCAGGAGGAGGGAGTCGAGT


TATCCCGGTGTCAGGCCCCGCACGCTGCTTGAGCCAGAGTCGCAACCTCCTTAAGACAACAGATGA


CATGGTGAAAACAGCACGCGAAAAGCTTAAACACTACTCTTGTACGGCGGAGGATATTGATCACGA


GGATATTACCCGAGACCAAACTAGCACTTTGAAAACCTGTCTGCCCCTTGAACTTCATAAAAATGAG


AGCTGTCTGGCTACACGAGAGACGTCAAGTACGACTAGGGGCAGCTGTCTCCCGCCGCAAAAGACA


AGCCTCATGATGACGCTCTGTTTGGGTTCCATTTACGAGGACTTGAAAATGTATCAAACGGAGTTCC


AGGCTATAAATGCGGCGTTGCAGAACCATAACCATCAACAAATTATACTTGATAAAGGCATGTTGG


TGGCGATTGATGAACTCATGCAGAGTCTCAATCACAACGGGGAAACGTTGAGACAGAAACCCCCAG


TCGGTGAAGCGGACCCATATCGAGTAAAAATGAAGCTCTGCATTCTGCTTCACGCATTCAGCACTAG


AGTTGTTACCATCAACCGGGTAATGGGATATCTCTCCAGTGCGCGGCGCAAGAGGGGTTCCGGAGA


GGGAAGGGGTAGTCTGCTCACCTGCGGCGATGTTGAAGAAAATCCTGGTCCCATGGCGCAAATGAT


GACCCTTTCCCTGCTGAGTCTTGTCCTCGCGCTCTGCATCCCGTGGACGCAGGGGTCTGATGGGGGG


GGCCAAGACTGTTGCCTGAAGTATTCACAAAAAAAGATACCGTACTCTATTGTCAGAGGGTACAGG


AAGCAAGAACCCTCCTTGGGTTGCCCTATACCAGCAATTCTTTTCTCCCCACGCAAGCATTCCAAAC


CAGAACTGTGTGCGAACCCCGAGGAGGGTTGGGTACAGAACTTGATGCGAAGGCTTGACCAGCCCC


CAGCCCCTGGCAAGCAGTCACCTGGGTGCAGAAAAAACAGAGGTACTTCAAAGAGCGGCAAGAAA


GGCAAAGGGAGTAAAGGATGTAAAAGAACGGAGCAGACCCAGCCTTCACGAGGCtaG





IL7 (Mouse)(SEQ ID NO: 64)


ATGTTTCATGTGTCCTTCAGGTACATATTTGGTATCCCACCACTTATATTGGTGCTCTTGCCTGTAAC


CAGCTCTGAATGTCATATAAAAGACAAGGAGGGCAAAGCATACGAGTCCGTATTGATGATCTCAAT


CGATGAACTTGACAAGATGACAGGGACCGATTCTAATTGTCCAAATAACGAGCCAAACTTCTTTCG


GAAACACGTGTGTGATGATACAAAAGAAGCTGCTTTTCTTAACAGAGCTGCCAGAAAACTCAAGCA


GTTCCTCAAGATGAATATATCCGAGGAATTTAACGTGCATCTCCTCACAGTATCTCAGGGAACTCAA


ACCCTTGTAAACTGCACTTCTAAGGAGGAGAAGAATGTCAAAGAGCAGAAGAAAAATGATGCATGT


TTTTTGAAACGGCTGTTGAGGGAGATCAAAACATGCTGGAATAAAATCCTCAAGGGCTCAATTtaG





IL-15 (Human)(SEQ ID NO: 65)


ATGGAAACAGACACATTGCTGCTTTGGGTATTGTTGCTCTGGGTGCCTGGATCAACAGGAAACTGGG


TAAACGTAATTTCAGATCTGAAGAAGATCGAGGACCTTATTCAATCCATGCACATCGATGCCACTCT


CTACACCGAAAGCGACGTTCACCCATCTTGCAAGGTGACCGCTATGAAATGTGAATTGTTGGAACTT


CAGGTAATTTCTCTGGAGAGCGGCGATGCCTCAATACATGACACCGTTGAAAATCTTATCATCCTTG


CTAATGATTCACTCTCTAGTAATGGGAACGTAACAGAGAGCGGGTGTAAGGAGTGTGAAGAACTGG


AGGAGAAAAACATTAAGGAATTTTTGCAGTCATTCGTCCATATAGTGCAAATGTTCATAAACACTTC


CAGAAGAAAGCGAGGCTCTGGGGAGGGGCGAGGCTCTCTGCTGACCTGTGGGGATGTAGAAGAGA


ATCCAGGTCCCATGGACCGGCTGACCAGCTCATTCCTGCTTCTGATTGTGCCAGCCTACGTGCTCTC


CATCACATGTCCTCCCCCAATGAGCGTCGAGCATGCTGACATCTGGGTGAAGTCATACTCCTTGTAC


AGCAGAGAGAGATACATTTGTAATTCCGGATTCAAGCGCAAGGCCGGCACCTCCTCTCTGACAGAG


TGCGTCCTTAACAAAGCAACCAACGTAGCACATTGGACCACACCATCCTTGAAGTGCATACGAGAA


CCTAAATCTTGCGATAAGACTCATACTTGTCCACCTTGTCCAGCCCCAGAACTGCTTGGCGGACCCT


CAGTATTTTTGTTCCCACCAAAGCCAAAAGACACACTCATGATATCCAGAACTCCTGAGGTGACCTG


TGTCGTTGTAGACGTTTCCCACGAAGATCCTGAAGTAAAATTCAACTGGTACGTGGATGGGGTCGAA


GTCCATAACGCCAAGACTAAACCAAGGGAGGAACAGTATAACTCTACTTACCGAGTAGTTTCTGTG


TTGACCGTGCTGCACCAGGACTGGTTGAACGGGAAGGAGTACAAATGCAAGGTGAGCAATAAAGCT


CTGCCCGCACCAATCGAAAAGACAATATCTAAGGCCAAGGGGCAGCCACGAGAGCCCCAGGTATA


CACACTGCCACCCTCACGCGATGAATTGACTAAGAACCAGGTTTCCCTGACCTGTCTTGTAAAAGGT


TTCTACCCTTCCGACATAGCTGTTGAGTGGGAAAGTAACGGGCAGCCAGAGAACAATTACAAGACA


ACTCCACCCGTTCTTGATAGCGATGGATCATTTTTTCTGTATTCCAAACTCACTGTCGATAAAAGTCG


CTGGCAGCAAGGCAATGTTTTTAGCTGCTCAGTCATGCACGAAGCACTGCATAATCACTACACACA


AAAAAGTTTGTCCCTTAGCCCTGGTAAGtaG





IL-15 (Human)(SEQ ID NO: 66)


ATGTACTCAATGCAGTTGGCCTCCTGTGTAACATTGACCTTGGTCCTCTTGGTCAACAGCAATTGGA


TCGATGTACGCTACGACTTGGAGAAGATTGAGTCCCTTATACAGAGTATACACATAGATACAACCTT


GTATACTGACAGTGACTTCCATCCCAGCTGTAAAGTGACTGCAATGAACTGTTTTTTGTTGGAGTTG


CAAGTAATTCTGCATGAATACAGCAACATGACCCTCAATGAAACCGTTAGGAATGTCCTTTATCTCG


CAAATTCTACTCTGAGTAGCAATAAGAATGTTGCCGAAAGCGGCTGCAAGGAGTGCGAAGAACTGG


AGGAAAAAACTTTCACCGAGTTTCTCCAGAGTTTCATCAGAATTGTCCAAATGTTCATTAATACAAG


TAGTGGTGGTGGGAGCGGGGGTGGAGGCAGTGGGGGAGGTGGGAGCGGAGGTGGAGGGTCCGGAG


GGGGGAGCCTTCAAGGCACTACTTGTCCTCCACCCGTATCCATCGAGCACGCCGATATTCGAGTTAA


AAATTATAGTGTTAATAGCAGAGAACGATACGTCTGCAACTCAGGGTTTAAGAGAAAGGCCGGAAC


TTCAACTCTCATAGAATGCGTGATTAATAAGAATACTAACGTCGCACATTGGACTACTCCCAGTCTC


AAGTGCATACGCGATCCATCTCTCGCTCATTACTCACCAGTACCTACAGTGGTTACTCCTAAGGTGA


CCTCTCAGCCCGAATCACCATCTCCCAGCGCAAAAGAGCCTGAGGCCTTTTCTCCTAAATCAGACAC


TGCTATGACTACAGAAACAGCCATAATGCCAGGAAGCCGGCTGACACCATCTCAAACTACCAGCGC


AGGCACAACTGGGACTGGCTCCCACAAAAGCTCACGCGCACCAAGTCTCGCCGCAACAATGACATT


GGAGCCTACAGCCAGCACATCTCTTAGAATCACAGAAATTTCTCCCCACAGTAGCAAGATGACCAA


GGTGGCAATTAGTACCAGCGTCCTTCTTGTAGGAGCTGGAGTTGTGATGGCATTTTTGGCATGGTAT


ATCAAAAGCAGGtaG





IL-15 (Mouse)(SEQ ID NO: 67)


ATGAAGATCCTCAAGCCATACATGCGAAACACTAGTATTAGCTGTTACTTGTGTTTTCTGCTGAATA


GTCATTTTTTGACTGAAGCAGGAATCCATGTATTTATACTCGGTTGTGTGTCTGTAGGTCTGCCAAAG


ACTGAGGCTAATTGGATTGACGTGCGCTATGATCTTGAAAAAATAGAGTCCTTGATTCAATCAATAC


ACATCGATACCACTCTCTACACCGACAGTGATTTCCATCCTTCCTGCAAGGTAACAGCTATGAATTG


CTTCCTCCTGGAGCTCCAAGTCATTCTCCATGAGTACTCCAACATGACTTTGAACGAAACTGTAAGA


AACGTATTGTATCTGGCTAATAGCACCTTGTCTAGTAACAAAAATGTGGCAGAGAGCGGCTGCAAA


GAATGTGAAGAATTGGAAGAGAAAACATTTACAGAGTTCCTGCAATCCTTTATTCGCATCGTCCAAA


TGTTTATCAATACCTCTtaG





IL-15 (Mouse)(SEQ ID NO: 68)


ATGTATTCCATGCAACTTGCCAGTTGTGTAACCCTTACTCTCGTCCTGCTCGTTAATTCCGCTGGTGC


TAACTGGATAGATGTTCGATACGATCTGGAAAAGATTGAGTCCCTTATCCAATCCATTCATATAGAT


ACCACCCTTTATACTGACAGCGACTTCCATCCTTCTTGCAAGGTGACCGCTATGAATTGTTTCCTGCT


GGAACTCCAAGTTATTCTGCATGAATACTCTAATATGACACTTAACGAGACCGTAAGAAATGTTCTC


TATCTCGCTAATAGTACTTTGAGCTCAAATAAGAACGTGGCCGAGTCTGGGTGTAAGGAATGCGAA


GAGCTGGAAGAAAAGACATTCACCGAGTTTCTCCAGTCTTTCATACGGATTGTGCAGATGTTTATCA


ACACATCAGATTACAAAGACGACGATGATAAGtaG





IL-18 (Mouse)(SEQ ID NO: 69)


ATGGCAGCCATGTCTGAGGACTCTTGTGTGAACTTTAAAGAAATGATGTTCATAGACAATACACTCT


ACTTTATACCTGAGGAGAATGGAGATTTGGAATCTGACAACTTTGGCAGGCTGCATTGCACTACCGC


AGTTATCCGAAACATCAACGATCAGGTACTGTTTGTTGATAAAAGACAACCTGTATTCGAGGACATG


ACCGACATAGATCAGTCTGCCTCAGAGCCCCAGACTAGGCTTATCATCTATATGTACAAGGACAGC


GAAGTACGAGGCCTGGCTGTTACACTCTCAGTCAAAGACTCTAAGATGAGCACCCTGTCATGCAAG


AACAAAATTATCAGTTTTGAGGAGATGGACCCACCTGAAAACATAGATGACATTCAGTCAGACCTC


ATTTTTTTTCAAAAGCGGGTACCAGGACACAACAAAATGGAATTTGAATCATCACTCTACGAAGGA


CATTTCCTTGCATGCCAGAAAGAGGATGACGCATTCAAATTGATCCTGAAAAAAAAGGACGAAAAT


GGTGATAAATCAGTCATGTTTACATTGACCAATCTTCACCAAAGTtaG





IL-18 (Mouse)(SEQ ID NO: 70)


ATGGCTGCAATGTCTGAAGATAGCTGTGTCAACTTTAAGGAGATGATGTTCATTGATAATACTTTGT


ACTTTATACCTGAAGAAAATGGAGACCTTGAGTCAGACAACTTCGGGAGACTGCACTGCACAACTG


CCGTTATCCGAAACATAAATGATCAAGTATTGTTCGTGGACAAAAGACAACCAGTCTTTGAGGATAT


GACAGACATCGACCAATCCGCATCTGAACCTCAGACTAGGCTGATCATCTATATGTACGCCGACTCC


GAAGTAAGAGGCCTTGCTGTGACACTTAGTGTTAAGGATAGTAAGATGAGCACACTGTCCTGTAAG


AATAAGATTATATCTTTTGAAGAGATGGACCCTCCCGAGAACATAGATGACATCCAGAGCGACTTG


ATCTTCTTTCAGAAGCGAGTGCCAGGCCATAACAAGATGGAATTTGAATCATCTCTTTATGAAGGCC


ATTTCCTCGCATGTCAAAAGGAGGACGATGCCTTCAAGCTCATTCTGAAAAAAAAAGACGAGAACG


GTGATAAGAGCGTGATGTTCACTCTGACAAATCTGCACCAGTCAtaG





IL-18 (Human)(SEQ ID NO: 71)


ATGTATCGCATGCAACTCCTGTCCTGCATTGCTCTGAGCTTGGCTTTGGTAACCAACTCATACTTCGG


GAAACTGGAGAGTAAACTCTCCGTAATCAGGAATCTTAATGACCAAGTATTGTTTATTGACCAGGGC


AACCGCCCGTTGTTCGAGGATATGACTGATTCTGACTGTCGGGATAACGCTCCGAGAACTATCTTTA


TCATTTCAATGTACAAGGACAGCCAACCGCGGGGTATGGCTGTGACAATCAGTGTCAAATGTGAGA


AGATTTCCACGCTGTCCTGCGAAAACAAGATAATTTCTTTCAAAGAAATGAACCCCCCTGACAATAT


AAAGGATACAAAGAGTGATATCATCTTCTTTCAGAGGTCCGTGCCCGGCCACGATAATAAGATGCA


ATTTGAAAGTTCATCTTATGAGGGGTACTTTTTGGCATGCGAGAAAGAAAGGGATCTCTTCAAGTTG


ATCCTGAAGAAGGAGGACGAATTGGGCGACCGCTCCATCATGTTCACAGTCCAGAACGAGGACtaG





IL-18 (Human)(SEQ ID NO: 72)


ATGTACCGCATGCAGCTCCTGAGTTGTATTGCCCTTTCCCTCGCTCTCGTTACCAATTCTTACTTCGG


TAAGCTTGCCTCTAAACTCTCTGTTATTAGGAACTTGAACGACCAAGTCCTTTTCATAGACCAAGGG


AACAGACCACTGTTTGAAGATATGACGGATAGCGATTGCCGAGATAATGCCCCTAGGACGATTTTT


ATCATTAGTATGTATGCGGACTCTCAACCGAGGGGGATGGCCGTTACTATAAGTGTGAAATGCGAG


AAAATATCAACGCTCAGTTGTGAGAACAAAATCATAAGTTTCAAGGAGATGAATCCACCTGATAAC


ATCAAAGACACTAAGTCTGATATTATATTTTTCCAACGAAGTGTTCCGGGACACGATAACAAAATGC


AATTTGAGAGCTCCTCATACGAGGGCTACTTCCTCGCGTGTGAGAAAGAAAGGGATTTGTTTAAGCT


TATCCTCAAGAAAGAGGACGAGTTGGGGGATCGGAGCATAATGTTTACCGTACAGAATGAGGACtaG





IL-21 (Mouse)(SEQ ID NO: 73)


ATGGAGCGGACACTCGTGTGTCTTGTCGTAATTTTTCTCGGGACAGTCGCACACAAGTCCTCACCCC


AGGGTCCTGATCGCCTTCTCATACGCCTCCGACATTTGATCGACATTGTAGAGCAGCTCAAAATTTA


CGAGAATGACCTCGATCCCGAGCTTTTGAGTGCTCCCCAAGACGTTAAGGGTCATTGCGAGCACGC


AGCTTTTGCTTGCTTCCAGAAGGCCAAGTTGAAACCAAGCAACCCTGGTAATAATAAGACTTTCATC


ATCGACTTGGTCGCCCAACTCCGAAGGAGGCTGCCTGCCCGGCGCGGAGGAAAAAAACAAAAGCA


TATTGCAAAGTGTCCTTCATGTGATTCATACGAAAAGCGGACTCCCAAAGAGTTCTTGGAAAGGTTG


AAATGGCTTCTTCAGAAGATGATTCATCAACATTTGTCAtaG





IFN-beta (Human)(SEQ ID NO: 74)


ATGACCAACAAATGCCTTTTGCAAATTGCCCTGCTTTTGTGTTTTAGCACTACCGCATTGAGCATGTC


ATATAACCTCCTCGGCTTCCTTCAGAGATCATCAAACTTTCAGTGTCAGAAACTGCTTTGGCAACTT


AATGGCAGGCTCGAATATTGTCTGAAAGATCGGATGAATTTCGACATTCCAGAAGAAATAAAACAG


CTTCAACAATTCCAGAAAGAGGACGCCGCCCTGACTATTTACGAGATGCTCCAGAATATCTTCGCCA


TTTTCCGGCAGGACAGCTCATCCACGGGGTGGAATGAGACTATTGTAGAAAATCTTCTGGCTAATGT


GTACCATCAAATTAATCACCTCAAAACGGTGCTTGAGGAAAAACTTGAAAAGGAAGATTTCACACG


GGGCAAGTTGATGTCCTCCCTGCACCTTAAACGATACTACGGCAGGATTCTTCATTACTTGAAGGCT


AAGGAGTATAGCCATTGCGCGTGGACAATTGTACGGGTAGAAATACTGCGAAACTTTTATTTCATCA


ACCGGCTCACTGGATACCTTAGAAATtaG





IFN-beta (Mouse)(SEQ ID NO: 75)


ATGAACAATCGGTGGATACTCCACGCCGCATTTCTCCTCTGCTTTAGCACGACGGCCCTGTCCATCA


ACTACAAACAGCTTCAGTTGCAGGAGCGGACTAACATAAGGAAGTGCCAGGAACTGCTGGAACAG


CTTAATGGTAAAATTAATCTTACATACCGAGCTGACTTCAAAATTCCTATGGAAATGACCGAGAAGA


TGCAGAAATCCTACACGGCATTCGCCATCCAGGAAATGCTCCAGAACGTATTTCTCGTGTTCCGCAA


TAATTTCTCTTCTACGGGTTGGAACGAAACCATTGTTGTTAGACTGCTTGACGAACTGCATCAGCAA


ACCGTGTTCCTTAAAACCGTGCTTGAGGAGAAGCAGGAGGAGCGCCTGACTTGGGAGATGTCTAGT


ACCGCACTTCACTTGAAATCCTACTACTGGCGCGTTCAGCGGTATCTGAAGCTGATGAAGTATAACT


CATACGCCTGGATGGTAGTGCGCGCAGAGATCTTCAGAAACTTTCTTATCATCCGGCGACTGACCCG


AAACTTTCAGAATtaG





IFN-gamma (Human)(SEQ ID NO: 76)


ATGAAGTACACTAGCTATATATTGGCCTTCCAGCTTTGCATCGTATTGGGTAGCCTCGGATGCTATT


GCCAAGACCCGTATGTCAAAGAAGCCGAAAATCTCAAAAAGTATTTCAATGCCGGACACTCAGACG


TCGCGGATAACGGTACACTGTTTCTTGGCATCCTGAAAAATTGGAAGGAAGAGAGTGACAGAAAAA


TAATGCAGTCACAAATAGTGTCCTTTTACTTTAAGCTGTTCAAAAATTTCAAGGATGACCAAAGTAT


CCAGAAGAGTGTTGAAACTATCAAAGAGGACATGAATGTGAAATTCTTTAACAGTAATAAGAAGAA


GCGCGATGACTTCGAGAAACTCACTAATTACAGCGTAACGGATCTTAACGTCCAACGCAAGGCAAT


CCACGAGCTTATACAGGTAATGGCTGAGCTTAGTCCCGCAGCCAAGACAGGGAAGAGAAAAAGGT


CTCAAATGCTTTTTCGGGGCCGGCGAGCTTCACAAtaG





IFN-gamma (Mouse)(SEQ ID NO: 77)


ATGAACGCTACGCATTGCATCCTCGCACTCCAATTGTTCCTCATGGCTGTGTCAGGGTGTTACTGTC


ACGGTACTGTCATAGAAAGCCTCGAATCCCTGAATAACTATTTTAACAGTAGCGGTATAGATGTAGA


AGAAAAGTCTCTCTTTCTTGACATCTGGAGGAATTGGCAAAAGGATGGAGACATGAAGATTCTCCA


ATCTCAGATTATATCATTTTACTTGAGGCTTTTTGAGGTTCTGAAGGATAACCAGGCGATCAGCAAT


AATATCAGCGTAATTGAATCTCACCTTATTACAACATTTTTCTCAAATTCCAAGGCAAAGAAAGATG


CTTTCATGTCTATCGCGAAATTTGAGGTGAACAATCCTCAGGTACAAAGGCAAGCCTTTAACGAGCT


GATTAGAGTTGTACATCAGTTGTTGCCCGAAAGTAGTCTTAGAAAACGCAAACGGAGCCGATGCtaG





IFN-alpha (Mouse)(SEQ ID NO: 78)


ATGGCAAGGTTGTGCGCTTTTCTCATGGTACTGGCTGTGCTCTCCTATTGGCCTACTTGTTCTCTGGG


ATGCGACTTGCCACAGACCCACAATCTGCGGAATAAGAGGGCTCTGACTCTGCTGGTGCAAATGAG


ACGGCTCTCTCCACTTAGCTGTTTGAAAGATAGAAAGGATTTCGGGTTCCCCCAGGAGAAGGTGGA


TGCCCAGCAGATCAAGAAGGCACAGGCTATCCCCGTCCTTTCCGAGCTGACCCAGCAAATTTTGAA


CATCTTTACAAGTAAGGATAGTTCAGCTGCATGGAATACCACACTTTTGGATTCTTTTTGTAACGATC


TGCATCAGCAGCTGAACGATCTCCAGGGATGCCTGATGCAGCAAGTCGGCGTGCAAGAATTTCCAC


TCACCCAGGAGGACGCTCTGCTCGCAGTGCGAAAGTATTTTCACCGAATTACCGTGTACCTCCGGGA


GAAAAAGCATTCACCCTGCGCTTGGGAAGTAGTCAGGGCCGAAGTATGGAGAGCCCTTAGTAGCTC


CGCTAATGTACTGGGCCGGTTGCGGGAAGAGAAAtaG









The first engineered nucleic acid can include a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 309. The first engineered nucleic acid can include a nucleotide sequence having the sequence shown in SEQ ID NO: 309.


The first engineered nucleic acid can include a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ TD NO: 326. The first engineered nucleic acid can include a nucleotide sequence having the sequence shown in SEQ TD NO: 326.


The first engineered nucleic acid can include a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 310. The first engineered nucleic acid can include a nucleotide sequence having the sequence shown in SEQ ID NO: 310.


The first engineered nucleic acid can include a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 327. The first engineered nucleic acid can include a nucleotide sequence having the sequence shown in SEQ ID NO: 327.


The first engineered nucleic acid can include a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 314. The first engineered nucleic acid can include a nucleotide sequence having the sequence shown in SEQ ID NO: 314.


The first engineered nucleic acid can include a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 315. The first engineered nucleic acid can include a nucleotide sequence having the sequence shown in SEQ ID NO: 315.


The second engineered nucleic acid can include a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 317. The second engineered nucleic acid can include a nucleotide sequence having the sequence shown in SEQ ID NO: 317.


The second engineered nucleic acid can include a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 318. The second engineered nucleic acid can include a nucleotide sequence having the sequence shown in SEQ ID NO: 318.


The first engineered nucleic acid can include a nucleotide sequence having the sequence shown in SEQ ID NO: 310; and (b) the second engineered nucleic acid can include a nucleotide sequence having the sequence shown in SEQ ID NO: 317.


The first engineered nucleic acid can include a nucleotide sequence having the sequence shown in SEQ ID NO: 327; and (b) the second engineered nucleic acid can include a nucleotide sequence having the sequence shown in SEQ ID NO: 317.


The first engineered nucleic acid can include a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 310; and (b) the second engineered nucleic acid can include a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 317.


The first engineered nucleic acid can include a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 327; and (b) the second engineered nucleic acid can include a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 317.


Immunoresponsive cells provided for herein can include any one of the engineered nucleic acids described herein. Immunoresponsive cells provided for herein can include combinations of any one of the engineered nucleic acids described herein. Immunoresponsive cells provided for herein can include two or more of any one of the engineered nucleic acids described herein.


Immunoresponsive cells provided for herein can include a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 309. Immunoresponsive cells provided for herein can include a nucleotide sequence having the sequence shown in SEQ ID NO: 309.


Immunoresponsive cells provided for herein can include a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 326. Immunoresponsive cells provided for herein can include a nucleotide sequence having the sequence shown in SEQ ID NO: 326.


Immunoresponsive cells provided for herein can include a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 310. Immunoresponsive cells provided for herein can include a nucleotide sequence having the sequence shown in SEQ ID NO: 310.


Immunoresponsive cells provided for herein can include a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 327. Immunoresponsive cells provided for herein can include a nucleotide sequence having the sequence shown in SEQ ID NO: 327.


Immunoresponsive cells provided for herein can include a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 314. Immunoresponsive cells provided for herein can include a nucleotide sequence having the sequence shown in SEQ ID NO: 314.


Immunoresponsive cells provided for herein can include a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 315. Immunoresponsive cells provided for herein can include a nucleotide sequence having the sequence shown in SEQ ID NO: 315.


Immunoresponsive cells provided for herein can include a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 317. Immunoresponsive cells provided for herein can include a nucleotide sequence having the sequence shown in SEQ ID NO: 317.


Immunoresponsive cells provided for herein can include a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 318. Immunoresponsive cells provided for herein can include a nucleotide sequence having the sequence shown in SEQ ID NO: 318.


Immunoresponsive cells provided for herein can include a first engineered nucleic acid including a nucleotide sequence having the sequence shown in SEQ ID NO: 310; and (b) a second engineered nucleic acid including a nucleotide sequence having the sequence shown in SEQ ID NO: 317.


Immunoresponsive cells provided for herein can include a first engineered nucleic acid including a nucleotide sequence having the sequence shown in SEQ ID NO: 327; and (b) a second engineered nucleic acid including a nucleotide sequence having the sequence shown in SEQ ID NO: 317.


Immunoresponsive cells provided for herein can include a first engineered nucleic acid including a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 310; and (b) a second engineered nucleic acid including a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 317.


Immunoresponsive cells provided for herein can include a first engineered nucleic acid including a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 327; and (b) a second engineered nucleic acid including a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 317.


Expression vectors provided for herein can include any one of the engineered nucleic acids described herein. Expression vectors provided for herein can include combinations of any one of the engineered nucleic acids described herein. Expression vectors provided for herein can include two or more of any one of the engineered nucleic acids described herein.


Expression vectors provided for herein can include a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 309. Expression vectors provided for herein can include a nucleotide sequence having the sequence shown in SEQ ID NO: 309.


Expression vectors provided for herein can include a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 326. Expression vectors provided for herein can include a nucleotide sequence having the sequence shown in SEQ ID NO: 326.


Expression vectors provided for herein can include a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 310. Expression vectors provided for herein can include a nucleotide sequence having the sequence shown in SEQ ID NO: 310.


Expression vectors provided for herein can include a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 327. Expression vectors provided for herein can include a nucleotide sequence having the sequence shown in SEQ ID NO: 327.


Expression vectors provided for herein can include a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 314. Expression vectors provided for herein can include a nucleotide sequence having the sequence shown in SEQ ID NO: 314.


Expression vectors provided for herein can include a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 315. Expression vectors provided for herein can include a nucleotide sequence having the sequence shown in SEQ ID NO: 315.


Expression vectors provided for herein can include a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 317. Expression vectors provided for herein can include a nucleotide sequence having the sequence shown in SEQ ID NO: 317.


Expression vectors provided for herein can include a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 318. Expression vectors provided for herein can include a nucleotide sequence having the sequence shown in SEQ ID NO: 318.


Expression vectors provided for herein can include a first engineered nucleic acid including a nucleotide sequence having the sequence shown in SEQ ID NO: 310; and (b) a second engineered nucleic acid including a nucleotide sequence having the sequence shown in SEQ ID NO: 317.


Expression vectors provided for herein can include a first engineered nucleic acid including a nucleotide sequence having the sequence shown in SEQ ID NO: 327; and (b) a second engineered nucleic acid including a nucleotide sequence having the sequence shown in SEQ ID NO: 317.


Expression vectors provided for herein can include a first engineered nucleic acid including a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 310; and (b) a second engineered nucleic acid including a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 317.


Expression vectors provided for herein can include a first engineered nucleic acid including a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 327; and (b) a second engineered nucleic acid including a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 317.


Secretion Signals and Signal-Anchors

The one or more effector molecules (e.g., any of the cytokines described herein) of the membrane-cleavable chimeric proteins provided for herein are in general secretable effector molecules having a secretion signal peptide (also referred to as a signal peptide or signal sequence) at the chimeric protein's N-terminus (e.g., an effector molecule's N-terminus for S-C-MT) that direct newly synthesized proteins destined for secretion or membrane localization (also referred to as membrane insertion) to the proper protein processing pathways. For chimeric proteins having the formula MT-C-S, a membrane tethering domain generally has a signal-anchor sequence (e.g., signal-anchor sequences of a Type II transmembrane protein) that direct newly synthesized proteins destined for membrane localization to the proper protein processing pathways. For chimeric proteins having the formula S-C-MT, a membrane tethering domain having a reverse signal-anchor sequence (e.g., signal-anchor sequences of certain Type III transmembrane proteins) can be used, generally without a separate secretion signal peptide, that direct newly synthesized proteins destined for membrane localization to the proper protein processing pathways.


In general, for all membrane-cleavable chimeric proteins described herein, the one or more effector molecules are secretable effector molecules (referred to as “S” in the formula S-C-MT or MT-C-S). In embodiments with two or more chimeric proteins, each chimeric protein can comprise a secretion signal. In embodiments with two or more chimeric proteins, each chimeric protein can comprise a secretion signal such that each effector molecule is capable of secretion from an engineered cell following cleavage of the protease cleavage site.


The secretion signal peptide operably associated with an effector molecule can be a native secretion signal peptide (e.g., the secretion signal peptide generally endogenously associated with the given effector molecule, such as a cytokine's endogenous secretion signal peptide). The secretion signal peptide operably associated with an effector molecule can be a non-native secretion signal peptide native secretion signal peptide. Non-native secretion signal peptides can promote improved expression and function, such as maintained secretion, in particular environments, such as tumor microenvironments. Non-limiting examples of non-native secretion signal peptide are shown in Table 3.









TABLE 3







Exemplary Signal Secretion Peptides










Name
Protein SEQUENCE
Source (Uniprot)
DNA SEQUENCE





IL-12
MCHQQLVISWFSL
P29460
ATGTGTCACCAGCAGCTCGTTATATC



VFLASPL VA (SEQ

CTGGTTTAGTTTGGTGTTTCTCGCTTC



ID NO: 112)

ACCCCTGGTGGCA (SEQ ID NO: 31)





IL-12 (Codon
MCHQQLVISWFSL

ATGTGCCATCAGCAACTCGTCATCTC


Optimized)
VFLASPLVA (SEQ

CTGGTTCTCCCTTGTGTTCCTCGCTTC



ID NO: 112)

CCCTCTGGTCGCC (SEQ ID NO: 32)





IL-2 (Optimized)
MQLLSCIALILALV

ATGCAACTGCTGTCATGTATCGCACT



(SEQ ID NO: 113)

CATCCTGGCGCTGGTA (SEQ ID NO:





33)





IL-2 (Native)
MYRMQLLSCIALSL
P60568
ATGTATCGGATGCAACTTTTGAGCTG



ALVTNS (SEQ ID

CATCGCATTGTCTCTGGCGCTGGTGA



NO: 114)

CAAATTCC (SEQ ID NO: 34)





Trypsinogen-2
MNLLLILTFVAAAV
P07478
ATGAATCTCTTGCTCATACTTACGTTT



A (SEQ ID NO: 115)

GTCGCTGCTGCCGTTGCG (SEQ ID





NO: 35)






Gaussia

MGVKVLFALICIAV

ATGGGCGTGAAGGTCTTGTTTGCCCT



Luciferase

AEA (SEQ ID NO:

TATCTGCATAGCTGTTGCGGAGGCG



116)

(SEQ ID NO: 36)





CD5
MPMGSLQPLATLY
P06127
ATGCCGATGGGGAGCCTTCAACCTTT



LLGMLVASCLG

GGCAACGCTTTATCTTCTGGGGATGT



(SEQ ID NO: 117)

TGGTTGCTAGTTGCCTTGGG (SEQ ID





NO: 37)





IgKVII (mouse)
METDTLLLWVLLL

ATGGAAACTGACACGTTGTTGCTGTG



WVPGSTGD (SEQ

GGTATTGCTCTTGTGGGTCCCAGGAT



ID NO: 118)

CTACGGGCGAC (SEQ ID NO: 38)





IgKVII (human)
MDMRVPAQLLGLL
P01597
ATGGATATGAGGGTTCCCGCCCAGCT



LLWLRGARC (SEQ

TTTGGGGCTGCTTTTGTTGTGGCTTCG



ID NO: 119)

AGGGGCTCGGTGT (SEQ ID NO: 39)





VSV-G
MKCLLYLAFLFIGV

ATGAAGTGTCTGTTGTACCTGGCGTT



NC (SEQ ID NO: 120)

TCTGTTCATTGGTGTAAACTGT (SEQ





ID NO: 40)





Prolactin
MNIKGSPWKGSLLL
P01236
ATGAATATCAAAGGAAGTCCGTGGA



LLVSNLLLCQSVAP

AGGGTAGTCTCCTGCTGCTCCTCGTA



(SEQ ID NO: 121)

TCTAACCTTCTCCTTTGTCAATCCGTG





GCACCC (SEQ ID NO: 41)





Serum albumin
MKWVTFISLLFLFS
P02768
ATGAAATGGGTAACATTCATATCACT


preproprotein
SAYS (SEQ ID NO:

TCTCTTTCTGTTCAGCTCTGCGTATTC



122)

T (SEQ ID NO: 42)





Azurocidin
MTRLTVLALLAGL
20160
ATGACAAGGCTTACTGTTTTGGCTCT


preproprotein
LASSRA (SEQ ID

CCTCGCTGGACTCTTGGCTTCCTCCC



NO: 123)

GAGCA (SEQ ID NO: 43)





Osteonectin
MRAWIFFLLCLAGR
P09486
ATGAGGGCTTGGATTTTTTTTCTGCTC


(BM40)
ALA (SEQ ID NO:

TGCCTTGCCGGTCGAGCCCTGGCG



124)

(SEQ ID NO: 44)





CD33
MPLLLLLPLLWAG
P20138
ATGCCTCTTCTGCTTTTGCTTCCTCTT



ALA (SEQ ID NO:

TTGTGGGCAGGTGCCCTCGCA (SEQ



125)

ID NO: 45)





IL-6
MNSFSTSAFGPVAF
P05231
ATGAACTCTTTCTCAACCTCTGCGTTT



SLGLLLVLPAAFPA

GGTCCGGTCGCTTTCTCCCTTGGGCT



P (SEQ ID NO: 126)

CCTGCTTGTCTTGCCAGCAGCGTTTC





CTGCGCCA (SEQ ID NO: 46)





IL-8
MTSKLAVALLAAF
P10145
ATGACAAGTAAACTGGCGGTAGCCTT



LISAALC (SEQ ID

GCTCGCGGCCTTTTTGATTTCCGCAG



NO: 127)

CCCTTTGT (SEQ ID NO: 47)





CCL2
MKVSAALLCLLLIA
P13500
ATGAAGGTAAGTGCAGCGTTGCTTTG



ATFIPQGLA (SEQ

CCTTCTCCTCATTGCAGCGACCTTTAT



ID NO: 128)

TCCTCAAGGGCTGGCC (SEQ ID NO:





48)





TIMP2
MGAAARTLRLALG
P16035
ATGGGAGCGGCAGCTAGAACACTTC



LLLLATLLRPADA

GACTTGCCCTTGGGCTCTTGCTCCTT



(SEQ ID NO: 129)

GCAACCCTCCTTAGACCTGCCGACGC





A (SEQ ID NO: 49)





VEGFB
MSPLLRRLLLAALL
P49765
ATGTCACCGTTGTTGCGGAGATTGCT



QLAPAQA (SEQ ID

GTTGGCCGCACTTTTGCAACTGGCTC



NO: 130)

CTGCTCAAGCC (SEQ ID NO: 50)





Osteoprotegerin
MNNLLCCALVFLDI
O00300
ATGAATAACCTGCTCTGTTGTGCGCT



SIKWTTQ (SEQ ID

CGTGTTCCTGGACATTTCTATAAAAT



NO: 131)

GGACAACGCAA (SEQ ID NO: 51)





Serpin E1
MQMSPALTCLVLG
P05121
ATGCAAATGTCTCCTGCCCTTACCTG



LALVFGEGSA (SEQ

TCTCGTACTTGGTCTTGCGCTCGTATT



ID NO: 132)

TGGAGAGGGATCAGCC (SEQ ID NO:





52)





GROalpha
MARAALSAAPSNP
P09341
ATGGCAAGGGCTGCACTCAGTGCTGC



RLLRVALLLLLLVA

CCCGTCTAATCCCAGATTGCTTCGAG



AGRRAAG (SEQ ID

TTGCATTGCTTCTTCTGTTGCTGGTTG



NO: 133)

CAGCTGGTAGGAGAGCAGCGGGT





(SEQ ID NO: 53)





CXCL12
MNAKVVVVLVLVL
P48061
ATGAATGCAAAAGTCGTGGTCGTGCT



TALCLSDG (SEQ ID

GGTTTTGGTTCTGACGGCGTTGTGTC



NO: 134)

TTAGTGATGGG (SEQ ID NO: 54)





IL-21 (Codon
MERIVICLMVIFLGT
Q9HBE4
ATGGAACGCATTGTGATCTGCCTGAT


Optimized)
LVHKSSS (SEQ ID

GGTCATCTTCCTGGGCACCTTAGTGC



NO: 135)

ACAAGTCGAGCAGC (SEQ ID NO: 55)





CD8
MALPVTALLLPLAL

ATGGCCTTACCAGTGACCGCCTTGCT



LLHAARP (SEQ ID

CCTGCCGCTGGCCTTGCTGCTCCACG



NO: 136)

CCGCCAGGCCG (SEQ ID NO: 139)





CD8 (Codon
MALPVTALLLPLAL

ATGGCGCTCCCGGTGACAGCACTTCT


Optimized)
LLHAARP (SEQ ID

CTTGCCTCTTGCCCTGCTGTTGCATGC



NO: 137)

CGCGCGCCCA (SEQ ID NO: 140)





GMCSFRa
MLLVTSLLLCELPH

ATGTTGCTCGTGACATCCCTCTTGCTT



PAFLLIP (SEQ ID

TGTGAGTTGCCTCATCCCGCATTCCT



NO: 138)

GCTCATCCCA (SEQ ID NO: 141)





GM-CSFRa
MLLLVTSLLLCELP

ATGCTGCTGCTGGTCACATCTCTGCT



HPAFLLIP (SEQ ID

GCTGTGCGAGCTGCCCCATCCTGCCT



NO: 216)

TTCTGCTGATCCCT (SEQ ID NO: 217)





NKG2D
PFFFCCFIAVAMGIR

CCCTTCTTCTTCTGTTGCTTTATCGCC



FIIMVA (SEQ ID NO:

GTGGCCATGGGCATCCGCTTCATCAT



192)

TATGGTGGCC (SEQ ID NO: 193)





IgE
MDWTWILFLVAAA

ATGGACTGGACCTGGATCCTGTTTCT



TRVHS (SEQ ID NO:

GGTGGCCGCTGCCACAAGAGTGCAC



218)

AGC (SEQ ID NO: 214)









Protease Cleavage Site

In general, all membrane-cleavable chimeric proteins described herein contain a protease cleavage site (referred to as “C” in the formula S-C-MT or MT-C-S). In general, the protease cleavage site can be any amino acid sequence motif capable of being cleaved by a protease. Examples of protease cleavage sites include, but are not limited to, a Type 1 transmembrane protease cleavage site, a Type II transmembrane protease cleavage site, a GPI anchored protease cleavage site, an ADAM8 protease cleavage site, an ADAM9 protease cleavage site, an ADAM10 protease cleavage site, an ADAM12 protease cleavage site, an ADAM15 protease cleavage site, an ADAM17 protease cleavage site, an ADAM19 protease cleavage site, an ADAM20 protease cleavage site, an ADAM21 protease cleavage site, an ADAM28 protease cleavage site, an ADAM30 protease cleavage site, an ADAM33 protease cleavage site, a BACE1 protease cleavage site, a BACE2 protease cleavage site, a SIP protease cleavage site, an MT1-MMP protease cleavage site, an MT3-MMP protease cleavage site, an MT5-MMP protease cleavage site, a furin protease cleavage site, a PCSK7 protease cleavage site, a matriptase protease cleavage site, a matriptase-2 protease cleavage site, an MMP9 protease cleavage site, or an NS3 protease cleavage site.


One example of a protease cleavage site is a hepatitis C virus (HCV) nonstructural protein 3 (NS3) protease cleavage site, including, but not limited to, a NS3/NS4A, a NS4A/NS4B, a NS4B/NS5A, or a NS5A/NS5B cleavage site. For a description of NS3 protease and representative sequences of its cleavage sites for various strains of HCV, see, e.g., Hepatitis C Viruses: Genomes and Molecular Biology (S. L. Tan ed., Taylor & Francis, 2006), Chapter 6, pp. 163-206; herein incorporated by reference in its entirety. For example, the sequences of HCV NS4A/4B protease cleavage site; HCV NS5A/5B protease cleavage site; C-terminal degron with NS4A/4B protease cleavage site; N-terminal degron with HCV NS5A/5B protease cleavage site are provided. Representative NS3 sequences are listed in the National Center for Biotechnology Information (NCBI) database. See, for example, NCBI entries: Accession Nos. YP_001491553, YP_001469631, YP_001469632, NP_803144, NP_671491, YP_001469634, YP_001469630, YP_001469633, ADA68311, ADA68307, AFP99000, AFP98987, ADA68322, AFP99033, ADA68330, AFP99056, AFP99041, CBF60982, CBF60817, AHH29575, AIZ00747, AIZ00744, AB136969, ABN05226, KF516075, KF516074, KF516056, AB826684, AB826683, JX171009, JX171008, JX171000, EU847455, EF154714, GU085487, JX171065, JX171063; all of which sequences (as entered by the date of filing of this application) are herein incorporated by reference.


Another example of a protease cleavage site is an ADAM17-specific protease (also referred to as Tumor Necrosis Factor-α Converting Enzyme [TACE]) cleavage site. An ADAM17-specific protease cleavage site can be an endogenous sequence of a substrate naturally cleaved by ADAM17. An ADAM17-specific protease cleavage site can be an engineered sequence capable of being cleaved by ADAM17. An engineered ADAM17-specific protease cleavage site can be an engineered for specific desired properties including, but not limited to, optimal expression of the chimeric proteins, specificity for ADAM17, rate-of-cleavage by ADAM17, ratio of secreted and membrane-bound chimeric protein levels, and cleavage in different cell states. A protease cleavage site can be selected for specific cleavage by ADAM17. For example, certain protease cleavage sites capable of being cleaved by ADAM17 are also capable of cleavage by additional ADAM family proteases, such as ADAM10. Accordingly, an ADAM17-specific protease cleavage site can be selected and/or engineered such that cleavage by other proteases, such as ADAM10, is reduced or eliminated. A protease cleavage site can be selected for rate-of-cleavage by ADAM17. For example, it can be desirable to select a protease cleavage site demonstrating a specific rate-of-cleavage by ADAM17, such as reduced cleavage kinetics relative to an endogenous sequence of a substrate naturally cleaved by ADAM17. In such cases, in general, a specific rate-of-cleavage can be selected to regulate the rate of processing of the chimeric protein, which in turn regulates the rate of release/secretion of the payload effector molecule. Accordingly, an ADAM17-specific protease cleavage site can be selected and/or engineered such that the sequence demonstrates a desired rate-of-cleavage by ADAM17. A protease cleavage site can be selected for both specific cleavage by ADAM17 and rate-of-cleavage by ADAM17. Exemplary ADAM17-specific protease cleavage sites, including those demonstrating particular specificity and rate-of-cleavage kinetics, are shown in Table 4A below with reference to the site of cleavage (P5-P1: N-terminal; P1′-P5′: C-terminal). Further details of ADAM17 and ADAM10, including expression and protease cleavage sites, are described in Sharma, et al. (J Immunol Oct. 15, 2017, 199 (8) 2865-2872), Pham et al. (Anticancer Res. 2017 October; 37(10):5507-5513), Caescu et al. (Biochem J. 2009 Oct. 23; 424(1): 79-88), and Tucher et al. (J. Proteome Res. 2014, 13, 4, 2205-2214), each herein incorporated by reference for purposes.









TABLE 4A







Potential ADAM17 Protease Cleavage Site 


Sequences





























SEQ













ID


P5
P4
P3
P2
P1
P1′
P2′
P3′
P4′
P5′
FULL SEQ
NO





P
R
A
E
A
V
K
G
G

PRAEAVKGG
179





P
R
A
E
A
L
K
G
G

PRAEALKGG
180





P
R
A
E
Y
S
K
G
G

PRAEYSKGG
181





P
R
A
E
P
I
K
G
G

PRAEPIKGG
182





P
R
A
E
A
Y
K
G
G

PRAEAYKGG
183





P
R
A
E
S
S
K
G
G

PRAESSKGG
184





P
R
A
E
F
T
K
G
G

PRAEFTKGG
185





D
E
P
H
Y
S
Q
R
R

DEPHYSQRR
187





P
P
L
G
P
I
F
N
P
G
PPLGPIFNPG
188





P
L
A
Q
A
Y
R
S
S

PLAQAYRSS
189





T
P
I
D
S
S
F
N
P
D
TPIDSSFNPD
190





V
T
P
E
P
I
F
S
L
I
VTPEPIFSLI
191





P
R
A
E
A
A
K
G
G

PRAEAAKGG
186









In some embodiments, the protease cleavage site comprises a first region having the amino acid sequence of PRAE (SEQ ID NO: 176). In some embodiments, the protease cleavage site comprises a second region having the amino acid sequence of KGG (SEQ ID NO: 177). In some embodiments, the first region is located N-terminal to the second region. In some embodiments, the protease cleavage site comprises the amino acid sequence of PRAEX1X2KGG (SEQ ID NO: 178), wherein X1 is A, Y, P, S, or F, and wherein X2 is V, L, S, I, Y, T, or A. In some embodiments, the protease cleavage site comprises the amino acid sequence of PRAEAVKGG (SEQ ID NO: 179). In some embodiments, the protease cleavage site comprises the amino acid sequence of PRAEALKGG (SEQ ID NO: 180). In some embodiments, the protease cleavage site comprises the amino acid sequence of PRAEYSKGG (SEQ ID NO: 181). In some embodiments, the protease cleavage site comprises the amino acid sequence of PRAEPIKGG (SEQ ID NO: 182). In some embodiments, the protease cleavage site comprises the amino acid sequence of PRAEAYKGG (SEQ ID NO: 183). In some embodiments, the protease cleavage site comprises the amino acid sequence of PRAESSKGG (SEQ ID NO: 184). In some embodiments, the protease cleavage site comprises the amino acid sequence of PRAEFTKGG (SEQ ID NO: 185). In some embodiments, the protease cleavage site comprises the amino acid sequence of PRAEAAKGG (SEQ ID NO: 186). In some embodiments, the protease cleavage site comprises the amino acid sequence of DEPHYSQRR (SEQ ID NO: 187). In some embodiments, the protease cleavage site comprises the amino acid sequence of PPLGPIFNPG (SEQ ID NO: 188). In some embodiments, the protease cleavage site comprises the amino acid sequence of PLAQAYRSS (SEQ ID NO: 189). In some embodiments, the protease cleavage site comprises the amino acid sequence of TPIDSSFNPD (SEQ ID NO: 190). In some embodiments, the protease cleavage site comprises the amino acid sequence of VTPEPIFSLI (SEQ ID NO: 191).


In certain embodiments, a cleavage site comprises a linker sequence. A cleavage site may be flanked on the N terminal and/or C terminal sides by a linker sequence. For example and without limitation, the cleavage site may be flanked on both the N terminal and C terminal sides by a partial glycine-serine (GS) linker sequence. Upon cleavage, the N terminal partial GS linker, and C terminal partial GS linker, join to form a GS linker sequence, such as SEQ ID NO: 215.


In certain embodiments, the cleavage site and linker comprise the amino acid sequence of SGGGGSGGGGSGVTPEPIFSLIGGGSGGGGSGGGSLQ (SEQ ID NO: 287). An exemplary nucleic acid sequence encoding SEQ ID NO: 287 is TCTGGCGGCGGAGGATCTGGCGGAGGTGGAAGCGGAGTTACACCCGAGCCTATCTT CAGCCTGATCGGAGGCGGTAGCGGAGGCGGAGGAAGTGGTGGCGGATCTCTGCAA (SEQ ID NO: 288). In some embodiments, nucleic acids encoding SEQ ID NO: 287 may comprise SEQ ID NO: 288, or a nucleic acid sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 288.


In certain embodiments, the protease cleavage site is N-terminal to a linker. In certain embodiments, the protease cleavage site and linker comprise the amino acid sequence of PRAEALKGGSGGGGSGGGGSGGGGSGGGGSGGGSLQ (SEQ ID NO: 289). An exemplary nucleic acid sequence encoding SEQ ID NO: 289 is CCCAGAGCCGAGGCTCTGAAAGGCGGATCAGGCGGCGGTGGTAGTGGAGGCGGAG GCTCAGGCGGCGGAGGTTCCGGAGGTGGCGGTTCCGGCGGAGGATCTCTTCAAT (SEQ ID NO: 292). In some embodiments, nucleic acids encoding SEQ ID NO: 289 may comprise SEQ ID NO: 292, or a nucleic acid sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 292.


In some embodiments, the protease cleavage site comprises the amino acid sequence of ITQGLAVSTISSFF (SEQ ID NO: 198), which is a cleavage site that is native to CD16 and is cleavable by ADAM17. In certain embodiments, SEQ ID NO: 198 is comprised within a linker.


In certain embodiments, the linker comprises the amino acid sequence of SGGGGSGGGGSGITQGLAVSTISSFFGGGSGGGGSGGGSLQ (SEQ ID NO: 290). An exemplary nucleic acid sequence encoding SEQ ID NO: 290 is AGCGGCGGAGGTGGTAGCGGAGGCGGAGGATCTGGAATTACACAGGGACTCGCCG TGTCTACAATCTCCAGCTTCTTTGGTGGCGGTAGTGGCGGCGGTGGCAGTGGCGGTG GATCTCTTCAA (SEQ ID NO: 291). In some embodiments, nucleic acids encoding SEQ ID NO: 290 may comprise SEQ ID NO: 291, or a nucleic acid sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 291.


The protease cleavage site can be C-terminal of the secretable effector molecule. The protease cleavage site can be N-terminal of the secretable effector molecule. In general, for all membrane-cleavable chimeric proteins described herein, the protease cleavage site is either: (1) C-terminal of the secretable effector molecule and N-terminal of the cell membrane tethering domain (in other words, the protease cleavage site is in between the secretable effector molecule and the cell membrane tethering domain); or (2) N-terminal of the secretable effector molecule and C-terminal of the cell membrane tethering domain (also between the secretable effector molecule and the cell membrane tethering domain with domain orientation inverted). The protease cleavage site can be connected to the secretable effector molecule by a polypeptide linker, i.e., a polypeptide sequence not generally considered to be part of the effector molecule or protease cleavage site. The protease cleavage site can be connected to the cell membrane tethering domain by a polypeptide linker, i.e., a polypeptide sequence not generally considered to be part of the cell membrane tethering domain or protease cleavage site. A polypeptide linker can be any amino acid sequence that connects a first polypeptide sequence and a second polypeptide sequence. A polypeptide linker can be a flexible linker (e.g., a Gly-Ser-Gly sequence). Examples of polypeptide linkers include, but are not limited to, GSG linkers (e.g., [GS]4GG [SEQ ID NO: 347]), A(EAAAK)3A (SEQ ID NO: 348), and Whitlow linkers (e.g., a “KEGS” linker such as the amino acid sequence KESGSVSSEQLAQFRSLD (SEQ ID NO: 349), an eGK linker such as the amino acid sequence EGKSSGSGSESKST (SEQ ID NO: 350), an LR1 linker such as the amino acid sequence SGGGGSGGGGSGGGGSGGGGSGGGSLQ (SEQ ID NO: 215), and linkers described in more detail in Issued U.S. Pat. No. 5,990,275 herein incorporated by reference). Additional exemplary polypeptide linkers include SGGGGSGGGGSG (SEQ ID NO: 194), TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACD (SEQ ID NO: 196), and GGGSGGGGSGGGSLQ (SEQ ID NO: 197). Other polypeptide linkers may be selected based on desired properties (e.g., length, flexibility, amino acid composition, etc.) and are known to those skilled in the art. An exemplary nucleic acid sequence encoding SEQ ID NO: 196 is ACCACCACACCAGCTCCTCGGCCACCAACTCCAGCTCCAACAATTGCCAGCCAGCC TCTGTCTCTGAGGCCCGAAGCTTGTAGACCTGCTGCAGGCGGAGCCGTGCATACAA GAGGACTGGATTTCGCCTGCGAC (SEQ ID NO: 337). In certain embodiments, a nucleic acid encoding SEQ ID NO: 196 comprises a sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 337.


In the Membrane-Cleavable system, following expression and localization of the chimeric protein into the cell membrane, the protease cleavage site directs cleavage of the chimeric protein such that the effector molecule is released (“secreted”) into the extracellular space of a cell.


In general, a protease that cleaves the protease cleavage site is a protease specific for that specific protease cleavage site. For example, in the case of a disintegrin and metalloproteinase (“ADAM”) family protease, the protease that cleaves a specific ADAM protease cleavage site is generally limited to the ADAM protease(s) that specifically recognize the specific ADAM protease cleavage site motif. A protease cleavage site can be selected and/or engineered such that cleavage by undesired proteases is reduced or eliminated. Proteases can be membrane-bound or membrane-associated. Proteases can be secreted, e.g., secreted in a specific cellular environment, such as a tumor microenvironment (“TME”).


A protease that cleaves the protease cleavage site of the chimeric protein can be expressed in the same cell that expresses the chimeric protein. A protease that cleaves the protease cleavage site of the chimeric protein can be endogenous to a cell expressing the chimeric protein. In other words, a cell engineered to express the chimeric protein can endogenously express the protease specific for the protease cleavage site present in the chimeric protein. Endogenous expression of the protease refers to both expression under generally homeostatic conditions (e.g., a cell generally considered to be healthy), and also to differential expression under non-homeostatic conditions (e.g., upregulated expression in a tumor cell). The protease cleavage site can be selected based on the known proteases endogenously expressed by a desired cell population. In such cases, in general, the cleavage of the protease cleavage site (and thus release/secretion of a payload) can be restricted to only those cells of interest due to the cell-restricted protease needing to come in contact with the protease cleavage site of chimeric protein expressed in the same cell. For example, and without wishing to be bound by theory, ADAM17 is believed to be restricted in its endogenous expression to NK cell and T cells. Thus, selection of an ADAM17-specific protease cleavage site may restrict the cleavage of the protease cleavage site to NK cell and T cells co-expressing the chimeric protein. In other examples, a protease cleavage site can be selected for a specific tumor-associated protease known to be expressed in a particular tumor population of interest (e.g., in a specific tumor cell engineered to express the chimeric protein). Protease and/or expression databases can be used to select an appropriate protease cleavage site, such as selecting a protease cleavage site cleaved by a tumor-associated proteases through consulting Oncomine (www.oncomine.org), the European Bioinformatic Institute (www.ebi.ac.uk) in particular (www.ebi.ac.uk/gxa), PMAP (www.proteolysis.org), ExPASy Peptide Cutter (ca.expasy.org/tools/peptide cutter) and PMAP.Cut DB (cutdb.burnham.org), each of which is incorporated by reference for all purposes.


A protease that cleaves the protease cleavage site of the chimeric protein can be heterologous to a cell expressing the chimeric protein. For example, a cell engineered to express the chimeric protein can also be engineered to express a protease not generally expressed by the cell that is specific for the protease cleavage site present in the chimeric protein. A cell engineered to express both the chimeric protein and the protease can be engineered to express each from separate engineered nucleic acids or from a multicistronic systems (multicistronic and multi-promoter systems are described in greater detail in the Section herein titled “Multicistronic and Multiple Promoter Systems”). Heterologous proteases and their corresponding protease cleavage site can be selected as described above with reference to endogenous proteases.


A protease that cleaves the protease cleavage site of the chimeric protein can be expressed on a separate distinct cell than the cell that expresses the chimeric protein. For example, the protease can be generally expressed in a specific cellular environment, such as a tumor microenvironment. In such cases, in general, the cleavage of the protease cleavage site can be restricted to only those cellular environments of interest (e.g., a tumor microenvironment) due to the environment-restricted protease needing to come in contact with the protease cleavage site. In embodiments having membrane-cleavable chimeric proteins, in general, the secretion of the effector molecule can be restricted to only those cellular environments of interest (e.g., a tumor microenvironment) due to the environment-restricted protease needing to come in contact with the protease cleavage site. A protease that cleaves the protease cleavage site of the chimeric protein can be endogenous to the separate distinct cell. A protease that cleaves the protease cleavage site of the chimeric protein can be heterologous to the separate distinct cell. For example, the separate distinct cell can be engineered to express a protease not generally expressed by the separate distinct cell.


Proteases include, but are not limited to, a Type 1 transmembrane protease, a Type II transmembrane protease, a GPI anchored protease, an ADAM8 protease, an ADAM9 protease, an ADAM10 protease, an ADAM12 protease, an ADAM15 protease, an ADAM17 protease, an ADAM19 protease, an ADAM20 protease, an ADAM21 protease, an ADAM28 protease, an ADAM30 protease, an ADAM33 protease, a BACE1 protease, a BACE2 protease, a SIP protease, an MT1-MMP protease, an MT3-MMP protease, an MT5-MMP protease, a furin protease, a PCSK7 protease, a matriptase protease, a matriptase-2 protease, and an MMP9 protease. A protease can be an NS3 protease. A protease can be an ADAM117 protease.


Proteases can be tumor associated proteases, such as, a cathepsin, a cysteine protease, an aspartyl protease, a serine protease, or a metalloprotease. Specific examples of tumor associated proteases include Cathepsin B, Cathepsin L, Cathepsin S, Cathepsin D, Cathepsin E, Cathepsin A, Cathepsin G, Thrombin, Plasmin, Urokinase, Tissue Plasminogen Activator, Metalloproteinase 1 (MMP1), MMP2, MMP3, MMP4, MMP7, MMP8, MMP9, MMP10, MMP11, MMP12, MMPP13, MMPP14, MMPP15, MMP16, MMP17, MMP20, MMP21, MMP23, MMP24, MMP25, MMP26, MMP28, ADAM, ADAMTS, CD10 (CALLA), or prostate specific antigen. Proteases can also include, but are not limited to, proteases listed in Table 4B below. Exemplary cognate protease cleavage sites for certain proteases are also listed in Table 4B.









TABLE 4B







Exemplary Proteases with Cognate Cleavage Sites and Inhibitors









Protease




(UniProt Accession No.)
Cognate cleavage site
Protease inhibitors





HCV NS4A/4B
DEMEECSQHL
Simeprevir, Danoprevir,



(SEQ ID NO: 142)
Asunaprevir, Ciluprevir,



EDVVPCSMG
Boceprevir, Sovaprevir,



(SEQ ID NO: 143)
Paritaprevir, Telaprevir,




Grazoprevir





HCV NS5A/5B
DEMEECSQHL
Simeprevir, Danoprevir,



(SEQ ID NO: 142)
Asunaprevir, Ciluprevir,



EDVVPCSMG
Boceprevir, Sovaprevir,



(SEQ ID NO: 143)
Paritaprevir, Telaprevir,




Grazoprevir





HCV NS3
DEMEECSQHL
Simeprevir, Danoprevir,



(SEQ ID NO: 142)
Asunaprevir, Ciluprevir,



EDVVPCSMG
Boceprevir, Sovaprevir,



(SEQ ID NO: 143)
Paritaprevir, Telaprevir,




Grazoprevir





HCV NS2-3
DEMEECSQHL
Simeprevir, Danoprevir,



(SEQ ID NO: 142)
Asunaprevir, Ciluprevir,



EDVVPCSMG
Boceprevir, Sovaprevir,



(SEQ ID NO: 143)
Paritaprevir, Telaprevir,




Grazoprevir





HIV-1 protease

Amprenavir, Atazanavir,


(SEQ ID NO: 144)

Darunavir, Fosamprenavir,




Indinavir, Lopinavir,




Nelfinavir, Ritonavir,




Saquinavir, Tipranavir





Signal peptidase (P67812,
preference of eukaryotic signal



P15367, P00804, P0803)
peptidase for cleavage after




residue 20 (Xaa20□) of




pre(⊗pro)apoA-II: Ala, Cys > Gly >




Ser, Thr > Pro > Asn, Val, Ile,




Leu, Tyr, His, Arg, Asp.






proprotein convertases
(R/K)-X-(hydrophobic)-X↓, where



cleaving at hydrophobic
X is any amino acid



residues (e.g., Leu, Phe,




Val, or Met)(Q16549,




Q8NBP7, Q92824,




P29120, Q6UW60,




P29122, Q9QXV0)







proprotein convertases
(K/R)-(X)n-(K/R)↓, where n is 0, 2,



cleaving at small amino
4 or 6 and X is any amino acid



acid residues such as Ala




or Thr (Q16549,




Q8NBP7, Q92824,




P29120, Q6UW60,




P29122)







proopiomelanocortin
Cleavage at paired basic residues



converting enzyme (PCE)
in certain prohormones, either



(Q9UO77615, 0776133)
between them, or on the carboxyl




side






chromaffin granule
tends to cleave dipeptide bonds



aspartic protease (CGAP)
that have hydrophobic residues as




well as a beta-methylene group






prohormone thiol protease




(cathepsin L1)(P07154,




P07711, P06797, P25975,




Q28944)







carboxypeptidases (e.g.,
cleaves a peptide bond at the



carboxypeptidase E/H,
carboxy-terminal (C-terminal) end



carboxypeptidase D and
of a protein or peptide



carboxypeptidase Z)




(Q9M099, P15169,




Q04609, P08819, P08818,




O77564, P70627,




O35409, P07519,




Q8VZU3, P22792,




P15087, P16870,




Q9JHH6, Q96IY4,




Q7L8A9)







aminopeptidases (e.g.,
cleaves a peptide bond at the



arginine aminopeptidase,
amino-terminal (N-terminal) end



lysine aminopeptidase,
of a protein or peptide



aminopeptidase B)







prolyl endopeptidase
Hydrolysis of Pro-|-Xaa >> Ala-|-



(Q12884, P48147,
Xaa in oligopeptides.



P97321, Q4J6C6)
Release of an N-terminal




dipeptide, Xaa-Yaa-|-Zaa-, from a




polypeptide, preferentially when




Yaa is Pro, provided Zaa is neither




Pro nor hydroxyproline






aminopeptidase N
Release of an N-terminal amino



(P97449, P15144,
acid, Xaa-|-Yaa- from a peptide,



P15145, P15684)
amide or arylamide. Xaa is




preferably Ala, but may be most




amino acids including Pro (slow




action). When a terminal




hydrophobic residue is followed




by a prolyl residue, the two may




be released as an intact Xaa-Pro




dipeptide






insulin degrading enzyme
Degradation of insulin, glucagon



(P14735, P35559,
and other polypeptides. No action



Q9JHR7, P22817,
on proteins.



Q24K02)
Cleaves multiple short




polypeptides that vary




considerably in sequence






Calpain (O08529,
No specific amino acid sequence is



P17655, Q07009,
uniquely recognized by calpains.



Q27971, P20807, P07384,
Amongst protein substrates,



O35350, O14815,
tertiary structure elements rather



P04632, Q9Y6Q1,
than primary amino acid



O15484, Q9HC96,
sequences appear to be responsible



A6NHCO, Q9UMQ6)
for directing cleavage to a specific




substrate. Amongst peptide and




small-molecule substrates, the




most consistently reported




specificity is for small,




hydrophobic amino acids (e.g.,




leucine, valine and isoleucine) at




the P2 position, and large




hydrophobic amino acids (e.g.,




phenylalanine and tyrosine) at the




P1 position. One fluorogenic




calpain substrate is (EDANS)-Glu-




Pro-Leu-Phe═Ala-Glu-Arg-Lys-




(DABCYL),




(EDANSEPLFAERKDABCYL




(SEQ ID NO: 145)) with cleavage




occurring at the Phe═Ala bond.






caspase 1 (P29466,
Strict requirement for an Asp



P29452)
residue at position P1 and has a




preferred cleavage sequence of




Tyr-Val-Ala-Asp-|- (YVAD; SEQ




ID NO: 146).






caspase 2 (P42575,
Strict requirement for an Asp



P29594)
residue at P1, with 316-asp being




essential for proteolytic activity




and has a preferred cleavage




sequence of Val-Asp-Val-Ala-




Asp-|- (VDVAD; SEQ ID NO:




147).






caspase 3 (P42574,
Strict requirement for an Asp



P70677)
residue at positions P1 and P4. It




has a preferred cleavage sequence




of Asp-Xaa-Xaa-Asp-|- with a




hydrophobic amino-acid residue at




P2 and a hydrophilic amino-acid




residue at P3, although Val or Ala




are also accepted at this position.






caspase 4 (P70343,
Strict requirement for Asp at the



P49662)
P1 position. It has a preferred




cleavage sequence of Tyr-Val-Ala-




Asp-|- (YVAD; SEQ ID NO: 146)




but also cleaves at Asp-Glu-Val-




Asp-|-(DEVD; SEQ ID NO: 148).






caspase 5 (P51878)
Strict requirement for Asp at the




P1 position. It has a preferred




cleavage sequence of Tyr-Val-Ala-




Asp-|-(YVAD; SEQ ID NO: 146)




but also cleaves at Asp-Glu-Val-




Asp-|- - |-(DEVD; SEQ ID NO:




148).






caspase 6 (P55212)
Strict requirement for Asp at




position P1 and has a preferred




cleavage sequence of Val-Glu-His-




Asp-|-(VEHD; SEQ ID NO: 149).






caspase 7 (P97864,
Strict requirement for an Asp



P55210)
residue at position P1 and has a




preferred cleavage sequence of




Asp-Glu-Val-Asp-|- (DEVD; SEQ




ID NO: 148).






caspase 8 (Q8IRY7,
Strict requirement for Asp at



O89110, Q14790)
position P1 and has a preferred




cleavage sequence of




(Leu/Asp/Val)-Glu-Thr-Asp-|-




(Gly/Ser/Ala).






caspase 9 (P55211,
Strict requirement for an Asp



Q8C3Q9, Q5IS54)
residue at position P1 and with a




marked preference for His at




position P2. It has a preferred




cleavage sequence of Leu-Gly-




His-Asp-|-Xaa (LGHD; SEQ ID




NO: 150).






caspase 10 (Q92851)
Strict requirement for Asp at




position P1 and has a preferred




cleavage sequence of Leu-Gln-




Thr-Asp-|-Gly (LQTDG; SEQ ID




NO: 151).






puromycin sensitive
Release of an N-terminal amino



aminopeptidase (P55786,
acid, preferentially alanine, from a



Q11011)
wide range of peptides, amides




and arylamides.






angiotensin converting
Release of a C-terminal dipeptide,
Benazepril (Lotensin),


enzyme (ACE)(P12821,
oligopeptide-|-Xaa-Yaa, when Xaa
Captopril, Enalapril


P09470, Q9BYF1)
is not Pro, and Yaa is neither Asp
(Vasotec), Fosinopril,


SEQ ID NO: 156
nor Glu.
Lisinopril (Prinivil,




Zestril), Moexipril,




Perindopril (Aceon),




Quinapril (Accupril),




Ramipril (Altace),




Trandolapril (Mavik),




Zofenopril





pyroglutamyl peptidase II
Release of the N-terminal



(Q9NXJ5)
pyroglutamyl group from pGlu--




His-Xaa tripeptides and pGlu--




His-Xaa-Gly tetrapeptides






dipeptidyl peptidase IV
Release of an N-terminal



(P27487, P14740,
dipeptide, Xaa-Yaa-|-Zaa-, from a



P28843)
polypeptide, preferentially when




Yaa is Pro, provided Zaa is neither




Pro nor hydroxyproline






N-arginine dibasic
Hydrolysis of polypeptides,



convertase (O43847,
preferably at -Xaa-|-Arg-Lys-, and



Q8BHG1)
less commonly at -Arg-|-Arg-Xaa-,




in which Xaa is not Arg or Lys






endopeptidase 24.15
Preferential cleavage of bonds



(thimet oligopeptidase)
with hydrophobic residues at P1,



(P52888, P24155)
P2 and P3′ and a small residue at




Pl′ in substrates of 5 to 15 residues






endopeptidase 24.16
Preferential cleavage in



(neurolysin)(Q9BYT8,
neurotensin: 10-Pro-|-Tyr-11



Q91YP2)







amyloid precursor protein
Endopeptidase of broad



secretase alpha (P05067,
specificity.



P12023, Q9Y5Z0,




P56817)







amyloid precursor protein
Broad endopeptidase specificity.



secretase beta (P05067,
Cleaves Glu-Val-Asn-Leu-|-Asp-



P12023, Q9Y5Z0,
Ala-Glu-Phe (EVNLDAEF; SEQ



P56817)
ID NO: 152) in the Swedish




variant of Alzheimer's amyloid




precursor protein






amyloid precursor protein
intramembrane cleavage of



secretase gamma (P05067,
integral membrane proteins



P12023, Q9Y5ZO,




P56817)







MMP 1 (P03956,
Cleavage of the triple helix of
SB-3CT


Q9EPL5uy)
collagen at about three-quarters of
p-OH SB-3CT



the length of the molecule from
O-phosphate SB-3CT



the N-terminus, at 775-Gly-|-Ile-
RXP470.1



776 in the alpha-1(I) chain.




Cleaves synthetic substrates and




alpha-macroglobulins at bonds




where P1′ is a hydrophobic




residue.






MMP 2 (P08253, P33434)
Cleavage of gelatin type I and
SB-3CT



collagen types IV, V, VII, X.
p-OH SB-3CT



Cleaves the collagen-like sequence
O-phosphate SB-3CT



Pro-Gln-Gly-|-Ile-Ala-Gly-Gln
RXP470.1



(PQGIAGQ; SEQ ID NO: 153).






MMP 3 (P08254, P28862)
Preferential cleavage where P1′,
SB-3CT



P2′ and P3′ are hydrophobic
p-OH SB-3CT



residues.
O-phosphate SB-3CT




RXP470.1





MMP 7 (P09237,
Cleavage of 14-Ala-|-Leu-15 and
SB-3CT


Q10738)
16-Tyr-|-Leu-17 in B chain of
p-OH SB-3CT



insulin. No action on collagen
O-phosphate SB-3CT



types I, II, IV, V. Cleaves gelatin
RXP470.1



chain alpha-2(I) > alpha-1(I).






MMP 8 (P22894,
Can degrade fibrillar type I, II, and
SB-3CT


O70138)
III collagens.
p-OH SB-3CT



Cleavage of interstitial collagens
O-phosphate SB-3CT



in the triple helical domain. Unlike
RXP470.1



EC 3.4.24.7, this enzyme cleaves




type III collagen more slowly than




type I.






MMP 9 (P14780, P41245)
Cleavage of gelatin types I and V
SB-3CT



and collagen types IV and V.
p-OH SB-3CT



Cleaves KiSS1 at a Gly-|-Leu
O-phosphate SB-3CT



bond.
RXP470.1



Cleaves type IV and type V




collagen into large C-terminal




three quarter fragments and shorter




N-terminal one quarter fragments.




Degrades fibronectin but not




laminin or Pz-peptide.






MMP 10 (P09238,
Can degrade fibronectin, gelatins
SB-3CT


o55123)
of type I, III, IV, and V; weakly
p-OH SB-3CT



collagens III, IV, and V.
O-phosphate SB-3CT




RXP470.1





MMP 11 (P24347,
A(A/Q)(N/A)↓(L/Y)(T/V/M/R)(R/K)
SB-3CT


Q02853)
G(G/A)E↓LR (SEQ ID NO: 344)
p-OH SB-3CT



↓ denotes the cleavage site
O-phosphate SB-3CT




RXP470.1





MMP 12 (P39900,
Hydrolysis of soluble and
SB-3CT


P34960)
insoluble elastin. Specific
p-OH SB-3CT



cleavages are also produced at 14-
O-phosphate SB-3CT



Ala-|-Leu-15 and 16-Tyr-|-Leu-17
RXP470.1



in the B chain of insulin




Has significant elastolytic activity.




Can accept large and small amino




acids at the P1′ site, but has a




preference for leucine. Aromatic




or hydrophobic residues are




preferred at the P1 site, with small




hydrophobic residues (preferably




alanine) occupying P3






MMP 13 (P45452,
Cleaves triple helical collagens,
SB-3CT


P33435)
including type I, type II and type
p-OH SB-3CT



III collagen, but has the highest
O-phosphate SB-3CT



activity with soluble type II
RXP470.1



collagen. Can also degrade




collagen type IV, type XIV and




type X






MMP 14 (P50281,
Activates progelatinase A by
SB-3CT


P53690)
cleavage of the propeptide at 37-
p-OH SB-3CT



Asn-|-Leu-38. Other bonds
O-phosphate SB-3CT



hydrolyzed include 35-Gly-|-Ile-36
RXP470.1



in the propeptide of collagenase 3,




and 341-Asn-|-Phe-342, 441-Asp-|




-Leu-442 and 354-Gln-|-Thr-355




in the aggrecan interglobular




domain.






urokinase plasminogen
Specific cleavage of Arg-|-Val
Plasminogen activator


activator (uPA)(P00749,
bond in plasminogen to form
inhibitors (PAI)


P06869)
plasmin.






tissue plasminogen
Specific cleavage of Arg-|-Val
Plasminogen activator


activator (tPA)(P00750,
bond in plasminogen to form
inhibitors (PAI)


P11214)
plasmin.






tissue plasminogen
Specific cleavage of Arg-|-Val
Plasminogen activator


activator (tPA)(P00750,
bond in plasminogen to form
inhibitors (PAI)


P11214)
plasmin.






Plasmin (P00747,
Preferential cleavage: Lys-|-Xaa >
α-2-antiplasmin (AP)


P20918)
Arg-|-Xaa, higher selectivity than




trypsin. Converts fibrin into




soluble products.






Thrombin (P00734,
Cleaves bonds after Arg and Lys



P19221)
Converts fibrinogen to fibrin and




activates factors V, VII, VIII, XIII,




and, in complex with




thrombomodulin, protein C.






BMP-1 (procollagen C-
Cleavage of the C-terminal



peptidase)(P13497,
propeptide at Ala-|-Asp in type I



P98063)
and II procollagens and at Arg-|-




Asp in type III.






ADAM (Q9POK1,

SB-3CT


Q9UKQ2, Q9JLN6,

p-OH SB-3CT


O14672, Q13444,

O-phosphate SB-3CT


P78536, Q13443,

RXP470.1


O43184, P78325,




Q9UKF5, Q9BZ11,




Q9H2U9, Q99965,




O75077, Q9H013,




O43506)







granzyme A (P12544,
Preferential cleavage: - Arg-|-Xaa-,



P11032)
-Lys-|-Xaa- >> -Phe-|-Xaa- in




small molecule substrates.






granzyme B (P10144,
Preference for bulky and aromatic



P04187)
residues at the P1 position and




acidic residues at the P3′ and P4′




sites.






granzyme M (P51124,
Cleaves peptide substrates after



Q03238)
methionine, leucine, and




norleucine.






tobacco Etch virus (TEV)
E-Xaa-Xaa-Y -Xaa-Q-(G/S), with



protease (P04517,
cleavage occurring between Q and



P0CK09)
G/S. The most common sequence




is ENLYFQS (SEQ ID NO: 154)






chymotrypsin-like serine

-Thermobifida fusca


protease (P08217,

Thermopin


Q9UNI1, Q91X79,

-Pyrobaculum aerophilum


P08861, P09093, P08218)

Aeropin




-Thermococcus





kodakaraensis Tk-serpin





-Alteromonas sp.





Marinostatin





-Streptomycesmisionensis




SMTI




-Streptomyces sp.





chymostatin






alphavirus proteases




(P08411, P03317,




P13886, Q8JUX6,




Q86924, Q4QXJ8,




Q8QL53, P27282,




Q5XXP4)







chymotrypsin-like

-Thermobifida fusca


cysteine proteases

Thermopin


(Q86TL0, Q14790,

-Pyrobaculum aerophilum


Q99538, 015553)

Aeropin




-Thermococcus





kodakaraensis Tk-serpin





-Alteromonas sp.





Marinostatin





-Streptomycesmisionensis




SMTI




-Streptomyces sp.





chymostatin






papain-like cysteine




proteases (P25774,




P53634, Q96K76)







picornavirus leader




proteases (P03305,




P03311, P13899)







HIV proteases (P04585,




P03367, P04584, P03369,




P12497, P03366, P04587)







Herpesvirus proteases




(P10220, Q2HRB6,




040922, Q69527)







adenovirus proteases




(P03252, P24937,




Q83906, P68985, P09569,




P11825, P10381)








Streptomycesgriseus





protease A (SGPA)




(P00776)








Streptomycesgriseus





protease B (SGPB)




(P00777)







alpha-lytic protease




(P85142, P00778)







serine proteases (P48740,




P98064, Q9UL52,




P05981, O60235)







cysteine proteases




(Q86TL0, Q14790,




Q8WYN0, Q96DT6,




P55211)







aspartic proteases




(Q9Y5Z0, P56817,




Q00663, Q53RT3,




P0CY27)







threonine proteases




(Q9UI38, Q16512,




Q9H6P5, Q8IWU2)







Mast cell (MC) chymase
Abz-HPFHLLys(Dnp)-NH2 (SEQ
BAY 1142524


(CMA1)(NM_001836)
ID NO: 155)
SUN13834





Rat mast cell protease-1, -
Abz-HPFHLLys(Dnp)-NH2 (SEQ
TY-51469


2, -3, -4, -5 (NM_017145,
ID NO: 155)



NM_172044,




NM_001170466,




NM_019321,




NM_013092)







Rat vascular chymase
Abz-HPFHLLys(Dnp)-NH2 (SEQ



(RVCH)(O70500)
ID NO: 155)






DENV NS3pro
A strong preference for basic
Anthraquinone


(NS2B/NS3)
amino acid residues (Arg/Lys) at
BP13944


SEQ ID NOs: 157, 158,
the P1 positions was observed,
ZINC04321905


159, 160
whereas the preferences for the
MB21



P2- 4 sites were in the order of
Policresulen



Arg > Thr > Gln/Asn/Lys for P2,
SK-12



Lys > Arg > Asn for P3, and Nle >
NSC135618



Leu > Lys > Xaa for P4. The
Biliverdin



prime site substrate specificity was




for small and polar amino acids in




P1 and P3.









A protease can be any of the following human proteases (MEROPS peptidase database number provided in parentheses; Rawlings N. D., Morton F. R., Kok, C. Y., Kong, J. & Barrett A. J. (2008) MVEROPS: the peptidase database. Nucleic Acids Res. 36 Database issue, D320-325; herein incorporated by reference for all purposes): pepsin A (MER000885), gastricsin (MER000894), memapsin-2 (MER005870), renin (MER000917), cathepsin D (MER000911), cathepsin E (MER000944), memapsin-1 (MER005534), napsin A (MER004981), Mername-AA034 peptidase (MER014038), pepsin A4 (MER037290), pepsin A5 (Homo sapiens) (MER037291), hCG1733572 (Homo sapiens)-type putative peptidase (MER107386), napsin B pseudogene (MER004982), CYMP g.p. (Homo sapiens) (MER002929), subfamily AIA unassigned peptidases (MER181559), mouse mammary tumor virus retropepsin (MER048030), rabbit endogenous retrovirus endopeptidase (MER043650), S71-related human endogenous retropepsin (MER001812), RTVL-H-type putative peptidase (MER047117), RTVL-H-type putative peptidase (MER047133), RTVL-H-type putative peptidase (MER047160), RTVL-H-type putative peptidase (MER047206), RTVL-H-type putative peptidase (MER047253), RTVL-H-type putative peptidase (MER047260), RTVL-H-type putative peptidase (MER047291), RTVL-H-type putative peptidase (MER047418), RTVL-H-type putative peptidase (MER047440), RTVL-H-type putative peptidase (MER047479), RTVL-H-type putative peptidase (MER047559), RTVL-H-type putative peptidase (MER047583), RTVL-H-type putative peptidase (MER015446), human endogenous retrovirus retropepsin homologue 1 (MER015479), human endogenous retrovirus retropepsin homologue 2 (MER015481), endogenous retrovirus retropepsin pseudogene 1 (Homo sapiens chromosome 14) (MER029977), endogenous retrovirus retropepsin pseudogene 2 (Homo sapiens chromosome 8) (MER029665), endogenous retrovirus retropepsin pseudogene 3 (Homo sapiens chromosome 17) (MER002660), endogenous retrovirus retropepsin pseudogene 3 (Homo sapiens chromosome 17) (MER030286), endogenous retrovirus retropepsin pseudogene 3 (Homo sapiens chromosome 17) (MER047144), endogenous retrovirus retropepsin pseudogene 5 (Homo sapiens chromosome 12) (MER029664), endogenous retrovirus retropepsin pseudogene 6 (Homo sapiens chromosome 7) (MER002094), endogenous retrovirus retropepsin pseudogene 7 (Homo sapiens chromosome 6) (MER029776), endogenous retrovirus retropepsin pseudogene 8 (Homo sapiens chromosome Y) (MER030291), endogenous retrovirus retropepsin pseudogene 9 (Homo sapiens chromosome 19) (MER029680), endogenous retrovirus retropepsin pseudogene 10 (Homo sapiens chromosome 12) (MER002848), endogenous retrovirus retropepsin pseudogene 11 (Homo sapiens chromosome 17) (MER004378), endogenous retrovirus retropepsin pseudogene 12 (Homo sapiens chromosome 11) (MER003344), endogenous retrovirus retropepsin pseudogene 13 (Homo sapiens chromosome 2 and similar) (MER029779), endogenous retrovirus retropepsin pseudogene 14 (Homo sapiens chromosome 2) (MER029778), endogenous retrovirus retropepsin pseudogene 15 (Homo sapiens chromosome 4) (MER047158), endogenous retrovirus retropepsin pseudogene 15 (Homo sapiens chromosome 4) (MER047332), endogenous retrovirus retropepsin pseudogene 15 (Homo sapiens chromosome 4) (MER003182), endogenous retrovirus retropepsin pseudogene 16 (MER047165), endogenous retrovirus retropepsin pseudogene 16 (MER047178), endogenous retrovirus retropepsin pseudogene 16 (MER047200), endogenous retrovirus retropepsin pseudogene 16 (MER047315), endogenous retrovirus retropepsin pseudogene 16 (MER047405), endogenous retrovirus retropepsin pseudogene 16 (MER030292), endogenous retrovirus retropepsin pseudogene 17 (Homo sapiens chromosome 8) (MER005305), endogenous retrovirus retropepsin pseudogene 18 (Homo sapiens chromosome 4) (MER030288), endogenous retrovirus retropepsin pseudogene 19 (Homo sapiens chromosome 16) (MER001740), endogenous retrovirus retropepsin pseudogene 21 (Homo sapiens) (MER047222), endogenous retrovirus retropepsin pseudogene 21 (Homo sapiens) (MER047454), endogenous retrovirus retropepsin pseudogene 21 (Homo sapiens) (MER047477), endogenous retrovirus retropepsin pseudogene 21 (Homo sapiens) (MER004403), endogenous retrovirus retropepsin pseudogene 22 (Homo sapiens chromosome X) (MER030287), subfamily A2A non-peptidase homologues (MER047046), subfamily A2A non-peptidase homologues (MER047052), subfamily A2A non-peptidase homologues (MER047076), subfamily A2A non-peptidase homologues (MER047080), subfamily A2A non-peptidase homologues (MER047088), subfamily A2A non-peptidase homologues (MER047089), subfamily A2A non-peptidase homologues (MER047091), subfamily A2A non-peptidase homologues (MER047092), subfamily A2A non-peptidase homologues (MER047093), subfamily A2A non-peptidase homologues (MER047094), subfamily A2A non-peptidase homologues (MER047097), subfamily A2A non-peptidase homologues (MER047099), subfamily A2A non-peptidase homologues MER047101), subfamily A2A non-peptidase homologues (MER047102), subfamily A2A non-peptidase homologues (MER047107), subfamily A2A non-peptidase homologues (MER047108), subfamily A2A non-peptidase homologues (MER047109), subfamily A2A non-peptidase homologues (MER047110), subfamily A2A non-peptidase homologues MER047111), subfamily A2A non-peptidase homologues (MER047114), subfamily A2A non-peptidase homologues (MER047118), subfamily A2A non-peptidase homologues (MER047121), subfamily A2A non-peptidase homologues (MER047122), subfamily A2A non-peptidase homologues (MER047126), subfamily A2A non-peptidase homologues (MER047129), subfamily A2A non-peptidase homologues (MER047130), subfamily A2A non-peptidase homologues (MER047134), subfamily A2A non-peptidase homologues (MER047135), subfamily A2A non-peptidase homologues (MER047137), subfamily A2A non-peptidase homologues (MER047140), subfamily A2A non-peptidase homologues (MER047141), subfamily A2A non-peptidase homologues (MER047142), subfamily A2A non-peptidase homologues (MER047148), subfamily A2A non-peptidase homologues (MER047149), subfamily A2A non-peptidase homologues (MER047151), subfamily A2A non-peptidase homologues (MER047154), subfamily A2A non-peptidase homologues (MER047155), subfamily A2A non-peptidase homologues (MER047156), subfamily A2A non-peptidase homologues (MER047157), subfamily A2A non-peptidase homologues (MER047159), subfamily A2A non-peptidase homologues (MER047161), subfamily A2A non-peptidase homologues (MER047163), subfamily A2A non-peptidase homologues (MER047166), subfamily A2A non-peptidase homologues (MER047171), subfamily A2A non-peptidase homologues (MER047173), subfamily A2A non-peptidase homologues (MER047174), subfamily A2A non-peptidase homologues (MER047179), subfamily A2A non-peptidase homologues (MER047183), subfamily A2A non-peptidase homologues (MER047186), subfamily A2A non-peptidase homologues (MER047190), subfamily A2A non-peptidase homologues (MER047191), subfamily A2A non-peptidase homologues (MER047196), subfamily A2A non-peptidase homologues (MER047198), subfamily A2A non-peptidase homologues (MER047199), subfamily A2A non-peptidase homologues (MER047201), subfamily A2A non-peptidase homologues (MER047202), subfamily A2A non-peptidase homologues (MER047203), subfamily A2A non-peptidase homologues (MER047204), subfamily A2A non-peptidase homologues (MER047205), subfamily A2A non-peptidase homologues (MER047207), subfamily A2A non-peptidase homologues (MER047208), subfamily A2A non-peptidase homologues (MER047210), subfamily A2A non-peptidase homologues (MER047211), subfamily A2A non-peptidase homologues (MER047212), subfamily A2A non-peptidase homologues (MER047213), subfamily A2A non-peptidase homologues (MER047215), subfamily A2A non-peptidase homologues (MER047216), subfamily A2A non-peptidase homologues (MER047218), subfamily A2A non-peptidase homologues (MER047219), subfamily A2A non-peptidase homologues (MER047221), subfamily A2A non-peptidase homologues (MER047224), subfamily A2A non-peptidase homologues (MER047225), subfamily A2A non-peptidase homologues (MER047226), subfamily A2A non-peptidase homologues (MER047227), subfamily A2A non-peptidase homologues (MER047230), subfamily A2A non-peptidase homologues (MER047232), subfamily A2A non-peptidase homologues (MER047233), subfamily A2A non-peptidase homologues (MER047234), subfamily A2A non-peptidase homologues (MER047236), subfamily A2A non-peptidase homologues (MER047238), subfamily A2A non-peptidase homologues (MER047239), subfamily A2A non-peptidase homologues (MER047240), subfamily A2A non-peptidase homologues (MER047242), subfamily A2A non-peptidase homologues (MER047243), subfamily A2A non-peptidase homologues (MER047249), subfamily A2A non-peptidase homologues (MER047251), subfamily A2A non-peptidase homologues (MER047252), subfamily A2A non-peptidase homologues (MER047254), subfamily A2A non-peptidase homologues (MER047255), subfamily A2A non-peptidase homologues (MER047263), subfamily A2A non-peptidase homologues (MER047265), subfamily A2A non-peptidase homologues (MER047266), subfamily A2A non-peptidase homologues (MER047267), subfamily A2A non-peptidase homologues (MER047268), subfamily A2A non-peptidase homologues (MER047269), subfamily A2A non-peptidase homologues (MER047272), subfamily A2A non-peptidase homologues (MER047273), subfamily A2A non-peptidase homologues (MER047274), subfamily A2A non-peptidase homologues (MER047275), subfamily A2A non-peptidase homologues (MER047276), subfamily A2A non-peptidase homologues (MER047279), subfamily A2A non-peptidase homologues (MER047280), subfamily A2A non-peptidase homologues (MER047281), subfamily A2A non-peptidase homologues (MER047282), subfamily A2A non-peptidase homologues (MER047284), subfamily A2A non-peptidase homologues (MER047285), subfamily A2A non-peptidase homologues (MER047289), subfamily A2A non-peptidase homologues (MER047290), subfamily A2A non-peptidase homologues (MER047294), subfamily A2A non-peptidase homologues (MER047295), subfamily A2A non-peptidase homologues (MER047298), subfamily A2A non-peptidase homologues (MER047300), subfamily A2A non-peptidase homologues (MER047302), subfamily A2A non-peptidase homologues (MER047304), subfamily A2A non-peptidase homologues (MER047305), subfamily A2A non-peptidase homologues (MER047306), subfamily A2A non-peptidase homologues (MER047307), subfamily A2A non-peptidase homologues (MER047310), subfamily A2A non-peptidase homologues (MER047311), subfamily A2A non-peptidase homologues (MER047314), subfamily A2A non-peptidase homologues (MER047318), subfamily A2A non-peptidase homologues (MER047320), subfamily A2A non-peptidase homologues (MER047321), subfamily A2A non-peptidase homologues (MER047322), subfamily A2A non-peptidase homologues (MER047326), subfamily A2A non-peptidase homologues (MER047327), subfamily A2A non-peptidase homologues (MER047330), subfamily A2A non-peptidase homologues (MER047333), subfamily A2A non-peptidase homologues (MER047362), subfamily A2A non-peptidase homologues (MER047366), subfamily A2A non-peptidase homologues (MER047369), subfamily A2A non-peptidase homologues (MER047370), subfamily A2A non-peptidase homologues (MER047371), subfamily A2A non-peptidase homologues (MER047375), subfamily A2A non-peptidase homologues (MER047376), subfamily A2A non-peptidase homologues (MER047381), subfamily A2A non-peptidase homologues (MER047383), subfamily A2A non-peptidase homologues (MER047384), subfamily A2A non-peptidase homologues (MER047385), subfamily A2A non-peptidase homologues (MER047388), subfamily A2A non-peptidase homologues (MER047389), subfamily A2A non-peptidase homologues (MER047391), subfamily A2A non-peptidase homologues (MER047394), subfamily A2A non-peptidase homologues (MER047396), subfamily A2A non-peptidase homologues (MER047400), subfamily A2A non-peptidase homologues (MER047401), subfamily A2A non-peptidase homologues (MER047403), subfamily A2A non-peptidase homologues (MER047406), subfamily A2A non-peptidase homologues (MER047407), subfamily A2A non-peptidase homologues (MER047410), subfamily A2A non-peptidase homologues (MER047411), subfamily A2A non-peptidase homologues (MER047413), subfamily A2A non-peptidase homologues (MER047414), subfamily A2A non-peptidase homologues (MER047416), subfamily A2A non-peptidase homologues (MER047417), subfamily A2A non-peptidase homologues (MER047420), subfamily A2A non-peptidase homologues (MER047423), subfamily A2A non-peptidase homologues (MER047424), subfamily A2A non-peptidase homologues (MER047428), subfamily A2A non-peptidase homologues (MER047429), subfamily A2A non-peptidase homologues (MER047431), subfamily A2A non-peptidase homologues (MER047434), subfamily A2A non-peptidase homologues (MER047439), subfamily A2A non-peptidase homologues (MER047442), subfamily A2A non-peptidase homologues (MER047445), subfamily A2A non-peptidase homologues (MER047449), subfamily A2A non-peptidase homologues (MER047450), subfamily A2A non-peptidase homologues (MER047452), subfamily A2A non-peptidase homologues (MER047455), subfamily A2A non-peptidase homologues (MER047457), subfamily A2A non-peptidase homologues (MER047458), subfamily A2A non-peptidase homologues (MER047459), subfamily A2A non-peptidase homologues (MER047463), subfamily A2A non-peptidase homologues (MER047468), subfamily A2A non-peptidase homologues (MER047469), subfamily A2A non-peptidase homologues (MER047470), subfamily A2A non-peptidase homologues (MER047476), subfamily A2A non-peptidase homologues (MER047478), subfamily A2A non-peptidase homologues (MER047483), subfamily A2A non-peptidase homologues (MER047488), subfamily A2A non-peptidase homologues (MER047489), subfamily A2A non-peptidase homologues (MER047490), subfamily A2A non-peptidase homologues (MER047493), subfamily A2A non-peptidase homologues (MER047494), subfamily A2A non-peptidase homologues (MER047495), subfamily A2A non-peptidase homologues (MER047496), subfamily A2A non-peptidase homologues (MER047497), subfamily A2A non-peptidase homologues (MER047499), subfamily A2A non-peptidase homologues (MER047502), subfamily A2A non-peptidase homologues (MER047504), subfamily A2A non-peptidase homologues (MER047511), subfamily A2A non-peptidase homologues (MER047513), subfamily A2A non-peptidase homologues (MER047514), subfamily A2A non-peptidase homologues (MER047515), subfamily A2A non-peptidase homologues (MER047516), subfamily A2A non-peptidase homologues (MER047520), subfamily A2A non-peptidase homologues (MER047533), subfamily A2A non-peptidase homologues (MER047537), subfamily A2A non-peptidase homologues (MER047569), subfamily A2A non-peptidase homologues (MER047570), subfamily A2A non-peptidase homologues (MER047584), subfamily A2A non-peptidase homologues (MER047603), subfamily A2A non-peptidase homologues (MER047604), subfamily A2A non-peptidase homologues (MER047606), subfamily A2A non-peptidase homologues (MER047609), subfamily A2A non-peptidase homologues (MER047616), subfamily A2A non-peptidase homologues (MER047619), subfamily A2A non-peptidase homologues (MER047648), subfamily A2A non-peptidase homologues (MER047649), subfamily A2A non-peptidase homologues (MER047662), subfamily A2A non-peptidase homologues (MER048004), subfamily A2A non-peptidase homologues (MER048018), subfamily A2A non-peptidase homologues (MER048019), subfamily A2A non-peptidase homologues (MER048023), subfamily A2A non-peptidase homologues (MER048037), subfamily A2A unassigned peptidases (MER047164), subfamily A2A unassigned peptidases (MER047231), subfamily A2A unassigned peptidases (MER047386), skin aspartic protease (MER057097), presenilin 1 (MER005221), presenilin 2 (MER005223), impas 1 peptidase (MER019701), impas 1 peptidase (MER184722), impas 4 peptidase (MER019715), impas 2 peptidase (MER019708), impas 5 peptidase (MER019712), impas 3 peptidase (MER019711), possible family A22 pseudogene (Homo sapiens chromosome 18) (MER029974), possible family A22 pseudogene (Homo sapiens chromosome 11) (MER023159), cathepsin V (MER004437), cathepsin X (MER004508), cathepsin F (MER004980), cathepsin L (MER000622), cathepsin S (MER000633), cathepsin O (MER001690), cathepsin K (MER000644), cathepsin W (MER003756), cathepsin H (MER000629), cathepsin B (MER000686), dipeptidyl-peptidase I (MER001937), bleomycin hydrolase (animal) (MER002481), tubulointerstitial nephritis antigen (MER016137), tubulointerstitial nephritis antigen-related protein (MER021799), cathepsin L-like pseudogene 1 (Homo sapiens) (MER002789), cathepsin B-like pseudogene (chromosome 4, Homo sapiens) (MER029469), cathepsin B-like pseudogene (chromosome 1, Homo sapiens) (MER029457), CTSLL2 g.p. (Homo sapiens) (MER005210), CTSLL3 g.p. (Homo sapiens) (MER005209), calpain-1 (MER000770), calpain-2 (MER000964), calpain-3 (MER001446), calpain-9 (MER004042), calpain-8 (MER021474), calpain-15 (MER004745), calpain-5 (MER002939), calpain-11 (MER005844), calpain-12 (MER029889), calpain-10 (MER013510), calpain-13 (MER020139), calpain-14 (MER029744), Mername-AA253 peptidase (MER005537), calpamodulin (MER000718), hypothetical protein 940251 (MER003201), ubiquitinyl hydrolase-L1 (MER000832), ubiquitinyl hydrolase-L3 (MER000836), ubiquitinyl hydrolase-BAP1 (MER003989), ubiquitinyl hydrolase-UCH37 (MER005539), ubiquitin-specific peptidase 5 (MER002066), ubiquitin-specific peptidase 6 (MER000863), ubiquitin-specific peptidase 4 (MER001795), ubiquitin-specific peptidase 8 (MER001884), ubiquitin-specific peptidase 13 (MER002627), ubiquitin-specific peptidase 2 (MER004834), ubiquitin-specific peptidase 11 (MER002693), ubiquitin-specific peptidase 14 (MER002667), ubiquitin-specific peptidase 7 (MER002896), ubiquitin-specific peptidase 9X (MER005877), ubiquitin-specific peptidase 10 (MER004439), ubiquitin-specific peptidase 1 (MER004978), ubiquitin-specific peptidase 12 (MER005454), ubiquitin-specific peptidase 16 (MER005493), ubiquitin-specific peptidase 15 (MER005427), ubiquitin-specific peptidase 17 (MER002900), ubiquitin-specific peptidase 19 (MER005428), ubiquitin-specific peptidase 20 (MER005494), ubiquitin-specific peptidase 3 (MER005513), ubiquitin-specific peptidase 9Y (MER004314), ubiquitin-specific peptidase 18 (MER005641), ubiquitin-specific peptidase 21 (MER006258), ubiquitin-specific peptidase 22 (MER012130), ubiquitin-specific peptidase 33 (MER014335), ubiquitin-specific peptidase 29 (MER012093), ubiquitin-specific peptidase 25 (MER011115), ubiquitin-specific peptidase 36 (MER014033), ubiquitin-specific peptidase 32 (MER014290), ubiquitin-specific peptidase 26 (Homo sapiens-type) (MER014292), ubiquitin-specific peptidase 24 (MER005706), ubiquitin-specific peptidase 42 (MER011852), ubiquitin-specific peptidase 46 (MER014629), ubiquitin-specific peptidase 37 (MER014633), ubiquitin-specific peptidase 28 (MER014634), ubiquitin-specific peptidase 47 (MER014636), ubiquitin-specific peptidase 38 (MER014637), ubiquitin-specific peptidase 44 (MER014638), ubiquitin-specific peptidase 50 (MER030315), ubiquitin-specific peptidase 35 (MER014646), ubiquitin-specific peptidase 30 (MER014649), Mername-AA091 peptidase (MER014743), ubiquitin-specific peptidase 45 (MER030314), ubiquitin-specific peptidase 51 (MER014769), ubiquitin-specific peptidase 34 (MER014780), ubiquitin-specific peptidase 48 (MER064620), ubiquitin-specific peptidase 40 (MER015483), ubiquitin-specific peptidase 41 (MER045268), ubiquitin-specific peptidase 31 (MER015493), Mername-AA129 peptidase (MER016485), ubiquitin-specific peptidase 49 (MER016486), Mername-AA187 peptidase (MER052579), USP17-like peptidase (MER030192), ubiquitin-specific peptidase 54 (MER028714), ubiquitin-specific peptidase 53 (MER027329), ubiquitin-specific endopeptidase 39 [misleading] (MER064621), Mername-AA090 non-peptidase homologue (MER014739), ubiquitin-specific peptidase 43 [misleading] (MER030140), ubiquitin-specific peptidase 52 [misleading] (MER030317), NEK2 pseudogene (MER014736), C19 pseudogene (Homo sapiens: chromosome 5) (MER029972), Mername-AA088 peptidase (MER014750), autophagin-2 (MER013564), autophagin-1 (MER013561), autophagin-3 (MER014316), autophagin-4 (MER064622), Cezanne deubiquitinylating peptidase (MER029042), Cezanne-2 peptidase (MER029044), tumor necrosis factor alpha-induced protein 3 (MER029050), trabid peptidase (MER029052), VCIP135 deubiquitinating peptidase (MER152304), otubain-1 (MER029056), otubain-2 (MER029061), CylD protein (MER030104), UfSP1 peptidase (MER042724), UfSP2 peptidase (MER060306), DUBA deubiquitinylating enzyme (MER086098), KIAA0459 (Homo sapiens)-like protein (MER122467), Otud1 protein (MER125457), glycosyltransferase 28 domain containing 1, isoform CRA_c (Homo sapiens)-like (MER123606), hin1L g.p. (Homo sapiens) (MER139816), ataxin-3 (MER099998), ATXN3L putative peptidase (MER115261), Josephin domain containing 1 (Homo sapiens) (MER125334), Josephin domain containing 2 (Homo sapiens) (MER124068), YOD1 peptidase (MER116559), legumain (plant alpha form) (MER044591), legumain (MER001800), glycosylphosphatidylinositol:protein transamidase (MER002479), legumain pseudogene (Homo sapiens) (MER029741), family C13 unassigned peptidases (MER175813), caspase-1 (MER000850), caspase-3 (MER000853), caspase-7 (MER002705), caspase-6 (MER002708), caspase-2 (MER001644), caspase-4 (MER001938), caspase-5 (MER002240), caspase-8 (MER002849), caspase-9 (MER002707), caspase-10 (MER002579), caspase-14 (MER012083), paracaspase (MER019325), Mername-AA143 peptidase (MER021304), Mername-AA186 peptidase (MER020516), putative caspase (Homo sapiens) (MER021463), FLIP protein (MER003026), Mername-AA142 protein (MER021316), caspase-12 pseudogene (Homo sapiens) (MER019698), Mername-AA093 caspase pseudogene (MER014766), subfamily C14A non-peptidase homologues (MER185329), subfamily C14A non-peptidase homologues (MER179956), separase (Homo sapiens-type) (MER011775), separase-like pseudogene (MER014797), SENP1 peptidase (MER011012), SENP3 peptidase (MER011019), SENP6 peptidase (MER011109), SENP2 peptidase (MER012183), SENP5 peptidase (MER014032), SENP7 peptidase (MER014095), SENP8 peptidase (MER016161), SENP4 peptidase (MER005557), pyroglutamyl-peptidase I (chordate) (MER011032), Mername-AA073 peptidase (MER029978), Sonic hedgehog protein (MER002539), Indian hedgehog protein (MER002538), Desert hedgehog protein (MER012170), dipeptidyl-peptidase III (MER004252), Mername-AA164 protein (MER020410), LOC138971 g.p. (Homo sapiens) (MER020074), Atp23 peptidase (MER060642), prenyl peptidase 1 (MER004246), aminopeptidase N (MER000997), aminopeptidase A (MER001012), leukotriene A4 hydrolase (MER001013), pyroglutamyl-peptidase II (MER012221), cytosol alanyl aminopeptidase (MER002746), cystinyl aminopeptidase (MER002060), aminopeptidase B (MER001494), aminopeptidase PILS (MER005331), arginyl aminopeptidase-like 1 (MER012271), leukocyte-derived arginine aminopeptidase (MER002968), aminopeptidase Q (MER052595), aminopeptidase O (MER019730), Tata binding protein associated factor (MER026493), angiotensin-converting enzyme peptidase unit 1 (MER004967), angiotensin-converting enzyme peptidase unit 2 (MER001019), angiotensin-converting enzyme-2 (MER011061), Mername-AA153 protein (MER020514), thimet oligopeptidase (MER001737), neurolysin (MER010991), mitochondrial intermediate peptidase (MER003665), Mername-AA154 protein (MER021317), leishmanolysin-2 (MER014492), leishmanolysin-3 (MER180031), matrix metallopeptidase-1 (MER001063), matrix metallopeptidase-8 (MER001084), matrix metallopeptidase-2 (MER001080), matrix metallopeptidase-9 (MER001085), matrix metallopeptidase-3 (MER001068), matrix metallopeptidase-10 (Homo sapiens-type) (MER001072), matrix metallopeptidase-11 (MER001075), matrix metallopeptidase-7 (MER001092), matrix metallopeptidase-12 (MER001089), matrix metallopeptidase-13 (MER001411), membrane-type matrix metallopeptidase-1 (MER001077), membrane-type matrix metallopeptidase-2 (MER002383), membrane-type matrix metallopeptidase-3 (MER002384), membrane-type matrix metallopeptidase-4 (MER002595), matrix metallopeptidase-20 (MER003021), matrix metallopeptidase-19 (MER002076), matrix metallopeptidase-23B (MER004766), membrane-type matrix metallopeptidase-5 (MER005638), membrane-type matrix metallopeptidase-6 (MER012071), matrix metallopeptidase-21 (MER006101), matrix metallopeptidase-22 (MER014098), matrix metallopeptidase-26 (MER012072), matrix metallopeptidase-28 (MER013587), matrix metallopeptidase-23A (MER037217), macrophage elastase homologue (chromosome 8, Homo sapiens) (MER030035), Mername-AA156 protein (MER021309), matrix metallopeptidase-like 1 (MER045280), subfamily M10A non-peptidase homologues (MER175912), subfamily M10A non-peptidase homologues (MER187997), subfamily M10A non-peptidase homologues (MER187998), subfamily M10A non-peptidase homologues (MER180000), meprin alpha subunit (MER001111), meprin beta subunit (MER005213), procollagen C-peptidase (MER001113), mammalian tolloid-like 1 protein (MER005124), mammalian-type tolloid-like 2 protein (MER005866), ADAMTS9 peptidase (MER012092), ADAMTS14 peptidase (MER016700), ADAMTS15 peptidase (MER017029), ADAMTS16 peptidase (MER015689), ADAMTS17 peptidase (MER016302), ADAMTS18 peptidase (MER016090), ADAMTS19 peptidase (MER015663), ADAM8 peptidase (MER003902), ADAM9 peptidase (MER001140), ADAM10 peptidase (MER002382), ADAM12 peptidase (MER005107), ADAM19 peptidase (MER012241), ADAM15 peptidase (MER002386), ADAM17 peptidase (MER003094), ADAM20 peptidase (MER004725), ADAMDECI peptidase (MER000743), ADAMTS3 peptidase (MER005100), ADAMTS4 peptidase (MER005101), ADAMTS1 peptidase (MER005546), ADAM28 peptidase (Homo sapiens-type) (MER005495), ADAMTS5 peptidase (MER005548), ADAMTS8 peptidase (MER005545), ADAMTS6 peptidase (MER005893), ADAMTS7 peptidase (MER005894), ADAM30 peptidase (MER006268), ADAM21 peptidase (Homo sapiens-type) (MER004726), ADAMTS10 peptidase (MER014331), ADAMTS12 peptidase (MER014337), ADAMTS13 peptidase (MER015450), ADAM33 peptidase (MER015143), ovastacin (MER029996), ADAMTS20 peptidase (Homo sapiens-type) (MER026906), procollagen I N-peptidase (MER004985), ADAM2 protein (MER003090), ADAM6 protein (MER047044), ADAM7 protein (MER005109), ADAM18 protein (MER012230), ADAM32 protein (MER026938), non-peptidase homologue (Homo sapiens chromosome 4) (MER029973), family M12 non-peptidase homologue (Homo sapiens chromosome 16) (MER047654), family M12 non-peptidase homologue (Homo sapiens chromosome 15) (MER047250), ADAM3B protein (Homo sapiens-type) (MER005199), ADAM11 protein (MER001146), ADAM22 protein (MER005102), ADAM23 protein (MER005103), ADAM29 protein (MER006267), protein similar to ADAM21 peptidase preproprotein (Homo sapiens) (MER026944), Mername-AA225 peptidase homologue (Homo sapiens) (MER047474), putative ADAM pseudogene (chromosome 4, Homo sapiens) (MER029975), ADAM3A g.p. (Homo sapiens) (MER005200), ADAM1 g.p. (Homo sapiens) (MER003912), subfamily M12B non-peptidase homologues (MER188210), subfamily M12B non-peptidase homologues (MER188211), subfamily M12B non-peptidase homologues (MER188212), subfamily M12B non-peptidase homologues (MER188220), neprilysin (MER001050), endothelin-converting enzyme 1 (MER001057), endothelin-converting enzyme 2 (MER004776), DINE peptidase (MER005197), neprilysin-2 (MER013406), Kell blood-group protein (MER001054), PHEX peptidase (MER002062), i-AAA peptidase (MER001246), i-AAA peptidase (MER005755), paraplegin (MER004454), Afg3-like protein 2 (MER005496), Afg3-like protein 1A (MER014306), pappalysin-1 (MER002217), pappalysin-2 (MER014521), farnesylated-protein converting enzyme 1 (MER002646), metalloprotease-related protein-1 (MER030873), aminopeptidase AMZ2 (MER011907), aminopeptidase AMZ1 (MER058242), carboxypeptidase A1 (MER001190), carboxypeptidase A2 (MER001608), carboxypeptidase B (MER001194), carboxypeptidase N (MER001198), carboxypeptidase E (MER001199), carboxypeptidase M (MER001205), carboxypeptidase U (MER001193), carboxypeptidase A3 (MER001187), metallocarboxypeptidase D peptidase unit 1 (MER003781), metallocarboxypeptidase Z (MER003428), metallocarboxypeptidase D peptidase unit 2 (MER004963), carboxypeptidase A4 (MER013421), carboxypeptidase A6 (MER013456), carboxypeptidase A5 (MER017121), metallocarboxypeptidase O (MER016044), cytosolic carboxypeptidase-like protein 5 (MER033174), cytosolic carboxypeptidase 3 (MER033176), cytosolic carboxypeptidase 6 (MER033178), cytosolic carboxypeptidase 1 (MER033179), cytosolic carboxypeptidase 2 (MER037713), metallocarboxypeptidase D non-peptidase unit (MER004964), adipocyte-enhancer binding protein 1 (MER003889), carboxypeptidase-like protein X1 (MER013404), carboxypeptidase-like protein X2 (MER078764), cytosolic carboxypeptidase (MER026952), family M14 non-peptidase homologues (MER199530), insulysin (MER001214), mitochondrial processing peptidase beta-subunit (MER004497), nardilysin (MER003883), eupitrilysin (MER004877), mitochondrial processing peptidase non-peptidase alpha subunit (MER001413), ubiquinol-cytochrome c reductase core protein I (MER003543), ubiquinol-cytochrome c reductase core protein II (MER003544), ubiquinol-cytochrome c reductase core protein domain 2 (MER043998), insulysin unit 2 (MER046821), nardilysin unit 2 (MER046874), insulysin unit 3 (MER078753), mitochondrial processing peptidase subunit alpha unit 2 (MER124489), nardilysin unit 3 (MER142856), LOC133083 g.p. (Homo sapiens) (MER021876), subfamily M16B non-peptidase homologues (MER188757), leucyl aminopeptidase (animal) (MER003100), Mername-AA040 peptidase (MER003919), leucyl aminopeptidase-1 (Caenorhabditis-type) (MER013416), methionyl aminopeptidase 1 (MER001342), methionyl aminopeptidase 2 (MER001728), aminopeptidase P2 (MER004498), Xaa-Pro dipeptidase (eukaryote) (MER001248), aminopeptidase P1 (MER004321), mitochondrial intermediate cleaving peptidase 55 kDa (MER013463), mitochondrial methionyl aminopeptidase (MER014055), Mername-AA020 peptidase homologue (MER010972), proliferation-association protein 1 (MER005497), chromatin-specific transcription elongation factor 140 kDa subunit (MER026495), proliferation-associated protein 1-like (Homo sapiens chromosome X) (MER029983), Mername-AA226 peptidase homologue (Homo sapiens) (MER056262), Mername-AA227 peptidase homologue (Homo sapiens) (MER047299), subfamily M24A non-peptidase homologues (MER179893), aspartyl aminopeptidase (MER003373), Gly-Xaa carboxypeptidase (MER033182), carnosine dipeptidase II (MER014551), carnosine dipeptidase I (MER015142), Mername-AA161 protein (MER021873), aminoacylase (MER001271), glutamate carboxypeptidase II (MER002104), NAALADASE L peptidase (MER005239), glutamate carboxypeptidase III (MER005238), plasma glutamate carboxypeptidase (MER005244), Mername-AA103 peptidase (MER015091), Fxna peptidase (MER029965), transferrin receptor protein (MER002105), transferrin receptor 2 protein (MER005152), glutaminyl cyclise (MER015095), glutamate carboxypeptidase II (Homo sapiens)-type non-peptidase homologue (MER026971), nicalin (MER044627), membrane dipeptidase (MER001260), membrane-bound dipeptidase-2 (MER013499), membrane-bound dipeptidase-3 (MER013496), dihydro-orotase (MER005767), dihydropyrimidinase (MER033266), dihydropyrimidinase related protein-1 (MER030143), dihydropyrimidinase related protein-2 (MER030155), dihydropyrimidinase related protein-3 (MER030151), dihydropyrimidinase related protein-4 (MER030149), dihydropyrimidinase related protein-5 (MER030136), hypothetical protein like 5730457F11RIK (MER033184), 1300019j08rik protein (MER033186)), guanine aminohydrolase (MER037714), Kael putative peptidase (MER001577), OSGEPL1-like protein (MER013498), S2P peptidase (MER004458), subfamily M23B non-peptidase homologues (MER199845), subfamily M23B non-peptidase homologues (MER199846), subfamily M23B non-peptidase homologues (MER199847), subfamily M23B non-peptidase homologues (MER137320), subfamily M23B non-peptidase homologues (MER201557), subfamily M23B non-peptidase homologues (MER199417), subfamily M23B non-peptidase homologues (MER199418), subfamily M23B non-peptidase homologues (MER199419), subfamily M23B non-peptidase homologues (MER199420), subfamily M23B non-peptidase homologues (MER175932), subfamily M23B non-peptidase homologues (MER199665), Poh1 peptidase (MER020382), Jab1/MPN domain metalloenzyme (MER022057), Mername-AA165 peptidase (MER021865), Brcc36 isopeptidase (MER021890), histone H2A deubiquitinase MYSM1 (MER021887), AMSH deubiquitinating peptidase (MER030146), putative peptidase (Homo sapiens chromosome 2) (MER029970), Mername-AA168 protein (MER021886), COP9 signalosome subunit 6 (MER030137), 26S proteasome non-ATPase regulatory subunit 7 (MER030134), eukaryotic translation initiation factor 3 subunit 5 (MER030133), IFP38 peptidase homologue (MER030132), subfamily M67A non-peptidase homologues (MER191181), subfamily M67A unassigned peptidases (MER191144), granzyme B (Homo sapiens-type) (MER000168), testisin (MER005212), tryptase beta (MER000136), kallikrein-related peptidase 5 (MER005544), corin (MER005881), kallikrein-related peptidase 12 (MER006038), DESC1 peptidase (MER006298), tryptase gamma 1 (MER011036), kallikrein-related peptidase 14 (MER011038), hyaluronan-binding peptidase (MER003612), transmembrane peptidase, serine 4 (MER011104), intestinal serine peptidase (rodent) (MER016130), adrenal secretory serine peptidase (MER003734), tryptase delta 1 (Homo sapiens) (MER005948), matriptase-3 (MER029902), marapsin (MER006119), tryptase-6 (MER006118), ovochymase-1 domain 1 (MER099182), transmembrane peptidase, serine 3 (MER005926), kallikrein-related peptidase 15 (MER000064), Mername-AA031 peptidase (MER014054), TMPRSS13 peptidase (MER014226), Mername-AA038 peptidase (MER062848), Mername-AA204 peptidase (MER029980), cationic trypsin (Homo sapiens-type) (MER000020), elastase-2 (MER000118), mannan-binding lectin-associated serine peptidase-3 (MER031968), cathepsin G (MER000082), myeloblastin (MER000170), granzyme A (MER001379), granzyme M (MER001541), chymase (Homo sapiens-type) (MER000123), tryptase alpha (MER000135), granzyme K (MER001936), granzyme H (MER000166), chymotrypsin B (MER000001), elastase-1 (MER003733), pancreatic endopeptidase E (MER000149), pancreatic elastase II (MER000146), enteropeptidase (MER002068), chymotrypsin C (MER000761), prostasin (MER002460), kallikrein 1 (MER000093), kallikrein-related peptidase 2 (MER000094), kallikrein-related peptidase 3 (MER000115), mesotrypsin (MER000022), complement component C1r-like peptidase (MER016352), complement factor D (MER000130), complement component activated C1r (MER000238), complement component activated C1s (MER000239), complement component C2a (MER000231), complement factor B (MER000229), mannan-binding lectin-associated serine peptidase 1 (MER000244), complement factor I (MER000228), pancreatic endopeptidase E form B (MER000150), pancreatic elastase IIB (MER000147), coagulation factor XIIa (MER000187), plasma kallikrein (MER000203) coagulation factor Xia (MER000210), coagulation factor IXa (MER000216), coagulation factor Vila (MER000215), coagulation factor Xa (MER000212), thrombin (MER000188), protein C (activated) (MER000222), acrosin (MER000078), hepsin (MER000156), hepatocyte growth factor activator (MER000186), mannan-binding lectin-associated serine peptidase 2 (MER002758), u-plasminogen activator (MER000195), t-plasminogen activator (MER000192), plasmin (MER000175), kallikrein-related peptidase 6 (MER002580), neurotrypsin (MER004171), kallikrein-related peptidase 8 (MER005400), kallikrein-related peptidase 10 (MER003645), epitheliasin (MER003736), kallikrein-related peptidase 4 (MER005266), prosemin (MER004214), chymopasin (MER001503), kallikrein-related peptidase 11 (MER004861), kallikrein-related peptidase 11 (MER216142), trypsin-2 type A (MER000021), HtrA1 peptidase (Homo sapiens-type) (MER002577), HtrA2 peptidase (MER208413), HtrA2 peptidase (MER004093), HtrA3 peptidase (MER014795), HtrA4 peptidase (MER016351), Tysndl peptidase (MER050461), TMPRSS12 peptidase (MER017085), HAT-like putative peptidase 2 (MER021884), trypsin C (MER021898), kallikrein-related peptidase 7 (MER002001), matriptase (MER003735), kallikrein-related peptidase 13 (MER005269), kallikrein-related peptidase 9 (MER005270), matriptase-2 (MER005278), umbilical vein peptidase (MER005421), LCLP peptidase (MER001900), spinesin (MER014385), marapsin-2 (MER021929), complement factor D-like putative peptidase (MER056164), ovochymase-2 (MER022410), HAT-like 4 peptidase (MER044589), ovochymase 1 domain 1 (MER022412), epidermis-specific SP-like putative peptidase (MER029900), testis serine peptidase 5 (MER029901), Mername-AA258 peptidase (MER000285), polyserase-IA unit 1 (MER030879), polyserase-IA unit 2 (MER030880), testis serine peptidase 2 (human-type) (MER033187), hypothetical acrosin-like peptidase (Homo sapiens) (MER033253), HAT-like 5 peptidase (MER028215), polyserase-3 unit 1 (MER061763), polyserase-3 unit 2 (MER061748), peptidase similar to tryptophan/serine protease (MER056263), polyserase-2 unit 1 (MER061777), Mername-AA123 peptidase (MER021930), HAT-like 2 peptidase (MER099184), hCG2041452-like protein (MER099172), hCG22067 (Homo sapiens) (MER099169), brain-rescue-factor-1 (Homo sapiens) (MER098873), hCG2041108 (Homo sapiens) (MER099173), polyserase-2 unit 2 (MER061760), polyserase-2 unit 3 (MER065694), Mername-AA201 (peptidase homologue) MER099175, secreted trypsin-like serine peptidase homologue (MER030000), polyserase-1A unit 3 (MER029880), azurocidin (MER000119), haptoglobin-1 (MER000233), haptoglobin-related protein (MER000235), macrophage-stimulating protein (MER001546), hepatocyte growth factor (MER000185), protein Z (MER000227), TESP1 protein (MER047214), LOC136242 protein (MER016132), plasma kallikrein-like protein 4 (MER016346), PRSS35 protein (MER016350), DKFZp586H2123-like protein (MER066474), apolipoprotein (MER000183), psi-KLK1 pseudogene (Homo sapiens) (MER033287), tryptase pseudogene I (MER015077), tryptase pseudogene II (MER015078), tryptase pseudogene III (MER015079), subfamily SlA unassigned peptidases (MER216982), subfamily SlA unassigned peptidases (MER216148), amidophosphoribosyltransferase precursor (MER003314), glutamine-fructose-6-phosphate transaminase 1 (MER003322), glutamine:fructose-6-phosphate amidotransferase (MER012158), Mername-AA144 protein (MER021319), asparagine synthetase (MER033254), family C44 non-peptidase homologues (MER159286), family C44 unassigned peptidases (MER185625) family C44 unassigned peptidases (MER185626), secernin 1 (MER045376), secernin 2 (MER064573), secernin 3 (MER064582), acid ceramidase precursor (MER100794), N-acylethanolamine acid amidase precursor (MER141667), proteasome catalytic subunit 1 (MER000556), proteasome catalytic subunit 2 (MER002625), proteasome catalytic subunit 3 (MER002149), proteasome catalytic subunit 1i (MER000552), proteasome catalytic subunit 2i (MER001515), proteasome catalytic subunit 3i (MER000555), proteasome catalytic subunit 5t (MER026203), protein serine kinase c17 (MER026497), proteasome subunit alpha 6 (MER000557), proteasome subunit alpha 2 (MER000550), proteasome subunit alpha 4 (MER000554), proteasome subunit alpha 7 (MER033250), proteasome subunit alpha 5 (MER000558), proteasome subunit alpha 1 (MER000549), proteasome subunit alpha 3 (MER000553), proteasome subunit XAPC7 (MER004372), proteasome subunit beta 3 (MER001710), proteasome subunit beta 2 (MER002676), proteasome subunit beta 1 (MER000551), proteasome subunit beta 4 (MER001711), Mername-AA230 peptidase homologue (Homo sapiens) (MER047329), Mername-AA231 pseudogene (Homo sapiens) (MER047172), Mername-AA232 pseudogene (Homo sapiens) (MER047316), glycosylasparaginase precursor (MER003299), isoaspartyl dipeptidase (threonine type) (MER031622), taspase-1 (MER016969), gamma-glutamyltransferase 5 (mammalian-type) (MER001977), gamma-glutamyltransferase 1 (mammalian-type) (MER001629), gamma-glutamyltransferase 2 (Homo sapiens) (MER001976), gamma-glutamyltransferase-like protein 4 (MER002721), gamma-glutamyltransferase-like protein 3 (MER016970), similar to gamma-glutamyltransferase 1 precursor (Homo sapiens) (MER026204), similar to gamma-glutamyltransferase 1 precursor (Homo sapiens) (MER026205), Mername-AA211 putative peptidase (MER026207), gamma-glutamyltransferase 6 (MER159283), gamma-glutamyl transpeptidase homologue (chromosome 2, Homo sapiens) (MER037241), polycystin-1 (MER126824), KIAA1879 protein (MER159329), polycystic kidney disease 1-like 3 (MER172554), gamma-glutamyl hydrolase (MER002963), guanine 5″-monophosphate synthetase (MER043387), carbamoyl-phosphate synthase (Homo sapiens-type) (MER078640), dihydro-orotase (N-terminal unit) (Homo sapiens-type) (MER060647), DJ-1 putative peptidase (MER003390), Mername-AA100 putative peptidase (MER014802), Mername-AA101 non-peptidase homologue (MER014803), KIAA0361 protein (Homo sapiens-type) (MER042827), F1134283 protein (Homo sapiens) (MER044553), non-peptidase homologue chromosome 21 open reading frame 33 (Homo sapiens) (MER160094), family C56 non-peptidase homologues (MER177016), family C56 non-peptidase homologues (MER176613), family C56 non-peptidase homologues (MER176918), EGF-like module containing mucin-like hormone receptor-like 2 (MER037230), CD97 antigen (human type) (MER037286), EGF-like module containing mucin-like hormone receptor-like 3 (MER037288), EGF-like module containing mucin-like hormone receptor-like 1 (MER037278), EGF-like module containing mucin-like hormone receptor-like 4 (MER037294), cadherin EGF LAG seven-pass G-type receptor 2 precursor (Homo sapiens) (MER045397), Gpr64 (Mus musculus)-type protein (MER123205), GPR56 (Homo sapiens)-type protein (MER122057), latrophilin 2 (MER122199), latrophilin-1 (MER126380), latrophilin 3 (MER124612), protocadherin Flamingo 2 (MER124239), ETL protein (MER126267), G protein-coupled receptor 112 (MER126114), seven transmembrane helix receptor (MER125448), Gpr114 protein (MER159320), GPR126 vascular inducible G protein-coupled receptor (MER140015), GPR125 (Homo sapiens)-type protein (MER159279), GPR116 (Homo sapiens)-type G-protein coupled receptor (MER159280), GPR128 (Homo sapiens)-type G-protein coupled receptor (MER162015), GPR133 (Homo sapiens)-type protein (MER159334), GPR110 G-protein coupled receptor (MER159277), GPR97 protein (MER159322), KPG_006 protein (MER161773), KPG 008 protein (MER161835), KPG_009 protein (MER159335), unassigned homologue (MER166269), GPR113 protein (MER159352), brain-specific angiogenesis inhibitor 2 (MER159746), PIDD auto-processing protein unit 1 (MER020001), PIDD auto-processing protein unit 2 (MER063690), MUC1 self-cleaving mucin (MER074260), dystroglycan (MER054741), proprotein convertase 9 (MER022416), site-1 peptidase (MER001948), furin (MER000375), proprotein convertase 1 (MER000376), proprotein convertase 2 (MER000377), proprotein convertase 4 (MER028255), PACE4 proprotein convertase (MER000383), proprotein convertase 5 (MER002578), proprotein convertase 7 (MER002984), tripeptidyl-peptidase II (MER000355), subfamily S8A non-peptidase homologues (MER201339), subfamily S8A non-peptidase homologues (MER191613), subfamily S8A unassigned peptidases (MER191611), subfamily S8A unassigned peptidases (MER191612), subfamily S8A unassigned peptidases (MER191614), tripeptidyl-peptidase I (MER003575), prolyl oligopeptidase (MER000393), dipeptidyl-peptidase IV (eukaryote) (MER000401), acylaminoacyl-peptidase (MER000408), fibroblast activation protein alpha subunit (MER000399), PREPL A protein (MER004227), dipeptidyl-peptidase 8 (MER013484), dipeptidyl-peptidase 9 (MER004923), FLJ1 putative peptidase (MER017240), Mername-AA194 putative peptidase (MER017353), Mername-AA195 putative peptidase (MER017367), Mername-AA196 putative peptidase (MER017368), Mername-AA197 putative peptidase (MER017371), C14orf29 protein (MER033244), hypothetical protein (MER033245), hypothetical esterase/lipase/thioesterase (MER047309), protein bat5 (MER037840), hypothetical protein flj40219 (MER033212), hypothetical protein flj37464 (MER033240), hypothetical protein flj33678 (MER033241), dipeptidylpeptidase homologue DPP6 (MER000403), dipeptidylpeptidase homologue DPP10 (MER005988), protein similar to Mus musculus chromosome 20 open reading frame 135 (MER037845), kynurenine formamidase (MER046020), thyroglobulin precursor (MER011604), acetylcholinesterase (MER033188), cholinesterase (MER033198), carboxylesterase D1 (MER033213), liver carboxylesterase (MER033220), carboxylesterase 3 (MER033224), carboxylesterase 2 (MER033226), bile salt-dependent lipase (MER033227), carboxylesterase-related protein (MER033231), neuroligin 3 (MER033232), neuroligin 4, X-linked (MER033235), neuroligin 4, Y-linked (MER033236), esterase D (MER043126), arylacetamide deacetylase (MER033237), KIAA1363-like protein (MER033242), hormone-sensitive lipase (MER033274), neuroligin 1 (MER033280), neuroligin 2 (MER033283), family S9 non-peptidase homologues (MER212939), family S9 non-peptidase homologues (MER211490), subfamily S9C unassigned peptidases (MER192341), family S9 unassigned peptidases (MER209181), family S9 unassigned peptidases (MER200434), family S9 unassigned peptidases (MER209507), family S9 unassigned peptidases (MER209142), serine carboxypeptidase A (MER000430), vitellogenic carboxypeptidase-like protein (MER005492), RISC peptidase (MER010960), family S15 unassigned peptidases (MER199442), family S15 unassigned peptidases (MER200437), family S15 unassigned peptidases (MER212825), lysosomal Pro-Xaa carboxypeptidase (MER000446), dipeptidyl-peptidase II (MER004952), thymus-specific serine peptidase (MER005538), epoxide hydrolase-like putative peptidase (MER031614), Loc328574-like protein (MER033246), abhydrolase domain-containing protein 4 (MER031616), epoxide hydrolase (MER000432), mesoderm specific transcript protein (MER199890), mesoderm specific transcript protein (MER017123), cytosolic epoxide hydrolase (MER029997), cytosolic epoxide hydrolase (MER213866), similar to hypothetical protein FLJ22408 (MER031608), CGI-58 putative peptidase (MER030163), Williams-Beuren syndrome critical region protein 21 epoxide hydrolase (MER031610), epoxide hydrolase (MER031612), hypothetical protein 922408 (epoxide hydrolase) (MER031617), monoglyceride lipase (MER033247), hypothetical protein (MER033249), valacyclovir hydrolase (MER033259), Ccg1-interacting factor b (MER210738), glycosylasparaginase precursor (MER003299), isoaspartyl dipeptidase (threonine type) (MER031622). taspase-1 (MER016969), gamma-glutamyltransferase 5 (mammalian-type) (MER001977), gamma-glutamyltransferase 1 (mammalian-type) (MER001629), gamma-glutamyltransferase 2 (Homo sapiens) (MER001976), gamma-glutamyltransferase-like protein 4 (MER002721). gamma-glutamyltransferase-like protein 3 (MER016970). similar to gamma-glutamyltransferase 1 precursor (Homo sapiens) (MER026204). similar to gamma-glutamyltransferase 1 precursor (Homo sapiens) (MER026205). Mername-AA211 putative peptidase (MER026207). gamma-glutamyltransferase 6 (MER159283). gamma-glutamyl transpeptidase homologue (chromosome 2, Homo sapiens) (MER037241). polycystin-1 (MER126824), KIAA1879 protein (MER159329). polycystic kidney disease 1-like 3 (MER172554). gamma-glutamyl hydrolase (MER002963). guanine 5″-monophosphate synthetase (MER043387). carbamoyl-phosphate synthase (Homo sapiens-type) (MER078640). dihydro-orotase (N-terminal unit) (Homo sapiens-type) (MER060647). DJ-1 putative peptidase (MER003390). Mername-AA100 putative peptidase (MER014802). Mername-AA101 non-peptidase homologue (MER014803). KIAA0361 protein (Homo sapiens-type) (MER042827). F1134283 protein (Homo sapiens) (MER044553). non-peptidase homologue chromosome 21 open reading frame 33 (Homo sapiens) (MER160094). family C56 non-peptidase homologues (MER177016), family C56 non-peptidase homologues (MER176613). family C56 non-peptidase homologues (MER176918). EGF-like module containing mucin-like hormone receptor-like 2 (MER037230). CD97 antigen (human type) (MER037286). EGF-like module containing mucin-like hormone receptor-like 3 (MER037288). EGF-like module containing mucin-like hormone receptor-like 1 (MER037278). EGF-like module containing mucin-like hormone receptor-like 4 (MER037294). cadherin EGF LAG seven-pass G-type receptor 2 precursor (Homo sapiens) (MER045397), Gpr64 (Mus musculus)-type protein (MER123205). GPR56 (Homo sapiens)-type protein (MER122057). latrophilin 2 (MER122199). latrophilin-1 (MER126380). latrophilin 3 (MER124612). protocadherin Flamingo 2 (MER124239). ETL protein (MER126267). G protein-coupled receptor 112 (MER126114). seven transmembrane helix receptor (MER125448). Gpr114 protein (MER159320). GPR126 vascular inducible G protein-coupled receptor (MER140015). GPR125 (Homo sapiens)-type protein (MER159279). GPR116 (Homo sapiens)-type G-protein coupled receptor (MER159280). GPR128 (Homo sapiens)-type G-protein coupled receptor (MER162015). GPR133 (Homo sapiens)-type protein (MER159334) GPR110 G-protein coupled receptor (MER159277), GPR97 protein (MER159322), KPG_006 protein (MER161773) KPG_008 protein (MER161835), KPG 009 protein (MER159335), unassigned homologue (MER166269), GPR113 protein (MER159352), brain-specific angiogenesis inhibitor 2 (MER159746), PIDD auto-processing protein unit 1 (MER020001), PIDD auto-processing protein unit 2 (MER063690), MUC1 self-cleaving mucin (MER074260), dystroglycan (MER054741), proprotein convertase 9 (MER022416), site-1 peptidase (MER001948), furin (MER000375), proprotein convertase 1 (MER000376), proprotein convertase 2 (MER000377), proprotein convertase 4 (MER028255), PACE4 proprotein convertase (MER000383), proprotein convertase 5 (MER002578), proprotein convertase 7 (MER002984), tripeptidyl-peptidase II (MER000355), subfamily S8A non-peptidase homologues (MER201339), subfamily S8A non-peptidase homologues (MER191613), subfamily S8A unassigned peptidases (MER191611), subfamily S8A unassigned peptidases (MER191612), subfamily S8A unassigned peptidases (MER191614), tripeptidyl-peptidase I (MER003575), prolyl oligopeptidase (MER000393), dipeptidyl-peptidase IV (eukaryote) (MER000401), acylaminoacyl-peptidase (MER000408), fibroblast activation protein alpha subunit (MER000399), PREPL A protein (MER004227), dipeptidyl-peptidase 8 (MER013484), dipeptidyl-peptidase 9 (MER004923), FLJ1 putative peptidase (MER017240), Mername-AA194 putative peptidase (MER017353), Mername-AA195 putative peptidase (MER017367), Mername-AA196 putative peptidase (MER017368), Mername-AA197 putative peptidase (MER017371), C14orf29 protein (MER033244), hypothetical protein (MER033245), hypothetical esterase/lipase/thioesterase (MER047309), protein bat5 (MER037840), hypothetical protein flj40219 (MER033212), hypothetical protein flj37464 (MER033240), hypothetical protein flj33678 (MER033241), dipeptidylpeptidase homologue DPP6 (MER000403), dipeptidylpeptidase homologue DPP10 (MER005988), protein similar to Mus musculus chromosome 20 open reading frame 135 (MER037845), kynurenine formamidase (MER046020), thyroglobulin precursor (MER011604), acetylcholinesterase (MER033188), cholinesterase (MER033198), carboxylesterase D1 (MER033213), liver carboxylesterase (MER033220), carboxylesterase 3 (MER033224), carboxylesterase 2 (MER033226), bile salt-dependent lipase (MER033227), carboxylesterase-related protein (MER033231), neuroligin 3 (MER033232), neuroligin 4, X-linked (MER033235), neuroligin 4, Y-linked (MER033236), esterase D (MER043126), arylacetamide deacetylase (MER033237), KIAA1363-like protein (MER033242), hormone-sensitive lipase (MER033274), neuroligin 1 (MER033280), neuroligin 2 (MER033283), family S9 non-peptidase homologues (MER212939), family S9 non-peptidase homologues (MER211490), subfamily S9C unassigned peptidases (MER192341), family S9 unassigned peptidases (MER209181), family S9 unassigned peptidases (MER200434), family S9 unassigned peptidases (MER209507), family S9 unassigned peptidases (MER209142), serine carboxypeptidase A (MER000430), vitellogenic carboxypeptidase-like protein (MER005492), RISC peptidase (MER010960), family S15 unassigned peptidases (MER199442), family S15 unassigned peptidases (MER200437), family S15 unassigned peptidases (MER212825), lysosomal Pro-Xaa carboxypeptidase (MER000446), dipeptidyl-peptidase II (MER004952), thymus-specific serine peptidase (MER005538), epoxide hydrolase-like putative peptidase (MER031614), Loc328574-like protein (MER033246), abhydrolase domain-containing protein 4 (MER031616), epoxide hydrolase (MER000432), mesoderm specific transcript protein (MER199890), mesoderm specific transcript protein (MER017123), cytosolic epoxide hydrolase (MER029997), cytosolic epoxide hydrolase (MER213866), similar to hypothetical protein FLJ22408 (MER031608), CGI-58 putative peptidase (MER030163), Williams-Beuren syndrome critical region protein 21 epoxide hydrolase (MER031610), epoxide hydrolase (MER031612), hypothetical protein flj22408 (epoxide hydrolase) (MER031617), monoglyceride lipase (MER033247), hypothetical protein (MER033249), valacyclovir hydrolase (MER033259), Ccg1-interacting factor b (MER210738).


Protease enzymatic activity can be regulated. For example, certain proteases can be inactivated by the presence or absence of a specific agent (e.g., that binds to the protease, such as specific small molecule inhibitors). Such proteases can be referred to as a “repressible protease.” Exemplary inhibitors for certain proteases are listed in Table 4B. For example, an NS3 protease can be repressed by a protease inhibitor including, but not limited to, simeprevir, danoprevir, asunaprevir, ciluprevir, boceprevir, sovaprevir, paritaprevir, telaprevir, grazoprevir, glecaprevir, and voxiloprevir. In another example, protease activity can be regulated through regulating expression of the protease itself, such as engineering a cell to express a protease using an inducible promoter system (e.g., Tet On/Off systems) or cell-specific promoters (promoters that can be used to express a heterologous protease are described in more detail in the Section herein titled “Promoters”). A protease can also contain a degron, such as any of the degrons described herein, and can be regulated using any of the degron systems described herein.


Protease enzymatic activity can also be regulated through selection of a specific protease cleavage site. For example, a protease cleavage site can be selected and/or engineered such that the sequence demonstrates a desired rate-of-cleavage by a desired protease, such as reduced cleavage kinetics relative to an endogenous sequence of a substrate naturally cleaved by the desired protease. As another example, a protease cleavage site can be selected and/or engineered such that the sequence demonstrates a desired rate-of-cleavage in a cell-state specific manner. For example, various cell states (e.g., following cellular signaling, such as immune cell activation) can influence the expression and/or localization of certain proteases. As an illustrative example, ADAM17 protein levels and localization is known to be influenced by signaling, such as through Protein kinase C (PKC) signaling pathways (e.g., activation by the PKC activator Phorbol-12-myristat-13-acetat [PMA]). Accordingly, a protease cleavage site can be selected and/or engineered such that cleavage of the protease cleavage site and subsequent release of an effector molecule is increased or decreased, as desired, depending on the protease properties (e.g., expression and/or localization) in a specific cell state. As another example, a protease cleavage site (particularly in combination with a specific membrane tethering domain) can be selected and/or engineered for optimal protein expression of the chimeric protein.


Cell Membrane Tethering Domain

The membrane-cleavable chimeric proteins provided for herein include a cell-membrane tethering domain (referred to as “MT” in the formula S-C-MT or MT-C-S). In general, the cell-membrane tethering domain can be any amino acid sequence motif capable of directing the chimeric protein to be localized to (e.g., inserted into), or otherwise associated with, the cell membrane of the cell expressing the chimeric protein. The cell-membrane tethering domain can be a transmembrane-intracellular domain. The cell-membrane tethering domain can be a transmembrane domain. The cell-membrane tethering domain can be an integral membrane protein domain (e.g., a transmembrane domain). The cell-membrane tethering domain can be derived from a Type I, Type II, or Type III transmembrane protein. The cell-membrane tethering domain can include post-translational modification tag, or motif capable of post-translational modification to modify the chimeric protein to include a post-translational modification tag, where the post-translational modification tag allows association with a cell membrane. Examples of post-translational modification tags include, but are not limited to, lipid-anchor domains (e.g., a GPI lipid-anchor, a myristoylation tag, or palmitoylation tag). Examples of cell-membrane tethering domains include, but are not limited to, a transmembrane-intracellular domain and/or transmembrane domain derived from PDGFR-beta, CD8, CD28, CD3zeta-chain, CD4, 4-1BB, OX40, ICOS, CTLA-4, PD-1, LAG-3, 2B4, LNGFR, NKG2D, EpoR, TNFR2, B7-1, or BTLA. The cell membrane tethering domain can be a cell surface receptor or a cell membrane-bound portion thereof. Sequences of exemplary cell membrane tethering domains are provided in Table 4C.











TABLE 4C





Source
Amino Acid Sequence
DNA Sequence







B7-1
LLPSWAITLISVNGIFVICCLTYCF
CTGCTGCCAAGCTGGGCCATCACACTGATC



APRCRERRRNERLRRESVRPV
TCCGTGAACGGCATCTTCGTGATCTGTTGC



(SEQ ID NO: 219)
CTGACCTACTGCTTCGCCCCTCGGTGCAGA




GAGCGGAGAAGAAACGAACGGCTGCGGA




GAGAATCTGTGCGGCCTGTG (SEQ ID NO:




220)




OR




CTGCTGCCTAGCTGGGCCATCACACTGATC




TCCGTGAACGGCATCTTCGTGATCTGCTGC




CTGACCTACTGCTTCGCCCCTAGATGCAGA




GAGCGGCGGAGAAACGAACGGCTGAGAA




GAGAATCTGTGCGGCCCGTT (SEQ ID NO:




331)









In general, for all membrane-cleavable chimeric proteins described herein, the cell membrane tethering domain is either: (1) C-terminal of the protease cleavage site and N-terminal of any intracellular domain, if present (in other words, the cell membrane tethering domain is in between the protease cleavage site and, if present, an intracellular domain); or (2) N-terminal of the protease cleavage site and C-terminal of any intracellular domain, if present (also between the protease cleavage site and, if present, an intracellular domain with domain orientation inverted). In embodiments featuring a degron associated with the chimeric protein, the degron domain is the terminal cytoplasmic-oriented domain, specifically relative to the cell membrane tethering (in other words, the cell membrane tethering domain is in between the protease cleavage site and the degron). The cell membrane tethering domain can be connected to the protease cleavage site by a polypeptide linker, i.e., a polypeptide sequence not generally considered to be part of cell membrane tethering domain or protease cleavage site. The cell membrane tethering domain can be connected to an intracellular domain, if present, by a polypeptide linker, i.e., a polypeptide sequence not generally considered to be part of the cell membrane tethering domain or the intracellular domain. The cell membrane tethering domain can be connected to the degron, if present, by a polypeptide linker, i.e., a polypeptide sequence not generally considered to be part of the cell membrane tethering domain or degron. A polypeptide linker can be any amino acid sequence that connects a first polypeptide sequence and a second polypeptide sequence. A polypeptide linker can be a flexible linker (e.g., a Gly-Ser-Gly sequence). Examples of polypeptide linkers include, but are not limited to, GSG linkers (e.g., [GS]4GG [SEQ ID NO: 347]), A(EAAAK)3A (SEQ ID NO: 348), and Whitlow linkers (e.g., a “KEGS (SEQ ID NO: 355)” linker such as the amino acid sequence KESGSVSSEQLAQFRSLD (SEQ ID NO: 349), an eGK linker such as the amino acid sequence EGKSSGSGSESKST (SEQ ID NO: 350), an LR1 linker such as the amino acid sequence SGGGGSGGGGSGGGGSGGGGSGGGSLQ (SEQ ID NO: 215), and linkers described in more detail in Issued U.S. Pat. No. 5,990,275 herein incorporated by reference). Additional polypeptide linkers include SEQ ID NO: 194, SEQ ID NO: 196, and SEQ ID NO: 197. Other polypeptide linkers may be selected based on desired properties (e.g., length, flexibility, amino acid composition etc.) and are known to those skilled in the art.


In general, the cell-membrane tethering domain is oriented such that the secreted effector molecule and the protease cleavage site are extracellularly exposed following insertion into, or association with, the cell membrane, such that the protease cleavage site is capable of being cleaved by its respective protease and releasing (“secreting”) the effector molecule into the extracellular space.


Degron Systems and Domains

In some embodiments, any of the proteins described herein can include a degron domain including, but not limited to, a cytokine, a CAR, a protease, a transcription factor, a promoter or constituent of a promoter system (e.g., an ACP), and/or any of the membrane-cleavable chimeric protein described herein. In general, the degron domain can be any amino acid sequence motif capable of directing regulated degradation, such as regulated degradation through a ubiquitin-mediated pathway. In the presence of an immunomodulatory drug (IMiD), the degron domain directs ubiquitin-mediated degradation of a degron-fusion protein.


The degron domain can be a cereblon (CRBN) polypeptide substrate domain capable of binding CRBN in response to an immunomodulatory drug (IMiD) including, but not limited to, IKZF1, IKZF3, CKla, ZFP91, GSPT1, MEIS2, GSS E4F1, ZN276, ZN517, ZN582, ZN653, ZN654, ZN692, ZN787, and ZN827, or a fragment thereof that is capable of drug-inducible binding of CRBN. The CRBN polypeptide substrate domain can be a chimeric fusion product of native CRBN polypeptide sequences, such as a IKZF3/ZFP91/IKZF3 chimeric fusion product having the amino acid sequence of FNVLMVHKRSHTGERPLQCEICGFTCRQKGNLLRHIKLHTGEKPFKCHLCNYACQRRD AL (SEQ ID NO: 175). Degron domains, and in particular CRBN degron systems, are described in more detail in International Application Pub. No. WO2019/089592A1, herein incorporated by reference for all purposes. Other examples of degron domains include, but are not limited to HCV NS4 degron, PEST (two copies of residues 277-307 of human IκBα; SEQ ID NO: 161), GRR (residues 352-408 of human p105; SEQ ID NO: 162), DRR (residues 210-295 of yeast Cdc34; SEQ ID NO: 163), SNS (tandem repeat of SP2 and NB (SP2-NB-SP2 of influenza A or influenza B; e.g., SEQ ID NO: 164), RPB (four copies of residues 1688-1702 of yeast RPB; SEQ ID NO: 165), SPmix (tandem repeat of SP1 and SP2 (SP2-SP1-SP2-SP1-SP2 of influenza A virus M2 protein; SEQ ID NO: 166), NS2 (three copies of residues 79-93 of influenza A virus NS protein; SEQ ID NO: 167), ODC (residues 106-142 of ornithine decarboxylase; SEQ ID NO: 168), Nek2A, mouse ODC (residues 422-461; SEQ ID NO: 169), mouse ODC_DA (residues 422-461 of mODC including D433A and D434A point mutations), an APC/C degron, a COP1 E3 ligase binding degron motif, a CRL4-Cdt2 binding PIP degron, an actinfilin-binding degron, a KEAP1 binding degron, a KLHL2 and KLHL3 binding degron, an MDM2 binding motif, an N-degron, a hydroxyproline modification in hypoxia signaling, a phytohormone-dependent SCF-LRR-binding degron, an SCF ubiquitin ligase binding phosphodegron, a phytohormone-dependent SCF-LRR-binding degron, a DSGxxS phospho-dependent degron (SEQ ID NO: 345), an Siah binding motif, an SPOP SBC docking motif, or a PCNA binding PIP box.


Regulated degradation can be drug-inducible. Drugs capable of mediating/regulating degradation can be small-molecule compounds. Drugs capable of mediating/regulating degradation can include an “immunomodulatory drug” (IMiD). In general, as used herein, IMiDs refer to a class of small-molecule immunomodulatory drugs containing an imide group. Cereblon (CRBN) is known target of IMiDs and binding of an IMiD to CRBN or a CRBN polypeptide substrate domain alters the substrate specificity of the CRBN E3 ubiquitin ligase complex leading to degradation of proteins having a CRBN polypeptide substrate domain (e.g., any of secretable effector molecules or other proteins of interest described herein). For degron domains having a CRBN polypeptide substrate domain, examples of imide-containing IMiDs include, but are not limited to, a thalidomide, a lenalidomide, or a pomalidomide. The IMiD can be an FDA-approved drug.


Proteins described herein can contain a degron domain (e.g., referred to as “D” in the formula S-C-MT-D or D-MT-C-S for membrane-cleavable chimeric proteins described herein). In the absence of an IMiD, degron/ubiquitin-mediated degradation of the chimeric protein does not occur. Following expression and localization of the chimeric protein into the cell membrane, the protease cleavage site directs cleavage of the chimeric protein such that the effector molecule is released (“secreted”) into the extracellular space. In the presence of an immunomodulatory drug (IMiD), the degron domain directs ubiquitin-mediated degradation of the chimeric protein such that secretion of the effector molecule is reduced or eliminated. In general, for membrane-cleavable chimeric proteins fused to a degron domain, the degron domain is the terminal cytoplasmic-oriented domain, specifically relative to the cell membrane tethering domain, e.g., the most C-terminal domain in the formula S-C-MT-D or the most N-terminal domain in the formula D-MT-C-S. The degron domain can be connected to the cell membrane tethering domain by a polypeptide linker, i.e., a polypeptide sequence not generally considered to be part of the cell membrane tethering domain or the degron domain. A polypeptide linker can be any amino acid sequence that connects a first polypeptide sequence and a second polypeptide sequence. A polypeptide linker can be a flexible linker (e.g., a Gly-Ser-Gly sequence). Examples of polypeptide linkers include, but are not limited to, GSG linkers (e.g., [GS]4GG [SEQ ID NO: 347]), A(EAAAK)3A (SEQ ID NO: 348), and Whitlow linkers (e.g., a “KEGS (SEQ ID NO: 355)” linker such as the amino acid sequence KESGSVSSEQLAQFRSLD (SEQ ID NO: 349), an eGK linker such as the amino acid sequence EGKSSGSGSESKST (SEQ ID NO: 350), an LR1 linker such as the amino acid sequence SGGGGSGGGGSGGGGSGGGGSGGGSLQ (SEQ ID NO: 215), and linkers described in more detail in Issued U.S. Pat. No. 5,990,275 herein incorporated by reference). Additional polypeptide linkers include SEQ ID NO: 194, SEQ ID NO: 196, and SEQ ID NO: 197. Other polypeptide linkers may be selected based on desired properties (e.g., length, flexibility, amino acid composition etc.) and are known to those skilled in the art. In general, the degron is oriented in relation to the cell membrane tethering domain such that the degron is exposed to the cytosol following localization to the cell membrane such that the degron domain is capable of mediating degradation (e.g., exposure to the cytosol and cytosol) and is capable of mediating ubiquitin-mediated degradation.


For degron-fusion proteins, the degron domain can be N-terminal or C-terminal of the protein of interest, e.g., the effector molecule. The degron domain can be connected to the protein of interest by a polypeptide linker, i.e., a polypeptide sequence not generally considered to be part of the protein of interest or the degron domain. A polypeptide linker can be any amino acid sequence that connects a first polypeptide sequence and a second polypeptide sequence. A polypeptide linker can be a flexible linker (e.g., a Gly-Ser-Gly sequence). Examples of polypeptide linkers include, but are not limited to, GSG linkers (e.g., [GS]4GG [SEQ ID NO: 347]), A(EAAAK)3A (SEQ ID NO: 348), and Whitlow linkers (e.g., a “KEGS (SEQ ID NO: 355)” linker such as the amino acid sequence KESGSVSSEQLAQFRSLD (SEQ ID NO: 349), an eGK linker such as the amino acid sequence EGKSSGSGSESKST (SEQ ID NO: 350), an LR1 linker such as the amino acid sequence SGGGGSGGGGSGGGGSGGGGSGGGSLQ (SEQ ID NO: 215), and linkers described in more detail in Issued U.S. Pat. No. 5,990,275 herein incorporated by reference). Additional polypeptide linkers include SEQ ID NO: 194, SEQ ID NO: 196, and SEQ ID NO: 197. Other polypeptide linkers may be selected based on desired properties (e.g., length, flexibility, amino acid composition etc.) and are known to those skilled in the art. A polypeptide linker can be cleavable, e.g., any of the protease cleavage sites described herein.


Engineered Nucleic Acids

Provided herein are engineered nucleic acids (e.g., an expression cassette) encoding at least one protein of the present disclosure, such as the cytokines, CARs, ACPs, and/or membrane-cleavable chimeric proteins having the formula S-C-MT or MT-C-S described herein. Provided herein are engineered nucleic acids (e.g., an expression cassette) encoding two or more proteins, such as two or more of the cytokines, CARs, ACPs, and/or membrane-cleavable chimeric proteins having the formula S-C-MT or MT-C-S described herein.


In certain embodiments described herein, the engineered nucleic acids encode an expression cassette containing a promoter and an exogenous polynucleotide sequence encoding the cytokines, CARs, ACPs, and/or membrane-cleavable chimeric protein, oriented from N-terminal to C-terminal, having the formula: S-C-MT or MT-C-S. S refers to a secretable effector molecule. C refers to a protease cleavage site. MT refers to a cell membrane tethering domain. The promoter is operably linked to the exogenous polynucleotide sequence and S-C-MT or MT-C-S is configured to be expressed as a single polypeptide.


In certain embodiments described herein, the engineered nucleic acids encode an expression cassette containing a promoter and an exogenous polynucleotide sequence encoding a cytokine. In certain embodiments described herein, the engineered nucleic acids encode an expression cassette containing a promoter and an exogenous polynucleotide sequence encoding a CAR. In certain embodiments described herein, the engineered nucleic acids encode an expression cassette containing a promoter and an exogenous polynucleotide sequence encoding a membrane-cleavable chimeric protein having a protein of interest (e.g., any of the effector molecules described herein). The promoter is operably linked to the exogenous polynucleotide sequence and the membrane-cleavable chimeric protein is configured to be expressed as a single polypeptide.


In certain embodiments described herein, the engineered nucleic acids encode an expression cassette containing a promoter and an exogenous polynucleotide sequence encoding a combination of the cytokines, CARs, ACPs, and/or membrane-cleavable chimeric proteins described herein. In certain embodiments described herein, the engineered nucleic acids encode an expression cassette containing a promoter and an exogenous polynucleotide sequence encoding a cytokine and CAR. In certain embodiments described herein, the engineered nucleic acids encode an expression cassette containing a promoter and an exogenous polynucleotide sequence encoding a cytokine and an ACP.


In certain embodiments described herein, the engineered nucleic acids encode two or more expression cassettes each containing a promoter and an exogenous polynucleotide sequence encoding a cytokine, CAR, ACP, and/or membrane-cleavable chimeric protein described herein. In certain embodiments described herein, the engineered nucleic acids encode two or more expression cassettes each containing a promoter and each separately encoding an exogenous polynucleotide sequence encoding a cytokine and CAR, respectively. In certain embodiments described herein, the engineered nucleic acids encode two or more expression cassettes each containing a promoter and each separately encoding an exogenous polynucleotide sequence encoding a cytokine and an ACP, respectively. In certain embodiments, the two or more expression cassettes are oriented in a head-to-tail orientation. In certain embodiments, the two or more expression cassettes are oriented in a head-to-head orientation. In certain embodiments, the two or more expression cassettes are oriented in a tail-to-tail orientation. In some cases, each expression cassette contains its own promoter to drive expression of the polynucleotide sequence encoding a cytokine and/or CAR. In certain embodiments, the cytokine and CAR are organized as such: 5′-cytokine-CAR-3′ or 5′-CAR-cytokine-3′.


An “engineered nucleic acid” is a nucleic acid that does not occur in nature. It should be understood, however, that while an engineered nucleic acid as a whole is not naturally-occurring, it may include nucleotide sequences that occur in nature. In some embodiments, an engineered nucleic acid comprises nucleotide sequences from different organisms (e.g., from different species). For example, in some embodiments, an engineered nucleic acid includes a murine nucleotide sequence, a bacterial nucleotide sequence, a human nucleotide sequence, and/or a viral nucleotide sequence. The term “engineered nucleic acids” includes recombinant nucleic acids and synthetic nucleic acids. A “recombinant nucleic acid” refers to a molecule that is constructed by joining nucleic acid molecules and, in some embodiments, can replicate in a live cell. A “synthetic nucleic acid” refers to a molecule that is amplified or chemically, or by other means, synthesized. Synthetic nucleic acids include those that are chemically modified, or otherwise modified, but can base pair with naturally-occurring nucleic acid molecules. Modifications include, but are not limited to, one or more modified internucleotide linkages and non-natural nucleic acids. Modifications are described in further detail in U.S. Pat. No. 6,673,611 and U.S. Application Publication 2004/0019001 and, each of which is incorporated by reference in their entirety. Modified internucleotide linkages can be a phosphorodithioate or phosphorothioate linkage. Non-natural nucleic acids can be a locked nucleic acid (LNA), a peptide nucleic acid (PNA), glycol nucleic acid (GNA), a phosphorodiamidate morpholino oligomer (PMO or “morpholino”), and threose nucleic acid (TNA). Non-natural nucleic acids are described in further detail in International Application WO 1998/039352, U.S. Application Pub. No. 2013/0156849, and U.S. Pat. Nos. 6,670,461; 5,539,082; 5,185,444, each herein incorporated by reference in their entirety. Recombinant nucleic acids and synthetic nucleic acids also include those molecules that result from the replication of either of the foregoing. Engineered nucleic acid of the present disclosure may be encoded by a single molecule (e.g., included in the same plasmid or other vector) or by multiple different molecules (e.g., multiple different independently-replicating molecules). Engineered nucleic acids can be an isolated nucleic acid. Isolated nucleic acids include, but are not limited to a cDNA polynucleotide, an RNA polynucleotide, an RNAi oligonucleotide (e.g., siRNAs, miRNAs, antisense oligonucleotides, shRNAs, etc.), an mRNA polynucleotide, a circular plasmid, a linear DNA fragment, a vector, a minicircle, a ssDNA, a bacterial artificial chromosome (BAC), and yeast artificial chromosome (YAC), and an oligonucleotide.


Engineered nucleic acid of the present disclosure may be produced using standard molecular biology methods (see, e.g., Green and Sambrook, Molecular Cloning, A Laboratory Manual, 2012, Cold Spring Harbor Press). In some embodiments, engineered nucleic acid constructs are produced using GIBSON ASSEMBLY® Cloning (see, e.g., Gibson, D. G. et al. Nature Methods, 343-345, 2009; and Gibson, D. G. et al. Nature Methods, 901-903, 2010, each of which is incorporated by reference herein). GIBSON ASSEMBLY® typically uses three enzymatic activities in a single-tube reaction: 5′ exonuclease, the ′Y extension activity of a DNA polymerase and DNA ligase activity. The 5′ exonuclease activity chews back the 5′ end sequences and exposes the complementary sequence for annealing. The polymerase activity then fills in the gaps on the annealed regions. A DNA ligase then seals the nick and covalently links the DNA fragments together. The overlapping sequence of adjoining fragments is much longer than those used in Golden Gate Assembly, and therefore results in a higher percentage of correct assemblies. In some embodiments, engineered nucleic acid constructs are produced using IN-FUSION® cloning (Clontech).


Promoters

In general, in all embodiments described herein, the engineered nucleic acids encoding the proteins herein (e.g., a cytokine, CAR, ACP, and/or membrane-cleavable chimeric protein described herein) encode an expression cassette containing a promoter and an exogenous polynucleotide sequence encoding the protein. In some embodiments, an engineered nucleic acid (e.g., an engineered nucleic acid comprising an expression cassette) comprises a promoter operably linked to a nucleotide sequence (e.g., an exogenous polynucleotide sequence) encoding at least 2 distinct proteins. For example, the engineered nucleic acid may comprise a promoter operably linked to a nucleotide sequence encoding at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 8, at least 9, or at least 10 distinct proteins. In some embodiments, an engineered nucleic acid comprises a promoter operably linked to a nucleotide sequence encoding 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more distinct proteins. In some embodiments, an engineered nucleic acid (e.g., an engineered nucleic acid comprising an expression cassette) comprises a promoter operably linked to a nucleotide sequence (e.g., an exogenous polynucleotide sequence) encoding at least 2 cytokines. For example, the engineered nucleic acid may comprise a promoter operably linked to a nucleotide sequence encoding at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 8, at least 9, or at least 10 cytokines. In some embodiments, an engineered nucleic acid comprises a promoter operably linked to a nucleotide sequence encoding 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more cytokines. In some embodiments, an engineered nucleic acid (e.g., an engineered nucleic acid comprising an expression cassette) comprises a promoter operably linked to a nucleotide sequence (e.g., an exogenous polynucleotide sequence) encoding at least 2 membrane-cleavable chimeric proteins. For example, the engineered nucleic acid may comprise a promoter operably linked to a nucleotide sequence encoding at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 8, at least 9, or at least 10 membrane-cleavable chimeric proteins. In some embodiments, an engineered nucleic acid comprises a promoter operably linked to a nucleotide sequence encoding 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more membrane-cleavable chimeric proteins.


A “promoter” refers to a control region of a nucleic acid sequence at which initiation and rate of transcription of the remainder of a nucleic acid sequence are controlled. A promoter may also contain sub-regions at which regulatory proteins and molecules may bind, such as RNA polymerase and other transcription factors. Promoters may be constitutive, inducible, repressible, tissue-specific or any combination thereof. A promoter drives expression or drives transcription of the nucleic acid sequence that it regulates. Herein, a promoter is considered to be “operably linked” when it is in a correct functional location and orientation in relation to a nucleic acid sequence it regulates to control (“drive”) transcriptional initiation and/or expression of that sequence.


A promoter may be one naturally associated with a gene or sequence, as may be obtained by isolating the 5′ non-coding sequences located upstream of the coding segment of a given gene or sequence. Such a promoter can be referred to as “endogenous.” In some embodiments, a coding nucleic acid sequence may be positioned under the control of a recombinant or heterologous promoter, which refers to a promoter that is not normally associated with the encoded sequence in its natural environment. Such promoters may include promoters of other genes; promoters isolated from any other cell; and synthetic promoters or enhancers that are not “naturally occurring” such as, for example, those that contain different elements of different transcriptional regulatory regions and/or mutations that alter expression through methods of genetic engineering that are known in the art. In addition to producing nucleic acid sequences of promoters and enhancers synthetically, sequences may be produced using recombinant cloning and/or nucleic acid amplification technology, including polymerase chain reaction (PCR) (see, e.g., U.S. Pat. Nos. 4,683,202 and 5,928,906).


Promoters of an engineered nucleic acid may be “inducible promoters,” which refer to promoters that are characterized by regulating (e.g., initiating or activating) transcriptional activity when in the presence of, influenced by or contacted by a signal. The signal may be endogenous or a normally exogenous condition (e.g., light), compound (e.g., chemical or non-chemical compound) or protein (e.g., cytokine) that contacts an inducible promoter in such a way as to be active in regulating transcriptional activity from the inducible promoter. Activation of transcription may involve directly acting on a promoter to drive transcription or indirectly acting on a promoter by inactivation a repressor that is preventing the promoter from driving transcription. Conversely, deactivation of transcription may involve directly acting on a promoter to prevent transcription or indirectly acting on a promoter by activating a repressor that then acts on the promoter.


A promoter is “responsive to” or “modulated by” a local tumor state (e.g., inflammation or hypoxia) or signal if in the presence of that state or signal, transcription from the promoter is activated, deactivated, increased, or decreased. In some embodiments, the promoter comprises a response element. A “response element” is a short sequence of DNA within a promoter region that binds specific molecules (e.g., transcription factors) that modulate (regulate) gene expression from the promoter. Response elements that may be used in accordance with the present disclosure include, without limitation, a phloretin-adjustable control element (PEACE), a zinc-finger DNA-binding domain (DBD), an interferon-gamma-activated sequence (GAS) (Decker, T. et al. J Interferon Cytokine Res. 1997 March; 17(3):121-34, incorporated herein by reference), an interferon-stimulated response element (ISRE) (Han, K. J. et al. J Biol Chem. 2004 Apr. 9; 279(15):15652-61, incorporated herein by reference), a NF-kappaB response element (Wang, V. et al. Cell Reports. 2012; 2(4): 824-839, incorporated herein by reference), and a STAT3 response element (Zhang, D. et al. J of Biol Chem. 1996; 271: 9503-9509, incorporated herein by reference). Other response elements are encompassed herein. Response elements can also contain tandem repeats (e.g., consecutive repeats of the same nucleotide sequence encoding the response element) to generally increase sensitivity of the response element to its cognate binding molecule. Tandem repeats can be labeled 2×, 3×, 4×, 5×, etc. to denote the number of repeats present.


Non-limiting examples of responsive promoters (also referred to as “inducible promoters”) (e.g., TGF-beta responsive promoters) are listed in Table 5A, which shows the design of the promoter and transcription factor, as well as the effect of the inducer molecule towards the transcription factor (TF) and transgene transcription (T) is shown (B, binding; D, dissociation; n.d., not determined) (A, activation; DA, deactivation; DR, derepression) (see Homer, M. & Weber, W. FEBS Letters 586 (2012) 20784-2096m, and references cited therein). Non-limiting examples of components of inducible promoters include those presented in Table 5B.









TABLE 5A







Examples of Responsive Promoters















Response



Promoter and
Transcription

to inducer












System
operator
factor (TF)
Inducer molecule
TF
T











Transcriptional activator-responsive promoters













AIR
PAIR (OalcA-
AlcR
Acetaldehyde
n.d.
A



PhCMVmin)






ART
PART (OARG-
ArgR-VP16
l-Arginine
B
A



PhCMVmin)






BIT
PBIT3 (OBirA3-
BIT (BirA-VP16)
Biotin
B
A



PhCMVmin)






Cumate -
PCR5 (OCuO6-
cTA (CymR-VP16)
Cumate
D
DA


activator
PhCMVmin)






Cumate - reverse
PCR5 (OCuO6-
rcTA (rCymR-VP16)
Cumate
B
A


activator
PhCMVmin)






E-OFF
PETR (OETR-
ET (E-VP16)
Erythromycin
D
DA



PhCMVmin)






NICE-OFF
PNIC (ONIC-
NT (HdnoR-VP16)
6-Hydroxy-nicotine
D
DA



PhCMVmin)






PEACE
PTtgR1 (OTtgR-
TtgA1 (TtgR-VP16)
Phloretin
D
DA



PhCMVmin)






PIP-OFF
PPIR (OPIR-
PIT (PIP-VP16)
Pristinamycin I
D
DA



Phsp70min)






QuoRex
PSCA (OscbR-
SCA (ScbR-VP16)
SCB1
D
DA



PhCMVmin)PSPA







(OpapRI-







PhCMVmin)






Redox
PROP (OROP-
REDOX (REX-VP16)
NADH
D
DA



PhCMVmin)






TET-OFF
PhCMV*-1
tTA (TetR-VP16)
Tetracycline
D
DA



(OtetO7-







PhCMVmin)






TET-ON
PhCMV*-1
rtTA (rTetR-VP16)
Doxycycline
B
A



(OtetO7-







PhCMVmin)






TIGR
PCTA (OrheO-
CTA (RheA-VP16)
Heat
D
DA



PhCMVmin)






TraR
O7x(tra box)-
p65-TraR
3-Oxo-C8-HSL
B
A



PhCMVmin






VAC-OFF
P1VanO2
VanA1 (VanR-VP16)
Vanillic acid
D
DA



(OVanO2-







PhCMVmin)












Transcriptional repressor-responsive promoters













Cumate -
PCuO (PCMV5-
CymR
Cumate
D
DR


repressor
OCuO)






E-ON
PETRON8
E-KRAB
Erythromycin
D
DR



(PSV40-OETR8)






NICE-ON
PNIC (PSV40-
NS (HdnoR-KRAB)
6-Hydroxy-nicotine
D
DR



ONIC8)






PIP-ON
PPIRON (PSV40-
PIT3 (PIP-KRAB)
Pristinamycin I
D
DR



OPIR3)






Q-ON
PSCAON8
SCS (ScbR-KRAB)
SCB1
D
DR



(PSV40-OscbR8)






TET-ON
OtetO-PHPRT
tTS-H4 (TetR-HDAC4)
Doxycycline
D
DR


repressor-based







T-REX
PTetO (PhCMV-
TetR
Tetracycline
D
DR



OtetO2)






UREX
PUREX8 (PSV40-
mUTS (KRAB-HucR)
Uric acid
D
DR



OhucO8)






VAC-ON
PVanON8
VanA4 (VanR-KRAB)
Vanillic acid
D
DR



(PhCMV-OVanO8)















Hybrid promoters
















QuoRexPIP-
OscbR8-OPIR3-
SCAPIT3
SCB1Pristinamycin I
DD
DADR


ON(NOT IF gate)
PhCMVmin






QuoRexE-
OscbR-OETR8-
SCAE-KRAB
SCB1Erythromycin
DD
DADR


ON(NOT IF gate)
PhCMVmin






TET-OFFE-
OtetO7-OETR8-
tTAE-KRAB
TetracyclineErythromycin
DD
DADR


ON(NOT IF gate)
PhCMVmin






TET-OFFPIP-
OtetO7-OPIR3-
tTAPIT3E-KRAB
TetracyclinePristinamycin
DDD
DADRDR


ONE-ON
OETR8-PhCMVmin

IErythromycin
















TABLE 5B







Exemplary Components of Inducible Promoters








Name
DNA SEQUENCE





minimal promoter; minP
AGAGGGTATATAATGGAAGCTCGACTTCCAG (SEQ ID NO: 1)





NFkB response element
GGGAATTTCCGGGGACTTTCCGGGAATTTCCGGGGACTTTCCGGGAAT


protein promoter; 5x
TTCC (SEQ ID NO: 2)


NFkB-RE






CREB response element
CACCAGACAGTGACGTCAGCTGCCAGATCCCATGGCCGTCATACTGTG


protein promoter; 4x CRE
ACGTCTTTCAGACACCCCATTGACGTCAATGGGAGAA (SEQ ID NO: 3)





NFAT response element
GGAGGAAAAACTGTTTCATACAGAAGGCGTGGAGGAAAAACTGTTTC


protein promoter; 3x NFAT
ATACAGAAGGCGTGGAGGAAAAACTGTTTCATACAGAAGGCGT (SEQ


binding sites
ID NO: 4)





SRF response element
AGGATGTCCATATTAGGACATCTAGGATGTCCATATTAGGACATCTAG


protein promoter; 5x SRE
GATGTCCATATTAGGACATCTAGGATGTCCATATTAGGACATCTAGGA



TGTCCATATTAGGACATCT (SEQ ID NO: 5)





SRF response element
AGTATGTCCATATTAGGACATCTACCATGTCCATATTAGGACATCTACT


protein promoter 2; 5x
ATGTCCATATTAGGACATCTTGTATGTCCATATTAGGACATCTAAAATG


SRF-RE
TCCATATTAGGACATCT (SEQ ID NO: 6)





AP1 response element
TGAGTCAGTGACTCAGTGAGTCAGTGACTCAGTGAGTCAGTGACTCAG


protein promoter; 6x AP1-
(SEQ ID NO: 7)


RE






TCF-LEF response element
AGATCAAAGGGTTTAAGATCAAAGGGCTTAAGATCAAAGGGTATAAG


promoter; 8x TCF-LEF-RE
ATCAAAGGGCCTAAGATCAAAGGGACTAAGATCAAAGGGTTTAAGAT



CAAAGGGCTTAAGATCAAAGGGCCTA (SEQ ID NO: 8)





SBEx4
GTCTAGACGTCTAGACGTCTAGACGTCTAGAC (SEQ ID NO: 9)





SMAD2/3 - CAGACA x4
CAGACACAGACACAGACACAGACA (SEQ ID NO: 10)





STAT3 binding site
Ggatccggtactcgagatctgcgatctaagtaagcttggcattccggtactgttggtaaagccac (SEQ ID NO:



11)





minCMV
taggcgtgtacggtgggaggcctatataagcagagctcgtttagtgaaccgtcagatcgcctgga (SEQ ID



NO: 170)





YB_TATA
TCTAGAGGGTATATAATGGGGGCCA (SEQ ID NO: 171)





minTK
Ttcgcatattaaggtgacgcgtgtggcctcgaacaccgagcgaccctgcagcgacccgcttaa (SEQ ID NO:



172)









Non-limiting examples of promoters include the cytomegalovirus (CMV) promoter, the elongation factor 1-alpha (EFIa) promoter, the elongation factor (EFS) promoter, the MND promoter (a synthetic promoter that contains the U3 region of a modified MoMuLV LTR with myeloproliferative sarcoma virus enhancer), the phosphoglycerate kinase (PGK) promoter, the spleen focus-forming virus (SFFV) promoter, the simian virus 40 (SV40) promoter, and the ubiquitin C (UbQ) promoter (see Table 5C).









TABLE 5C







Exemplary Constitutive Promoters








Name
DNA SEQUENCE





CMV
GTTGACATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATTA



GTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCC



GCCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATG



TTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTAT



TTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTAC



GCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGT



ACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCG



CTATTACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGG



TTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTT



GTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCC



CATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAG



AGCTC (SEQ ID NO: 12)





EF1a
GGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTCCCCGAGA



AGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGCCTAGAGAAGGTGGCGCGG



GGTAAACTGGGAAAGTGATGCCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTG



GGGGAGAACCGTATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAAC



GGGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCCGCGGGCCTGG



CCTCTTTACGGGTTATGGCCCTTGCGTGCCTTGAATTACTTCCACCTGGCTGCA



GTACGTGATTCTTGATCCCGAGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCGA



GGCCTTGCGCTTAAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCT



GGGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCGCCTGTCTCGC



TGCTTTCGATAAGTCTCTAGCCATTTAAAATTTTTGATGACCTGCTGCGACGCT



TTTTTTCTGGCAAGATAGTCTTGTAAATGCGGGCCAAGATCTGCACACTGGTA



TTTCGGTTTTTGGGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACA



TGTTCGGCGAGGCGGGGCCTGCGAGCGCGACCACCGAGAATCGGACGGGGGT



AGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTGTCCTCGCGCCGCCGTGTATC



GCCCCGCCCCGGGCGGCAAGGCTGGCCCGGTCGGCACCAGTTGCGTGAGCGG



AAAGATGGCCGCTTCCCGGTCCTGCTGCAGGGAGCTCAAAATGGAGGACGCG



GCGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAAAAGGGCCTTT



CCGTCCTCAGCCGTCGCTTCATGTGACTCCACGGAGTACCGGGCGCCGTCCAG



GCACCTCGATTAGTTCTCGAGCTTTTGGAGTACGTCGTCTTTAGGTTGGGGGG



AGGGGTTTTATGCGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTT



AGGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCTTTTTGAGTTT



GGATCTTGGTTCATTCTCAAGCCTCAGACAGTGGTTCAAAGTTTTTTTCTTCCA



TTTCAGGTGTCGTGA (SEQ ID NO: 13)





EFS
GGATCTGCGATCGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCAC



AGTCCCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGCCTAGAGA



AGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCGTGTACTGGCTCCGCCTTTT



TCCCGAGGGTGGGGGAGAACCGTATATAAGTGCAGTAGTCGCCGTGAACGTT



CTTTTTCGCAACGGGTTTGCCGCCAGAACACAGCTGAAGCTTCGAGGGGCTCG



CATCTCTCCTTCACGCGCCCGCCGCCCTACCTGAGGCCGCCATCCACGCCGGT



TGAGTCGCGTTCTGCCGCCTCCCGCCTGTGGTGCCTCCTGAACTGCGTCCGCC



GTCTAGGTAAGTTTAAAGCTCAGGTCGAGACCGGGCCTTTGTCCGGCGCTCCC



TTGGAGCCTACCTAGACTCAGCCGGCTCTCCACGCTTTGCCTGACCCTGCTTGC



TCAACTCTACGTCTTTGTTTCGTTTTCTGTTCTGCGCCGTTACAGATCCAAGCT



GTGACCGGCGCCTAC (SEQ ID NO: 14)





MND
TTTATTTAGTCTCCAGAAAAAGGGGGGAATGAAAGACCCCACCTGTAGGTTTG



GCAAGCTAGGATCAAGGTTAGGAACAGAGAGACAGCAGAATATGGGCCAAA



CAGGATATCTGTGGTAAGCAGTTCCTGCCCCGGCTCAGGGCCAAGAACAGTTG



GAACAGCAGAATATGGGCCAAACAGGATATCTGTGGTAAGCAGTTCCTGCCC



CGGCTCAGGGCCAAGAACAGATGGTCCCCAGATGCGGTCCCGCCCTCAGCAG



TTTCTAGAGAACCATCAGATGTTTCCAGGGTGCCCCAAGGACCTGAAATGACC



CTGTGCCTTATTTGAACTAACCAATCAGTTCGCTTCTCGCTTCTGTTCGCGCGC



TTCTGCTCCCCGAGCTCAATAAAAGAGCCCA (SEQ ID NO: 15)





PGK
GGGGTTGGGGTTGCGCCTTTTCCAAGGCAGCCCTGGGTTTGCGCAGGGACGCG



GCTGCTCTGGGCGTGGTTCCGGGAAACGCAGCGGCGCCGACCCTGGGTCTCGC



ACATTCTTCACGTCCGTTCGCAGCGTCACCCGGATCTTCGCCGCTACCCTTGTG



GGCCCCCCGGCGACGCTTCCTGCTCCGCCCCTAAGTCGGGAAGGTTCCTTGCG



GTTCGCGGCGTGCCGGACGTGACAAACGGAAGCCGCACGTCTCACTAGTACC



CTCGCAGACGGACAGCGCCAGGGAGCAATGGCAGCGCGCCGACCGCGATGGG



CTGTGGCCAATAGCGGCTGCTCAGCGGGGCGCGCCGAGAGCAGCGGCCGGGA



AGGGGCGGTGCGGGAGGCGGGGTGTGGGGCGGTAGTGTGGGCCCTGTTCCTG



CCCGCGCGGTGTTCCGCATTCTGCAAGCCTCCGGAGCGCACGTCGGCAGTCGG



CTCCCTCGTTGACCGAATCACCGACCTCTCTCCCCAG (SEQ ID NO: 16)





SFFV
GTAACGCCATTTTGCAAGGCATGGAAAAATACCAAACCAAGAATAGAGAAGT



TCAGATCAAGGGCGGGTACATGAAAATAGCTAACGTTGGGCCAAACAGGATA



TCTGCGGTGAGCAGTTTCGGCCCCGGCCCGGGGCCAAGAACAGATGGTCACC



GCAGTTTCGGCCCCGGCCCGAGGCCAAGAACAGATGGTCCCCAGATATGGCC



CAACCCTCAGCAGTTTCTTAAGACCCATCAGATGTTTCCAGGCTCCCCCAAGG



ACCTGAAATGACCCTGCGCCTTATTTGAATTAACCAATCAGCCTGCTTCTCGCT



TCTGTTCGCGCGCTTCTGCTTCCCGAGCTCTATAAAAGAGCTCACAACCCCTC



ACTCGGCGCGCCAGTCCTCCGACAGACTGAGTCGCCCGGG (SEQ ID NO: 17)





SV40
CTGTGGAATGTGTGTCAGTTAGGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGG



CAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCAGGTGTGGAAAG



TCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCTCAATTAGTC



AGCAACCATAGTCCCGCCCCTAACTCCGCCCATCCCGCCCCTAACTCCGCCCA



GTTCCGCCCATTCTCCGCCCCATGGCTGACTAATTTTTTTTATTTATGCAGAGG



CCGAGGCCGCCTCTGCCTCTGAGCTATTCCAGAAGTAGTGAGGAGGCTTTTTT



GGAGGCCTAGGCTTTTGCAAAAAGCT (SEQ ID NO: 18)





SV40 alt
GTGTGTCAGTTAGGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTA



TGCAAAGCATGCATCTCAATTAGTCAGCAACCAGGTGTGGAAAGTCCCCAGG



CTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACC



ATAGTCCCGCCCCTAACTCCGCCCATCCCGCCCCTAACTCCGCCCAGTTCCGC



CCATTCTCCGCCCCATGGCTGACTAATTTTTTTTATTTATGCAGAGGCCGAGGC



CGCCTCTGCCTCTGAGCTATTCCAGAAGTAGTGAGGAGGCTTTTTTGGAGGCC



TAGGCTTTTGCAAA (SEQ ID NO: 295)





UbC
GCGCCGGGTTTTGGCGCCTCCCGCGGGCGCCCCCCTCCTCACGGCGAGCGCTG



CCACGTCAGACGAAGGGCGCAGGAGCGTTCCTGATCCTTCCGCCCGGACGCTC



AGGACAGCGGCCCGCTGCTCATAAGACTCGGCCTTAGAACCCCAGTATCAGC



AGAAGGACATTTTAGGACGGGACTTGGGTGACTCTAGGGCACTGGTTTTCTTT



CCAGAGAGCGGAACAGGCGAGGAAAAGTAGTCCCTTCTCGGCGATTCTGCGG



AGGGATCTCCGTGGGGCGGTGAACGCCGATGATTATATAAGGACGCGCCGGG



TGTGGCACAGCTAGTTCCGTCGCAGCCGGGATTTGGGTCGCGGTTCTTGTTTG



TGGATCGCTGTGATCGTCACTTGGTGAGTTGCGGGCTGCTGGGCTGGCCGGGG



CTTTCGTGGCCGCCGGGCCGCTCGGTGGGACGGAAGCGTGTGGAGAGACCGC



CAAGGGCTGTAGTCTGGGTCCGCGAGCAAGGTTGCCCTGAACTGGGGGTTGG



GGGGAGCGCACAAAATGGCGGCTGTTCCCGAGTCTTGAATGGAAGACGCTTG



TAAGGCGGGCTGTGAGGTCGTTGAAACAAGGTGGGGGGCATGGTGGGCGGCA



AGAACCCAAGGTCTTGAGGCCTTCGCTAATGCGGGAAAGCTCTTATTCGGGTG



AGATGGGCTGGGGCACCATCTGGGGACCCTGACGTGAAGTTTGTCACTGACTG



GAGAACTCGGGTTTGTCGTCTGGTTGCGGGGGCGGCAGTTATGCGGTGCCGTT



GGGCAGTGCACCCGTACCTTTGGGAGCGCGCGCCTCGTCGTGTCGTGACGTCA



CCCGTTCTGTTGGCTTATAATGCAGGGTGGGGCCACCTGCCGGTAGGTGTGCG



GTAGGCTTTTCTCCGTCGCAGGACGCAGGGTTCGGGCCTAGGGTAGGCTCTCC



TGAATCGACAGGCGCCGGACCTCTGGTGAGGGGAGGGATAAGTGAGGCGTCA



GTTTCTTTGGTCGGTTTTATGTACCTATCTTCTTAAGTAGCTGAAGCTCCGGTT



TTGAACTATGCGCTCGGGGTTGGCGAGTGTGTTTTGTGAAGTTTTTTAGGCAC



CTTTTGAAATGTAATCATTTGGGTCAATATGTAATTTTCAGTGTTAGACTAGTA



AAGCTTCTGCAGGTCGACTCTAGAAAATTGTCCGCTAAATTCTGGCCGTTTTT



GGCTTTTTTGTTAGAC (SEQ ID NO: 19)





hEF1aV1
GGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTCCCCGAGA



AGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGCCTAGAGAAGGTGGCGCGG



GGTAAACTGGGAAAGTGATGTCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTG



GGGGAGAACCGTATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAAC



GGGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCCGCGGGCCTGG



CCTCTTTACGGGTTATGGCCCTTGCGTGCCTTGAATTACTTCCACCTGGCTGCA



GTACGTGATTCTTGATCCCGAGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCGA



GGCCTTGCGCTTAAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCT



GGGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCGCCTGTCTCGC



TGCTTTCGATAAGTCTCTAGCCATTTAAAATTTTTGATGACCTGCTGCGACGCT



TTTTTTCTGGCAAGATAGTCTTGTAAATGCGGGCCAAGATCTGCACACTGGTA



TTTCGGTTTTTGGGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACA



TGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATCGGACGGGGGT



AGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTGGTCTCGCGCCGCCGTGTATC



GCCCCGCCCTGGGCGGCAAGGCTGGCCCGGTCGGCACCAGTTGCGTGAGCGG



AAAGATGGCCGCTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCG



GCGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAAAAGGGCCTTT



CCGTCCTCAGCCGTCGCTTCATGTGACTCCACGGAGTACCGGGCGCCGTCCAG



GCACCTCGATTAGTTCTCGAGCTTTTGGAGTACGTCGTCTTTAGGTTGGGGGG



AGGGGTTTTATGCGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTT



AGGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCTTTTTGAGTTT



GGATCTTGGTTCATTCTCAAGCCTCAGACAGTGGTTCAAAGTTTTTTTCTTCCA



TTTCAGGTGTCGTGA (SEQ ID NO: 20)





hCAGG
ACTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATAT



GGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCA



ACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCA



ATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCA



CTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCA



ATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGAC



TTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTCGAG



GTGAGCCCCACGTTCTGCTTCACTCTCCCCATCTCCCCCCCCTCCCCACCCCCA



ATTTTGTATTTATTTATTTTTTAATTATTTTGTGCAGCGATGGGGGCGGGGGGG



GGGGGGGGGCGCGCGCCAGGCGGGGCGGGGCGGGGCGAGGGGCGGGGGGGG



GCGAGGCGGAGAGGTGCGGCGGCAGCCAATCAGAGCGGCGCGCTCCGAAAG



TTTCCTTTTATGGCGAGGCGGCGGCGGCGGCGGCCCTATAAAAAGCGAAGCG



CGCGGCGGGCGGGGAGTCGCTGCGACGCTGCCTTCGCCCCGTGCCCCGCTCCG



CCGCCGCCTCGCGCCGCCCGCCCCGGCTCTGACTGACCGCGTTACTCCCACAG



GTGAGCGGGCGGGACGGCCCTTCTCCTCCGGGCTGTAATTAGCGCTTGGTTTA



ATGACGGCTTGTTTCTTTTCTGTGGCTGCGTGAAAGCCTTGAGGGGCTCCGGG



AGGGCCCTTTGTGCGGGGGGAGCGGCTCGGGGGGTGCGTGCGTGTGTGTGTG



CGTGGGGAGCGCCGCGTGCGGCTCCGCGCTGCCCGGCGGCTGTGAGCGCTGC



GGGCGCGGCGCGGGGCTTTGTGCGCTCCGCAGTGTGCGCGAGGGGAGCGCGG



CCGGGGGCGGTGCCCCGCGGTGCGGGGGGGGCTGCGAGGGGAACAAAGGCT



GCGTGCGGGGTGTGTGCGTGGGGGGGTGAGCAGGGGGTGTGGGCGCGTCGGT



CGGGCTGCAACCCCCCCTGCACCCCCCTCCCCGAGTTGCTGAGCACGGCCCGG



CTTCGGGTGCGGGGCTCCGTACGGGGCGTGGCGCGGGGCTCGCCGTGCCGGG



CGGGGGGTGGCGGCAGGTGGGGGTGCCGGGCGGGGGGGGCCGCCTCGGGC



CGGGGAGGGCTCGGGGGAGGGGCGCGGCGGCCCCCGGAGCGCCGGCGGCTG



TCGAGGCGCGGCGAGCCGCAGCCATTGCCTTTTATGGTAATCGTGCGAGAGG



GCGCAGGGACTTCCTTTGTCCCAAATCTGTGCGGAGCCGAAATCTGGGAGGCG



CCGCCGCACCCCCTCTAGCGGGCGCGGGGCGAAGCGGTGCGGCGCCGGCAGG



AAGGAAATGGGCGGGGAGGGCCTTCGTGCGTCGCCGCGCCGCCGTCCCCTTCT



CCCTCTCCAGCCTCGGGGCTGTCCGCGGGGGGACGGCTGCCTTCGGGGGGGA



CGGGGCAGGGCGGGGTTCGGCTTCTGGCGTGTGACCGGCGGCTCTAGAGCCT



CTGCTAACCATGTTCATGCCTTCTTCTTTTTCCTACAGCTCCTGGGCAACGTGC



TGGTTATTGTGCTGTCTCATCATTTTGGCAAAGAATTC (SEQ ID NO: 21)





hEF1aV2
Gggcagagcgcacatcgcccacagtccccgagaagttggggggaggggtcggcaattgaaccggtgcctagagaaggtgg



cgcggggtaaactgggaaagtgatgtcgtgtactggctccgcctttttcccgaggggggggagaaccgtatataagtgcagtag



tcgccgtgaacgttctttttcgcaacgggtttgccgccagaacacag (SEQ ID NO: 22)





hACTb
CCACTAGTTCCATGTCCTTATATGGACTCATCTTTGCCTATTGCGACACACACT



CAATGAACACCTACTACGCGCTGCAAAGAGCCCCGCAGGCCTGAGGTGCCCC



CACCTCACCACTCTTCCTATTTTTGTGTAAAAATCCAGCTTCTTGTCACCACCT



CCAAGGAGGGGGAGGAGGAGGAAGGCAGGTTCCTCTAGGCTGAGCCGAATG



CCCCTCTGTGGTCCCACGCCACTGATCGCTGCATGCCCACCACCTGGGTACAC



ACAGTCTGTGATTCCCGGAGCAGAACGGACCCTGCCCACCCGGTCTTGTGTGC



TACTCAGTGGACAGACCCAAGGCAAGAAAGGGTGACAAGGACAGGGTCTTCC



CAGGCTGGCTTTGAGTTCCTAGCACCGCCCCGCCCCCAATCCTCTGTGGCACA



TGGAGTCTTGGTCCCCAGAGTCCCCCAGCGGCCTCCAGATGGTCTGGGAGGGC



AGTTCAGCTGTGGCTGCGCATAGCAGACATACAACGGACGGTGGGCCCAGAC



CCAGGCTGTGTAGACCCAGCCCCCCCGCCCCGCAGTGCCTAGGTCACCCACTA



ACGCCCCAGGCCTGGTCTTGGCTGGGCGTGACTGTTACCCTCAAAAGCAGGCA



GCTCCAGGGTAAAAGGTGCCCTGCCCTGTAGAGCCCACCTTCCTTCCCAGGGC



TGCGGCTGGGTAGGTTTGTAGCCTTCATCACGGGCCACCTCCAGCCACTGGAC



CGCTGGCCCCTGCCCTGTCCTGGGGAGTGTGGTCCTGCGACTTCTAAGTGGCC



GCAAGCCACCTGACTCCCCCAACACCACACTCTACCTCTCAAGCCCAGGTCTC



TCCCTAGTGACCCACCCAGCACATTTAGCTAGCTGAGCCCCACAGCCAGAGGT



CCTCAGGCCCTGCTTTCAGGGCAGTTGCTCTGAAGTCGGCAAGGGGGAGTGAC



TGCCTGGCCACTCCATGCCCTCCAAGAGCTCCTTCTGCAGGAGCGTACAGAAC



CCAGGGCCCTGGCACCCGTGCAGACCCTGGCCCACCCCACCTGGGCGCTCAGT



GCCCAAGAGATGTCCACACCTAGGATGTCCCGCGGTGGGTGGGGGGCCCGAG



AGACGGGCAGGCCGGGGGCAGGCCTGGCCATGCGGGGCCGAACCGGGCACT



GCCCAGCGTGGGGCGCGGGGGCCACGGCGCGCGCCCCCAGCCCCCGGGCCCA



GCACCCCAAGGCGGCCAACGCCAAAACTCTCCCTCCTCCTCTTCCTCAATCTC



GCTCTCGCTCTTTTTTTTTTTCGCAAAAGGAGGGGAGAGGGGGTAAAAAAATG



CTGCACTGTGCGGCGAAGCCGGTGAGTGAGCGGCGCGGGGCCAATCAGCGTG



CGCCGTTCCGAAAGTTGCCTTTTATGGCTCGAGCGGCCGCGGCGGCGCCCTAT



AAAACCCAGCGGCGCGACGCGCCACCACCGCCGAGACCGCGTCCGCCCCGCG



AGCACAGAGCCTCGCCTTTGCCGATCCGCCGCCCGTCCACACCCGCCGCCAGgt



aagcccggccagccgaccggggcaggcggctcacggcccggccgcaggcggccgcggccccttcgcccgtgcagagccg



ccgtctgggccgcagcggggggcgcatggggggggaaccggaccgccgtggggggcgcgggagaagcccctgggcctcc



ggagatgggggacaccccacgccagttcggaggcgcgaggccgcgctcgggaggcgcgctccgggggtgccgctctcggg



gcgggggcaaccggcggggtctttgtctgagccgggctcttgccaatggggatcgcaggggggcgcggcggagcccccgc



caggcccggtgggggctggggcgccattgcgcgtgcgcgctggtcctttggggctaactgcgtgcgcgctgggaattggcgc



taattgcgcgtgcgcgctgggactcaaggcgctaactgcgcgtgcgttctggggcccggggtgccgcggcctgggctggggc



gaagggggctcggccggaaggggggggtcgccgcggctcccgggcgcttgegcgcacttcctgcccgagccgctggccg



cccgagggtgtggccgctgcgtgcgcgcgcgccgacccggcgctgtttgaaccgggcggaggcggggctggcgcccggttg



ggagggggttggggcctggcttcctgccgcgcgccgcggggacgcctccgaccagtgtttgccttttatggtaataacgcggcc



ggcccggcttcctttgtccccaatctgggcgcgcgccggcgccccctggcggcctaaggactcggcgcgccggaagtggcca



ggggggggcgacctcggctcacagcgcgcccggctat (SEQ ID NO: 23)





heIF4A1
GTTGATTTCCTTCATCCCTGGCACACGTCCAGGCAGTGTCGAATCCATCTCTGC



TACAGGGGAAAACAAATAACATTTGAGTCCAGTGGAGACCGGGAGCAGAAGT



AAAGGGAAGTGATAACCCCCAGAGCCCGGAAGCCTCTGGAGGCTGAGACCTC



GCCCCCCTTGCGTGATAGGGCCTACGGAGCCACATGACCAAGGCACTGTCGCC



TCCGCACGTGTGAGAGTGCAGGGCCCCAAGATGGCTGCCAGGCCTCGAGGCC



TGACTCTTCTATGTCACTTCCGTACCGGCGAGAAAGGCGGGCCCTCCAGCCAA



TGAGGCTGCGGGGCGGGCCTTCACCTTGATAGGCACTCGAGTTATCCAATGGT



GCCTGCGGGCCGGAGCGACTAGGAACTAACGTCATGCCGAGTTGCTGAGCGC



CGGCAGGCGGGGCCGGGGCGGCCAAACCAATGCGATGGCCGGGGCGGAGTC



GGGCGCTCTATAAGTTGTCGATAGGCGGGCACTCCGCCCTAGTTTCTAAGGAC



CATG (SEQ ID NO: 24)





hGAPDH
AGTTCCCCAACTTTCCCGCCTCTCAGCCTTTGAAAGAAAGAAAGGGGAGGGG



GCAGGCCGCGTGCAGTCGCGAGCGGTGCTGGGCTCCGGCTCCAATTCCCCATC



TCAGTCGCTCCCAAAGTCCTTCTGTTTCATCCAAGCGTGTAAGGGTCCCCGTCC



TTGACTCCCTAGTGTCCTGCTGCCCACAGTCCAGTCCTGGGAACCAGCACCGA



TCACCTCCCATCGGGCCAATCTCAGTCCCTTCCCCCCTACGTCGGGGCCCACA



CGCTCGGTGCGTGCCCAGTTGAACCAGGCGGCTGCGGAAAAAAAAAAGCGGG



GAGAAAGTAGGGCCCGGCTACTAGCGGTTTTACGGGCGCACGTAGCTCAGGC



CTCAAGACCTTGGGCTGGGACTGGCTGAGCCTGGCGGGAGGCGGGGTCCGAG



TCACCGCCTGCCGCCGCGCCCCCGGTTTCTATAAATTGAGCCCGCAGCCTCCC



GCTTCGCTCTCTGCTCCTCCTGTTCGACAGTCAGCCGCATCTTCTTTTGCGTCG



CCAGgtgaagacgggcggagagaaacccgggaggctagggacggcctgaaggcggcagggggggcgcaggccgga



tgtgttcgcgccgctgcggggtgggcccgggcggcctccgcattgcaggggcgggcggaggacgtgatgcggcgcgggctg



ggcatggaggcctggtgggggaggggaggggaggcgtgggtgtcggccggggccactaggcgctcactgttctctccctccg



cgcagCCGAGCCACATCGCTGAGACAC (SEQ ID NO: 25)





hGRP78
AGTGCGGTTACCAGCGGAAATGCCTCGGGGTCAGAAGTCGCAGGAGAGATAG



ACAGCTGCTGAACCAATGGGACCAGCGGATGGGGCGGATGTTATCTACCATT



GGTGAACGTTAGAAACGAATAGCAGCCAATGAATCAGCTGGGGGGGCGGAGC



AGTGACGTTTATTGCGGAGGGGGCCGCTTCGAATCGGCGGCGGCCAGCTTGGT



GGCCTGGGCCAATGAACGGCCTCCAACGAGCAGGGCCTTCACCAATCGGCGG



CCTCCACGACGGGGCTGGGGGAGGGTATATAAGCCGAGTAGGCGACGGTGAG



GTCGACGCCGGCCAAGACAGCACAGACAGATTGACCTATTGGGGTGTTTCGC



GAGTGTGAGAGGGAAGCGCCGCGGCCTGTATTTCTAGACCTGCCCTTCGCCTG



GTTCGTGGCGCCTTGTGACCCCGGGCCCCTGCCGCCTGCAAGTCGGAAATTGC



GCTGTGCTCCTGTGCTACGGCCTGTGGCTGGACTGCCTGCTGCTGCCCAACTG



GCTGGCAC (SEQ ID NO: 26)





hGRP94
TAGTTTCATCACCACCGCCACCCCCCCGCCCCCCCGCCATCTGAAAGGGTTCT



AGGGGATTTGCAACCTCTCTCGTGTGTTTCTTCTTTCCGAGAAGCGCCGCCAC



ACGAGAAAGCTGGCCGCGAAAGTCGTGCTGGAATCACTTCCAACGAAACCCC



AGGCATAGATGGGAAAGGGTGAAGAACACGTTGCCATGGCTACCGTTTCCCC



GGTCACGGAATAAACGCTCTCTAGGATCCGGAAGTAGTTCCGCCGCGACCTCT



CTAAAAGGATGGATGTGTTCTCTGCTTACATTCATTGGACGTTTTCCCTTAGAG



GCCAAGGCCGCCCAGGCAAAGGGGCGGTCCCACGCGTGAGGGGCCCGCGGA



GCCATTTGATTGGAGAAAAGCTGCAAACCCTGACCAATCGGAAGGAGCCACG



CTTCGGGCATCGGTCACCGCACCTGGACAGCTCCGATTGGTGGACTTCCGCCC



CCCCTCACGAATCCTCATTGGGTGCCGTGGGTGCGTGGTGCGGCGCGATTGGT



GGGTTCATGTTTCCCGTCCCCCGCCCGCGAGAAGTGGGGGTGAAAAGCGGCC



CGACCTGCTTGGGGTGTAGTGGGCGGACCGCGCGGCTGGAGGTGTGAGGATC



CGAACCCAGGGGTGGGGGGTGGAGGCGGCTCCTGCGATCGAAGGGGACTTGA



GACTCACCGGCCGCACGTC (SEQ ID NO: 27)





hHSP70
GGGCCGCCCACTCCCCCTTCCTCTCAGGGTCCCTGTCCCCTCCAGTGAATCCCA



GAAGACTCTGGAGAGTTCTGAGCAGGGGGCGGCACTCTGGCCTCTGATTGGTC



CAAGGAAGGCTGGGGGGCAGGACGGGAGGCGAAAACCCTGGAATATTCCCG



ACCTGGCAGCCTCATCGAGCTCGGTGATTGGCTCAGAAGGGAAAAGGCGGGT



CTCCGTGACGACTTATAAAAGCCCAGGGGCAAGCGGTCCGGATAACGGCTAG



CCTGAGGAGCTGCTGCGACAGTCCACTACCTTTTTCGAGAGTGACTCCCGTTG



TCCCAAGGCTTCCCAGAGCGAACCTGTGCGGCTGCAGGCACCGGCGCGTCGA



GTTTCCGGCGTCCGGAAGGACCGAGCTCTTCTCGCGGATCCAGTGTTCCGTTT



CCAGCCCCCAATCTCAGAGCGGAGCCGACAGAGAGCAGGGAACCC (SEQ ID



NO: 28)





hKINb
GCCCCACCCCCGTCCGCGTTACAACCGGGAGGCCCGCTGGGTCCTGCACCGTC



ACCCTCCTCCCTGTGACCGCCCACCTGATACCCAAACAACTTTCTCGCCCCTCC



AGTCCCCAGCTCGCCGAGCGCTTGCGGGGAGCCACCCAGCCTCAGTTTCCCCA



GCCCCGGGCGGGGCGAGGGGCGATGACGTCATGCCGGCGCGCGGCATTGTGG



GGCGGGGCGAGGCGGGGCGCCGGGGGGAGCAACACTGAGACGCCATTTTCGG



CGGCGGGAGCGGCGCAGGCGGCCGAGCGGGACTGGCTGGGTCGGCTGGGCTG



CTGGTGCGAGGAGCCGCGGGGCTGTGCTCGGCGGCCAAGGGGACAGCGCGTG



GGTGGCCGAGGATGCTGCGGGGCGGTAGCTCCGGCGCCCCTCGCTGGTGACT



GCTGCGCCGTGCCTCACACAGCCGAGGCGGGCTCGGCGCACAGTCGCTGCTCC



GCGCTCGCGCCCGGCGGCGCTCCAGGTGCTGACAGCGCGAGAGAGCGCGGCC



TCAGGAGCAACAC (SEQ ID NO: 29)





hUBIb
TTCCAGAGCTTTCGAGGAAGGTTTCTTCAACTCAAATTCATCCGCCTGATAATT



TTCTTATATTTTCCTAAAGAAGGAAGAGAAGCGCATAGAGGAGAAGGGAAAT



AATTTTTTAGGAGCCTTTCTTACGGCTATGAGGAATTTGGGGCTCAGTTGAAA



AGCCTAAACTGCCTCTCGGGAGGTTGGGCGCGGCGAACTACTTTCAGCGGCGC



ACGGAGACGGCGTCTACGTGAGGGGTGATAAGTGACGCAACACTCGTTGCAT



AAATTTGCGCTCCGCCAGCCCGGAGCATTTAGGGGCGGTTGGCTTTGTTGGGT



GAGCTTGTTTGTGTCCCTGTGGGTGGACGTGGTTGGTGATTGGCAGGATCCTG



GTATCCGCTAACAGgtactggcccacagccgtaaagacctgcgggggcgtgagaggggggaatgggtgaggtc



aagctggaggcttcttggggttgggtgggccgctgaggggaggggagggcgaggtgacgcgacacccggcctttctgggag



agtgggccttgttgacctaaggggggcgagggcagttggcacgcgcacgcgccgacagaaactaacagacattaaccaacag



cgattccgtcgcgtttacttgggaggaaggcggaaaagaggtagtttgtgtggcttctggaaaccctaaatttggaatcccagtatg



agaatggtgtcccttcttgtgtttcaatgggatttttacttcgcgagtcttgtgggtttggttttgttttcagtttgcctaacaccgtgcttag



gtttgaggcagattggagttcggtcgggggagtttgaatatccggaacagttagtggggaaagctgtggacgcttggtaagagag



cgctctggattttccgctgttgacgttgaaaccttgaatgacgaatttcgtattaagtgacttagccttgtaaaattgaggggaggcttg



cggaatattaacgtatttaaggcattttgaaggaatagttgctaattttgaagaatattaggtgtaaaagcaagaaatacaatgatcct



gaggtgacacgcttatgttttacttttaaactagGTCACC (SEQ ID NO: 30)





CAG
gacattgattattgactagttattaatagtaatcaattacggggtcattagttcatagcccatatatggagttccg



cgttacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgcccattgacgtcaataa



tgacgtatgttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagtatttacggtaaact



gcccacttggcagtacatcaagtgtatcatatgccaagtacgccccctattgacgtcaatgacggtaaatgg



cccgcctggcattatgcccagtacatgaccttatgggactttcctacttggcagtacatctacgtattagtcatc



gctattaccatggtcgaggtgagccccacgttctgcttcactctccccatctcccccccctccccaccccca



attttgtatttatttattttttaattattttgtgcagcgatgggggcggggggggggggggggcgcgcgccag



gcggggcggggcggggcgaggggcggggcggggcgaggcggagaggtgcggcggcagccaatc



agagcggcgcgctccgaaagtttccttttatggcgaggcggcggcggcggcggccctataaaaagcgaa



gcgcgcggcgggcg (SEQ ID NO: 173)





HLP
Tgtttgctgcttgcaatgtttgcccattttagggtggacacaggacgctgtggtttctgagccagggggcga



ctcagatcccagccagtggacttagcccctgtttgctcctccgataactggggtgaccttggttaatattcacc



agcagcctcccccgttgcccctctggatccactgcttaaatacggacgaggacagggccctgtctcctcag



cttcaggcaccaccactgacctgggacagtgaat (SEQ ID NO: 174)









The promoter can be a tissue-specific promoter. In general, a tissue-specific promoter directs transcription of a nucleic acid, (e.g., the engineered nucleic acids encoding the proteins herein (e.g., a cytokine, CAR, ACP, and/or membrane-cleavable chimeric protein described herein) such that expression is limited to a specific cell type, organelle, or tissue. Tissue-specific promoters include, but are not limited to, albumin (liver specific, Pinkert et al., (1987)), lymphoid specific promoters (Calame and Eaton, 1988), particular promoters of T-cell receptors (Winoto and Baltimore, (1989)) and immunoglobulins; Banerji et al., (1983); Queen and Baltimore, 1983), neuron specific promoters (e.g. the neurofilament promoter; Byrne and Ruddle, 1989), pancreas specific promoters (Edlund et al., (1985)) or mammary gland specific promoters (milk whey promoter, U.S. Pat. No. 4,873,316 and European Application Publication No. 264,166) as well as developmentally regulated promoters such as the murine hox promoters (Kessel and Gruss, Science 249:374-379 (1990)) or the α-fetoprotein promoter (Campes and Tilghman, Genes Dev. 3:537-546 (1989)), the contents of each of which are fully incorporated by reference herein. The promoter can be constitutive in the respective specific cell type, organelle, or tissue. Tissue-specific promoters and/or regulatory elements can also include promoters from the liver fatty acid binding (FAB) protein gene, specific for colon epithelial cells; the insulin gene, specific for pancreatic cells; the transphyretin, .alpha.1-antitrypsin, plasminogen activator inhibitor type 1 (PAI-I), apolipoprotein A1 and LDL receptor genes, specific for liver cells; the myelin basic protein (MBP) gene, specific for oligodendrocytes; the glial fibrillary acidic protein (GFAP) gene, specific for glial cells; OPSIN, specific for targeting to the eye; and the neural-specific enolase (NSE) promoter that is specific for nerve cells. Examples of tissue-specific promoters include, but are not limited to, the promoter for creatine kinase, which has been used to direct expression in muscle and cardiac tissue and immunoglobulin heavy or light chain promoters for expression in B cells. Other tissue specific promoters include the human smooth muscle alpha-actin promoter. Exemplary tissue-specific expression elements for the liver include but are not limited to HMG-COA reductase promoter, sterol regulatory element 1, phosphoenol pyruvate carboxy kinase (PEPCK) promoter, human C-reactive protein (CRP) promoter, human glucokinase promoter, cholesterol L 7-alpha hydroylase (CYP-7) promoter, beta-galactosidase alpha-2,6 sialylkansferase promoter, insulin-like growth factor binding protein (IGFBP-I) promoter, aldolase B promoter, human transferrin promoter, and collagen type I promoter. Exemplary tissue-specific expression elements for the prostate include but are not limited to the prostatic acid phosphatase (PAP) promoter, prostatic secretory protein of 94 (PSP 94) promoter, prostate specific antigen complex promoter, and human glandular kallikrein gene promoter (hgt-1). Exemplary tissue-specific expression elements for gastric tissue include but are not limited to the human H+/K+-ATPase alpha subunit promoter. Exemplary tissue-specific expression elements for the pancreas include but are not limited to pancreatitis associated protein promoter (PAP), elastase 1 transcriptional enhancer, pancreas specific amylase and elastase enhancer promoter, and pancreatic cholesterol esterase gene promoter. Exemplary tissue-specific expression elements for the endometrium include, but are not limited to, the uteroglobin promoter. Exemplary tissue-specific expression elements for adrenal cells include, but are not limited to, cholesterol side-chain cleavage (SCC) promoter. Exemplary tissue-specific expression elements for the general nervous system include, but are not limited to, gamma-gamman enolase (neuron-specific enolase, NSE) promoter. Exemplary tissue-specific expression elements for the brain include, but are not limited to, the neurofilament heavy chain (NF-H) promoter. Exemplary tissue-specific expression elements for lymphocytes include, but are not limited to, the human CGL-1/granzyme B promoter, the terminal deoxy transferase (TdT), lambda 5, VpreB, and lck (lymphocyte specific tyrosine protein kinase p561ck) promoter, the humans CD2 promoter and its 3′ transcriptional enhancer, and the human NK and T cell specific activation (NKG5) promoter. Exemplary tissue-specific expression elements for the colon include, but are not limited to, pp60c-src tyrosine kinase promoter, organ-specific neoantigens (OSNs) promoter, and colon specific antigen-P promoter. Tissue-specific expression elements for breast cells are for example, but are not limited to, the human alpha-lactalbumin promoter. Exemplary tissue-specific expression elements for the lung include, but are not limited to, the cystic fibrosis transmembrane conductance regulator (CFTR) gene promoter.


In some embodiments, a promoter of the present disclosure is modulated by signals within a tumor microenvironment. A tumor microenvironment is considered to modulate a promoter if, in the presence of the tumor microenvironment, the activity of the promoter is increased or decreased by at least 10%, relative to activity of the promoter in the absence of the tumor microenvironment. In some embodiments, the activity of the promoter is increased or decreased by at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 100%, relative to activity of the promoter in the absence of the tumor microenvironment. For example, the activity of the promoter is increased or decreased by 10-20%, 10-30%, 10-40%, 10-50%, 10-60%, 10-70%, 10-80%, 10-90%, 10-100%, 10-200%, 20-30%, 20-40%, 20-50%, 20-60%, 20-70%, 20-80%, 20-90%, 20-100%, 20-200%, 50-60%, 50-70%, 50-80%, 50-90%, 50-100%, or 50-200%, relative to activity of the promoter in the absence of the tumor microenvironment.


In some embodiments, the activity of the promoter is increased or decreased by at least 2 fold (e.g., 2, 3, 4, 5, 10, 25, 20, 25, 50, or 100 fold), relative to activity of the promoter in the absence of the tumor microenvironment. For example, the activity of the promoter is increased or decreased by at least 3 fold, at least 5 fold, at least 10 fold, at least 20 fold, at least 50 fold, or at least 100 fold, relative to activity of the promoter in the absence of the tumor microenvironment. In some embodiments, the activity of the promoter is increased or decreased by 2-10, 2-20, 2-30, 2-40, 2-50, 2-60, 2-70, 2-80, 2-90, or 2-100 fold, relative to activity of the promoter in the absence of the tumor microenvironment.


In some embodiments, a promoter of the present disclosure is activated under a hypoxic condition. A “hypoxic condition” is a condition where the body or a region of the body is deprived of adequate oxygen supply at the tissue level. Hypoxic conditions can cause inflammation (e.g., the level of inflammatory cytokines increase under hypoxic conditions). In some embodiments, the promoter that is activated under hypoxic condition is operably linked to a nucleotide encoding a protein that decreases the expression of activity of inflammatory cytokines, thus reducing the inflammation caused by the hypoxic condition. In some embodiments, the promoter that is activated under hypoxic conditions comprises a hypoxia responsive element (HRE). A “hypoxia responsive element (HRE)” is a response element that responds to hypoxia-inducible factor (HIF). The HRE, in some embodiments, comprises a consensus motif NCGTG (where N is either A or G).


Activation-Conditional Control Polypeptide (ACP) Promoter Systems

In some embodiments, a synthetic promoter is a promoter system including an activation-conditional control polypeptide- (ACP-) binding domain sequence and a promoter sequence. Such a system is also referred to herein as an “ACP-responsive promoter.” In general, an ACP promoter system includes a first expression cassette encoding an activation-conditional control polypeptide (ACP) and a second expression cassette encoding an ACP-responsive promoter operably linked to an exogenous polynucleotide sequence, such as the exogenous polynucleotide sequence encoding the cytokines, including membrane-cleavable chimeric proteins versions of cytokines, described herein or any other protein of interest (e.g., a protease or CAR). In some embodiments, the first expression cassette and second expression cassette are each encoded by a separate engineered nucleic acid. In other embodiments, the first expression cassette and the second expression cassette are encoded by the same engineered nucleic acid.


The ACP-responsive promoter can be operably linked to a nucleotide sequence encoding a single protein of interest or multiple proteins of interest. In some embodiments, a synthetic promoter comprises the nucleic acid sequence of AATTAACGGGTTTCGTAACAATCGCATGAGGATTCGCAACGCCTTTGAAGCAGTCG ACGCCGAAGTCCCGTCTCAGTAAAGGTTGAAGCAGTCGACGCCGAAGAATCGGACT GCCTTCGTATGAAGCAGTCGACGCCGAAGGTATCAGTCGCCTCGGAATGAAGCAGT CGACGCCGAAGATTCGTAAGAGGCTCACTCTCCCTTACACGGAGTGGATAACTAGT TCTAGAGGGTATATAATGGGGGCCAACGCGTACCGGTGTC (SEQ ID NO: 298). In some embodiments, a synthetic promoter comprises a sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 298. In some embodiments, a synthetic promoter comprises the nucleic acid sequence of CGGGTTTCGTAACAATCGCATGAGGATTCGCAACGCCTTCGGCGTAGCCGATGTCG CGCTCCCGTCTCAGTAAAGGTCGGCGTAGCCGATGTCGCGCAATCGGACTGCCTTCG TACGGCGTAGCCGATGTCGCGCGTATCAGTCGCCTCGGAACGGCGTAGCCGATGTC GCGCATTCGTAAGAGGCTCACTCTCCCTTACACGGAGTGGATAACTAGTTCTAGAG GGTATATAATGGGGGCCA (SEQ ID NO: 299). In some embodiments, a synthetic promoter comprises a sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 299.


The promoters of the ACP promoter system, e.g., either a promoter driving expression of the ACP or the promoter sequence of the ACP-responsive promoter, can include any of the promoter sequences described herein (see “Promoters” above). The ACP-responsive promoter can be derived from minP, NFkB response element, CREB response element, NFAT response element, SRF response element 1, SRF response element 2, AP1 response element, TCF-LEF response element promoter fusion, Hypoxia responsive element, SMAD binding element, STAT3 binding site, minCMV, YB_TATA, minTK, inducer molecule responsive promoters, and tandem repeats thereof. In some embodiments, the ACP-responsive promoter includes a minimal promoter.


In some embodiments, the ACP-binding domain includes one or more zinc finger binding sites. In some embodiments, the ACP-responsive promoter includes a minimal promoter and the ACP-binding domain includes one or more zinc finger binding sites. The ACP-binding domain can include 1, 2, 3, 4, 5, 6 7, 8, 9, 10, or more zinc finger binding sites. In some embodiments, the transcription factor is a zinc-finger-containing transcription factor. In some embodiments, the zinc-finger-containing transcription factor is a synthetic transcription factor. In some embodiments, the ACP-binding domain includes one or more zinc finger binding sites and the ACP has a DNA-binding zinc finger protein domain (ZF protein domain). In some embodiments, the ACP has a DNA-binding zinc finger protein domain (ZF protein domain) and an effector domain. In some embodiments, the ACP-binding domain includes one or more zinc finger binding sites and the ACP has a DNA-binding zinc finger protein domain (ZF protein domain) and an effector domain. In some embodiments, the ZF protein domain is modular in design and is composed of zinc finger arrays (ZFA). A zinc finger array comprises multiple zinc finger protein motifs that are linked together. Each zinc finger motif binds to a different nucleic acid motif. This results in a ZFA with specificity to any desired nucleic acid sequence, e.g., a ZFA with desired specificity to an ACP-binding domain having a specific zinc finger binding site composition and/or configuration. The ZF motifs can be directly adjacent to each other, or separated by a flexible linker sequence. In some embodiments, a ZFA is an array, string, or chain of ZF motifs arranged in tandem. A ZFA can have 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 zinc finger motifs. The ZFA can have from 1-10, 1-15, 1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 1-8, 1-9, 2-3, 2-4, 2-5, 2-6, 2-7, 2-8, 2-9, 2-10, 3-4, 3-5 3-6, 3-7, 3-8, 3-9, 3-10, 4-5, 4-6, 4-7, 4-8, 4-9, 4-10, 5-6, 5-7, 5-8, 5-9, 5-10, or 5-15 zinc finger motifs. The ZF protein domain can have 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or more ZFAs. The ZF domain can have from 1-10, 1-15, 1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 1-8, 1-9, 2-3, 2-4, 2-5, 2-6, 2-7, 2-8, 2-9, 2-10, 3-4, 3-5 3-6, 3-7, 3-8, 3-9, 3-10, 4-5, 4-6, 4-7, 4-8, 4-9, 4-10, 5-6, 5-7, 5-8, 5-9, 5-10, or 5-15 ZFAs. In some embodiments, the ZF protein domain comprises one to ten ZFA(s). In some embodiments, the ZF protein domain comprises at least one ZFA. In some embodiments, the ZF protein domain comprises at least two ZFAs. In some embodiments, the ZF protein domain comprises at least three ZFAs. In some embodiments, the ZF protein domain comprises at least four ZFAs. In some embodiments, the ZF protein domain comprises at least five ZFAs. In some embodiments, the ZF protein domain comprises at least ten ZFAs.


In some embodiments, the DNA-binding domain comprises a tetracycline (or derivative thereof) repressor (TetR) domain.


The ACP can also further include an effector domain, such as a transcriptional effector domain. For instance, a transcriptional effector domain can be the effector or activator domain of a transcription factor. Transcription factor activation domains are also known as transactivation domains, and act as scaffold domains for proteins such as transcription coregulators that act to activate or repress transcription of genes. Any suitable transcriptional effector domains can be used in the ACP including, but not limited to, a Herpes Simplex Virus Protein 16 (VP16) activation domain; an activation domain consisting of four tandem copies of VP16, a VP64 activation domain; a p65 activation domain of NFκB; an Epstein-Barr virus R transactivator (Rta) activation domain; a tripartite activator comprising the VP64, the p65, and the Rta activation domains, the tripartite activator is known as a VPR activation domain; a histone acetyltransferase (HAT) core domain of the human E1A-associated protein p300, known as a p300 HAT core activation domain; a Krippel associated box (KRAB) repression domain; a Repressor Element Silencing Transcription Factor (REST) repression domain; a WRPW motif (SEQ ID NO: 346) of the hairy-related basic helix-loop-helix repressor proteins, the motif is known as a WRPW repression domain (SEQ ID NO: 346); a DNA (cytosine-5)-methyltransferase 3B (DNMT3B) repression domain; and an HP1 alpha chromoshadow repression domain, or any combination thereof.


In some embodiments, the effector domain is s transcription effector domain selected from: a Herpes Simplex Virus Protein 16 (VP16) activation domain; an activation domain consisting of four tandem copies of VP16, a VP64 activation domain; a p65 activation domain of NFκB; an Epstein-Barr virus R transactivator (Rta) activation domain; a tripartite activator comprising the VP64, the p65, and the Rta activation domains, the tripartite activator is known as a VPR activation domain; a histone acetyltransferase (HAT) core domain of the human E1A-associated protein p300, known as a p300 HAT core activation domain; a Krüppel associated box (KRAB) repression domain; a Repressor Element Silencing Transcription Factor (REST) repression domain; a WRPW motif (SEQ ID NO: 346) of the hairy-related basic helix-loop-helix repressor proteins, the motif is known as a WRPW repression domain (SEQ ID NO: 346); a DNA (cytosine-5)-methyltransferase 3B (DNMT3B) repression domain; and an HP1 alpha chromoshadow repression domain.


In some embodiments, the ACP is a small molecule (e.g., drug) inducible polypeptide. For example, in some embodiments, the ACP may be induced by tetracycline (or derivative thereof), and comprises a TetR domain and a VP16 effector domain. In some embodiments, the ACP includes an estrogen receptor variant, such as ERT2, and may be regulated by tamoxifen, or a metabolite thereof (such as 4-hydroxy-tamoxifen [4-OHT], N-desmethyltamoxifen, tamoxifen-N-oxide, or endoxifen), through tamoxifen-controlled nuclear localization. In some embodiments, the ACP comprises a nuclear-localization signal (NLS). In certain embodiments, the NLS comprises the amino acid sequence of MPKKKRKV (SEQ ID NO: 296). An exemplary nucleic acid sequence encoding SEQ ID NO: 296 is ATGCCCAAGAAGAAGCGGAAGGTT (SEQ ID NO: 297) or ATGCCCAAGAAAAAGCGGAAGGTG (SEQ ID NO: 340). In some embodiments, a nucleic acid sequence encoding SEQ ID NO: 296 may comprise SEQ ID NO: 297 or SEQ ID NO: 340, or comprises a sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 297 or SEQ ID NO: 340.


In some embodiments, the ACP is a small molecule (e.g., drug) inducible polypeptide that includes a repressible protease and one or more cognate cleavage sites of the repressible protease. In some embodiments, a repressible protease is active (cleaves a cognate cleavage site) in the absence of the specific agent and is inactive (does not cleave a cognate cleavage site) in the presence of the specific agent. In some embodiments, the specific agent is a protease inhibitor. In some embodiments, the protease inhibitor specifically inhibits a given repressible protease of the present disclosure. The repressible protease can be any of the proteases described herein that is capable of inactivation by the presence or absence of a specific agent (see “Protease Cleavage Site” above for exemplary repressible proteases, cognate cleavage sites, and protease inhibitors).


In some embodiments, the ACP has a degron domain (see “Degron Systems and Domains” above for exemplary degron sequences). The degron domain can be in any order or position relative to the individual domains of the ACP. For example, the degron domain can be N-terminal of the repressible protease, C-terminal of the repressible protease, N-terminal of the ZF protein domain, C-terminal of the ZF protein domain, N-terminal of the effector domain, or C-terminal of the effector domain.


Exemplary sequences of components of ACPs and exemplary ACPs of the present disclosure are provided in Table 5D. In some embodiments, nucleic acids may comprise a sequence in Table 5D, or a nucleic acid sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to a sequence in Table 5D.











TABLE 5D





Design
Amino Acid Sequence
Nucleic Acid Sequence







NLS + mini VPR
MPKKKRKVDALDDFDLDMLG
ATGCCCAAGAAAAAGCGGAAGGTGGACGCC


activation domain +
SDALDDFDLDMLGSDALDDF
CTGGACGACTTCGATCTGGATATGCTGGGCA


NS3 protease +
DLDMLGSDALDDFDLDMLINS
GCGACGCTCTGGATGATTTTGACCTGGACAT


ZFBD DNA
RSSGSPKKKRKVGSGGGSGGS
GCTCGGCTCTGATGCACTCGACGATTTCGAC


binding domain
GSVLPQAPAPAPAPAMVSALA
CTCGATATGTTGGGATCTGATGCCCTTGATG



QAPAPVPVLAPGPPQAVAPPA
ACTTTGATCTCGACATGTTGATCAATAGCCG



PKPTQAGEGTLSEALLQLQFD
GTCCAGCGGCAGCCCCAAGAAGAAGAGAAA



DEDLGALLGNSTDPAVFTDLA
AGTCGGCTCTGGCGGCGGATCTGGCGGTTCT



SVDNSEFQQLLNQGIPVAPHTT
GGATCTGTTTTGCCCCAAGCTCCTGCTCCTGC



EPMLMEYPEAITRLVTGAQRP
ACCAGCTCCAGCTATGGTTTCTGCTCTGGCTC



PDPAPAPLGAPGLPNGLLSGDE
AGGCTCCAGCTCCTGTGCCTGTTCTTGCTCCT



DFSSIADMDFSALLSGGGSGGS
GGACCTCCTCAGGCTGTTGCTCCACCAGCAC



GSDLSHPPPRGHLDELTTTLES
CTAAACCTACACAGGCCGGCGAGGGAACAC



MTEDLNLDSPLTPELNEILDTF
TGTCTGAAGCTCTGCTGCAGCTCCAGTTCGA



LNDECLLHAMHISTGLSIFDTS
CGACGAAGATCTGGGAGCCCTGCTGGGCAAT



LFEDVVCCHSIYGKKKGDIDT
AGCACAGATCCTGCCGTGTTCACCGATCTGG



YRYIGSSGTGCVVIVGRIVLSG
CCAGCGTGGACAATAGCGAGTTCCAGCAGCT



SGTSAPITAYAQQTRGLLGCIIT
CCTGAACCAGGGCATTCCTGTGGCTCCTCAC



SLTGRDKNQVEGEVQIVSTAT
ACCACCGAGCCTATGCTGATGGAATACCCCG



QTFLATCINGVCWAVYHGAG
AGGCCATCACCAGACTGGTCACCGGTGCTCA



TRTIASPKGPVIQMYTNVDQD
AAGACCACCTGATCCGGCTCCAGCACCTCTT



LVGWPAPQGSRSLTPCTCGSS
GGAGCACCTGGACTGCCTAATGGACTGCTGT



DLYLVTRHADVIPVRRRGDSR
CTGGCGACGAGGACTTCAGCTCTATCGCCGA



GSLLSPRPISYLKGSSGGPLLCP
CATGGATTTCAGCGCCCTGCTCAGTGGCGGT



AGHAVGLFRAAVCTRGVAKA
GGAAGCGGAGGAAGTGGCAGCGATCTTTCTC



VDFIPVENLETTMRSPVFTDNS
ACCCTCCACCTAGAGGCCACCTGGACGAGCT



SPPAVTLTHPITKIDREVLYQEF
GACAACCACACTGGAATCCATGACCGAGGA



DEMEECSQHMSRPGERPFQCR
CCTGAACCTGGACAGCCCTCTGACACCCGAG



ICMRNFSNMSNLTRHTRTHTG
CTGAACGAGATCCTGGACACCTTCCTGAACG



EKPFQCRICMRNFSDRSVLRR
ACGAGTGTCTGCTGCACGCCATGCACATCTC



HLRTHTGSQKPFQCRICMRNF
TACCGGCCTGAGCATCTTCGACACCAGCCTG



SDPSNLARHTRTHTGEKPFQC
TTTGAGGATGTCGTGTGCTGCCACAGCATCT



RICMRNFSDRSSLRRHLRTHTG
ACGGCAAGAAGAAGGGCGACATCGACACCT



SQKPFQCRICMRNFSQSGTLHR
ACCGGTACATCGGCAGCTCTGGCACAGGCTG



HTRTHTGEKPFQCRICMRNFS
TGTGGTCATCGTGGGCAGAATCGTGCTGTCT



QRPNLTRHLRTHLRGS (SEQ
GGCAGCGGAACAAGCGCCCCTATCACAGCCT



ID NO: 301)
ATGCTCAGCAGACAAGAGGCCTGCTGGGCTG




CATCATCACAAGCCTGACCGGCAGAGACAA




GAACCAGGTGGAAGGCGAGGTGCAGATCGT




GTCTACAGCTACCCAGACCTTCCTGGCCACC




TGTATCAATGGCGTGTGCTGGGCCGTGTATC




ACGGCGCTGGAACCAGAACAATCGCCTCTCC




TAAGGGCCCCGTGATCCAGATGTACACCAAC




GTGGACCAGGACCTCGTTGGCTGGCCTGCTC




CTCAAGGCAGCAGAAGCCTGACACCTTGCAC




CTGTGGCTCCAGCGATCTGTACCTGGTCACC




AGACACGCCGACGTGATCCCTGTCAGAAGA




AGAGGGGATTCCAGAGGCAGCCTGCTGAGC




CCTAGACCTATCAGCTACCTGAAGGGCTCTA




GCGGCGGACCTCTGCTTTGTCCTGCTGGACA




TGCCGTGGGCCTGTTTAGAGCCGCCGTGTGT




ACAAGAGGCGTGGCCAAAGCCGTGGACTTC




ATCCCCGTGGAAAACCTGGAAACCACCATGC




GGAGCCCCGTGTTCACCGACAATTCTAGCCC




TCCAGCCGTGACACTGACACACCCCATCACC




AAGATCGACAGAGAGGTGCTGTACCAAGAG




TTCGACGAGATGGAAGAGTGCAGCCAGCAC




ATGTCTAGACCTGGCGAGAGGCCCTTCCAGT




GCCGGATCTGCATGCGGAACTTCAGCAACAT




GAGCAACCTGACCAGACACACCCGGACACA




CACAGGCGAGAAGCCTTTTCAGTGCAGAATC




TGTATGCGCAATTTCTCCGACAGAAGCGTGC




TGCGGAGACACCTGAGAACCCACACCGGCA




GCCAGAAACCATTCCAGTGTCGCATCTGTAT




GAGAAACTTTAGCGACCCCTCCAATCTGGCC




CGGCACACCAGAACACATACCGGGGAAAAA




CCCTTTCAGTGTAGGATATGCATGAGGAATT




TTTCCGACCGGTCCAGCCTGAGGCGGCACCT




GAGGACACATACTGGCTCCCAAAAGCCGTTC




CAATGTCGGATATGTATGCGCAACTTTAGCC




AGAGCGGCACCCTGCACAGACACACAAGAA




CCCATACTGGCGAGAAACCTTTCCAATGTAG




AATCTGCATGCGAAATTTTTCCCAGCGGCCT




AATCTGACCAGGCATCTGAGGACCCACCTGA




GAGGATCT (SEQ ID NO: 306)





NLS + ZFBD
MPKKKRKVMSRPGERPFQCRI
ATGCCCAAGAAAAAGCGGAAGGTGATGTCT


DNA binding
CMRNFSNMSNLTRHTRTHTGE
AGACCTGGCGAGAGGCCCTTCCAGTGCCGGA


domain + NS3
KPFQCRICMRNFSDRSVLRRH
TCTGCATGCGGAACTTCAGCAACATGAGCAA


protease +
LRTHTGSQKPFQCRICMRNFS
CCTGACCAGACACACCCGGACACACACAGG


mini VPR
DPSNLARHTRTHTGEKPFQCRI
CGAGAAGCCTTTTCAGTGCAGAATCTGTATG


activation domain
CMRNFSDRSSLRRHLRTHTGS
CGCAATTTCTCCGACAGAAGCGTGCTGCGGA



QKPFQCRICMRNFSQSGTLHR
GACACCTGAGAACCCACACCGGCAGCCAGA



HTRTHTGEKPFQCRICMRNFS
AACCATTCCAGTGTCGCATCTGTATGAGAAA



QRPNLTRHLRTHLRGSEDVVC
CTTTAGCGACCCCTCCAATCTGGCCCGGCAC



CHSIYGKKKGDIDTYRYIGSSG
ACCAGAACACATACCGGGGAAAAACCCTTTC



TGCVVIVGRIVLSGSGTSAPIT
AGTGTAGGATATGCATGAGGAATTTTTCCGA



AYAQQTRGLLGCIITSLTGRDK
CCGGTCCAGCCTGAGGCGGCACCTGAGGAC



NQVEGEVQIVSTATQTFLATCI
ACATACTGGCTCCCAAAAGCCGTTCCAATGT



NGVCWAVYHGAGTRTIASPK
CGGATATGTATGCGCAACTTTAGCCAGAGCG



GPVIQMYTNVDQDLVGWPAP
GCACCCTGCACAGACACACAAGAACCCATA



QGSRSLTPCTCGSSDLYLVTRH
CTGGCGAGAAACCTTTCCAATGTAGAATCTG



ADVIPVRRRGDSRGSLLSPRPIS
CATGCGAAATTTTTCCCAGCGGCCTAATCTG



YLKGSSGGPLLCPAGHAVGLF
ACCAGGCATCTGAGGACCCACCTGAGAGGA



RAAVCTRGVAKAVDFIPVENL
TCTGAGGATGTCGTGTGCTGCCACAGCATCT



ETTMRSPVFTDNSSPPAVTLTH
ACGGCAAGAAGAAGGGCGACATCGACACCT



PITKIDREVLYQEFDEMEECSQ
ACCGGTACATCGGCAGCTCTGGCACAGGCTG



HDALDDFDLDMLGSDALDDF
TGTGGTCATCGTGGGCAGAATCGTGCTGTCT



DLDMLGSDALDDFDLDMLGS
GGCAGCGGAACAAGCGCCCCTATCACAGCCT



DALDDFDLDMLINSRSSGSPK
ATGCTCAGCAGACAAGAGGCCTGCTGGGCTG



KKRKVGSGGGSGGSGSVLPQA
CATCATCACAAGCCTGACCGGCAGAGACAA



PAPAPAPAMVSALAQAPAPVP
GAACCAGGTGGAAGGCGAGGTGCAGATCGT



VLAPGPPQAVAPPAPKPTQAG
GTCTACAGCTACCCAGACCTTCCTGGCCACC



EGTLSEALLQLQFDDEDLGAL
TGTATCAATGGCGTGTGCTGGGCCGTGTATC



LGNSTDPAVFTDLASVDNSEF
ACGGCGCTGGAACCAGAACAATCGCCTCTCC



QQLLNQGIPVAPHTTEPMLME
TAAGGGCCCCGTGATCCAGATGTACACCAAC



YPEAITRLVTGAQRPPDPAPAP
GTGGACCAGGACCTCGTTGGCTGGCCTGCTC



LGAPGLPNGLLSGDEDFSSIAD
CTCAAGGCAGCAGAAGCCTGACACCTTGCAC



MDFSALLSGGGSGGSGSDLSH
CTGTGGCTCCAGCGATCTGTACCTGGTCACC



PPPRGHLDELTTTLESMTEDLN
AGACACGCCGACGTGATCCCTGTCAGAAGA



LDSPLTPELNEILDTFLNDECLL
AGAGGGGATTCCAGAGGCAGCCTGCTGAGC



HAMHISTGLSIFDTSLF (SEQ ID
CCTAGACCTATCAGCTACCTGAAGGGCTCTA



NO: 302)
GCGGCGGACCTCTGCTTTGTCCTGCTGGACA




TGCCGTGGGCCTGTTTAGAGCCGCCGTGTGT




ACAAGAGGCGTGGCCAAAGCCGTGGACTTC




ATCCCCGTGGAAAACCTGGAAACCACCATGC




GGAGCCCCGTGTTCACCGACAATTCTAGCCC




TCCAGCCGTGACACTGACACACCCCATCACC




AAGATCGACAGAGAGGTGCTGTACCAAGAG




TTCGACGAGATGGAAGAGTGCAGCCAGCAC




GACGCCCTGGACGACTTCGATCTGGATATGC




TGGGCAGCGACGCTCTGGATGATTTTGACCT




GGACATGCTCGGCTCTGATGCACTCGACGAT




TTCGACCTCGATATGTTGGGATCTGATGCCC




TTGATGACTTTGATCTCGACATGTTGATCAAT




AGCCGGTCCAGCGGCAGCCCCAAGAAGAAG




AGAAAAGTCGGCTCTGGCGGCGGATCTGGC




GGTTCTGGATCTGTTTTGCCCCAAGCTCCTGC




TCCTGCACCAGCTCCAGCTATGGTTTCTGCTC




TGGCTCAGGCTCCAGCTCCTGTGCCTGTTCTT




GCTCCTGGACCTCCTCAGGCTGTTGCTCCAC




CAGCACCTAAACCTACACAGGCCGGCGAGG




GAACACTGTCTGAAGCTCTGCTGCAGCTCCA




GTTCGACGACGAAGATCTGGGAGCCCTGCTG




GGCAATAGCACAGATCCTGCCGTGTTCACCG




ATCTGGCCAGCGTGGACAATAGCGAGTTCCA




GCAGCTCCTGAACCAGGGCATTCCTGTGGCT




CCTCACACCACCGAGCCTATGCTGATGGAAT




ACCCCGAGGCCATCACCAGACTGGTCACCGG




TGCTCAAAGACCACCTGATCCGGCTCCAGCA




CCTCTTGGAGCACCTGGACTGCCTAATGGAC




TGCTGTCTGGCGACGAGGACTTCAGCTCTAT




CGCCGACATGGATTTCAGCGCCCTGCTCAGT




GGCGGTGGAAGCGGAGGAAGTGGCAGCGAT




CTTTCTCACCCTCCACCTAGAGGCCACCTGG




ACGAGCTGACAACCACACTGGAATCCATGAC




CGAGGACCTGAACCTGGACAGCCCTCTGACA




CCCGAGCTGAACGAGATCCTGGACACCTTCC




TGAACGACGAGTGTCTGCTGCACGCCATGCA




CATCTCTACCGGCCTGAGCATCTTCGACACC




AGCCTGTTT (SEQ ID NO: 305)





NLS + ZFBD
MPKKKRKVSRPGERPFQCRIC
ATGCCCAAGAAGAAGCGGAAGGTTTCCCGG


DNA binding
MRNFSRRHGLDRHTRTHTGEK
CCTGGCGAGAGGCCTTTCCAGTGCAGAATCT


domain + NS3
PFQCRICMRNFSDHSSLKRHLR
GCATGCGGAACTTCAGCAGACGGCACGGCCT


protease +
THTGSQKPFQCRICMRNFSVR
GGACAGACACACCAGAACACACACAGGCGA


mini VPR
HNLTRHLRTHTGEKPFQCRIC
GAAACCCTTCCAGTGCCGGATCTGTATGAGA


activation domain
MRNFSDHSNLSRHLKTHTGSQ
AATTTCAGCGACCACAGCAGCCTGAAGCGGC



KPFQCRICMRNFSQRSSLVRHL
ACCTGAGAACCCATACCGGCAGCCAGAAAC



RTHTGEKPFQCRICMRNFSESG
CATTTCAGTGTAGGATATGCATGCGCAATTT



HLKRHLRTHLRGSEDVVCCHS
CTCCGTGCGGCACAACCTGACCAGACACCTG



IYGKKKGDIDTYRYIGSSGTGC
AGGACACACACCGGGGAGAAGCCTTTTCAAT



VVIVGRIVLSGSGTSAPITAYA
GTCGCATATGCATGAGAAACTTCTCTGACCA



QQTRGLLGCIITSLTGRDKNQV
CTCCAACCTGAGCCGCCACCTCAAAACCCAC



EGEVQIVSTATQTFLATCINGV
ACCGGCTCTCAAAAGCCCTTCCAATGTAGAA



CWAVYHGAGTRTIASPKGPVI
TATGTATGAGGAACTTTAGCCAGCGGAGCAG



QMYTNVDQDLVGWPAPQGSR
CCTCGTGCGCCATCTGAGAACTCACACTGGC



SLTPCTCGSSDLYLVTRHADVI
GAAAAGCCGTTTCAATGCCGTATCTGTATGC



PVRRRGDSRGSLLSPRPISYLK
GCAACTTTAGCGAGAGCGGCCACCTGAAGA



GSSGGPLLCPAGHAVGLFRAA
GACATCTGCGCACACACCTGAGAGGCAGCG



VCTRGVAKAVDFIPVENLETT
AGGATGTCGTGTGCTGCCACAGCATCTACGG



MRSPVFTDNSSPPAVTLTHPIT
AAAGAAGAAGGGCGACATCGACACCTATCG



KIDREVLYQEFDEMEECSQHD
GTACATCGGCAGCAGCGGCACAGGCTGTGTT



ALDDFDLDMLGSDALDDFDL
GTGATCGTGGGCAGAATCGTGCTGAGCGGCT



DMLGSDALDDFDLDMLGSDA
CTGGAACAAGCGCCCCTATCACAGCCTACGC



LDDFDLDMLINSRSSGSPKKK
TCAGCAGACAAGAGGCCTGCTGGGCTGCATC



RKVGSGGGSGGSGSVLPQAPA
ATCACAAGCCTGACCGGCAGAGACAAGAAC



PAPAPAMVSALAQAPAPVPVL
CAGGTGGAAGGCGAGGTGCAGATCGTGTCT



APGPPQAVAPPAPKPTQAGEG
ACAGCTACCCAGACCTTCCTGGCCACCTGTA



TLSEALLQLQFDDEDLGALLG
TCAATGGCGTGTGCTGGGCCGTGTATCACGG



NSTDPAVFTDLASVDNSEFQQ
CGCTGGCACAAGAACAATCGCCTCTCCAAAG



LLNQGIPVAPHTTEPMLMEYP
GGCCCCGTGATCCAGATGTACACCAACGTGG



EAITRLVTGAQRPPDPAPAPLG
ACCAGGACCTCGTTGGCTGGCCTGCTCCTCA



APGLPNGLLSGDEDFSSIADM
AGGCAGCAGAAGCCTGACACCTTGCACCTGT



DFSALLSGGGSGGSGSDLSHPP
GGCTCCAGCGATCTGTACCTGGTCACCAGAC



PRGHLDELTTTLESMTEDLNL
ACGCCGACGTGATCCCTGTCAGAAGAAGAG



DSPL TPELNEILDTFLNDECLL
GGGATTCCAGAGGCAGCCTGCTGAGCCCTAG



HAMHISTGLSIFDTSLF (SEQ ID
ACCTATCAGCTACCTGAAGGGCAGCTCTGGC



NO: 303)
GGACCTCTGCTTTGTCCTGCTGGACATGCCG




TGGGCCTGTTTAGAGCCGCCGTGTGTACAAG




AGGCGTGGCCAAAGCCGTGGACTTCATCCCC




GTGGAAAACCTGGAAACCACCATGCGGAGC




CCCGTGTTCACCGACAATTCTAGCCCTCCAG




CCGTGACACTGACACACCCCATCACCAAGAT




CGACAGAGAGGTGCTGTACCAAGAGTTCGA




CGAGATGGAAGAGTGCAGCCAGCACGACGC




TCTTGATGACTTTGACCTGGATATGCTCGGA




TCAGATGCCCTGGACGATTTCGATCTGGACA




TGTTGGGGTCTGATGCTCTCGACGACTTCGA




TCTGGATATGCTTGGAAGTGACGCGCTGGAT




GATTTCGACCTTGACATGCTCATCAATTCTCG




ATCCAGTGGAAGCCCGAAAAAGAAACGCAA




GGTGGGAAGTGGGGGCGGCTCCGGTGGGAG




CGGTAGTGTATTGCCTCAAGCTCCCGCGCCC




GCTCCTGCTCCGGCAATGGTTTCAGCTCTGG




CACAAGCTCCAGCTCCAGTGCCTGTGCTCGC




CCCTGGCCCTCCGCAGGCCGTAGCACCTCCC




GCCCCCAAACCGACGCAAGCCGGTGAGGGG




ACTCTCTCTGAAGCCTTGCTGCAGCTTCAGTT




CGATGATGAAGATCTGGGCGCGCTCTTGGGG




AACAGCACGGATCCGGCAGTATTTACGGACC




TCGCATCAGTTGACAATAGTGAATTTCAACA




ACTTCTTAACCAGGGAATACCGGTTGCGCCC




CATACGACGGAACCTATGCTGATGGAGTACC




CTGAAGCTATAACCAGACTCGTAACTGGCGC




CCAACGCCCGCCCGACCCGGCTCCTGCGCCG




CTGGGTGCGCCGGGTCTTCCGAATGGTCTTC




TCTCAGGGGACGAAGATTTCAGTTCCATTGC




GGATATGGACTTTTCCGCGCTCCTGAGTGGG




GGTGGCTCTGGAGGCTCTGGTTCCGACCTCA




GCCATCCTCCACCGAGAGGACACCTCGACGA




GCTGACAACCACCCTCGAAAGTATGACGGA




AGATCTGAACTTGGATTCCCCCCTTACCCCA




GAACTGAATGAAATCCTCGATACGTTCTTGA




ACGATGAGTGCCTTTTGCACGCCATGCATAT




ATCAACAGGTTTGTCTATCTTCGACACGTCC




CTCTTTTGA (SEQ ID NO: 304)





mini VPR
DALDDFDLDMLGSDALDDFD
GACGCCCTGGACGACTTCGATCTGGATATGC


activator domain
LDMLGSDALDDFDLDMLGSD
TGGGCAGCGACGCTCTGGATGATTTTGACCT



ALDDFDLDMLINSRSSGSPKK
GGACATGCTCGGCTCTGATGCACTCGACGAT



KRKVGSGGGSGGSGSVLPQAP
TTCGACCTCGATATGTTGGGATCTGATGCCC



APAPAPAMVSALAQAPAPVPV
TTGATGACTTTGATCTCGACATGTTGATCAAT



LAPGPPQAVAPPAPKPTQAGE
AGCCGGTCCAGCGGCAGCCCCAAGAAGAAG



GTLSEALLQLQFDDEDLGALL
AGAAAAGTCGGCTCTGGCGGCGGATCTGGC



GNSTDPAVFTDLASVDNSEFQ
GGTTCTGGATCTGTTTTGCCCCAAGCTCCTGC



QLLNQGIPVAPHTTEPMLMEY
TCCTGCACCAGCTCCAGCTATGGTTTCTGCTC



PEAITRLVTGAQRPPDPAPAPL
TGGCTCAGGCTCCAGCTCCTGTGCCTGTTCTT



GAPGLPNGLLSGDEDFSSIAD
GCTCCTGGACCTCCTCAGGCTGTTGCTCCAC



MDFSALLSGGGSGGSGSDLSH
CAGCACCTAAACCTACACAGGCCGGCGAGG



PPPRGHLDELTTTLESMTEDLN
GAACACTGTCTGAAGCTCTGCTGCAGCTCCA



LDSPLTPELNEILDTFLNDECLL
GTTCGACGACGAAGATCTGGGAGCCCTGCTG



HAMHISTGLSIFDTSLF (SEQ ID
GGCAATAGCACAGATCCTGCCGTGTTCACCG



NO: 325)
ATCTGGCCAGCGTGGACAATAGCGAGTTCCA




GCAGCTCCTGAACCAGGGCATTCCTGTGGCT




CCTCACACCACCGAGCCTATGCTGATGGAAT




ACCCCGAGGCCATCACCAGACTGGTCACCGG




TGCTCAAAGACCACCTGATCCGGCTCCAGCA




CCTCTTGGAGCACCTGGACTGCCTAATGGAC




TGCTGTCTGGCGACGAGGACTTCAGCTCTAT




CGCCGACATGGATTTCAGCGCCCTGCTCAGT




GGCGGTGGAAGCGGAGGAAGTGGCAGCGAT




CTTTCTCACCCTCCACCTAGAGGCCACCTGG




ACGAGCTGACAACCACACTGGAATCCATGAC




CGAGGACCTGAACCTGGACAGCCCTCTGACA




CCCGAGCTGAACGAGATCCTGGACACCTTCC




TGAACGACGAGTGTCTGCTGCACGCCATGCA




CATCTCTACCGGCCTGAGCATCTTCGACACC




AGCCTGTTT (SEQ ID NO: 322)




OR




GACGCTCTTGATGACTTTGACCTGGATATGC




TCGGATCAGATGCCCTGGACGATTTCGATCT




GGACATGTTGGGGTCTGATGCTCTCGACGAC




TTCGATCTGGATATGCTTGGAAGTGACGCGC




TGGATGATTTCGACCTTGACATGCTCATCAA




TTCTCGATCCAGTGGAAGCCCGAAAAAGAA




ACGCAAGGTGGGAAGTGGGGGCGGCTCCGG




TGGGAGCGGTAGTGTATTGCCTCAAGCTCCC




GCGCCCGCTCCTGCTCCGGCAATGGTTTCAG




CTCTGGCACAAGCTCCAGCTCCAGTGCCTGT




GCTCGCCCCTGGCCCTCCGCAGGCCGTAGCA




CCTCCCGCCCCCAAACCGACGCAAGCCGGTG




AGGGGACTCTCTCTGAAGCCTTGCTGCAGCT




TCAGTTCGATGATGAAGATCTGGGCGCGCTC




TTGGGGAACAGCACGGATCCGGCAGTATTTA




CGGACCTCGCATCAGTTGACAATAGTGAATT




TCAACAACTTCTTAACCAGGGAATACCGGTT




GCGCCCCATACGACGGAACCTATGCTGATGG




AGTACCCTGAAGCTATAACCAGACTCGTAAC




TGGCGCCCAACGCCCGCCCGACCCGGCTCCT




GCGCCGCTGGGTGCGCCGGGTCTTCCGAATG




GTCTTCTCTCAGGGGACGAAGATTTCAGTTC




CATTGCGGATATGGACTTTTCCGCGCTCCTG




AGTGGGGGTGGCTCTGGAGGCTCTGGTTCCG




ACCTCAGCCATCCTCCACCGAGAGGACACCT




CGACGAGCTGACAACCACCCTCGAAAGTATG




ACGGAAGATCTGAACTTGGATTCCCCCCTTA




CCCCAGAACTGAATGAAATCCTCGATACGTT




CTTGAACGATGAGTGCCTTTTGCACGCCATG




CATATATCAACAGGTTTGTCTATCTTCGACA




CGTCCCTCTTTTGA (SEQ ID NO: 343)





ZF5-7 Zinc finger
MSRPGERPFQCRICMRNFSNM
ATGTCTAGACCTGGCGAGAGGCCCTTCCAGT


domain
SNLTRHTRTHTGEKPFQCRIC
GCCGGATCTGCATGCGGAACTTCAGCAACAT



MRNFSDRSVLRRHLRTHTGSQ
GAGCAACCTGACCAGACACACCCGGACACA



KPFQCRICMRNFSDPSNLARHT
CACAGGCGAGAAGCCTTTTCAGTGCAGAATC



RTHTGEKPFQCRICMRNFSDRS
TGTATGCGCAATTTCTCCGACAGAAGCGTGC



SLRRHLRTHTGSQKPFQCRIC
TGCGGAGACACCTGAGAACCCACACCGGCA



MRNFSQSGTLHRHTRTHTGEK
GCCAGAAACCATTCCAGTGTCGCATCTGTAT



PFQCRICMRNFSQRPNLTRHLR
GAGAAACTTTAGCGACCCCTCCAATCTGGCC



THLRGS (SEQ ID NO: 320)
CGGCACACCAGAACACATACCGGGGAAAAA




CCCTTTCAGTGTAGGATATGCATGAGGAATT




TTTCCGACCGGTCCAGCCTGAGGCGGCACCT




GAGGACACATACTGGCTCCCAAAAGCCGTTC




CAATGTCGGATATGTATGCGCAACTTTAGCC




AGAGCGGCACCCTGCACAGACACACAAGAA




CCCATACTGGCGAGAAACCTTTCCAATGTAG




AATCTGCATGCGAAATTTTTCCCAGCGGCCT




AATCTGACCAGGCATCTGAGGACCCACCTGA




GAGGATCT (SEQ ID NO: 323)





NS3 protease
EDVVCCHSIYGKKKGDIDTYR
GAGGATGTCGTGTGCTGCCACAGCATCTACG



YIGSSGTGCVVIVGRIVLSGSG
GCAAGAAGAAGGGCGACATCGACACCTACC



TSAPITAYAQQTRGLLGCIITSL
GGTACATCGGCAGCTCTGGCACAGGCTGTGT



TGRDKNQVEGEVQIVSTATQT
GGTCATCGTGGGCAGAATCGTGCTGTCTGGC



FLATCINGVCWAVYHGAGTR
AGCGGAACAAGCGCCCCTATCACAGCCTATG



TIASPKGPVIQMYTNVDQDLV
CTCAGCAGACAAGAGGCCTGCTGGGCTGCAT



GWPAPQGSRSLTPCTCGSSDL
CATCACAAGCCTGACCGGCAGAGACAAGAA



YLVTRHADVIPVRRRGDSRGS
CCAGGTGGAAGGCGAGGTGCAGATCGTGTCT



LLSPRPISYLKGSSGGPLLCPA
ACAGCTACCCAGACCTTCCTGGCCACCTGTA



GHAVGLFRAAVCTRGVAKAV
TCAATGGCGTGTGCTGGGCCGTGTATCACGG



DFIPVENLETTMRSPVFTDNSS
CGCTGGAACCAGAACAATCGCCTCTCCTAAG



PPAVTLTHPITKIDREVLYQEF
GGCCCCGTGATCCAGATGTACACCAACGTGG



DEMEECSQH (SEQ ID NO: 321)
ACCAGGACCTCGTTGGCTGGCCTGCTCCTCA




AGGCAGCAGAAGCCTGACACCTTGCACCTGT




GGCTCCAGCGATCTGTACCTGGTCACCAGAC




ACGCCGACGTGATCCCTGTCAGAAGAAGAG




GGGATTCCAGAGGCAGCCTGCTGAGCCCTAG




ACCTATCAGCTACCTGAAGGGCTCTAGCGGC




GGACCTCTGCTTTGTCCTGCTGGACATGCCG




TGGGCCTGTTTAGAGCCGCCGTGTGTACAAG




AGGCGTGGCCAAAGCCGTGGACTTCATCCCC




GTGGAAAACCTGGAAACCACCATGCGGAGC




CCCGTGTTCACCGACAATTCTAGCCCTCCAG




CCGTGACACTGACACACCCCATCACCAAGAT




CGACAGAGAGGTGCTGTACCAAGAGTTCGA




CGAGATGGAAGAGTGCAGCCAGCAC (SEQ ID




NO: 195)




OR




GAGGATGTCGTGTGCTGCCACAGCATCTACG




GAAAGAAGAAGGGCGACATCGACACCTATC




GGTACATCGGCAGCAGCGGCACAGGCTGTGT




TGTGATCGTGGGCAGAATCGTGCTGAGCGGC




TCTGGAACAAGCGCCCCTATCACAGCCTACG




CTCAGCAGACAAGAGGCCTGCTGGGCTGCAT




CATCACAAGCCTGACCGGCAGAGACAAGAA




CCAGGTGGAAGGCGAGGTGCAGATCGTGTCT




ACAGCTACCCAGACCTTCCTGGCCACCTGTA




TCAATGGCGTGTGCTGGGCCGTGTATCACGG




CGCTGGCACAAGAACAATCGCCTCTCCAAAG




GGCCCCGTGATCCAGATGTACACCAACGTGG




ACCAGGACCTCGTTGGCTGGCCTGCTCCTCA




AGGCAGCAGAAGCCTGACACCTTGCACCTGT




GGCTCCAGCGATCTGTACCTGGTCACCAGAC




ACGCCGACGTGATCCCTGTCAGAAGAAGAG




GGGATTCCAGAGGCAGCCTGCTGAGCCCTAG




ACCTATCAGCTACCTGAAGGGCAGCTCTGGC




GGACCTCTGCTTTGTCCTGCTGGACATGCCG




TGGGCCTGTTTAGAGCCGCCGTGTGTACAAG




AGGCGTGGCCAAAGCCGTGGACTTCATCCCC




GTGGAAAACCTGGAAACCACCATGCGGAGC




CCCGTGTTCACCGACAATTCTAGCCCTCCAG




CCGTGACACTGACACACCCCATCACCAAGAT




CGACAGAGAGGTGCTGTACCAAGAGTTCGA




CGAGATGGAAGAGTGCAGCCAGCAC (SEQ ID




NO: 342)









Multicistronic and Multiple Promoter Systems

In some embodiments, engineered nucleic acids (e.g., an engineered nucleic acid comprising an expression cassette) are configured to produce multiple proteins (e.g., a cytokine, CAR, ACP, membrane-cleavable chimeric protein, and/or combinations thereof). For example, nucleic acids may be configured to produce 2-20 different proteins. In some embodiments, nucleic acids are configured to produce 2-20, 2-19, 2-18, 2-17, 2-16, 2-15, 2-14, 2-13, 2-12, 2-11, 2-10, 2-9, 2-8, 2-7, 2-6, 2-5, 2-4, 2-3, 3-20, 3-19, 3-18, 3-17, 3-16, 3-15, 3-14, 3-13, 3-12, 3-11, 3-10, 3-9, 3-8, 3-7, 3-6, 3-5, 3-4, 4-20, 4-19, 4-18, 4-17, 4-16, 4-15, 4-14, 4-13, 4-12, 4-11, 4-10, 4-9, 4-8, 4-7, 4-6, 4-5, 5-20, 5-19, 5-18, 5-17, 5-16, 5-15, 5-14, 5-13, 5-12, 5-11, 5-10, 5-9, 5-8, 5-7, 5-6, 6-20, 6-19, 6-18, 6-17, 6-16, 6-15, 6-14, 6-13, 6-12, 6-11, 6-10, 6-9, 6-8, 6-7, 7-20, 7-19, 7-18, 7-17, 7-16, 7-15, 7-14, 7-13, 7-12, 7-11, 7-10, 7-9, 7-8, 8-20, 8-19, 8-18, 8-17, 8-16, 8-15, 8-14, 8-13, 8-12, 8-11, 8-10, 8-9, 9-20, 9-19, 9-18, 9-17, 9-16, 9-15, 9-14, 9-13, 9-12, 9-11, 9-10, 10-20, 10-19, 10-18, 10-17, 10-16, 10-15, 10-14, 10-13, 10-12, 10-11, 11-20, 11-19, 11-18, 11-17, 11-16, 11-15, 11-14, 11-13, 11-12, 12-20, 12-19, 12-18, 12-17, 12-16, 12-15, 12-14, 12-13, 13-20, 13-19, 13-18, 13-17, 13-16, 13-15, 13-14, 14-20, 14-19, 14-18, 14-17, 14-16, 14-15, 15-20, 15-19, 15-18, 15-17, 15-16, 16-20, 16-19, 16-18, 16-17, 17-20, 17-19, 17-18, 18-20, 18-19, or 19-20 proteins. In some embodiments, nucleic acids are configured to produce 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 proteins.


In some embodiments, engineered nucleic acids can be multicistronic, i.e., more than one separate polypeptide (e.g., multiple proteins, such as a cytokine, CAR, ACP, and/or membrane-cleavable chimeric protein described herein) can be produced from a single mRNA transcript. Engineered nucleic acids can be multicistronic through the use of various linkers, e.g., a polynucleotide sequence encoding a first protein can be linked to a nucleotide sequence encoding a second protein, such as in a first gene:linker:second gene 5′ to 3′ orientation. A linker can encode a 2A ribosome skipping element, such as T2A. Other 2A ribosome skipping elements include, but are not limited to, E2A, P2A, and F2A. 2A ribosome skipping elements allow production of separate polypeptides encoded by the first and second genes are produced during translation. A linker can encode a cleavable linker polypeptide sequence, such as a Furin cleavage site or a TEV cleavage site, wherein following expression the cleavable linker polypeptide is cleaved such that separate polypeptides encoded by the first and second genes are produced. A cleavable linker can include a polypeptide sequence, such as such a flexible linker (e.g., a Gly-Ser-Gly sequence), that further promotes cleavage. In some embodiments, an engineered nucleic acid disclosed herein comprises an E2A/T2A ribosome skipping element. In certain embodiments, the E2A/T2A ribosome skipping element comprises the amino acid sequence of GSGQCTNYALLKLAGDVESNPGPGSGEGRGSLLTCGDVEENPGP (SEQ ID NO: 281). An exemplary nucleic acid encoding SEQ ID NO: 281 is GGTAGCGGCCAGTGTACCAACTACGCCCTGCTGAAACTGGCCGGCGACGTGGAATC TAATCCTGGACCTGGATCTGGCGAGGGACGCGGGAGTCTACTGACGTGTGGAGACG TGGAGGAAAACCCTGGACCT (SEQ ID NO: 282). In certain embodiments, a nucleic acid encoding SEQ ID NO: 281 comprises a sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 282. In some embodiments, an engineered nucleic acid disclosed herein comprises an E2A/T2A ribosome skipping element. In certain embodiments, the E2A/T2A ribosome skipping element comprises the amino acid sequence of QCTNYALLKLAGDVESNPGPGSGEGRGSLLTCGDVEENPGP (SEQ ID NO: 283). An exemplary nucleic acid encoding SEQ ID NO: 283 is CAGTGTACCAACTACGCCCTGCTGAAACTGGCCGGCGACGTGGAATCTAATCCTGG ACCTGGATCTGGCGAGGGACGCGGGAGTCTACTGACGTGTGGAGACGTGGAGGAA AACCCTGGACCT (SEQ ID NO: 284). In certain embodiments, a nucleic acid encoding SEQ ID NO: 283 comprises a sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 284.


A linker can encode an Internal Ribosome Entry Site (IRES), such that separate polypeptides encoded by the first and second genes are produced during translation. A linker can encode a splice acceptor, such as a viral splice acceptor.


A linker can be a combination of linkers, such as a Furin-2A linker that can produce separate polypeptides through 2A ribosome skipping followed by further cleavage of the Furin site to allow for complete removal of 2A residues. In some embodiments, a combination of linkers can include a Furin sequence, a flexible linker, and 2A linker. Accordingly, in some embodiments, the linker is a Furin-Gly-Ser-Gly-2A fusion polypeptide. In some embodiments, a linker of the present disclosure is a Furin-Gly-Ser-Gly-T2A fusion polypeptide.


In general, a multicistronic system can use any number or combination of linkers, to express any number of genes or portions thereof (e.g., an engineered nucleic acid can encode a first, a second, and a third protein, each separated by linkers such that separate polypeptides encoded by the first, second, and third proteins are produced).


Engineered nucleic acids can use multiple promoters to express genes from multiple ORFs, i.e., more than one separate mRNA transcript can be produced from a single engineered nucleic acid. For example, a first promoter can be operably linked to a polynucleotide sequence encoding a first protein, and a second promoter can be operably linked to a polynucleotide sequence encoding a second protein. In general, any number of promoters can be used to express any number of proteins. In some embodiments, at least one of the ORFs expressed from the multiple promoters can be multicistronic.


Expression cassettes encoded on the same engineered nucleic acid can be oriented in any manner suitable for expression of the encoded exogenous polynucleotide sequences. Expression cassettes encoded on the same engineered nucleic acid can be oriented in the same direction, i.e., transcription of separate cassettes proceeds in the same direction. Constructs oriented in the same direction can be organized in a head-to-tail format referring to the 5′ end (head) of the first gene being adjacent to the 3′ end (tail) of the upstream gene. Expression cassettes encoded on the same engineered nucleic acid can be oriented in an opposite direction, i.e., transcription of separate cassettes proceeds in the opposite direction (also referred to herein as “bidirectional”). Expression cassettes encoded on the same engineered nucleic acid oriented in opposite directions can be oriented in a “head-to-head” directionality. As used herein, head-to-head refers to the 5′ end (head) of a first gene of a bidirectional construct being adjacent to the 5′ end (head) of an upstream gene of the bidirectional construct. Expression cassettes encoded on the same engineered nucleic acid oriented in opposite directions can be oriented in a “tail-to-tail” directionality. As used herein, tail-to-tail refers to the 3′ end (tail) of a first gene of a bidirectional construct being adjacent to the 3′ end (tail) of an upstream gene of the bidirectional construct. For example, and without limitation, FIGS. 1A-1C schematically depict: a cytokine-CAR bidirectional construct in head-to-head directionality (FIG. 1A), head-to-tail directionality (FIG. 1B), and tail-to-tail directionality (FIG. 1C).


“Linkers,” as used herein can refer to polypeptides that link a first polypeptide sequence and a second polypeptide sequence, the multicistronic linkers described above, or the additional promoters that are operably linked to additional ORFs described above.


Exogenous polynucleotide sequences encoded by the expression cassette can include a 3′untranslated region (UTR) comprising an mRNA-destabilizing element that is operably linked to the exogenous polynucleotide sequence, such as exogenous polynucleotide sequences encoding a cytokine (e.g., IL12 or IL12p70). In some embodiments, the mRNA-destabilizing element comprises an AU-rich element and/or a stem-loop destabilizing element (SLDE). In some embodiments, the mRNA-destabilizing element comprises an AU-rich element. In some embodiments, the AU-rich element includes at least two overlapping motifs of the sequence ATTTA (SEQ ID NO: 209). In some embodiments, the AU-rich element comprises ATTTATTTATTTATTTATTTA (SEQ ID NO: 210). In some embodiments, the mRNA-destabilizing element comprises a stem-loop destabilizing element (SLDE). In some embodiments, the SLDE comprises CTGTTTAATATTTAAACAG (SEQ ID NO: 211). In some embodiments, the mRNA-destabilizing element comprises at least one AU-rich element and at least one SLDE. “AuSLDE” as used herein refers to an AU-rich element operably linked to a stem-loop destabilizing element (SLDE). An exemplary AuSLDE sequence comprises ATTTATTTATTTATTTATTTAacatcggttccCTGTTTAATATTTAAACAG (SEQ ID NO: 212). In some embodiments, the mRNA-destabilizing element comprises a 2× AuSLDE. An exemplary AuSLDE sequence is provided as ATTTATTTATTTATTTATTTAacatcggttccCTGTTTAATATTTAAACAGtgcggtaagcATTTA TTTATTTATTTATTTAacatcggttccCTGTTTAATATTTAAACAG (SEQ ID NO: 213).


In certain embodiments, an engineered nucleic acid described herein comprises an insulator sequence. Such insulator sequences function to prevent inappropriate interactions between adjacent regions of a construct. In certain embodiments, an insulator sequence comprises the nucleic acid sequence of ACAATGGCTGGCCCATAGTAAATGCCGTGTTAGTGTGTTAGTTGCTGTTCTTCCACG TCAGAAGAGGCACAGACAAATTACCACCAGGTGGCGCTCAGAGTCTGCGGAGGCAT CACAACAGCCCTGAATTTGAATCCTGCTCTGCCACTGCCTAGTTGAGACCTTTTACT ACCTGACTAGCTGAGACATTTACGACATTTACTGGCTCTAGGACTCATTTTATTCAT TTCATTACTTTTTTTTTCTTTGAGACGGAATCTCGCTCT (SEQ ID NO: 300). In certain embodiments, an insulator sequence comprises a sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 300.


Engineered Cells

Provided herein are engineered immunoresponsive cells, and methods of producing the engineered immunoresponsive cells, that produce a protein described herein (e.g., a cytokine, CAR, ACP, and/or membrane-cleavable chimeric protein described herein). In general, engineered immunoresponsive cells of the present disclosure may be engineered to express the proteins provided for herein, such as a cytokine, CAR, ACP, and/or the membrane-cleavable chimeric proteins having the formula S-C-MT or MT-C-S described herein. These cells are referred to herein as “engineered cells.” These cells, which typically contain engineered nucleic acid, do not occur in nature. In some embodiments, the cells are engineered to include a nucleic acid comprising a promoter operably linked to a nucleotide sequence encoding a protein, for example, a cytokine, CAR, ACP, and/or a membrane-cleavable chimeric protein. An engineered cell can comprise an engineered nucleic acid integrated into the cell's genome. An engineered cell can comprise an engineered nucleic acid capable of expression without integrating into the cell's genome, for example, engineered with a transient expression system such as a plasmid or mRNA.


The present disclosure also encompasses additivity and synergy between a protein(s) and the engineered cell from which they are produced. In some embodiments, cells are engineered to produce at least two (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) proteins, for example at least each of a cytokine, CAR, ACP, and membrane-cleavable chimeric protein. In general, immunoresponsive cells provide herein are engineered to produce at least one membrane-cleavable chimeric protein having a cytokine effector molecule that is not natively produced by the cells, a CAR, and an ACP. In general, immunoresponsive cells provide herein are engineered to produce at least two cytokines, at least one of which is a membrane-cleavable chimeric protein having a cytokine effector molecule, a CAR, and an ACP. Such an effector molecule may, for example, complement the function of effector molecules natively produced by the cells.


In some embodiments, a cell (e.g., an immune cell) is engineered to produce multiple proteins. For example, cells may be engineered to produce 2-20 different proteins, such as 2-20 different membrane-cleavable proteins. In some embodiments, a cell (e.g., an immunoresponsive cell) is engineered to produce at least 4 distinct proteins exogenous to the cell. In some embodiments, a cell (e.g., an immunoresponsive cell) is engineered to produce 4 distinct proteins exogenous to the cell. In some embodiments, cells engineered to produce 2-20, 2-19, 2-18, 2-17, 2-16, 2-15, 2-14, 2-13, 2-12, 2-11, 2-10, 2-9, 2-8, 2-7, 2-6, 2-5, 2-4, 2-3, 3-20, 3-19, 3-18, 3-17, 3-16, 3-15, 3-14, 3-13, 3-12, 3-11, 3-10, 3-9, 3-8, 3-7, 3-6, 3-5, 3-4, 4-20, 4-19, 4-18, 4-17, 4-16, 4-15, 4-14, 4-13, 4-12, 4-11, 4-10, 4-9, 4-8, 4-7, 4-6, 4-5, 5-20, 5-19, 5-18, 5-17, 5-16, 5-15, 5-14, 5-13, 5-12, 5-11, 5-10, 5-9, 5-8, 5-7, 5-6, 6-20, 6-19, 6-18, 6-17, 6-16, 6-15, 6-14, 6-13, 6-12, 6-11, 6-10, 6-9, 6-8, 6-7, 7-20, 7-19, 7-18, 7-17, 7-16, 7-15, 7-14,7-13,7-12, 7-11,7-10,7-9,7-8, 8-20, 8-19, 8-18, 8-17, 8-16, 8-15, 8-14, 8-13, 8-12, 8-11, 8-10, 8-9, 9-20, 9-19, 9-18, 9-17, 9-16, 9-15, 9-14, 9-13, 9-12, 9-11, 9-10, 10-20, 10-19, 10-18, 10-17, 10-16, 10-15, 10-14, 10-13, 10-12, 10-11, 11-20, 11-19, 11-18, 11-17, 11-16, 11-15, 11-14, 11-13, 11-12, 12-20, 12-19, 12-18, 12-17, 12-16, 12-15, 12-14, 12-13, 13-20, 13-19, 13-18, 13-17, 13-16, 13-15, 13-14, 14-20, 14-19, 14-18, 14-17, 14-16, 14-15, 15-20, 15-19, 15-18, 15-17, 15-16, 16-20, 16-19, 16-18, 16-17, 17-20, 17-19, 17-18, 18-20, 18-19, or 19-20 proteins. In some embodiments, cells are engineered to produce 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 proteins.


In some embodiments, engineered cells comprise one or more engineered nucleic acids encoding a promoter operably linked to a nucleotide sequence encoding a protein (e.g., an expression cassette). In some embodiments, cells are engineered to include a plurality of engineered nucleic acids, e.g., at least two engineered nucleic acids, each encoding a promoter operably linked to a nucleotide sequence encoding at least one (e.g., 1, 2 or 3) protein. For example, cells may be engineered to comprise at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 8, at least 9, or at least 10, engineered nucleic acids, each encoding a promoter operably linked to a nucleotide sequence encoding at least one (e.g., 1, 2 or 3) protein. In some embodiments, the cells are engineered to comprise 2, 3, 4, 5, 6, 7, 8, 9, 10, or more engineered nucleic acids, each encoding a promoter operably linked to a nucleotide sequence encoding at least one (e.g., 1, 2 or 3) protein. Engineered cells can comprise an engineered nucleic acid encoding at least one of the linkers described above, such as polypeptides that link a first polypeptide sequence and a second polypeptide sequence, one or more multicistronic linker described above, one or more additional promoters operably linked to additional ORFs, or a combination thereof.


In some embodiments, a cell (e.g., an immune cell) is engineered to express a protease. In some embodiments, a cell is engineered to express a protease heterologous to a cell. In some embodiments, a cell is engineered to express a protease heterologous to a cell expressing a protein, such as a heterologous protease that cleaves the protease cleavage site of a membrane-cleavable chimeric protein. In some embodiments, engineered cells comprise one or more engineered nucleic acids encoding a promoter operably linked to a nucleotide sequence encoding a protease, such as a heterologous protease. Protease and protease cleavage sites are described in greater detail in the Section herein titled “Protease Cleavage site.”


Also provided herein are engineered cells that are engineered to produce multiple proteins, at least two of which include effector molecules that modulate different tumor-mediated immunosuppressive mechanisms. In some embodiments, at least one (e.g., 1, 2, 3, 4, 5, or more) protein includes an effector molecule that stimulates at least one immunostimulatory mechanism in the tumor microenvironment, or inhibits at least one immunosuppressive mechanism in the tumor microenvironment. In some embodiments, at least one (e.g., 1, 2, 3, 4, 5, or more) protein includes an effector molecule that inhibits at least one immunosuppressive mechanism in the tumor microenvironment, and at least one protein (e.g., 1, 2, 3, 4, 5, or more) inhibits at least one immunosuppressive mechanism in the tumor microenvironment. In yet other embodiments, at least two (e.g., 2, 3, 4, 5, or more) of the proteins are effector molecules that each stimulate at least one immunostimulatory mechanism in the tumor microenvironment. In still other embodiments, at least two (e.g., 1, 2, 3, 4, 5, or more) of the proteins are effector molecules that each inhibit at least one immunosuppressive mechanism in the tumor microenvironment.


In some embodiments, a cell (e.g., an immune cell) is engineered to produce at least one protein including an effector molecule that stimulates T cell or NK cell signaling, activity and/or recruitment. In some embodiments, a cell is engineered to produce at least one protein that includes an effector molecule that stimulates antigen presentation and/or processing. In some embodiments, a cell is engineered to produce at least one protein that includes an effector molecule that stimulates natural killer cell-mediated cytotoxic signaling, activity and/or recruitment. In some embodiments, a cell is engineered to produce at least one protein that includes an effector molecule that stimulates dendritic cell differentiation and/or maturation. In some embodiments, a cell is engineered to produce at least one protein that includes an effector molecule that stimulates immune cell recruitment. In some embodiments, a cell is engineered to produce at least one protein includes an effector molecule that that stimulates M1 macrophage signaling, activity and/or recruitment. In some embodiments, a cell is engineered to produce at least one protein that includes an effector molecule that stimulates Th1 polarization. In some embodiments, a cell is engineered to produce at least one protein that includes an effector molecule that stimulates stroma degradation. In some embodiments, a cell is engineered to produce at least one protein that includes an effector molecule that stimulates immunostimulatory metabolite production. In some embodiments, a cell is engineered to produce at least one protein that includes an effector molecule that stimulates Type I interferon signaling. In some embodiments, a cell is engineered to produce at least one protein that includes an effector molecule that inhibits negative costimulatory signaling. In some embodiments, a cell is engineered to produce at least one protein that includes an effector molecule that inhibits pro-apoptotic signaling (e.g., via TRAIL) of anti-tumor immune cells. In some embodiments, a cell is engineered to produce at least one protein that includes an effector molecule that inhibits T regulatory (Treg) cell signaling, activity and/or recruitment. In some embodiments, a cell is engineered to produce at least one protein that includes an effector molecule that inhibits tumor checkpoint molecules. In some embodiments, a cell is engineered to produce at least one protein that includes an effector molecule that activates stimulator of interferon genes (STING) signaling. In some embodiments, a cell is engineered to produce at least one protein that includes an effector molecule that inhibits myeloid-derived suppressor cell signaling, activity and/or recruitment. In some embodiments, a cell is engineered to produce at least one protein that includes an effector molecule that degrades immunosuppressive factors/metabolites. In some embodiments, a cell is engineered to produce at least one protein that includes an effector molecule that inhibits vascular endothelial growth factor signaling. In some embodiments, a cell is engineered to produce at least one protein that includes an effector molecule that directly kills tumor cells (e.g., granzyme, perforin, oncolytic viruses, cytolytic peptides and enzymes, anti-tumor antibodies, e.g., that trigger ADCC).


In some embodiments, at least one protein including an effector molecule that: stimulates T cell signaling, activity and/or recruitment, stimulates antigen presentation and/or processing, stimulates natural killer cell-mediated cytotoxic signaling, activity and/or recruitment, stimulates dendritic cell differentiation and/or maturation, stimulates immune cell recruitment, stimulates macrophage signaling, stimulates stroma degradation, stimulates immunostimulatory metabolite production, or stimulates Type I interferon signaling; and at least one protein including an effector molecule that inhibits negative costimulatory signaling, inhibits pro-apoptotic signaling of anti-tumor immune cells, inhibits T regulatory (Treg) cell signaling, activity and/or recruitment, inhibits tumor checkpoint molecules, activates stimulator of interferon genes (STING) signaling, inhibits myeloid-derived suppressor cell signaling, activity and/or recruitment, degrades immunosuppressive factors/metabolites, inhibits vascular endothelial growth factor signaling, or directly kills tumor cells.


In some embodiments, an immunoresponsive cell is engineered to produce at least one effector molecule cytokine selected from IL15, IL12, an IL12p70 fusion protein, IL18, and IL21. In some embodiments, an immunoresponsive cell is engineered to produce at least two effector molecule cytokines selected from IL15, IL12, an IL12p70 fusion protein, IL18, and IL21. In some embodiments, an immunoresponsive cell is engineered to produce at least two effector molecule cytokines selected from IL15, IL12, an IL12p70 fusion protein, IL18, and IL21. In some embodiments, an immunoresponsive cell is engineered to produce at least the effector molecule cytokines IL15 and IL12p70 fusion protein. In some embodiments, an immunoresponsive cell is engineered to produce at least one membrane-cleavable chimeric protein including an effector molecule cytokine selected from IL15, IL12, an IL12p70 fusion protein, IL18, and IL21. In some embodiments, an immunoresponsive cell is engineered to produce at least two membrane-cleavable chimeric protein including effector molecule cytokines selected from IL15, IL12, an IL12p70 fusion protein, IL18, and IL21.


In certain embodiments, the IL15 comprises the amino acid sequence of NWVNVISDLKKIEDLIQSMHIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASIH DTVENLIILANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTS (SEQ ID NO: 285). An exemplary nucleic acid sequence encoding SEQ ID NO: 285 is AATTGGGTCAACGTGATCAGCGACCTGAAGAAGATCGAGGACCTGATCCAGAGCAT GCACATCGACGCCACACTGTACACCGAGAGCGACGTGCACCCTAGCTGTAAAGTGA CCGCCATGAAGTGCTTTCTGCTGGAACTGCAAGTGATCAGCCTGGAAAGCGGCGAC GCCAGCATCCACGACACCGTGGAAAACCTGATCATCCTGGCCAACAACAGCCTGAG CAGCAACGGCAATGTGACCGAGTCCGGCTGCAAAGAGTGCGAGGAACTGGAAGAG AAGAATATCAAAGAGTTCCTGCAGAGCTTCGTGCACATCGTGCAGATGTTCATCAA CACAAGC (SEQ ID NO: 286). In certain embodiments, a nucleic acid encoding SEQ ID NO: 285 comprises a sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 286.


In certain embodiments, the IL12p70 comprises the amino acid sequence of MCHQQLVISWFSLVFLASPLVAIWELKKDVYVVELDWYPDAPGEMVVLTCDTPEEDGI TWTLDQSSEVLGSGKTLTIQVKEFGDAGQYTCHKGGEVLSHSLLLLHKKEDGIWSTDIL KDQKEPKNKTFLRCEAKNYSGRFTCWWLTTISTDLTFSVKSSRGSSDPQGVTCGAATLS AERVRGDNKEYEYSVECQEDSACPAAEESLPIEVMVDAVHKLKYENYTSSFFIRDIIKPD PPKNLQLKPLKNSRQVEVSWEYPDTWSTPHSYFSLTFCVQVQGKSKREKKDRVFTDKT SATVICRKNASISVRAQDRYYSSSWSEWASVPCSGGGSGGGSGGGSGGGSRNLPVATP DPGMFPCLHHSQNLLRAVSNMLQKARQTLEFYPCTSEEIDHEDITKDKTSTVEACLPLE LTKNESCLNSRETSFITNGSCLASRKTSFMMALCLSSIYEDLKMYQVEFKTMNAKLLMD PKRQIFLDQNMLAVIDELMQALNFNSETVPQKSSLEEPDFYKTKIKLCILLHAFRIRAVTI DRVMSYLNAS (SEQ ID NO: 293). An exemplary nucleic acid sequence encoding SEQ ID NO: 293 is ATGTGTCACCAGCAGCTGGTCATCAGCTGGTTCAGCCTGGTGTTCCTGGCCTCTCCT CTGGTGGCCATCTGGGAGCTGAAGAAAGACGTGTACGTGGTGGAACTGGACTGGTA TCCCGATGCTCCTGGCGAGATGGTGGTGCTGACCTGCGATACCCCTGAAGAGGACG GCATCACCTGGACACTGGATCAGTCTAGCGAGGTGCTCGGCAGCGGCAAGACCCTG ACCATCCAAGTGAAAGAGTTTGGCGACGCCGGCCAGTACACCTGTCACAAAGGCGG AGAAGTGCTGAGCCACAGCCTGCTGCTGCTCCACAAGAAAGAGGATGGCATTTGGA GCACCGACATCCTGAAGGACCAGAAAGAGCCCAAGAACAAGACCTTCCTGAGATG CGAGGCCAAGAACTACAGCGGCCGGTTCACATGTTGGTGGCTGACCACCATCAGCA CCGACCTGACCTTCAGCGTGAAGTCCAGCAGAGGCAGCAGTGATCCTCAGGGCGTT ACATGTGGCGCCGCTACACTGTCTGCCGAAAGAGTGCGGGGCGACAACAAAGAATA CGAGTACAGCGTGGAATGCCAAGAGGACAGCGCCTGTCCAGCCGCCGAAGAGTCTC TGCCTATCGAAGTGATGGTGGACGCCGTGCACAAGCTGAAGTACGAGAACTACACC TCCAGCTTTTTCATCCGGGACATCATCAAGCCCGATCCTCCAAAGAACCTGCAGCTG AAGCCTCTGAAGAACAGCAGACAGGTGGAAGTGTCCTGGGAGTACCCCGACACCTG GTCTACACCCCACAGCTACTTCAGCCTGACCTTTTGCGTGCAAGTGCAGGGCAAGTC CAAGCGCGAGAAAAAGGACCGGGTGTTCACCGACAAGACCAGCGCCACCGTGATC TGCAGAAAGAACGCCAGCATCAGCGTCAGAGCCCAGGACCGGTACTACAGCAGCTC TTGGAGCGAATGGGCCAGCGTGCCATGTTCTGGCGGAGGAAGCGGTGGCGGATCAG GTGGTGGATCTGGCGGCGGATCTAGAAACCTGCCTGTGGCCACTCCTGATCCTGGC ATGTTCCCTTGTCTGCACCACAGCCAGAACCTGCTGAGAGCCGTGTCCAACATGCTG CAGAAGGCCAGACAGACCCTGGAATTCTACCCCTGCACCAGCGAGGAAATCGACCA CGAGGACATCACCAAGGATAAGACCAGCACCGTGGAAGCCTGCCTGCCTCTGGAAC TGACCAAGAACGAGAGCTGCCTGAACAGCCGGGAAACCAGCTTCATCACCAACGGC TCTTGCCTGGCCAGCAGAAAGACCTCCTTCATGATGGCCCTGTGCCTGAGCAGCATC TACGAGGACCTGAAGATGTACCAGGTGGAATTCAAGACCATGAACGCCAAGCTGCT GATGGACCCCAAGCGGCAGATCTTCCTGGACCAGAATATGCTGGCCGTGATCGACG AGCTGATGCAGGCCCTGAACTTCAACAGCGAGACAGTGCCCCAGAAGTCTAGCCTG GAAGAACCCGACTTCTACAAGACCAAGATCAAGCTGTGCATCCTGCTGCACGCCTT CCGGATCAGAGCCGTGACCATCGACAGAGTGATGAGCTACCTGAACGCCTCT (SEQ ID NO: 294). In certain embodiments, a nucleic acid encoding SEQ ID NO: 293 comprises a sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 294.


In general, a cell (e.g., an immune cell or a stem cell) is engineered to produce two or more cytokines, including at least one of the cytokines being in a membrane-cleavable chimeric protein format (e.g., “S” in the formula S-C-MT or MT-C-S).


In some embodiments, a cell is engineered to produce at least one membrane-cleavable chimeric protein where the secretable effector molecule (e.g., “S” in the formula S-C-MT or MT-C-S) is IL15, IL12, an IL12p70 fusion protein, IL18, or IL21.


In some embodiments, a cell is engineered to produce at least one membrane-cleavable chimeric protein where the secretable effector molecule (e.g., “S” in the formula S-C-MT or MT-C-S) is IL-15. In some embodiments, a cell is engineered to produce at least one membrane-cleavable chimeric protein where the secretable effector molecule is IL-15 and the cell is further engineered to produce one or more additional cytokines. In some embodiments, a cell is engineered to produce at least one membrane-cleavable chimeric protein where the secretable effector molecule is IL-15 and the cell is further engineered to produce IL12, an IL12p70 fusion protein, IL18, or IL21. In some embodiments, a cell is engineered to produce at least one membrane-cleavable chimeric protein where the secretable effector molecule is IL-15 and the cell is further engineered to produce IL-12. In some embodiments, a cell is engineered to produce at least one membrane-cleavable chimeric protein where the secretable effector molecule is IL-15 and the cell is further engineered to produce an IL12p70 fusion protein.


In some embodiments, a cell is engineered to produce at least one membrane-cleavable chimeric protein where the secretable effector molecule (e.g., “S” in the formula S-C-MT or MT-C-S) is IL-15 and the cell is further engineered to produce one or more additional membrane-cleavable chimeric proteins. In some embodiments, a cell is engineered to produce at least one membrane-cleavable chimeric protein where the secretable effector molecule (e.g., “S” in the formula S-C-MT or MT-C-S) is IL-15 and the cell is further engineered to produce one or more additional membrane-cleavable chimeric proteins including IL12, an IL12p70 fusion protein, IL18, and IL21. In some embodiments, a cell is engineered to produce at least one membrane-cleavable chimeric protein where the secretable effector molecule (e.g., “S” in the formula S-C-MT or MT-C-S) is IL15 and the cell is further engineered to produce an additional membrane-cleavable chimeric proteins including IL12p70.


In some embodiments, a cell is engineered to produce at least one membrane-cleavable chimeric protein where the secretable effector molecule (e.g., “S” in the formula S-C-MT or MT-C-S) is an IL12p70. In some embodiments, a cell is engineered to produce at least one membrane-cleavable chimeric protein where the secretable effector molecule is IL12p70 and the cell is further engineered to produce one or more additional cytokines. In some embodiments, a cell is engineered to produce at least one membrane-cleavable chimeric protein where the secretable effector molecule is IL12p70 and the cell is further engineered to produce IL15, IL18, or IL21. In some embodiments, a cell is engineered to produce at least one membrane-cleavable chimeric protein where the secretable effector molecule is IL12p70 and the cell is further engineered to produce IL15.


In some embodiments, a cell is engineered to produce at least one membrane-cleavable chimeric protein where the secretable effector molecule (e.g., “S” in the formula S-C-MT or MT-C-S) is IL12p70 and the cell is further engineered to produce one or more additional membrane-cleavable chimeric proteins. In some embodiments, a cell is engineered to produce at least one membrane-cleavable chimeric protein where the secretable effector molecule (e.g., “S” in the formula S-C-MT or MT-C-S) is IL12p70 and the cell is further engineered to produce one or more additional membrane-cleavable chimeric proteins including IL15, IL18, and IL21. In some embodiments, a cell is engineered to produce at least one membrane-cleavable chimeric protein where the secretable effector molecule (e.g., “S” in the formula S-C-MT or MT-C-S) is IL12p70 and the cell is further engineered to produce an additional membrane-cleavable chimeric proteins including IL15.


A cell can also be further engineered to express additional proteins in addition to the cytokines and/or the membrane-cleavable chimeric proteins having the formula S-C-MT or MT-C-S described herein. As provided herein, an immunoresponsive cell is engineered to express a chimeric antigen receptor (CAR) that binds to GPC3. Also as provided herein, an immunoresponsive cell is engineered to express an ACP that includes a synthetic transcription factor.


A CAR can include an antigen-binding domain, such as an antibody, an antigen-binding fragment of an antibody, a F(ab) fragment, a F(ab′) fragment, a single chain variable fragment (scFv), or a single-domain antibody (sdAb). An antigen recognizing receptors can include an scFv. An scFv can include a heavy chain variable domain (VH) and a light chain variable domain (VL), which can be separated by a peptide linker. For example, an scFv can include the structure VH-L-VL or VL-L-VH, wherein VH is the heavy chain variable domain, L is the peptide linker, and VL is the light chain variable domain. In certain embodiments, the peptide linker is a gly-ser linker. In certain embodiments, the peptide linker is a (GGGGS)3 linker (SEQ ID NO: 223) comprising the sequence of GGGGSGGGGSGGGGS (SEQ ID NO: 223). An exemplary nucleic acid sequence encoding SEQ ID NO: 223 is GGCGGCGGAGGATCTGGCGGAGGTGGAAGTGGCGGAGGCGGATCT (SEQ ID NO: 224) or GGCGGCGGAGGAAGCGGAGGCGGAGGATCCGGTGGTGGTGGATCT (SEQ ID NO: 332). In certain embodiments, a nucleic acid encoding SEQ ID NO: 223 comprises a sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 224 or SEQ ID NO: 332.


A CAR can have one or more intracellular signaling domains, such as a CD3zeta-chain intracellular signaling domain, a CD97 intracellular signaling domain, a CD11a-CD18 intracellular signaling domain, a CD2 intracellular signaling domain, an ICOS intracellular signaling domain, a CD27 intracellular signaling domain, a CD154 intracellular signaling domain, a CD8 intracellular signaling domain, an OX40 intracellular signaling domain, a 4-11B1 intracellular signaling domain, a CD28 intracellular signaling domain, a ZAP40 intracellular signaling domain, a CD30 intracellular signaling domain, a GITR intracellular signaling domain, an HVEM intracellular signaling domain, a DAPA intracellular signaling domain, a DAP12 intracellular signaling domain, a MyD88 intracellular signaling domain, a 2B34 intracellular signaling domain, a CD16a intracellular signaling domain, a DNAM-1 intracellular signaling domain, a KIRMDS1 intracellular signaling domain, a KIR3DS1 intracellular signaling domain, a NKp44 intracellular signaling domain, a NKp46 intracellular signaling domain, a FceRlg intracellular signaling domain, a NKG2D) intracellular signaling domain, an EAT-2 intracellular signaling domain, fragments thereof, combinations thereof, or combinations of fragments thereof. In some embodiments, the intracellular signaling domain comprises a sequence from Table 6A.











TABLE 6A





Amino Acid Sequence
Nucleotide Sequence
Description







KSRQTPPLASVEMEAMEALP
AAGTCCAGACAGACACCTCCTCTGGCCAGCGTGGA
IL-15Rα ICD


VTWGTSSRDEDLENCSHHL
AATGGAAGCCATGGAAGCTCTGCCTGTGACCTGGG



(SEQ ID NO: 265)
GCACCAGCTCCAGAGATGAGGACCTGGAAAACTG




CTCCCACCACCTG




(SEQ ID NO: 266)






RSKRSRLLHSDYMNMTPRR
CGGAGCAAGAGAAGCAGACTGCTGCACAGCGACT
CD28 ICD


PGPTRKHYQPYAPPRDFAAY
ACATGAACATGACCCCTAGACGGCCCGGACCTACC



RS
AGAAAGCACTACCAGCCTTACGCTCCTCCTAGAGA



(SEQ ID NO: 267)
CTTCGCCGCCTACCGGTCC (SEQ ID NO: 268)






ALYLLRRDQRLPPDAHKPPG
GCTCTGTATCTGCTGCGGAGGGACCAAAGACTGCC
OX40 ICD


GGSFRTPIQEEQADAHSTLA
TCCTGATGCTCACAAGCCTCCAGGCGGAGGCAGCT



KI
TCAGAACCCCTATCCAAGAGGAACAGGCCGACGC



(SEQ ID NO: 269)
TCACAGCACCCTGGCCAAGATT (SEQ ID NO: 270)






KRGRKKLLYIFKQPFMRPVQ
AAGCGGGGCAGAAAGAAGCTGCTGTACATCTTCA
4-1BB ICD


TTQEEDGCSCRFPEEEEGGC
AGCAGCCCTTCATGCGGCCCGTGCAGACCACACAA



EL
GAGGAAGATGGCTGCTCCTGCAGATTCCCCGAGGA



(SEQ ID NO: 271)
AGAAGAAGGCGGCTGCGAGCTG




(SEQ ID NO: 272)




OR




AAGCGGGGCAGAAAGAAGCTGCTGTACATCTTCA




AGCAGCCCTTCATGCGGCCCGTGCAGACCACACAA




GAGGAAGATGGCTGCAGCTGTCGGTTCCCCGAGG




AAGAAGAAGGCGGCTGCGAGCTG (SEQ ID NO: 339)






RKRTRERASRASTWEGRRR
CGGAAGCGGACAAGAGAGAGAGCCAGCAGAGCCT
Nkp46 ICD


LNTQTL
CTACCTGGGAGGGAAGAAGAAGGCTGAACACCCA



(SEQ ID NO: 273)
GACACTC




(SEQ ID NO: 274)






WRRKRKEKQSETSPKEFLTI
TGGCGCCGCAAGCGGAAAGAGAAGCAGTCTGAGA
2B4 ICD


YEDVKDLKTRRNHEQEQTF
CAAGCCCCAAAGAGTTCCTGACCATCTACGAGGAC



PGGGSTIYSMIQSQSSAPTSQ
GTGAAGGACCTGAAAACCCGGCGGAACCACGAGC



EPAYTLYSLIQPSRKSGSRKR
AAGAGCAGACCTTTCCTGGCGGCGGAAGCACCATC



NHSPSFNSTIYEVIGKSQPKA
TACAGCATGATCCAGAGCCAGTCTAGCGCCCCTAC



QNPARLSRKELENFDVYS
CAGCCAAGAGCCTGCCTACACACTGTACTCCCTGA



(SEQ ID NO: 275)
TCCAGCCTAGCAGAAAGAGCGGCAGCCGGAAGAG




AAATCACAGCCCCAGCTTCAACAGCACGATCTACG




AAGTGATCGGCAAGAGCCAGCCAAAGGCTCAGAA




CCCTGCCAGGCTGAGCCGGAAAGAGCTGGAAAAC




TTCGACGTGTACAGC




(SEQ ID NO: 276)






RVKFSRSADAPAYKQGQNQ
AGAGTGAAGTTCAGCAGAAGCGCCGACGCACCCG
CD3z mut


LYNELNLGRREEYDVLDKR
CCTATAAGCAGGGACAGAACCAGCTGTACAACGA



RGRDPEMGGKPRRKNPQEG
GCTGAACCTGGGGAGAAGAGAAGAGTACGACGTG



LYNELQKDKMAEAYSEIGM
CTGGACAAGCGGAGAGGCAGAGATCCTGAGATGG



KGERRRGKGHDGLYQGLST
GCGGCAAGCCCAGACGGAAGAATCCTCAAGAGGG



ATKDTYDALHMQALPPR
CCTGTATAATGAGCTGCAGAAAGACAAGATGGCC



(SEQ ID NO: 277)
GAGGCCTACAGCGAGATCGGAATGAAGGGCGAGC




GCAGAAGAGGCAAGGGACACGATGGACTGTACCA




GGGCCTGAGCACCGCCACCAAGGATACCTATGATG




CCCTGCACATGCAGGCCCTGCCTCCAAGA (SEQ ID




NO: 278)




OR




AGAGTGAAGTTCAGCAGGAGCGCAGACGCCCCCG




CGTACAAGCAGGGCCAGAACCAGCTCTATAACGA




GCTCAATCTAGGACGAAGAGAGGAGTACGATGTTT




TGGACAAGAGACGTGGCCGGGACCCTGAGATGGG




GGGAAAGCCGAGAAGGAAGAACCCTCAGGAAGGC




CTGTACAATGAACTGCAGAAAGATAAGATGGCGG




AGGCCTACAGTGAGATTGGGATGAAAGGCGAGCG




CCGGAGGGGCAAGGGGCACGATGGCCTTTACCAG




GGTCTCAGTACAGCCACCAAGGACACCTACGACGC




CCTTCACATGCAGGCCCTGCCCCCTCGC (SEQ ID




NO: 334)






RVKFSRSADAPAYQQGQNQ
AGAGTGAAGTTCAGCAGATCCGCCGATGCTCCCGC
CD3z


LYNELNLGRREEYDVLDKR
CTATCAGCAGGGACAGAACCAGCTGTACAACGAG



RGRDPEMGGKPRRKNPQEG
CTGAACCTGGGGAGAAGAGAAGAGTACGACGTGC



LYNELQKDKMAEAYSEIGM
TGGACAAGCGGAGAGGCAGAGATCCTGAGATGGG



KGERRRGKGHDGLYQGLST
CGGCAAGCCCAGACGGAAGAATCCTCAAGAGGGC



ATKDTYDALHMQALPPR
CTGTATAATGAGCTGCAGAAAGACAAGATGGCCG



(SEQ ID NO: 279)
AGGCCTACAGCGAGATCGGAATGAAGGGCGAGCG




CAGAAGAGGCAAGGGACACGATGGACTGTACCAG




GGCCTGAGCACCGCCACCAAGGATACCTATGATGC




CCTGCACATGCAGGCCCTGCCTCCAAGA (SEQ ID




NO: 280)









In some embodiments, a CAR can also comprise a spacer region that links the extracellular antigen-binding domain to the transmembrane domain. The spacer region may be flexible enough to allow the antigen-binding domain to orient in different directions to facilitate antigen recognition. In some embodiments, the spacer region may be a hinge from a human protein. For example, the hinge may be a human Ig (immunoglobulin) hinge, including without limitation an IgG4 hinge, an IgG2 hinge, a CD8a hinge, or an IgD hinge. In some embodiments, the spacer region may comprise an IgG4 hinge, an IgG2 hinge, an IgD hinge, a CD28 hinge, a KIR2DS2 hinge, an LNGFR hinge, or a PDGFR-beta extracellular linker. In some embodiments, the spacer region comprises a sequence from Table 6B.











TABLE 6B





Amino Acid Sequence
Nucleic Acid Sequence
Description







TTTPAPRPPTPAPTIALQPLSLRPE
ACAACAACCCCTGCTCCTAGACCT
CD8 hinge (S2L)


ACRPAAGGAVHTRGLDFACD
CCTACACCAGCTCCTACAATCGCC



(SEQ ID NO: 226)
CTGCAGCCTCTGTCTCTGAGGCCA




GAAGCTTGTAGACCAGCTGCTGGC




GGAGCCGTGCATACAAGAGGACT




GGACTTCGCCTGTGAT (SEQ ID




NO: 227)






GALSNSIMYFSHFVPVFLPAKPTT
GGCGCCCTGAGCAACAGCATCAT
CD8 hinge (FA)


TPAPRPPTPAPTIASQPLSLRPEAC
GTACTTCAGCCACTTCGTGCCCGT



RPAAGGAVHTRGLDFACD (SEQ
GTTTCTGCCCGCCAAGCCTACAAC



ID NO: 228)
AACCCCTGCTCCTAGACCTCCTAC



OR
ACCAGCTCCTACAATCGCCAGCCA



ALSNSIMYFSHFVPVFLPAKPTTT
GCCTCTGTCTCTGAGGCCAGAAGC



PAPRPPTPAPTIASQPLSLRPEACR
TTGTAGACCTGCTGCAGGCGGAGC



PAAGGAVHTRGLDFACD (SEQ ID
CGTGCATACAAGAGGACTGGATTT



NO: 353)
CGCCTGCGAC (SEQ ID NO: 229)




OR




GCCCTGAGCAACAGCATCATGTAC




TTCAGCCACTTCGTGCCCGTGTTT




CTGCCCGCCAAGCCTACAACAACC




CCTGCTCCTAGACCTCCTACACCA




GCTCCTACAATCGCCAGCCAGCCT




CTGTCTCTGAGGCCAGAAGCTTGT




AGACCTGCTGCAGGCGGAGCCGT




GCATACAAGAGGACTGGATTTCG




CCTGCGAC (SEQ ID NO: 335)






AAAIEVMYPPPYLDNEKSNGTIIH
GCAGCAGCTATCGAGGTGATGTAT
CD28 hinge


VKGKHLCPSPLFPGPSKP (SEQ ID
CCTCCGCCCTACCTGGATAATGAA



NO: 246)
AAGAGTAATGGGACTATCATTCAT




GTAAAAGGGAAGCATCTTTGTCCT




TCTCCCCTTTTCCCCGGTCCGTCTA




AACCT (SEQ ID NO: 247)






ESKYGPPCPSCP (SEQ ID NO: 248)
GAAAGCAAGTACGGTCCACCTTG
IgG4 minimal hinge



CCCTAGCTGTCCG (SEQ ID NO:




249)






ESKYGPPAPSAP (SEQ ID NO: 250)
GAATCCAAGTACGGCCCCCCAGC
IgG4 minimal hinge, no



GCCTAGTGCCCCA (SEQ ID NO:
disulfides



251)






ESKYGPPCPPCP (SEQ ID NO: 252)
GAATCTAAATATGGCCCGCCATGC
IgG4 S228P minimal hinge,



CCGCCTTGCCCA (SEQ ID NO: 253)
enhanced disulfide




formation





EPKSCDKTHTCP (SEQ ID NO:
GAACCGAAGTCTTGTGATAAAACT
IgG1 minimal hinge


254)
CATACGTGCCCG (SEQ ID NO: 255)






AAAFVPVFLPAKPTTTPAPRPPTP
GCTGCTGCTTTCGTACCCGTGTTC
Extended CD8a hinge


APTIASQPLSLRPEACRPAAGGAV
CTCCCTGCTAAGCCTACGACTACC



HTRGLDFACDIYIWAPLAGTCGV
CCCGCACCGAGACCACCCACGCC



LLLSLVITLYCNHRN (SEQ ID NO:
AGCACCCACGATTGCTAGCCAGCC



256)
CCTTAGTTTGCGACCAGAAGCTTG




TCGGCCTGCTGCTGGTGGCGCGGT




ACATACCCGCGGCCTTGATTTTGC




TTGCGATATATATATCTGGGCGCC




TCTGGCCGGAACATGCGGGGTCCT




CCTCCTTTCTCTGGTTATTACTCTC




TACTGTAATCACAGGAAT (SEQ ID




NO: 257)






ACPTGLYTHSGECCKACNLGEGV
GCCTGCCCGACCGGGCTCTACACT
LNGFR hinge


AQPCGANQTVCEPCLDSVTFSDV
CATAGCGGGGAATGTTGTAAGGC



VSATEPCKPCTECVGLQSMSAPC
ATGTAACTTGGGTGAGGGCGTCGC



VEADDAVCRCAYGYYQDETTGR
ACAGCCCTGCGGAGCTAACCAAA



CEACRVCEAGSGLVFSCQDKQNT
CAGTGTGCGAACCCTGCCTCGATA



VCEECPDGTYSDEADAEC (SEQ
GTGTGACGTTCTCTGATGTTGTAT



ID NO: 258)
CAGCTACAGAGCCTTGCAAACCAT




GTACTGAGTGCGTTGGACTTCAGT




CAATGAGCGCTCCATGTGTGGAG




GCAGATGATGCGGTCTGTCGATGT




GCTTACGGATACTACCAAGACGA




GACAACAGGGCGGTGCGAGGCCT




GTAGAGTTTGTGAGGCGGGCTCCG




GGCTGGTGTTTTCATGTCAAGACA




AGCAAAATACGGTCTGTGAAGAG




TGCCCTGATGGCACCTACTCAGAC




GAAGCAGATGCAGAATGC (SEQ ID




NO: 259)






ACPTGLYTHSGECCKACNLGEGV
GCCTGCCCTACAGGACTCTACACG
Truncated LNGFR hinge


AQPCGANQTVC (SEQ ID NO: 260)
CATAGCGGTGAGTGTTGTAAAGC
(TNFR-Cys1)



ATGCAACCTCGGGGAAGGTGTAG




CCCAGCCATGCGGGGCTAACCAA




ACCGTTTGC (SEQ ID NO: 261)






AVGQDTQEVIVVPHSLPFKV (SEQ
GCTGTGGGCCAGGACACGCAGGA
PDGFR-beta extracellular


ID NO: 262)
GGTCATCGTGGTGCCACACTCCTT
linker



GCCCTTTAAGGTG (SEQ ID NO:




263)






YPPVIVEMNSSVEAIEGSHVSLLC
TACCCTCCAGTGATCGTGGAAATG
MAG hinge


GADSNPPPLLTWMRDGTVLREA
AACAGCAGCGTGGAAGCCATCGA



VAESLLLELEEVTPAEDGVYACL
GGGCTCTCATGTGTCTCTGCTGTG



AENAYGQDNRTVGLSVMYAPW
TGGCGCCGACAGCAATCCTCCTCC



KPTVNGTMVAVEGETVSILCSTQ
TCTGCTGACCTGGATGAGAGATGG



SNPDPILTIFKEKQILSTVIYESELQ
CACCGTGCTGAGAGAAGCCGTGG



LELPAVSPEDDGEYWCVAENQY
CCGAATCTCTGCTGCTGGAACTGG



GQRATAFNLSVEFAPVLLLESHC
AAGAAGTGACCCCTGCCGAGGAT



AAARDTVQCLCVVKSNPEPSVAF
GGCGTGTACGCTTGTCTGGCCGAG



ELPSRNVTVNESEREFVYSERSGL
AATGCCTACGGCCAGGACAATAG



VLTSILTLRGQAQAPPRVICTARN
AACCGTGGGCCTGTCCGTGATGTA



LYGAKSLELPFQGAHRLMWAKIG
CGCCCCTTGGAAGCCTACCGTGAA



P (SEQ ID NO: 264)
CGGCACAATGGTGGCCGTGGAAG




GCGAGACAGTGTCCATCCTGTGTA




GCACCCAGAGCAACCCCGATCCT




ATCCTGACCATCTTCAAAGAGAAG




CAGATCCTGAGCACCGTGATCTAC




GAGAGCGAACTGCAGCTCGAACT




GCCCGCTGTGTCCCCAGAGGATGA




TGGCGAATATTGGTGCGTGGCAG




AGAACCAGTACGGCCAGAGAGCC




ACCGCCTTCAACCTGAGCGTGGAA




TTTGCTCCCGTGCTGCTGCTCGAG




AGCCATTGTGCTGCCGCCAGAGAT




ACCGTGCAGTGCCTGTGTGTGGTC




AAGTCTAACCCCGAGCCTAGCGTG




GCCTTTGAGCTGCCCAGCAGAAAC




GTGACCGTGAATGAGAGCGAGCG




CGAGTTCGTGTACAGCGAGAGAT




CTGGACTGGTGCTGACCAGCATCC




TGACACTGAGAGGACAGGCTCAG




GCCCCTCCTAGAGTGATCTGCACC




GCCAGAAATCTGTACGGCGCCAA




GAGCCTGGAACTGCCATTTCAGGG




CGCCCACAGACTCATGTGGGCCA




AGATTGGACCT (SEQ ID NO: 351)









A CAR can have a transmembrane domain, such as a CD8 transmembrane domain, a CD28 transmembrane domain a CD3zeta-chain transmembrane domain, a CD4 transmembrane domain, a 4-1BB transmembrane domain, an TX40 transmembrane domain, an ICOS transmembrane domain, a CTLA-4 transmembrane domain, a PD-1 transmembrane domain, a LAG-3 transmembrane domain, a 2B4 transmembrane domain, a BTLA transmembrane domain, an OX40 transmembrane domain, a DAP10 transmembrane domain, a DAP12 transmembrane domain, a CD16a transmembrane domain, a DNAM-1 transmembrane domain, a KIR2D3S1 transmembrane domain, a KIR3DS1 transmembrane domain, an NKp44 transmembrane domain, an Np46 transmembrane domain, an FceRlg transmembrane domain, an NKG2D transmembrane domain, fragments thereof, combinations thereof, or combinations offragments thereof. A CAR can have a spacer region between the antigen-binding domain and the transmembrane domain. Exemplary transmembrane domain sequences are provided in Table 6C.











TABLE 6C





Amino Acid Sequence
Nucleotide sequence
Description







VAISTSTVLLCGLSAVSLLACYL
GTGGCCATCAGCACAAGCACCG
IL-15Rα transmembrane


(SEQ ID NO: 230)
TGCTGCTGTGTGGACTGTCTGCC
domain



GTTTCTCTGCTGGCCTGCTACCT




G




(SEQ ID NO: 231)






FWVLVVVGGVLACYSLLVTVAFIIF
TTCTGGGTGCTCGTGGTTGTTGG
CD28 transmembrane


WV
CGGAGTGCTGGCCTGTTACTCTC
domain


(SEQ ID NO: 232)
TGCTGGTCACCGTGGCCTTCATC




ATCTTTTGGGTC




(SEQ ID NO: 233)






VAAILGLGLVLGLLGPLAIL
GTGGCCGCCATTCTCGGACTGG
OX40 transmembrane


(SEQ ID NO: 234)
GACTTGTTCTGGGACTGCTGGG
domain*



ACCTCTGGCCATTCTGCT (SEQ




ID NO: 235)






VAAILGLGLVLGLLGPLAILL (SEQ
GTGGCCGCCATTCTCGGACTGG
OX40 transmembrane


ID NO: 244)
GACTTGTTCTGGGACTGCTGGG
domain



ACCTCTGGCCATTCTGCTG (SEQ




ID NO: 245)






IYIWAPLAGTCGVLLLSLVIT
ATCTACATCTGGGCCCCTCTGGC
CD8 transmembrane


(SEQ ID NO: 236)
TGGAACATGCGGAGTGTTGCTG
domain



CTGAGCCTGGTCATCACC




(SEQ ID NO: 237)




OR




ATCTACATCTGGGCCCCTCTGGC




TGGAACATGTGGTGTCTTGCTGC




TGAGCCTGGTCATCACC (SEQ ID




NO: 338)






IYIWAPLAGTCGVLLLSLVITLYCN
ATCTACATCTGGGCCCCTCTGGC
CD8 FA transmembrane


HR (SEQ ID NO: 242)
TGGAACATGTGGTGTCCTGCTGC
domain



TGAGCCTGGTCATCACCCTGTAC




TGCAACCACCGG (SEQ ID NO:




243)






MGLAFLVLVALVWFLVEDWLS
ATGGGCCTCGCCTTTCTGGTGCT
NKp46 transmembrane


(SEQ ID NO: 238)
GGTGGCCCTTGTGTGGTTCCTGG
domain



TGGAAGATTGGCTGAGC




(SEQ ID NO: 239)






FLVIIVILSALFLGTLACFCV
TTCCTGGTCATCATCGTGATCCT
2B4 transmembrane


(SEQ ID NO: 240)
GAGCGCCCTGTTCCTGGGCACC
domain



CTGGCCTGTTTTTGCGTG




(SEQ ID NO: 241)









In some embodiments, the CAR antigen-binding domain that binds to GPC3 includes a heavy chain variable (VH) region and a light chain variable (VL) region, wherein the VH includes: a heavy chain complementarity determining region 1 (CDR-H1) having the amino acid sequence of KNAMN (SEQ ID NO: 199), a heavy chain complementarity determining region 2 (CDR-H2) having the amino acid sequence of RIRNKTNNYATYYADSVKA (SEQ ID NO: 200), and a heavy chain complementarity determining region 3 (CDR-H3) having the amino acid sequence of GNSFAY (SEQ ID NO: 201), and wherein the VL includes: a light chain complementarity determining region 1 (CDR-L1) having the amino acid sequence of KSSQSLLYSSNQKNYLA (SEQ ID NO: 202), a light chain complementarity determining region 2 (CDR-L2) having the amino acid sequence of WASSRES (SEQ ID NO: 203), and a light chain complementarity determining region 3 (CDR-L3) having the amino acid sequence of QQYYNYPLT (SEQ ID NO: 204). In some embodiments, the antigen-binding domain that binds to GPC3 includes a heavy chain complementarity determining region 1 (CDR-H1) having the amino acid sequence of KNAMN (SEQ ID NO: 199). In some embodiments, the antigen-binding domain that binds to GPC3 includes a heavy chain complementarity determining region 2 (CDR-H2) having the amino acid sequence of RIRNKTNNYATYYADSVKA (SEQ ID NO: 200). In some embodiments, the antigen-binding domain that binds to GPC3 includes a heavy chain complementarity determining region 3 (CDR-H3) having the amino acid sequence of GNSFAY (SEQ ID NO: 201). In some embodiments, the antigen-binding domain that binds to GPC3 includes a light chain complementarity determining region 1 (CDR-L1) having the amino acid sequence of KSSQSLLYSSNQKNYLA (SEQ ID NO: 202). In some embodiments, the antigen-binding domain that binds to GPC3 includes a light chain complementarity determining region 2 (CDR-L2) having the amino acid sequence of WASSRES (SEQ ID NO: 203). In some embodiments, the antigen-binding domain that binds to GPC3 includes a light chain complementarity determining region 3 (CDR-L3) having the amino acid sequence of QQYYNYPLT (SEQ ID NO: 204).


In some embodiments, the antigen-binding domain that binds to GPC3 includes a VH region having an amino acid sequence with at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the amino acid sequence of EVQLVETGGGMVQPEGSLKL SCAASGF TFNKNAMNWVRQAPGKGLEWVARIRNKTN NYATYYADSVKARFTISRDDSQSMLYLQMNNLKIEDTAMYYCVAGNSFA YWGQGTLVTVSA (SEQ ID NO: 205) or EVQLVESGGGLVQPGGSLRLSCAASGFTFNKNAMNWVRQAPGKGLEWVGRIRNKTNN YATYYADSVKARFTISRDDSKNSLYLQMNSLKTEDTAVYYCVAGNSFAYWGQGTLVT VSA (SEQ ID NO: 206). An exemplary nucleic acid sequence encoding SEQ ID NO: 206 is GAAGTGCAGCTGGTGGAATCTGGCGGAGGACTGGTTCAACCTGGCGGCTCTCTGAG ACTGTCTTGTGCCGCCAGCGGCTTCACCTTCAACAAGAACGCCATGAACTGGGTCCG ACAGGCCCCTGGCAAAGGCCTTGAATGGGTCGGACGGATCCGGAACAAGACCAAC AACTACGCCACCTACTACGCCGACAGCGTGAAGGCCAGGTTCACCATCTCCAGAGA TGACAGCAAGAACAGCCTGTACCTGCAGATGAACTCCCTGAAAACCGAGGACACCG CCGTGTACTATTGCGTGGCCGGCAATAGCTTTGCCTACTGGGGACAGGGCACCCTG GTTACAGTTTCTGCT (SEQ ID NO: 222) or GAAGTGCAGCTGGTTGAATCAGGTGGCGGCCTGGTTCAACCTGGCGGATCTCTGAG ACTGAGCTGTGCCGCCAGCGGCTTCACCTTCAACAAGAACGCCATGAACTGGGTCC GACAGGCCCCTGGCAAAGGCCTTGAATGGGTCGGACGGATCCGGAACAAGACCAA CAACTACGCCACCTACTACGCCGACAGCGTGAAGGCCAGATTCACCATCAGCCGGG ACGACAGCAAGAACAGCCTGTACCTGCAGATGAACTCCCTGAAAACCGAGGACACC GCCGTGTATTATTGCGTGGCCGGCAACAGCTTTGCCTACTGGGGACAGGGAACCCT GGTCACCGTGTCTGCC (SEQ ID NO: 330). In certain embodiments, a nucleic acid encoding SEQ ID NO: 206 comprises a sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 222 or SEQ ID NO: 330.


In some embodiments, the antigen-binding domain that binds to GPC3 includes a VL region having an amino acid sequence with at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the amino acid sequence of DIVMSQSPSSLVVSIGEKVTMTCKSSQ SLLYSSNQKNYLAWYQQKPGQSPKLLIYWASS RESGVPDRFTGSGSGTDFTLTISSVKAEDLAVYYCQQYYNYPLTFGAGTKLELK (SEQ ID NO: 207), or DIVMTQSPDSLAVSLGERATINCKSSQSLLYSSNQKNYLAWYQQKPGQPPKLLIYWASS RESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYNYPLTFGQGTKLEIK (SEQ ID NO: 208). An exemplary nucleic acid sequence encoding SEQ ID NO: 208 is GACATCGTGATGACACAGAGCCCCGATAGCCTGGCCGTGTCTCTGGGAGAAAGAGC CACCATCAACTGCAAGAGCAGCCAGAGCCTGCTGTACTCCAGCAACCAGAAGAACT ACCTGGCCTGGTATCAGCAAAAGCCCGGCCAGCCTCCTAAGCTGCTGATCTATTGG GCCAGCTCCAGAGAAAGCGGCGTGCCCGATAGATTTTCTGGCTCTGGCAGCGGCAC CGACTTCACCCTGACAATTTCTAGCCTGCAAGCCGAGGACGTGGCCGTGTACTACTG CCAGCAGTACTACAACTACCCTCTGACCTTCGGCCAGGGCACCAAGCTGGAAATCA AA (SEQ ID NO: 221) or GACATCGTGATGACACAGAGCCCCGATAGCCTGGCCGTGTCTCTGGGAGAAAGAGC CACCATCAACTGCAAGAGCAGCCAGAGCCTGCTGTACTCCAGCAACCAGAAGAACT ACCTGGCCTGGTATCAGCAAAAGCCCGGCCAGCCTCCTAAGCTGCTGATCTATTGG GCCAGCTCCAGAGAAAGCGGCGTGCCCGATAGATTTTCTGGCTCTGGCAGCGGCAC CGACTTCACCCTGACAATTTCTAGCCTGCAAGCCGAGGACGTGGCCGTGTATTACTG CCAGCAGTACTACAACTACCCTCTGACCTTCGGCCAGGGCACCAAGCTGGAAATCA AA (SEQ ID NO: 333) or GACATCGTGATGACACAGAGCCCCGATAGCCTGGCCGTGTCTCTGGGAGAAAGAGC CACCATCAACTGCAAGAGCAGCCAGAGCCTGCTGTACTCCAGCAACCAGAAGAACT ACCTGGCCTGGTATCAGCAAAAGCCCGGCCAGCCTCCTAAGCTGCTGATCTATTGG GCCAGCTCCAGAGAAAGCGGCGTGCCCGATAGATTTTCTGGCTCTGGCAGCGGCAC CGACTTCACCCTGACAATTTCTAGCCTGCAAGCCGAGGACGTGGCCGTGTATTACTG CCAGCAGTACTACAACTACCCTCTGACCTTCGGCCAGGGCACCAAGCTGGAAATCA AG (SEQ ID NO: 336). In certain embodiments, a nucleic acid encoding SEQ ID NO: 208 comprises a sequence that is at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 221 or SEQ ID NO: 336.


In general, the ACP of the immunoresponsive cells described herein includes a synthetic transcription factor. A synthetic transcription factor is a non-naturally occurring protein that includes a DNA-binding domain and a transcriptional effector domain and is capable of modulating (i.e., activating or repressing) transcription through binding to a cognate promoter recognized by the DNA-binding domain. In some embodiments, the ACP is a transcriptional repressor. In some embodiments, the ACP is a transcriptional activator.


Engineered Cell Types

Also provided herein are engineered immunoresponsive cells. Immunoresponsive cells can be engineered to comprise any of the engineered nucleic acids described herein (e.g., any of the engineered nucleic acids encoding the cytokines, membrane-cleavable chimeric proteins, and/or CARs described herein). Cells can be engineered to possess any of the features of any of the engineered cells described herein. In a particular aspect, provided herein are cells engineered to produce two cytokines and a CAR, where at least one of the cytokines is membrane-cleavable chimeric protein having the formula S-C-MT or MT-C-S described herein.


The engineered immunoresponsive cells include, but are not limited to, a T cell, a CD8+ T cell, a CD4+ T cell, a gamma-delta T cell, a cytotoxic T lymphocyte (CTL), a regulatory T cell, a viral-specific T cell, a Natural Killer T (NKT) cell, a Natural Killer (NK) cell, a B cell, a tumor-infiltrating lymphocyte (TIL), an innate lymphoid cell, a mast cell, an eosinophil, a basophil, a neutrophil, a myeloid cell, a macrophage, a monocyte, a dendritic cell, an erythrocyte, a platelet cell, a human embryonic stem cell (ESC), an ESC-derived cell, a pluripotent stem cell, a mesenchymal stromal cell (MSC), an induced pluripotent stem cell (iPSC), and an iPSC-derived cell.


A cell can be engineered to produce the proteins described herein using methods known to those skilled in the art. For example, cells can be transduced to engineer the tumor. In an embodiment, the cell is transduced using a virus.


In a particular embodiment, the cell is transduced using an oncolytic virus. Examples of oncolytic viruses include, but are not limited to, an oncolytic herpes simplex virus, an oncolytic adenovirus, an oncolytic measles virus, an oncolytic influenza virus, an oncolytic Indiana vesiculovirus, an oncolytic Newcastle disease virus, an oncolytic vaccinia virus, an oncolytic poliovirus, an oncolytic myxoma virus, an oncolytic reovirus, an oncolytic mumps virus, an oncolytic Maraba virus, an oncolytic rabies virus, an oncolytic rotavirus, an oncolytic hepatitis virus, an oncolytic rubella virus, an oncolytic dengue virus, an oncolytic chikungunya virus, an oncolytic respiratory syncytial virus, an oncolytic lymphocytic choriomeningitis virus, an oncolytic morbillivirus, an oncolytic lentivirus, an oncolytic replicating retrovirus, an oncolytic rhabdovirus, an oncolytic Seneca Valley virus, an oncolytic sindbis virus, and any variant or derivative thereof.


The virus, including any of the oncolytic viruses described herein, can be a recombinant virus that encodes one more transgenes encoding one or more proteins, such as any of the engineered nucleic acids described herein. The virus, including any of the oncolytic viruses described herein, can be a recombinant virus that encodes one more transgenes encoding one or more of the two or more proteins, such as any of the engineered nucleic acids described herein.


Also provided herein are engineered bacterial cells. Bacterial cells can be engineered to comprise any of the engineered nucleic acids described herein. Bacterial cells can be engineered to possess any of the features of any of the engineered cells described herein. In a particular aspect, provided herein are bacterial cells engineered to produce two or more of the proteins described herein. Bacterial cells can be engineered to produce one or more mammalian-derived proteins. Bacterial cells can be engineered to produce two or more mammalian-derived proteins. Examples of bacterial cells include, but are not limited to, Clostridium beijerinckii, Clostridium sporogenes, Clostridium novyi, Escherichia coli, Pseudomonas aeruginosa, Listeria monocytogenes, Salmonella typhimurium, and Salmonella choleraesuis.


An engineered cell can be a human cell. An engineered cell can be a human primary cell. An engineered primary cell can be a tumor infiltrating primary cell. An engineered primary cell can be a primary T cell. An engineered primary cell can be a hematopoietic stem cell (HSC). An engineered primary cell can be a natural killer (NK) cell. An engineered primary cell can be any somatic cell. An engineered primary cell can be a MSC. Human cells (e.g., immune cells) can be engineered to comprise any of the engineered nucleic acids described herein. Human cells (e.g., immune cells) can be engineered to possess any of the features of any of the engineered cells described herein. In a particular aspect, provided herein are human cells (e.g., immune cells) engineered to produce one or more of the proteins described herein. In a particular aspect, provided herein are human cells (e.g., immune cells) engineered to produce two or more of the proteins described herein.


An engineered cell can be isolated from a subject (autologous), such as a subject known or suspected to have cancer. Cell isolation methods are known to those skilled in the art and include, but are not limited to, sorting techniques based on cell-surface marker expression, such as FACS sorting, positive isolation techniques, and negative isolation, magnetic isolation, and combinations thereof.


An engineered cell can be allogenic with reference to the subject being administered a treatment. Allogenic modified cells can be HLA-matched to the subject being administered a treatment. An engineered cell can be a cultured cell, such as an ex vivo cultured cell. An engineered cell can be an ex vivo cultured cell, such as a primary cell isolated from a subject. Cultured cell can be cultured with one or more cytokines.


Also provided herein are methods that include culturing the engineered cells of the present disclosure. Methods of culturing the engineered cells described herein are known. One skilled in the art will recognize that culturing conditions will depend on the particular engineered cell of interest. One skilled in the art will recognize that culturing conditions will depend on the specific downstream use of the engineered cell, for example, specific culturing conditions for subsequent administration of the engineered cell to a subject.


Methods of Engineering Cells

Also provided herein are compositions and methods for engineering immunoresponsive cells to produce one or more proteins of interest (e.g., the cytokines, CARs, ACPs, and/or membrane-cleavable chimeric proteins having the formula S-C-MT or MT-C-S described herein).


In general, cells are engineered to produce proteins of interest through introduction (i.e., delivery) of polynucleotides encoding the one or more proteins of interest or effector molecules, e.g., the chimeric proteins described herein including the protein of interest or effector molecule, into the cell's cytosol and/or nucleus. For example, the polynucleotides encoding the one or more chimeric proteins can be any of the engineered nucleic acids encoding the cytokines, CARs, or membrane-cleavable chimeric proteins having the formula S-C-MT or MT-C-S described herein. Delivery methods include, but are not limited to, viral-mediated delivery, lipid-mediated transfection, nanoparticle delivery, electroporation, sonication, and cell membrane deformation by physical means. One skilled in the art will appreciate the choice of delivery method can depend on the specific cell type to be engineered.


Viral-Mediated Delivery

Viral vector-based delivery platforms can be used to engineer cells. In general, a viral vector-based delivery platform engineers a cell through introducing (i.e., delivering) into a host cell. For example, a viral vector-based delivery platform can engineer a cell through introducing any of the engineered nucleic acids described herein (e.g., any of the exogenous polynucleotide sequences encoding the cytokines, CARs, ACPs, and/or the membrane-cleavable chimeric proteins having the formula S-C-MT or MT-C-S described herein, and/or any of the expression cassettes described herein containing a promoter and an exogenous polynucleotide sequence encoding the proteins, oriented from N-terminal to C-terminal). A viral vector-based delivery platform can be a nucleic acid, and as such, an engineered nucleic acid can also encompass an engineered virally-derived nucleic acid. Such engineered virally-derived nucleic acids can also be referred to as recombinant viruses or engineered viruses.


A viral vector-based delivery platform can encode more than one engineered nucleic acid, gene, or transgene within the same nucleic acid. For example, an engineered virally-derived nucleic acid, e.g., a recombinant virus or an engineered virus, can encode one or more transgenes, including, but not limited to, any of the engineered nucleic acids described herein that encode one or more of the proteins described herein. The one or more transgenes encoding the one or more proteins can be configured to express the one or more proteins and/or other protein of interest. A viral vector-based delivery platform can encode one or more genes in addition to the one or more transgenes (e.g., transgenes encoding the one or more proteins and/or other protein of interest), such as viral genes needed for viral infectivity and/or viral production (e.g., capsid proteins, envelope proteins, viral polymerases, viral transcriptases, etc.), referred to as cis-acting elements or genes.


A viral vector-based delivery platform can comprise more than one viral vector, such as separate viral vectors encoding the engineered nucleic acids, genes, or transgenes described herein, and referred to as trans-acting elements or genes. For example, a helper-dependent viral vector-based delivery platform can provide additional genes needed for viral infectivity and/or viral production on one or more additional separate vectors in addition to the vector encoding the one or more proteins and/or other protein of interest. One viral vector can deliver more than one engineered nucleic acids, such as one vector that delivers engineered nucleic acids that are configured to produce two or more proteins and/or other protein of interest. More than one viral vector can deliver more than one engineered nucleic acids, such as more than one vector that delivers one or more engineered nucleic acid configured to produce one or more proteins and/or other protein of interest. The number of viral vectors used can depend on the packaging capacity of the above mentioned viral vector-based vaccine platforms, and one skilled in the art can select the appropriate number of viral vectors.


In general, any of the viral vector-based systems can be used for the in vitro production of molecules, such as the proteins, effector molecules, and/or other protein of interest described herein, or used in vivo and ex vivo gene therapy procedures, e.g., for in vivo delivery of the engineered nucleic acids encoding one or more proteins and/or other protein of interest. The selection of an appropriate viral vector-based system will depend on a variety of factors, such as cargo/payload size, immunogenicity of the viral system, target cell of interest, gene expression strength and timing, and other factors appreciated by one skilled in the art.


Viral vector-based delivery platforms can be RNA-based viruses or DNA-based viruses. Exemplary viral vector-based delivery platforms include, but are not limited to, a herpes simplex virus, a adenovirus, a measles virus, an influenza virus, a Indiana vesiculovirus, a Newcastle disease virus, a vaccinia virus, a poliovirus, a myxoma virus, a reovirus, a mumps virus, a Maraba virus, a rabies virus, a rotavirus, a hepatitis virus, a rubella virus, a dengue virus, a chikungunya virus, a respiratory syncytial virus, a lymphocytic choriomeningitis virus, a morbillivirus, a lentivirus, a replicating retrovirus, a rhabdovirus, a Seneca Valley virus, a sindbis virus, and any variant or derivative thereof. Other exemplary viral vector-based delivery platforms are described in the art, such as vaccinia, fowlpox, self-replicating alphavirus, marabavirus, adenovirus (See, e.g., Tatsis et al., Adenoviruses, Molecular Therapy (2004) 10, 616-629), or lentivirus, including but not limited to second, third or hybrid second/third generation lentivirus and recombinant lentivirus of any generation designed to target specific cell types or receptors (See, e.g., Hu et al., Immunization Delivered by Lentiviral Vectors for Cancer and Infectious Diseases, Immunol Rev. (2011) 239(1): 45-61, Sakuman et al., Lentiviral vectors: basic to translational, Biochem J. (2012) 443(3):603-18, Cooper et al., Rescue of splicing-mediated intron loss maximizes expression in lentiviral vectors containing the human ubiquitin C promoter, Nucl. Acids Res. (2015) 43 (1): 682-690, Zufferey et al., Self-Inactivating Lentivirus Vector for Safe and Efficient In vivo Gene Delivery, J. Virol. (1998) 72 (12): 9873-9880).


The sequences may be preceded with one or more sequences targeting a subcellular compartment. Upon introduction (i.e. delivery) into a host cell, infected cells (i.e., an engineered cell) can express the proteins and/or other protein of interest. Vaccinia vectors and methods useful in immunization protocols are described in, e.g., U.S. Pat. No. 4,722,848. Another vector is BCG (Bacille Calmette Guerin). BCG vectors are described in Stover et al. (Nature 351:456-460 (1991)). A wide variety of other vectors useful for the introduction (i.e., delivery) of engineered nucleic acids, e.g., Salmonella typhi vectors, and the like will be apparent to those skilled in the art from the description herein.


The viral vector-based delivery platforms can be a virus that targets a cell, herein referred to as an oncolytic virus. Examples of oncolytic viruses include, but are not limited to, an oncolytic herpes simplex virus, an oncolytic adenovirus, an oncolytic measles virus, an oncolytic influenza virus, an oncolytic Indiana vesiculovirus, an oncolytic Newcastle disease virus, an oncolytic vaccinia virus, an oncolytic poliovirus, an oncolytic myxoma virus, an oncolytic reovirus, an oncolytic mumps virus, an oncolytic Maraba virus, an oncolytic rabies virus, an oncolytic rotavirus, an oncolytic hepatitis virus, an oncolytic rubella virus, an oncolytic dengue virus, an oncolytic chikungunya virus, an oncolytic respiratory syncytial virus, an oncolytic lymphocytic choriomeningitis virus, an oncolytic morbillivirus, an oncolytic lentivirus, an oncolytic replicating retrovirus, an oncolytic rhabdovirus, an oncolytic Seneca Valley virus, an oncolytic sindbis virus, and any variant or derivative thereof. Any of the oncolytic viruses described herein can be a recombinant oncolytic virus comprising one more transgenes (e.g., an engineered nucleic acid) encoding one or more proteins and/or other protein of interest. The transgenes encoding the one or more proteins and/or other protein of interest can be configured to express the proteins and/or other protein of interest.


The viral vector-based delivery platform can be retrovirus-based. In general, retroviral vectors are comprised of cis-acting long terminal repeats with packaging capacity for up to 6-10 kb of foreign sequence. The minimum cis-acting LTRs are sufficient for replication and packaging of the vectors, which are then used to integrate the one or more engineered nucleic acids (e.g., transgenes encoding the one or more proteins and/or other protein of interest) into the target cell to provide permanent transgene expression. Retroviral-based delivery systems include, but are not limited to, those based upon murine leukemia, virus (MuLV), gibbon ape leukemia virus (GaLV), Simian Immuno deficiency vims (SIV), human immuno deficiency vims (HIV), and combinations thereof (see, e.g., Buchscher et al., J. Virol. 66:2731-2739 (1992); Johann et ah, J. Virol. 66:1635-1640 (1992); Sommnerfelt et al., Virol. 176:58-59 (1990); Wilson et ah, J. Virol. 63:2374-2378 (1989); Miller et al, J, Virol. 65:2220-2224 (1991); PCT/US94/05700). Other retroviral systems include the Phoenix retrovirus system.


The viral vector-based delivery platform can be lentivirus-based. In general, lentiviral vectors are retroviral vectors that are able to transduce or infect non-dividing cells and typically produce high viral titers. Lentiviral-based delivery platforms can be HIV-based, such as ViraPower systems (ThermoFisher) or pLenti systems (Cell Biolabs). Lentiviral-based delivery platforms can be SIV, or FIV-based. Other exemplary lentivirus-based delivery platforms are described in more detail in U.S. Pat. Nos. 7,311,907; 7,262,049; 7,250,299; 7,226,780; 7,220,578; 7,211,247; 7,160,721; 7,078,031; 7,070,993; 7,056,699; 6,955,919, each herein incorporated by reference for all purposes.


The viral vector-based delivery platform can be adenovirus-based. In general, adenoviral based vectors are capable of very high transduction efficiency in many cell types, do not require cell division, achieve high titer and levels of expression, and can be produced in large quantities in a relatively simple system. In general, adenoviruses can be used for transient expression of a transgene within an infected cell since adenoviruses do not typically integrate into a host's genome. Adenovirus-based delivery platforms are described in more detail in Li et al., Invest Opthalmol Vis Sci 35:2543 2549, 1994; Borras et al., Gene Ther 6:515 524, 1999; Li and Davidson, PNAS 92:7700 7704, 1995; Sakamoto et al., H Gene Ther 5:1088 1097, 1999; WO 94/12649, WO 93/03769; WO 93/19191; WO 94/28938; WO 95/11984 and WO 95/00655, each herein incorporated by reference for all purposes. Other exemplary adenovirus-based delivery platforms are described in more detail in U.S. Pat. Nos. 5,585,362; 6,083,716, 7,371,570; 7,348,178; 7,323,177; 7,319,033; 7,318,919; and 7,306,793 and International Patent Application WO96/13597, each herein incorporated by reference for all purposes.


The viral vector-based delivery platform can be adeno-associated virus (AAV)-based. Adeno-associated virus (“AAV”) vectors may be used to transduce cells with engineered nucleic acids (e.g., any of the engineered nucleic acids described herein). AAV systems can be used for the in vitro production of proteins of interest, such as the proteins described herein and/or effector molecules, or used in vivo and ex vivo gene therapy procedures, e.g., for in vivo delivery of the engineered nucleic acids encoding one or more proteins and/or other protein of interest (see, e.g., West et al., Virology 160:38-47 (1987); U.S. Pat. Nos. 4,797,368; 5,436,146; 6,632,670; 6,642,051; 7,078,387; 7,314,912; 6,498,244; 7,906,111; US patent publications US 2003-0138772, US 2007/0036760, and US 2009/0197338; Gao, et al., J. Virol, 78(12):6381-6388 (June 2004); Gao, et al, Proc Natl Acad Sci USA, 100(10):6081-6086 (May 13, 2003); and International Patent applications WO 2010/138263 and WO 93/24641; Kotin, Human Gene Therapy 5:793-801 (1994); Muzyczka, J. Clin. Invest. 94:1351 (1994), each herein incorporated by reference for all purposes). Exemplary methods for constructing recombinant AAV vectors are described in more detail in U.S. Pat. No. 5,173,414; Tratschin et ah, Mol. Cell. Biol. 5:3251-3260 (1985); Tratschin, et ah, Mol. Cell, Biol. 4:2072-2081 (1984); Hermonat & amp; Muzyczka, PNAS 81:64666470 (1984); and Samuiski et ah, J. Virol. 63:03822-3828 (1989), each herein incorporated by reference for all purposes. In general, an AAV-based vector comprises a capsid protein having an amino acid sequence corresponding to any one of AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV.Rh10, AAV11 and variants thereof. In particular examples, an AAV-based vector has a capsid protein having an amino acid sequence corresponding to AAV2. In particular examples, an AAV-based vector has a capsid protein having an amino acid sequence corresponding to AAV8.


AAV vectors can be engineered to have any of the exogenous polynucleotide sequences encoding the proteins described herein, such as the cytokines, CARs, ACPs, and/or membrane-cleavable chimeric proteins described herein having the formula: S-C-MT or MT-C-S.


The viral vector-based delivery platform can be a virus-like particle (VLP) platform. In general, VLPs are constructed by producing viral structural proteins and purifying resulting viral particles. Then, following purification, a cargo/payload (e.g., any of the engineered nucleic acids described herein) is encapsulated within the purified particle ex vivo. Accordingly, production of VLPs maintains separation of the nucleic acids encoding viral structural proteins and the nucleic acids encoding the cargo/payload. The viral structural proteins used in VLP production can be produced in a variety of expression systems, including mammalian, yeast, insect, bacterial, or in vivo translation expression systems. The purified viral particles can be denatured and reformed in the presence of the desired cargo to produce VLPs using methods known to those skilled in the art. Production of VLPs are described in more detail in Seow et al. (Mol Ther. 2009 May; 17(5): 767-777), herein incorporated by reference for all purposes.


The viral vector-based delivery platform can be engineered to target (i.e., infect) a range of cells, target a narrow subset of cells, or target a specific cell. In general, the envelope protein chosen for the viral vector-based delivery platform will determine the viral tropism. The virus used in the viral vector-based delivery platform can be pseudotyped to target a specific cell of interest. The viral vector-based delivery platform can be pantropic and infect a range of cells. For example, pantropic viral vector-based delivery platforms can include the VSV-G envelope. The viral vector-based delivery platform can be amphotropic and infect mammalian cells. Accordingly, one skilled in the art can select the appropriate tropism, pseudotype, and/or envelope protein for targeting a desired cell type.


Lipid Structure Delivery Systems

Engineered nucleic acids (e.g., any of the engineered nucleic acids described herein) can be introduced into a cell using a lipid-mediated delivery system. In general, a lipid-mediated delivery system uses a structure composed of an outer lipid membrane enveloping an internal compartment. Examples of lipid-based structures include, but are not limited to, a lipid-based nanoparticle, a liposome, a micelle, an exosome, a vesicle, an extracellular vesicle, a cell, or a tissue. Lipid structure delivery systems can deliver a cargo/payload (e.g., any of the engineered nucleic acids described herein) in vitro, in vivo, or ex vivo.


A lipid-based nanoparticle can include, but is not limited to, a unilamellar liposome, a multilamellar liposome, and a lipid preparation. As used herein, a “liposome” is a generic term encompassing in vitro preparations of lipid vehicles formed by enclosing a desired cargo, e.g., an engineered nucleic acid, such as any of the engineered nucleic acids described herein, within a lipid shell or a lipid aggregate. Liposomes may be characterized as having vesicular structures with a bilayer membrane, generally comprising a phospholipid, and an inner medium that generally comprises an aqueous composition. Liposomes include, but are not limited to, emulsions, foams, micelles, insoluble monolayers, liquid crystals, phospholipid dispersions, lamellar layers and the like. Liposomes can be unilamellar liposomes. Liposomes can be multilamellar liposomes. Liposomes can be multivesicular liposomes. Liposomes can be positively charged, negatively charged, or neutrally charged. In certain embodiments, the liposomes are neutral in charge. Liposomes can be formed from standard vesicle-forming lipids, which generally include neutral and negatively charged phospholipids and a sterol, such as cholesterol. The selection of lipids is generally guided by consideration of a desired purpose, e.g., criteria for in vivo delivery, such as liposome size, acid lability and stability of the liposomes in the blood stream. A variety of methods are available for preparing liposomes, as described in, e.g., Szokan et al., Ann. Rev. Biophys. Bioeng. 9; 467 (1980), U.S. Pat. Nos. 4,235,871, 4,501,728, 4,501,728, 4,837,028, and 5,019,369, each herein incorporated by reference for all purposes.


A multilamellar liposome is generated spontaneously when lipids comprising phospholipids are suspended in an excess of aqueous solution such that multiple lipid layers are separated by an aqueous medium. Water and dissolved solutes are entrapped in closed structures between the lipid bilayers following the lipid components undergoing self-rearrangement. A desired cargo (e.g., a polypeptide, a nucleic acid, a small molecule drug, an engineered nucleic acid, such as any of the engineered nucleic acids described herein, a viral vector, a viral-based delivery system, etc.) can be encapsulated in the aqueous interior of a liposome, attached to a liposome via a linking molecule that is associated with both the liposome and the polypeptide/nucleic acid, interspersed within the lipid bilayer of a liposome, entrapped in a liposome, complexed with a liposome, or otherwise associated with the liposome such that it can be delivered to a target entity. Lipophilic molecules or molecules with lipophilic regions may also dissolve in or associate with the lipid bilayer.


A liposome used according to the present embodiments can be made by different methods, as would be known to one of ordinary skill in the art. Preparations of liposomes are described in further detail in WO 2016/201323, International Applications PCT/US85/01161 and PCT/US89/05040, and U.S. Pat. Nos. 4,728,578, 4,728,575, 4,737,323, 4,533,254, 4,162,282, 4,310,505, and 4,921,706; each herein incorporated by reference for all purposes.


Liposomes can be cationic liposomes. Examples of cationic liposomes are described in more detail in U.S. Pat. Nos. 5,962,016; 5,030,453; 6,680,068, U.S. Application 2004/0208921, and International Patent Applications WO03/015757A1, WO04029213A2, and WO02/100435A1, each hereby incorporated by reference in their entirety.


Lipid-mediated gene delivery methods are described, for instance, in WO 96/18372; WO 93/24640; Mannino & Gould-Fogerite, BioTechniques 6(7): 682-691 (1988); U.S. Pat. No. 5,279,833 Rose U.S. Pat. No. 5,279,833; WO91/06309; and Felgner et al., Proc. Natl. Acad. Sci. USA 84: 7413-7414 (1987), each herein incorporated by reference for all purposes.


Exosomes are small membrane vesicles of endocytic origin that are released into the extracellular environment following fusion of multivesicular bodies with the plasma membrane. The size of exosomes ranges between 30 and 100 nm in diameter. Their surface consists of a lipid bilayer from the donor cell's cell membrane, and they contain cytosol from the cell that produced the exosome, and exhibit membrane proteins from the parental cell on the surface. Exosomes useful for the delivery of nucleic acids are known to those skilled in the art, e.g., the exosomes described in more detail in U.S. Pat. No. 9,889,210, herein incorporated by reference for all purposes.


As used herein, the term “extracellular vesicle” or “EV” refers to a cell-derived vesicle comprising a membrane that encloses an internal space. In general, extracellular vesicles comprise all membrane-bound vesicles that have a smaller diameter than the cell from which they are derived. Generally extracellular vesicles range in diameter from 20 nm to 1000 nm, and can comprise various macromolecular cargo either within the internal space, displayed on the external surface of the extracellular vesicle, and/or spanning the membrane. The cargo can comprise nucleic acids (e.g., any of the engineered nucleic acids described herein), proteins, carbohydrates, lipids, small molecules, and/or combinations thereof. By way of example and without limitation, extracellular vesicles include apoptotic bodies, fragments of cells, vesicles derived from cells by direct or indirect manipulation (e.g., by serial extrusion or treatment with alkaline solutions), vesiculated organelles, and vesicles produced by living cells (e.g., by direct plasma membrane budding or fusion of the late endosome with the plasma membrane). Extracellular vesicles can be derived from a living or dead organism, explanted tissues or organs, and/or cultured cells.


As used herein the term “exosome” refers to a cell-derived small (between 20-300 nm in diameter, more preferably 40-200 nm in diameter) vesicle comprising a membrane that encloses an internal space, and which is generated from the cell by direct plasma membrane budding or by fusion of the late endosome with the plasma membrane. The exosome comprises lipid or fatty acid and polypeptide and optionally comprises a payload (e.g., a therapeutic agent), a receiver (e.g., a targeting moiety), a polynucleotide (e.g., a nucleic acid, RNA, or DNA, such as any of the engineered nucleic acids described herein), a sugar (e.g., a simple sugar, polysaccharide, or glycan) or other molecules. The exosome can be derived from a producer cell, and isolated from the producer cell based on its size, density, biochemical parameters, or a combination thereof. An exosome is a species of extracellular vesicle. Generally, exosome production/biogenesis does not result in the destruction of the producer cell. Exosomes and preparation of exosomes are described in further detail in WO 2016/201323, which is hereby incorporated by reference in its entirety.


As used herein, the term “nanovesicle” (also referred to as a “microvesicle”) refers to a cell-derived small (between 20-250 nm in diameter, more preferably 30-150 nm in diameter) vesicle comprising a membrane that encloses an internal space, and which is generated from the cell by direct or indirect manipulation such that said nanovesicle would not be produced by said producer cell without said manipulation. In general, a nanovesicle is a sub-species of an extracellular vesicle. Appropriate manipulations of the producer cell include but are not limited to serial extrusion, treatment with alkaline solutions, sonication, or combinations thereof. The production of nanovesicles may, in some instances, result in the destruction of said producer cell. Preferably, populations of nanovesicles are substantially free of vesicles that are derived from producer cells by way of direct budding from the plasma membrane or fusion of the late endosome with the plasma membrane. The nanovesicle comprises lipid or fatty acid and polypeptide, and optionally comprises a payload (e.g., a therapeutic agent), a receiver (e.g., a targeting moiety), a polynucleotide (e.g., a nucleic acid, RNA, or DNA, such as any of the engineered nucleic acids described herein), a sugar (e.g., a simple sugar, polysaccharide, or glycan) or other molecules. The nanovesicle, once it is derived from a producer cell according to said manipulation, may be isolated from the producer cell based on its size, density, biochemical parameters, or a combination thereof.


Lipid nanoparticles (LNPs), in general, are synthetic lipid structures that rely on the amphiphilic nature of lipids to form membranes and vesicle like structures (Riley 2017). In general, these vesicles deliver cargo/payloads, such as any of the engineered nucleic acids or viral systems described herein, by absorbing into the membrane of target cells and releasing the cargo into the cytosol. Lipids used in LNP formation can be cationic, anionic, or neutral. The lipids can be synthetic or naturally derived, and in some instances biodegradable. Lipids can include fats, cholesterol, phospholipids, lipid conjugates including, but not limited to, polyethyleneglycol (PEG) conjugates (PEGylated lipids), waxes, oils, glycerides, and fat soluble vitamins. Lipid compositions generally include defined mixtures of materials, such as the cationic, neutral, anionic, and amphipathic lipids. In some instances, specific lipids are included to prevent LNP aggregation, prevent lipid oxidation, or provide functional chemical groups that facilitate attachment of additional moieties. Lipid composition can influence overall LNP size and stability. In an example, the lipid composition comprises dilinoleylmethyl-4-dimethylaminobutyrate (MC3) or MC3-like molecules. MC3 and MC3-like lipid compositions can be formulated to include one or more other lipids, such as a PEG or PEG-conjugated lipid, a sterol, or neutral lipids. In addition, LNPs can be further engineered or functionalized to facilitate targeting of specific cell types. Another consideration in LNP design is the balance between targeting efficiency and cytotoxicity.


Micelles, in general, are spherical synthetic lipid structures that are formed using single-chain lipids, where the single-chain lipid's hydrophilic head forms an outer layer or membrane and the single-chain lipid's hydrophobic tails form the micelle center. Micelles typically refer to lipid structures only containing a lipid mono-layer. Micelles are described in more detail in Quader et al. (Mol Ther. 2017 Jul. 5; 25(7): 1501-1513), herein incorporated by reference for all purposes.


Nucleic-acid vectors, such as expression vectors, exposed directly to serum can have several undesirable consequences, including degradation of the nucleic acid by serum nucleases or off-target stimulation of the immune system by the free nucleic acids. Similarly, viral delivery systems exposed directly to serum can trigger an undesired immune response and/or neutralization of the viral delivery system. Therefore, encapsulation of an engineered nucleic acid and/or viral delivery system can be used to avoid degradation, while also avoiding potential off-target affects. In certain examples, an engineered nucleic acid and/or viral delivery system is fully encapsulated within the delivery vehicle, such as within the aqueous interior of an LNP. Encapsulation of an engineered nucleic acid and/or viral delivery system within an LNP can be carried out by techniques well-known to those skilled in the art, such as microfluidic mixing and droplet generation carried out on a microfluidic droplet generating device. Such devices include, but are not limited to, standard T-junction devices or flow-focusing devices. In an example, the desired lipid formulation, such as MC3 or MC3-like containing compositions, is provided to the droplet generating device in parallel with an engineered nucleic acid or viral delivery system and any other desired agents, such that the delivery vector and desired agents are fully encapsulated within the interior of the MC3 or MC3-like based LNP. In an example, the droplet generating device can control the size range and size distribution of the LNPs produced. For example, the LNP can have a size ranging from 1 to 1000 nanometers in diameter, e.g., 1, 10, 50, 100, 500, or 1000 nanometers. Following droplet generation, the delivery vehicles encapsulating the cargo/payload (e.g., an engineered nucleic acid and/or viral delivery system) can be further treated or engineered to prepare them for administration.


Nanoparticle Delivery

Nanomaterials can be used to deliver engineered nucleic acids (e.g., any of the engineered nucleic acids described herein). Nanomaterial vehicles, importantly, can be made of non-immunogenic materials and generally avoid eliciting immunity to the delivery vector itself. These materials can include, but are not limited to, lipids (as previously described), inorganic nanomaterials, and other polymeric materials. Nanomaterial particles are described in more detail in Riley et al. (Recent Advances in Nanomaterials for Gene Delivery—A Review. Nanomaterials 2017, 7(5), 94), herein incorporated by reference for all purposes.


Genomic Editing Systems

A genomic editing systems can be used to engineer a host genome to encode an engineered nucleic acid, such as an engineered nucleic acid encoding the cytokines, CARs, ACPs, and/or membrane-cleavable chimeric proteins having the formula S-C-MT or MT-C-S described herein. In general, a “genomic editing system” refers to any system for integrating an exogenous gene into a host cell's genome. Genomic editing systems include, but are not limited to, a transposon system, a nuclease genomic editing system, and a viral vector-based delivery platform.


A transposon system can be used to integrate an engineered nucleic acid, such as the cytokines, CARs, ACPs, and/or membrane-cleavable chimeric proteins having the formula S-C-MT or MT-C-S described herein, into a host genome. Transposons generally comprise terminal inverted repeats (TIR) that flank a cargo/payload nucleic acid and a transposase. The transposon system can provide the transposon in cis or in trans with the TIR-flanked cargo. A transposon system can be a retrotransposon system or a DNA transposon system. In general, transposon systems integrate a cargo/payload (e.g., an engineered nucleic acid) randomly into a host genome. Examples of transposon systems include systems using a transposon of the Tc1/mariner transposon superfamily, such as a Sleeping Beauty transposon system, described in more detail in Hudecek et al. (Crit Rev Biochem Mol Biol. 2017 August; 52(4):355-380), and U.S. Pat. Nos. 6,489,458, 6,613,752 and 7,985,739, each of which is herein incorporated by reference for all purposes. Another example of a transposon system includes a PiggyBac transposon system, described in more detail in U.S. Pat. Nos. 6,218,185 and 6,962,810, each of which is herein incorporated by reference for all purposes.


A nuclease genomic editing system can be used to engineer a host genome to encode an engineered nucleic acid, such as an engineered nucleic acid encoding the cytokines, CARs, ACPs, and/or the membrane-cleavable chimeric proteins having the formula S-C-MT or MT-C-S described herein. Without wishing to be bound by theory, in general, the nuclease-mediated gene editing systems used to introduce an exogenous gene take advantage of a cell's natural DNA repair mechanisms, particularly homologous recombination (HR) repair pathways. Briefly, following an insult to genomic DNA (typically a double-stranded break), a cell can resolve the insult by using another DNA source that has identical, or substantially identical, sequences at both its 5′ and 3′ ends as a template during DNA synthesis to repair the lesion. In a natural context, HDR can use the other chromosome present in a cell as a template. In gene editing systems, exogenous polynucleotides are introduced into the cell to be used as a homologous recombination template (HRT or HR template). In general, any additional exogenous sequence not originally found in the chromosome with the lesion that is included between the 5′ and 3′ complimentary ends within the HRT (e.g., a gene or a portion of a gene) can be incorporated (i.e., “integrated”) into the given genomic locus during templated HDR. Thus, a typical HR template for a given genomic locus has a nucleotide sequence identical to a first region of an endogenous genomic target locus, a nucleotide sequence identical to a second region of the endogenous genomic target locus, and a nucleotide sequence encoding a cargo/payload nucleic acid (e.g., any of the engineered nucleic acids described herein, such as any of the engineered nucleic acids encoding the cytokines, CARs, ACPs, and/or membrane-cleavable chimeric proteins having the formula S-C-MT or MT-C-S described herein).


In some examples, a HR template can be linear. Examples of linear HR templates include, but are not limited to, a linearized plasmid vector, a ssDNA, a synthesized DNA, and a PCR amplified DNA. In particular examples, a HR template can be circular, such as a plasmid. A circular template can include a supercoiled template.


The identical, or substantially identical, sequences found at the 5′ and 3′ ends of the HR template, with respect to the exogenous sequence to be introduced, are generally referred to as arms (HR arms). HR arms can be identical to regions of the endogenous genomic target locus (i.e., 100% identical). HR arms in some examples can be substantially identical to regions of the endogenous genomic target locus. While substantially identical HR arms can be used, it can be advantageous for HR arms to be identical as the efficiency of the HDR pathway may be impacted by HR arms having less than 100% identity.


Each HR arm, i.e., the 5′ and 3′ HR arms, can be the same size or different sizes. Each HR arm can each be greater than or equal to 50, 100, 200, 300, 400, or 500 bases in length. Although HR arms can, in general, be of any length, practical considerations, such as the impact of HR arm length and overall template size on overall editing efficiency, can also be taken into account. An HR arms can be identical, or substantially identical to, regions of an endogenous genomic target locus immediately adjacent to a cleavage site. Each HR arms can be identical to, or substantially identical to, regions of an endogenous genomic target locus immediately adjacent to a cleavage site. Each HR arms can be identical, or substantially identical to, regions of an endogenous genomic target locus within a certain distance of a cleavage site, such as 1 base-pair, less than or equal to 10 base-pairs, less than or equal to 50 base-pairs, or less than or equal to 100 base-pairs of each other.


A nuclease genomic editing system can use a variety of nucleases to cut a target genomic locus, including, but not limited to, a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) family nuclease or derivative thereof, a Transcription activator-like effector nuclease (TALEN) or derivative thereof, a zinc-finger nuclease (ZFN) or derivative thereof, and a homing endonuclease (HE) or derivative thereof.


A CRISPR-mediated gene editing system can be used to engineer a host genome to encode an engineered nucleic acid, such as an engineered nucleic acid encoding the cytokines, CARs, ACPs, and/or membrane-cleavable chimeric proteins having the formula S-C-MT or MT-C-S described herein. CRISPR systems are described in more detail in M. Adli (“The CRISPR tool kit for genome editing and beyond” Nature Communications; volume 9 (2018), Article number: 1911), herein incorporated by reference for all that it teaches. In general, a CRISPR-mediated gene editing system comprises a CRISPR-associated (Cas) nuclease and a RNA(s) that directs cleavage to a particular target sequence. An exemplary CRISPR-mediated gene editing system is the CRISPR/Cas9 systems comprised of a Cas9 nuclease and a RNA(s) that has a CRISPR RNA (crRNA) domain and a trans-activating CRISPR (tracrRNA) domain. The crRNA typically has two RNA domains: a guide RNA sequence (gRNA) that directs specificity through base-pair hybridization to a target sequence (“a defined nucleotide sequence”), e.g., a genomic sequence; and an RNA domain that hybridizes to a tracrRNA. A tracrRNA can interact with and thereby promote recruitment of a nuclease (e.g., Cas9) to a genomic locus. The crRNA and tracrRNA polynucleotides can be separate polynucleotides. The crRNA and tracrRNA polynucleotides can be a single polynucleotide, also referred to as a single guide RNA (sgRNA). While the Cas9 system is illustrated here, other CRISPR systems can be used, such as the Cpf1/Cas12 or Cas13 systems. Nucleases can include derivatives thereof, such as Cas9 functional mutants, e.g., a Cas9 “nickase” mutant that in general mediates cleavage of only a single strand of a defined nucleotide sequence as opposed to a complete double-stranded break typically produced by Cas9 enzymes.


In general, the components of a CRISPR system interact with each other to form a Ribonucleoprotein (RNP) complex to mediate sequence specific cleavage. In some CRISPR systems, each component can be separately produced and used to form the RNP complex. In some CRISPR systems, each component can be separately produced in vitro and contacted (i.e., “complexed”) with each other in vitro to form the RNP complex. The in vitro produced RNP can then be introduced (i.e., “delivered”) into a cell's cytosol and/or nucleus, e.g., a T cell's cytosol and/or nucleus. The in vitro produced RNP complexes can be delivered to a cell by a variety of means including, but not limited to, electroporation, lipid-mediated transfection, cell membrane deformation by physical means, lipid nanoparticles (LNP), virus like particles (VLP), and sonication. In a particular example, in vitro produced RNP complexes can be delivered to a cell using a Nucleofactor/Nucleofection® electroporation-based delivery system (Lonza®). Other electroporation systems include, but are not limited to, MaxCyte electroporation systems, Miltenyi CliniMACS electroporation systems, Neon electroporation systems, and BTX electroporation systems. CRISPR nucleases, e.g., Cas9, can be produced in vitro (i.e., synthesized and purified) using a variety of protein production techniques known to those skilled in the art. CRISPR system RNAs, e.g., an sgRNA, can be produced in vitro (i.e., synthesized and purified) using a variety of RNA production techniques known to those skilled in the art, such as in vitro transcription or chemical synthesis.


An in vitro produced RNP complex can be complexed at different ratios of nuclease to gRNA. An in vitro produced RNP complex can also be used at different amounts in a CRISPR-mediated editing system. For example, depending on the number of cells desired to be edited, the total RNP amount added can be adjusted, such as a reduction in the amount of RNP complex added when editing a large number of cells in a reaction.


In some CRISPR systems, each component (e.g., Cas9 and an sgRNA) can be separately encoded by a polynucleotide with each polynucleotide introduced into a cell together or separately. In some CRISPR systems, each component can be encoded by a single polynucleotide (i.e., a multi-promoter or multicistronic vector, see description of exemplary multicistronic systems below) and introduced into a cell. Following expression of each polynucleotide encoded CRISPR component within a cell (e.g., translation of a nuclease and transcription of CRISPR RNAs), an RNP complex can form within the cell and can then direct site-specific cleavage.


Some RNPs can be engineered to have moieties that promote delivery of the RNP into the nucleus. For example, a Cas9 nuclease can have a nuclear localization signal (NLS) domain such that if a Cas9 RNP complex is delivered into a cell's cytosol or following translation of Cas9 and subsequent RNP formation, the NLS can promote further trafficking of a Cas9 RNP into the nucleus.


The engineered cells described herein can be engineered using non-viral methods, e.g., the nuclease and/or CRISPR mediated gene editing systems described herein can be delivered to a cell using non-viral methods. The engineered cells described herein can be engineered using viral methods, e.g., the nuclease and/or CRISPR mediated gene editing systems described herein can be delivered to a cell using viral methods such as adenoviral, retroviral, lentiviral, or any of the other viral-based delivery methods described herein.


In some CRISPR systems, more than one CRISPR composition can be provided such that each separately target the same gene or general genomic locus at more than target nucleotide sequence. For example, two separate CRISPR compositions can be provided to direct cleavage at two different target nucleotide sequences within a certain distance of each other. In some CRISPR systems, more than one CRISPR composition can be provided such that each separately target opposite strands of the same gene or general genomic locus. For example, two separate CRISPR “nickase” compositions can be provided to direct cleavage at the same gene or general genomic locus at opposite strands.


In general, the features of a CRISPR-mediated editing system described herein can apply to other nuclease-based genomic editing systems. TALEN is an engineered site-specific nuclease, which is composed of the DNA-binding domain of TALE (transcription activator-like effectors) and the catalytic domain of restriction endonuclease Fokl. By changing the amino acids present in the highly variable residue region of the monomers of the DNA binding domain, different artificial TALENs can be created to target various nucleotides sequences. The DNA binding domain subsequently directs the nuclease to the target sequences and creates a double-stranded break. TALEN-based systems are described in more detail in U.S. Ser. No. 12/965,590; U.S. Pat. Nos. 8,450,471; 8,440,431; 8,440,432; 10,172,880; and U.S. Ser. No. 13/738,381, all of which are incorporated by reference herein in their entirety. ZFN-based editing systems are described in more detail in U.S. Pat. Nos. 6,453,242; 6,534,261; 6,599,692; 6,503,717; 6,689,558; 7,030,215; 6,794,136; 7,067,317; 7,262,054; 7,070,934; 7,361,635; 7,253,273; and U.S. Patent Publication Nos. 2005/0064474; 2007/0218528; 2005/0267061, all incorporated herein by reference in their entireties for all purposes.


Other Engineering Delivery Systems

Various additional means to introduce engineered nucleic acids (e.g., any of the engineered nucleic acids described herein) into a cell or other target recipient entity, such as any of the lipid structures described herein.


Electroporation can used to deliver polynucleotides to recipient entities. Electroporation is a method of internalizing a cargo/payload into a target cell or entity's interior compartment through applying an electrical field to transiently permeabilize the outer membrane or shell of the target cell or entity. In general, the method involves placing cells or target entities between two electrodes in a solution containing a cargo of interest (e.g., any of the engineered nucleic acids described herein). The lipid membrane of the cells is then disrupted, i.e., permeabilized, by applying a transient set voltage that allows the cargo to enter the interior of the entity, such as the cytoplasm of the cell. In the example of cells, at least some, if not a majority, of the cells remain viable. Cells and other entities can be electroporated in vitro, in vivo, or ex vivo. Electroporation conditions (e.g., number of cells, concentration of cargo, recovery conditions, voltage, time, capacitance, pulse type, pulse length, volume, cuvette length, electroporation solution composition, etc.) vary depending on several factors including, but not limited to, the type of cell or other recipient entity, the cargo to be delivered, the efficiency of internalization desired, and the viability desired. Optimization of such criteria are within the scope of those skilled in the art. A variety devices and protocols can be used for electroporation. Examples include, but are not limited to, Neon® Transfection System, MaxCyte® Flow Electroporation™ Lonza® Nucleofector™ systems, and Bio-Rad® electroporation systems.


Other means for introducing engineered nucleic acids (e.g., any of the engineered nucleic acids described herein) into a cell or other target recipient entity include, but are not limited to, sonication, gene gun, hydrodynamic injection, and cell membrane deformation by physical means.


Compositions and methods for delivering engineered mRNAs in vivo, such as naked plasmids or mRNA, are described in detail in Kowalski et al. (Mol Ther. 2019 Apr. 10; 27(4): 710-728) and Kaczmarek et al. (Genome Med. 2017; 9: 60.), each herein incorporated by reference for all purposes.


Delivery Vehicles

Also provided herein are compositions for delivering a cargo/payload (a “delivery vehicle”).


The cargo can comprise nucleic acids (e.g., any of the engineered nucleic acids described herein, such as any of the engineered nucleic acids described herein encoding the cytokines, CARs, ACPs, and/or membrane-cleavable chimeric proteins having the formula S-C-MT or MT-C-S described herein), as described above. The cargo can comprise proteins, carbohydrates, lipids, small molecules, and/or combinations thereof.


The delivery vehicle can comprise any composition suitable for delivering a cargo. The delivery vehicle can comprise any composition suitable for delivering a protein (e.g., any of the proteins described herein). The delivery vehicle can be any of the lipid structure delivery systems described herein. For example, a delivery vehicle can be a lipid-based structure including, but not limited to, a lipid-based nanoparticle, a liposome, a micelle, an exosome, a vesicle, an extracellular vesicle, a cell, or a tissue. The delivery vehicle can be any of the nanoparticles described herein, such as nanoparticles comprising lipids (as previously described), inorganic nanomaterials, and other polymeric materials.


The delivery vehicle can be capable of delivering the cargo to a cell, such as delivering any of the proteins described herein to a cell. The delivery vehicle can be capable of delivering the cargo to a cell, such as delivering any of the proteins described herein to a cell. The delivery vehicle can be configured to target a specific cell, such as configured with a re-directing antibody to target a specific cell. The delivery vehicle can be capable of delivering the cargo to a cell in vivo.


The delivery vehicle can be capable of delivering the cargo to a tissue or tissue environment (e.g., a tumor microenvironment), such as delivering any of the proteins described herein to a tissue or tissue environment in vivo. Delivering a cargo can include secreting the cargo, such as secreting any of the proteins described herein. Accordingly, the delivery vehicle can be capable of secreting the cargo, such as secreting any of the proteins described herein. The delivery vehicle can be capable of secreting the cargo to a tissue or tissue environment (e.g., a tumor microenvironment), such as secreting any of the proteins described herein into a tissue or tissue environment. The delivery vehicle can be configured to target a specific tissue or tissue environment (e.g., a tumor microenvironment), such as configured with a re-directing antibody to target a specific tissue or tissue environment.


Methods of Treatment

Further provided herein are methods that include delivering, or administering, to a subject (e.g., a human subject) engineered cells as provided herein to produce in vivo at least one protein of interest produced by the engineered cells (e.g., any of the cytokines, CARs, ACPs, and/or membrane-cleavable chimeric proteins having the formula S-C-MT or MT-C-S described herein, or the secreted effector molecules provided for herein following protease cleavage of the chimeric protein). Further provided herein are methods that include delivering, or administering, to a subject (e.g., a human subject) engineered cells as provided herein to produce in vivo at least two proteins of interest, e.g., at least two of the cytokines, CARs, ACPs, and/or membrane-cleavable chimeric proteins having the formula S-C-MT or MT-C-S described herein, produced by the engineered cells.


Further provided herein are methods that include delivering, or administering, to a subject (e.g., a human subject) any of the delivery vehicles described herein, such as any of the delivery vehicles described herein comprising any of the proteins of interest described herein, e.g., any of the cytokines, CARs, ACPs, and/or membrane-cleavable chimeric proteins having the formula S-C-MT or MT-C-S described herein. Further provided herein are methods that include delivering, or administering, to a subject (e.g., a human subject) any of the delivery vehicles described herein, such as any of the delivery vehicles described herein comprising two or more proteins of, e.g., at least two of the cytokines, CARs, ACPs, and/or the membrane-cleavable chimeric proteins having the formula S-C-MT or MT-C-S described herein.


In some embodiments, the engineered cells or delivery vehicles are administered via intravenous, intraperitoneal, intratracheal, subcutaneous, intratumoral, oral, anal, intranasal (e.g., packed in a delivery particle), or arterial (e.g., internal carotid artery) routes. Thus, the engineered cells or delivery vehicles may be administered systemically or locally (e.g., to a TME or via intratumoral administration). An engineered cell can be isolated from a subject, such as a subject known or suspected to have cancer. An engineered cell can be allogenic with reference to the subject being administered a treatment. Allogenic modified cells can be HLA-matched to the subject being administered a treatment. Delivery vehicles can be any of the lipid structure delivery systems described herein. Delivery vehicles can be any of the nanoparticles described herein.


Engineered cells or delivery vehicles can be administered alone or in combination with other treatments, either simultaneously or sequentially dependent upon the condition to be treated. For example, engineered cells or delivery vehicles can be administered in combination with one or more IMiDs described herein. FDA-approved IMiDs can be administered in their approved fashion. In another example, engineered cells or delivery vehicles can be administered in combination with a checkpoint inhibitor therapy. Exemplary checkpoint inhibitors include, but are not limited to, anti-PD-1 antibodies, anti-PD-L1 antibodies, anti-PD-L2 antibodies, anti-CTLA-4 antibodies, anti-LAG-3 antibodies, anti-TIM-3 antibodies, anti-TIGIT antibodies, anti-VISTA antibodies, anti-KIR antibodies, anti-B7-H3 antibodies, anti-B7-H4 antibodies, anti-HVEM antibodies, anti-BTLA antibodies, anti-GAL9 antibodies, anti-A2AR antibodies, anti-phosphatidylserine antibodies, anti-CD27 antibodies, anti-TNFa antibodies, anti-TREM1 antibodies, and anti-TREM2 antibodies. Illustrative immune checkpoint inhibitors include pembrolizumab (anti-PD-1; MK-3475/Keytruda®—Merck), nivolumamb (anti-PD-1; Opdivo®-BMS), pidilizumab (anti-PD-1 antibody; CT-011—Teva/CureTech), AMP224 (anti-PD-1; NCI), avelumab (anti-PD-L1; Bavencio®—Pfizer), durvalumab (anti-PD-L1; MEDI4736/Imfinzi®-Medimmune/AstraZeneca), atezolizumab (anti-PD-L1; Tecentriq®—Roche/Genentech), BMS-936559 (anti-PD-L1—BMS), tremelimumab (anti-CTLA-4; Medimmune/AstraZeneca), ipilimumab (anti-CTLA-4; Yervoy®—BMS), lirilumab (anti-KIR; BMS), monalizumab (anti-NKG2A; Innate Pharma/AstraZeneca). In other examples, engineered cells or delivery vehicles can be administered in combination with TGFbeta inhibitors, VEGF inhibitors, or HPGE2. In another example, engineered cells or delivery vehicles can be administered in combination with an anti-CD40 antibody.


Some methods comprise selecting a subject (or patient population) having a tumor (or cancer) and treating that subject with engineered cells or delivery vehicles that modulate tumor-mediated immunosuppressive mechanisms.


The engineered cells or delivery vehicles of the present disclosure may be used, in some instances, to treat cancer, such as ovarian cancer. Other cancers are described herein. For example, the engineered cells may be used to treat bladder tumors, brain tumors, breast tumors, cervical tumors, colorectal tumors, esophageal tumors, gliomas, kidney tumors, liver tumors, lung tumors, melanomas, ovarian tumors, pancreatic tumors, prostate tumors, skin tumors, thyroid tumors, and/or uterine tumors. The engineered cells or delivery vehicles of the present disclosure can be used to treat cancers with tumors located in the peritoneal space of a subject.


The methods provided herein also include delivering a preparation of engineered cells or delivery vehicles. A preparation, in some embodiments, is a substantially pure preparation, containing, for example, less than 5% (e.g., less than 4%, 3%, 2%, or 1%) of cells other than engineered cells. A preparation may comprise 1×105 cells/kg to 1×107 cells/kg cells. Preparation of engineered cells or delivery vehicles can include pharmaceutical compositions having one or more pharmaceutically acceptable carriers. For example, preparations of engineered cells or delivery vehicles can include any of the engineered viruses, such as an engineered AAV virus, or any of the engineered viral vectors, such as AAV vector, described herein.


In Vivo Expression

The methods provided herein also include delivering a composition in vivo capable of producing the engineered cells described herein, e.g., capable of delivering any of the engineered nucleic acids described herein to a cell in vivo. Such compositions include any of the viral-mediated delivery platforms, any of the lipid structure delivery systems, any of the nanoparticle delivery systems, any of the genomic editing systems, or any of the other engineering delivery systems described herein capable of engineering a cell in vivo.


The methods provided herein also include delivering a composition in vivo capable of producing any of the proteins of interest described herein, e.g., any of the cytokines, CARs, ACPs, and/or membrane-cleavable chimeric proteins having the formula S-C-MT or MT-C-S described herein. The methods provided herein also include delivering a composition in vivo capable of producing two or more of the proteins of interest described herein. Compositions capable of in vivo production of proteins of interest include, but are not limited to, any of the engineered nucleic acids described herein. Compositions capable of in vivo production proteins of interest can be a naked mRNA or a naked plasmid.


ADDITIONAL EMBODIMENTS

Provided below are enumerated embodiments describing specific embodiments of the invention:

    • Embodiment 1: An immunoresponsive cell comprising:
      • (a) a first engineered nucleic acid comprising
      • a first expression cassette comprising a first promoter operably linked to a first, exogenous polynucleotide sequence encoding a first cytokine, and
      • a second expression cassette comprising a second promoter operably linked to a second exogenous polynucleotide sequence encoding a chimeric antigen receptor (CAR) that binds to GPC3; and
      • (b) a second engineered nucleic acid comprising
      • a third expression cassette comprising a synthetic transcription factor-responsive promoter operably linked to a third exogenous polynucleotide sequence encoding a second cytokine, and
      • a fourth expression cassette comprising a fourth promoter operably linked to a fourth exogenous polynucleotide sequence encoding an activation-conditional control polypeptide (ACP), wherein the ACP comprises a synthetic transcription factor comprising a DNA-binding domain and a transcriptional effector domain,
      • wherein the ACP is capable of inducing expression of the third exogenous polynucleotide sequence by binding to the ACP-responsive promoter,
      • wherein at least one of the first exogenous polynucleotide sequence and the third exogenous polynucleotide sequence encodes a membrane-cleavable chimeric protein, oriented from N-terminal to C-terminal, having the formula:
      • S-C-MT or MT-C-S
      • wherein
      • S comprises a secretable effector molecule comprising the first and/or second cytokine,
      • C comprises a protease cleavage site, and
      • MT comprises a cell membrane tethering domain, and
      • wherein S-C-MT or MT-C-S is configured to be expressed as a single polypeptide.
    • Embodiment 2: The immunoresponsive cell of embodiment 1, wherein the first expression cassette is configured to be transcribed in an opposite orientation relative to transcription of the second expression cassette.
    • Embodiment 3: The immunoresponsive cell of embodiment 2, wherein the first expression cassette and the second expression cassette are oriented within the first engineered nucleic acid in a head-to-head directionality.
    • Embodiment 4: The immunoresponsive cell of embodiment 1, wherein the first expression cassette is configured to be transcribed in a same orientation relative to the transcription of the second expression cassette.
    • Embodiment 5: The immunoresponsive cell of embodiment 4, wherein the first expression cassette and the second expression cassette are oriented within the first engineered nucleic acid in a head-to-tail directionality.
    • Embodiment 6: The immunoresponsive cell of any one of embodiments 1-5, wherein the first promoter comprises a constitutive promoter, an inducible promoter, or a synthetic promoter.
    • Embodiment 7: The immunoresponsive cell of embodiment 6, wherein the first promoter is a constitutive promoter selected from the group consisting of: CAG, HLP, CMV, EFS, SFFV, SV40, MND, PGK, UbC, hEF1aV1, hCAGG, hEF1aV2, hACTb, heIF4A1, hGAPDH, hGRP78, hGRP94, hHSP70, hKINb, and hUBIb.
    • Embodiment 8: The immunoresponsive cell of any one of embodiments 1-7, wherein the second promoter comprises a constitutive promoter, an inducible promoter, or a synthetic promoter.
    • Embodiment 9: The immunoresponsive cell of embodiment 8, wherein the second promoter is a constitutive promoter selected from the group consisting of: CAG, HLP, CMV, EFS, SFFV, SV40, MND, PGK, UbC, hEF1aV1, hCAGG, hEF1aV2, hACTb, heIF4A1, hGAPDH, hGRP78, hGRP94, hHSP70, hKINb, and hUBIb.
    • Embodiment 10: The immunoresponsive cell of any one of embodiments 1-9, wherein the third expression cassette is configured to be transcribed in an opposite orientation relative to transcription of the fourth expression cassette within the second engineered nucleic acid.
    • Embodiment 11: The immunoresponsive cell of any one of embodiments 1-10, wherein the third expression cassette and the fourth expression cassette are oriented within the second engineered nucleic acid in a head-to-head directionality.
    • Embodiment 12: The immunoresponsive cell of any one of embodiments 1-11, wherein the third expression cassette and the fourth expression cassette are oriented within the second engineered nucleic acid in a tail-to-tail directionality.
    • Embodiment 13: The immunoresponsive cell of any one of embodiments 1-11, wherein the fourth promoter comprises a constitutive promoter, an inducible promoter, or a synthetic promoter.
    • Embodiment 14: The immunoresponsive cell of embodiment 13, wherein the fourth promoter is a constitutive promoter selected from the group consisting of: CAG, HLP, CMV, EFS, SFFV, SV40, MND, PGK, UbC, hEF1aV1, hCAGG, hEF1aV2, hACTb, heIF4A1, hGAPDH, hGRP78, hGRP94, hHSP70, hKINb, and hUBIb.
    • Embodiment 15: An immunoresponsive cell comprising:
      • (a) a first engineered nucleic acid comprising
        • a first expression cassette comprising a first promoter operably linked to a first exogenous polynucleotide sequence encoding a first cytokine and a second exogenous polynucleotide sequence encoding a chimeric antigen receptor (CAR) that binds to GPC3, and
        • a second expression cassette comprising a synthetic transcription factor-responsive promoter operably linked to a third exogenous polynucleotide sequence encoding a second cytokine; and
      • (b) a second engineered nucleic acid comprising
        • a third expression cassette comprising a third promoter operably linked to fourth exogenous polynucleotide sequence encoding an activation-conditional control polypeptide (ACP), wherein the ACP comprises a synthetic transcription factor comprising a DNA-binding domain and a transcriptional effector domain,
      • wherein the ACP is capable of inducing expression of the third exogenous polynucleotide sequence by binding to the ACP-responsive promoter,
      • wherein at least one of the first exogenous polynucleotide sequence and the third exogenous polynucleotide sequence encodes a membrane-cleavable chimeric protein, oriented from N-terminal to C-terminal, having the formula:
      • S-C-MT or MT-C-S
      • wherein
      • S comprises a secretable effector molecule comprising the first and/or second cytokine,
      • C comprises a protease cleavage site, and
      • MT comprises a cell membrane tethering domain, and
      • wherein S-C-MT or MT-C-S is configured to be expressed as a single polypeptide.
    • Embodiment 16: The immunoresponsive cell of embodiment 15, wherein transcription of the first expression cassette is oriented in the opposite direction relative to transcription of the second expression cassette within the first engineered nucleic acid.
    • Embodiment 17: The immunoresponsive cell of embodiment 16, wherein the first expression cassette and the second expression cassette are oriented within the first engineered nucleic acid in a head-to-head directionality.
    • Embodiment 18: The immunoresponsive cell of embodiment 15, wherein the first expression cassette is configured to be transcribed in a same orientation relative to transcription of the second expression cassette.
    • Embodiment 19: The immunoresponsive cell of embodiment 18, wherein the first expression cassette and the second expression cassette are oriented within the first engineered nucleic acid in a head-to-tail directionality.
    • Embodiment 20: An immunoresponsive cell comprising:
      • (a) a first engineered nucleic acid comprising a first expression cassette comprising a first promoter operably linked to a first exogenous polynucleotide sequence encoding a chimeric antigen receptor (CAR) that binds to GPC3 and a second exogenous polynucleotide sequence encoding a first cytokine; and
      • (b) a second engineered nucleic acid comprising
        • a second expression cassette comprising a synthetic transcription factor-responsive promoter operably linked to a third exogenous polynucleotide sequence encoding a second cytokine, and a third expression cassette comprising a third promoter operably linked to fourth exogenous polynucleotide sequence encoding an activation-conditional control polypeptide (ACP), wherein the ACP comprises a synthetic transcription factor comprising a DNA-binding domain and a transcriptional effector domain,
      • wherein the ACP is capable of inducing expression of the third exogenous polynucleotide sequence by binding to the ACP-responsive promoter,
      • wherein at least one of the second exogenous polynucleotide sequence and the third exogenous polynucleotide sequence encodes a membrane-cleavable chimeric protein, oriented from N-terminal to C-terminal, having the formula:
      • S-C-MT or MT-C-S
      • wherein
      • S comprises a secretable effector molecule comprising the first and/or second cytokine,
      • C comprises a protease cleavage site, and
      • MT comprises a cell membrane tethering domain, and
      • wherein S-C-MT or MT-C-S is configured to be expressed as a single polypeptide.
    • Embodiment 21: The immunoresponsive cell of embodiment 20, wherein transcription of the second expression cassette is oriented in the opposite direction relative to transcription of the third expression cassette within the first engineered nucleic acid.
    • Embodiment 22: The immunoresponsive cell of embodiment 20 or embodiment 21, wherein the second expression cassette and the third expression cassette are oriented within the second engineered nucleic acid in a head-to-head directionality.
    • Embodiment 23: The immunoresponsive cell of any one of embodiments 15-22, wherein the first promoter comprises a constitutive promoter, an inducible promoter, or a synthetic promoter.
    • Embodiment 24: The immunoresponsive cell of embodiment 23, wherein the first promoter is a constitutive promoter selected from the group consisting of: CAG, HLP, CMV, EFS, SFFV, SV40, MND, PGK, UbC, hEF1aV1, hCAGG, hEF1aV2, hACTb, heIF4A1, hGAPDH, hGRP78, hGRP94, hHSP70, hKINb, and hUBIb.
    • Embodiment 25: The immunoresponsive cell of any one of embodiments 15-24, wherein the first exogenous polynucleotide sequence and the second exogenous polynucleotide sequence are separated by a linker polynucleotide sequence.
    • Embodiment 26: The immunoresponsive cell of embodiment 25, wherein the linker polynucleotide sequence is operably associated with the translation of the first cytokine and the CAR as separate polypeptides.
    • Embodiment 27: The immunoresponsive cell of embodiment 26, wherein the linker polynucleotide sequence encodes one or more 2A ribosome skipping elements.
    • Embodiment 28: The immunoresponsive cell of embodiment 27, wherein the one or more 2A ribosome skipping elements are each selected from the group consisting of: P2A, T2A, E2A, F2A, and combinations thereof.
    • Embodiment 29: The immunoresponsive cell of embodiment 28, wherein the one or more 2A ribosome skipping elements comprises an E2A/T2A combination.
    • Embodiment 30: The immunoresponsive cell of embodiment 29, wherein the E2A/T2A combination comprises the amino acid sequence of SEQ ID NO: 281.
    • Embodiment 31: The immunoresponsive cell of embodiment 25 or embodiment 26, wherein the linker polynucleotide sequence encodes an Internal Ribosome Entry Site (IRES).
    • Embodiment 32: The immunoresponsive cell of any one of embodiments 25-31, wherein the linker polynucleotide sequence encodes a cleavable polypeptide.
    • Embodiment 33: The immunoresponsive cell of embodiment 32, wherein the cleavable polypeptide comprises a furin polypeptide sequence.
    • Embodiment 34: The immunoresponsive cell of any one of embodiments 15-33, wherein the third promoter comprises a constitutive promoter, an inducible promoter, or a synthetic promoter.
    • Embodiment 35: The immunoresponsive cell of embodiment 34, wherein the third promoter is a constitutive promoter selected from the group consisting of: CAG, HLP, CMV, EFS, SFFV, SV40, MND, PGK, UbC, hEF1aV1, hCAGG, hEF1aV2, hACTb, heIF4A1, hGAPDH, hGRP78, hGRP94, hHSP70, hKINb, and hUBIb.
    • Embodiment 36: The immunoresponsive cell of any one of embodiments 1-35, wherein the first cytokine is IL-15.
    • Embodiment 37: The immunoresponsive cell of embodiment 36, wherein the IL-15 comprises the amino acid sequence of SEQ ID NO: 285.
    • Embodiment 38: The immunoresponsive cell of any one of embodiments 1-36, wherein the second cytokine is selected from the group consisting of: IL12, an IL12p70 fusion protein, IL18, and IL21.
    • Embodiment 39: The immunoresponsive cell of embodiment 38, wherein the second cytokine is the IL12p70 fusion protein.
    • Embodiment 40: The immunoresponsive cell of embodiment 39, wherein the IL12p70 fusion protein comprises the amino acid sequence of SEQ ID NO: 293.
    • Embodiment 41: The immunoresponsive cell of any one of embodiments 1-35, wherein the first cytokine is IL12 or an IL12p70 fusion protein.
    • Embodiment 42: The immunoresponsive cell of any one of embodiments 1-36, wherein the second cytokine is selected from the group consisting of: IL15, IL18, and IL21.
    • Embodiment 43: The immunoresponsive cell of any one of embodiments 1-42, wherein the protease cleavage site is cleavable by a protease selected from the group consisting of: a Type 1 transmembrane protease, a Type II transmembrane protease, a GPI anchored protease, an ADAM8 protease, an ADAM9 protease, an ADAM10 protease, an ADAM12 protease, an ADAM15 protease, an ADAM17 protease, an ADAM19 protease, an ADAM20 protease, an ADAM21 protease, an ADAM28 protease, an ADAM30 protease, an ADAM33 protease, a BACE1 protease, a BACE2 protease, a SIP protease, an MT1-MMP protease, an MT3-MMP protease, an MT5-MMP protease, a furin protease, a PCSK7 protease, a matriptase protease, a matriptase-2 protease, an MMP9 protease, and an NS3 protease.
    • Embodiment 44: The immunoresponsive cell of embodiment 43, wherein the protease cleavage site is cleavable by an ADAM17 protease.
    • Embodiment 45: The immunoresponsive cell of any one of embodiments 1-44, wherein the protease cleavage site comprises a first region having the amino acid sequence of PRAE (SEQ ID NO: 176).
    • Embodiment 46: The immunoresponsive cell of any one of embodiments 1-45, wherein the protease cleavage site comprises a second region having the amino acid sequence of KGG (SEQ ID NO: 177).
    • Embodiment 47: The immunoresponsive cell of embodiment 46, wherein the first region is located N-terminal to the second region.
    • Embodiment 48: The immunoresponsive cell of any one of embodiments 1-47, wherein the protease cleavage site comprises the amino acid sequence of PRAEX1X2KGG (SEQ ID NO: 178),
      • wherein X1 is A, Y, P, S, or F, and
      • wherein X2 is V, L, S, I, Y, T, or A.
    • Embodiment 49: The immunoresponsive cell of embodiment 48, wherein the protease cleavage site comprises the amino acid sequence of PRAEAVKGG (SEQ ID NO: 179).
    • Embodiment 50: The immunoresponsive cell of embodiment 48, wherein the protease cleavage site comprises the amino acid sequence of PRAEALKGG (SEQ ID NO: 180).
    • Embodiment 51: The immunoresponsive cell of embodiment 48, wherein the protease cleavage site comprises the amino acid sequence of PRAEYSKGG (SEQ ID NO: 181).
    • Embodiment 52: The immunoresponsive cell of embodiment 48, wherein the protease cleavage site comprises the amino acid sequence of PRAEPIKGG (SEQ ID NO: 182).
    • Embodiment 53: The immunoresponsive cell of embodiment 48, wherein the protease cleavage site comprises the amino acid sequence of PRAEAYKGG (SEQ ID NO: 183).
    • Embodiment 54: The immunoresponsive cell of embodiment 48, wherein the protease cleavage site comprises the amino acid sequence of PRAESSKGG (SEQ ID NO: 184).
    • Embodiment 55: The immunoresponsive cell of embodiment 48, wherein the protease cleavage site comprises the amino acid sequence of PRAEFTKGG (SEQ ID NO: 185).
    • Embodiment 56: The immunoresponsive cell of embodiment 48, wherein the protease cleavage site comprises the amino acid sequence of PRAEAAKGG (SEQ ID NO: 186).
    • Embodiment 57: The immunoresponsive cell of embodiment 48, wherein the protease cleavage site comprises the amino acid sequence of DEPHYSQRR (SEQ ID NO: 187).
    • Embodiment 58: The immunoresponsive cell of embodiment 48, wherein the protease cleavage site comprises the amino acid sequence of PPLGPIFNPG (SEQ ID NO: 188).
    • Embodiment 59: The immunoresponsive cell of embodiment 48, wherein the protease cleavage site comprises the amino acid sequence of PLAQAYRSS (SEQ ID NO: 189).
    • Embodiment 60: The immunoresponsive cell of embodiment 48, wherein the protease cleavage site comprises the amino acid sequence of TPIDSSFNPD (SEQ ID NO: 190).
    • Embodiment 61: The immunoresponsive cell of embodiment 48, wherein the protease cleavage site comprises the amino acid sequence of VTPEPIFSLI (SEQ ID NO: 191).
    • Embodiment 62: The immunoresponsive cell of any one of embodiments 1-44, wherein the protease cleavage site comprises the amino acid sequence of ITQGLAVSTISSFF (SEQ ID NO: 198).
    • Embodiment 63: The immunoresponsive cell of any one of embodiments 1-62, wherein the protease cleavage site is comprised within a peptide linker.
    • Embodiment 64: The immunoresponsive cell of any one of embodiments 1-62, wherein the protease cleavage site is N-terminal to a peptide linker.
    • Embodiment 65: The immunoresponsive cell of embodiment 63 or embodiment 64, wherein the peptide linker comprises a glycine-serine (GS) linker.
    • Embodiment 66: The immunoresponsive cell of any one of embodiments 1-62, wherein the cell membrane tethering domain comprises a transmembrane-intracellular domain or a transmembrane domain.
    • Embodiment 67: The immunoresponsive cell of embodiment 66, wherein the transmembrane-intracellular domain and/or transmembrane domain is derived from PDGFR-beta, CD8, CD28, CD3zeta-chain, CD4, 4-1BB, OX40, ICOS, CTLA-4, PD-1, LAG-3, 2B4, LNGFR, NKG2D, EpoR, TNFR2, B7-1, or BTLA.
    • Embodiment 68: The immunoresponsive cell of embodiment 67, wherein the transmembrane-intracellular domain and/or transmembrane domain is derived from B7-1.
    • Embodiment 69: The immunoresponsive cell of embodiment 68, wherein the transmembrane-intracellular domain and/or transmembrane domain comprises the amino acid sequence of SEQ ID NO: 219.
    • Embodiment 70: The immunoresponsive cell of any one of embodiments 1-67, wherein the cell membrane tethering domain comprises a post-translational modification tag, or motif capable of post-translational modification to modify the chimeric protein to include a post-translational modification tag, wherein the post-translational modification tag is capable of association with a cell membrane.
    • Embodiment 71: The immunoresponsive cell of embodiment 70, wherein the post-translational modification tag comprises a lipid-anchor domain, optionally wherein the lipid-anchor domain is selected from the group consisting of: a GPI lipid-anchor, a myristoylation tag, and a palmitoylation tag.
    • Embodiment 72: The immunoresponsive cell of any one of embodiments 1-71, wherein the cell membrane tethering domain comprises a cell surface receptor, or a cell membrane-bound portion thereof.
    • Embodiment 73: The immunoresponsive cell of any one of embodiments 1-72, wherein the cytokine of the membrane-cleavable chimeric protein is tethered to a cell membrane of the cell.
    • Embodiment 74: The immunoresponsive cell of any one of embodiments 1-73, wherein the cell further comprises a protease capable of cleaving the protease cleavage site.
    • Embodiment 75: The immunoresponsive cell of embodiment 74, wherein the protease is endogenous to the cell.
    • Embodiment 76: The immunoresponsive cell of embodiment 74, wherein the protease is selected from the group consisting of: a Type 1 transmembrane protease, a Type II transmembrane protease, a GPI anchored protease, an ADAM8 protease, an ADAM9 protease, an ADAM10 protease, an ADAM12 protease, an ADAM15 protease, an ADAM17 protease, an ADAM19 protease, an ADAM20 protease, an ADAM21 protease, an ADAM28 protease, an ADAM30 protease, an ADAM33 protease, a BACE1 protease, a BACE2 protease, a SIP protease, an MT1-MMP protease, an MT3-MMP protease, an MT5-MMP protease, a furin protease, a PCSK7 protease, a matriptase protease, a matriptase-2 protease, and an MMP9 protease.
    • Embodiment 77: The immunoresponsive cell of embodiment 76, wherein the protease is an ADAM17 protease.
    • Embodiment 78: The immunoresponsive cell of any one of embodiments 74-77, wherein the protease is expressed on the cell membrane of the cell.
    • Embodiment 79: The immunoresponsive cell of embodiment 78, wherein the protease is capable of cleaving the protease cleavage site.
    • Embodiment 80: The immunoresponsive cell of embodiment 79, wherein cleavage of the protease cleavage site releases the cytokine of the membrane-cleavable chimeric protein from the cell membrane of the cell.
    • Embodiment 81: The immunoresponsive cell of any one of embodiments 1-19 and 23-80, wherein the first exogenous polynucleotide sequence encodes a membrane-cleavable chimeric protein.
    • Embodiment 82: The immunoresponsive cell of any one of embodiments 15-81, wherein the first exogenous polynucleotide sequence further comprises a polynucleotide sequence encoding a secretion signal peptide.
    • Embodiment 83: The immunoresponsive cell of any one of embodiments 20-80, wherein the second exogenous polynucleotide sequence encodes a membrane-cleavable chimeric protein.
    • Embodiment 84: The immunoresponsive cell of any one of embodiments 15-83, wherein the second exogenous polynucleotide sequence further comprises a polynucleotide sequence encoding a secretion signal peptide Embodiment 85: The immunoresponsive cell embodiment 82 or embodiment 84, wherein the secretion signal peptide is derived from a protein selected from the group consisting of: IL-12, Trypsinogen-2, Gaussia Luciferase, CD5, IgKVII, VSV-G, prolactin, serum albumin preproprotein, azurocidin preproprotein, osteonectin (BM40), CD33, IL-6, IL-8, CCL2, TIP2, VEGFB, osteoprotegerin, serpin-E1, GROalpha, CXCL12, IL-21, CD8, GMCSFRa, NKG2D, and IgE.
    • Embodiment 86: The immunoresponsive cell of embodiment 82, wherein the secretion signal peptide is derived from GMCSFRa.
    • Embodiment 87: The immunoresponsive cell of embodiment 86, wherein the secretion signal peptide comprises the amino acid sequence of SEQ ID NO: 216.
    • Embodiment 88: The immunoresponsive cell of embodiment 84, wherein the secretion signal peptide is derived from IgE.
    • Embodiment 89: The immunoresponsive cell of embodiment 88, wherein the secretion signal peptide comprises the amino acid sequence of SEQ ID NO: 218.
    • Embodiment 90: The immunoresponsive cell of any one of embodiments 15-89, wherein the third exogenous polynucleotide sequence further comprises a polynucleotide sequence encoding a secretion signal peptide.
    • Embodiment 91: The immunoresponsive cell of embodiment 90, wherein the secretion signal peptide is operably associated with the second cytokine.
    • Embodiment 92: The immunoresponsive cell of embodiment 82 or embodiment 91, wherein the secretion signal peptide is native to the second cytokine.
    • Embodiment 93: The immunoresponsive cell of embodiment 82 or embodiment 91, wherein the secretion signal peptide is non-native to the second cytokine.
    • Embodiment 94: The immunoresponsive cell of any one of embodiments 20-93, wherein the third exogenous polynucleotide sequence encodes a membrane-cleavable chimeric protein.
    • Embodiment 95: The immunoresponsive cell of embodiment 94, wherein the second expression cassette further comprises a polynucleotide sequence encoding a secretion signal peptide.
    • Embodiment 96: The immunoresponsive cell of any one of embodiments 15-95, wherein the secretion signal peptide is operably associated with the first cytokine.
    • Embodiment 97: The immunoresponsive cell of embodiment 96, wherein the secretion signal peptide is native to the first cytokine.
    • Embodiment 98: The immunoresponsive cell of embodiment 96, wherein the secretion signal peptide is non-native to the first cytokine.
    • Embodiment 99: The immunoresponsive cell of any one of embodiments 15-98, wherein the first exogenous polynucleotide sequence encodes a first membrane-cleavable chimeric protein and the third exogenous polynucleotide sequence encodes a second membrane-cleavable chimeric protein.
    • Embodiment 100: The immunoresponsive cell of any one of embodiments 20-98, wherein the second exogenous polynucleotide sequence encodes a first membrane-cleavable chimeric protein and the third exogenous polynucleotide sequence encodes a second membrane-cleavable chimeric protein.
    • Embodiment 101: The immunoresponsive cell of any one of embodiments 1-100, wherein the CAR comprises an antigen-binding domain comprising a heavy chain variable (VH) region and a light chain variable (VL) region,
      • wherein the VH comprises:
      • a heavy chain complementarity determining region 1 (CDR-H1) having the amino acid sequence of KNAMN (SEQ ID NO: 199),
      • a heavy chain complementarity determining region 2 (CDR-H2) having the amino acid sequence of RIRNKTNNYATYYADSVKA (SEQ ID NO: 200), and
      • a heavy chain complementarity determining region 3 (CDR-H3) having the amino acid sequence of GNSFAY (SEQ ID NO: 201), and
      • wherein the VL comprises:
      • a light chain complementarity determining region 1 (CDR-L1) having the amino acid sequence of KSSQSLLYSSNQKNYLA (SEQ ID NO: 202),
      • a light chain complementarity determining region 2 (CDR-L2) having the amino acid sequence of WASSRES (SEQ ID NO: 203), and
      • a light chain complementarity determining region 3 (CDR-L3) having the amino acid sequence of QQYYNYPLT (SEQ ID NO: 204).
    • Embodiment 102: The immunoresponsive cell of embodiment 101, wherein the VH region comprises an amino acid sequence with at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the amino acid sequence of









(SEQ ID NO: 205)


EVQLVETGGGMVQPEGSLKLSCAASGFTFNKNAMNWVRQAPGKGLEWVAR


IRNKTNNYATYYADSVKARFTISRDDSQSMLYLQMNNLKIEDTAMYYCVA


GNSFAYWGQGTLVTVSA


or





(SEQ ID NO: 206)


EVQLVESGGGLVQPGGSLRLSCAASGFTFNKNAMNWVRQAPGKGLEWVGR


IRNKTNNYATYYADSVKARFTISRDDSKNSLYLQMNSLKTEDTAVYYCVA


GNSFAYWGQGTLVTVSA.








    • Embodiment 103: The immunoresponsive cell of embodiment 101, wherein the VH region comprises an amino acid sequence with at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the amino acid sequence of SEQ ID NO: 206.

    • Embodiment 104: The immunoresponsive cell of any one of embodiments 101-103, wherein the VL region comprises an amino acid sequence with at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the amino acid sequence of












(SEQ ID NO: 207)


DIVMSQSPSSLVVSIGEKVTMTCKSSQSLLYSSNQKNYLAWYQQKPGQSP


KLLIYWASSRESGVPDRFTGSGSGTDFTLTISSVKAEDLAVYYCQQYYNY


PLTFGAGTKLELK,


or





(SEQ ID NO: 208)


DIVMTQSPDSLAVSLGERATINCKSSQSLLYSSNQKNYLAWYQQKPGQPP


KLLIYWASSRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQYYNY


PLTFGQGTKLEIK.








    • Embodiment 105: The immunoresponsive cell of embodiment 104, wherein the VL region comprises an amino acid sequence with at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the amino acid sequence of SEQ ID NO: 208.

    • Embodiment 106: The immunoresponsive cell of any one of embodiments 101-98, wherein the antigen-binding domain comprises a single chain variable fragment (scFv).

    • Embodiment 107: The immunoresponsive cell of any one of embodiments 101-106, wherein the VH and VL are separated by a peptide linker.

    • Embodiment 108: The immunoresponsive cell of embodiment 107, wherein the peptide linker comprises a glycine-serine (GS) linker.

    • Embodiment 109: The immunoresponsive cell of embodiment 108, wherein the GS linker comprises the amino acid sequence of (GGGGS)3 (SEQ ID NO: 223).

    • Embodiment 110: The immunoresponsive cell of embodiment 107, wherein the scFv comprises the structure VH-L-VL or VL-L-VH, wherein VH is the heavy chain variable domain, L is the peptide linker, and VL is the light chain variable domain.

    • Embodiment 111: The immunoresponsive cell of any one of embodiments 1-110, wherein the CAR comprises one or more intracellular signaling domains, and each of the one or more intracellular signaling domains is selected from the group consisting of: a CD3zeta-chain intracellular signaling domain, a CD97 intracellular signaling domain, a CD11a-CD18 intracellular signaling domain, a CD2 intracellular signaling domain, an ICOS intracellular signaling domain, a CD27 intracellular signaling domain, a CD154 intracellular signaling domain, a CD8 intracellular signaling domain, an OX40 intracellular signaling domain, a 4-1BB intracellular signaling domain, a CD28 intracellular signaling domain, a ZAP40 intracellular signaling domain, a CD30 intracellular signaling domain, a GITR intracellular signaling domain, an HVEM intracellular signaling domain, a DAP10 intracellular signaling domain, a DAP12 intracellular signaling domain, a MyD88 intracellular signaling domain, a 2B4 intracellular signaling domain, a CD16a intracellular signaling domain, a DNAM-1 intracellular signaling domain, a KIR2DS1 intracellular signaling domain, a KIR3DS1 intracellular signaling domain, a NKp44 intracellular signaling domain, a NKp46 intracellular signaling domain, a FceRlg intracellular signaling domain, a NKG2D intracellular signaling domain, and an EAT-2 intracellular signaling domain

    • Embodiment 112: The immunoresponsive cell of embodiment 111, wherein the one or more intracellular signaling domains comprises an OX40 intracellular signaling domain.

    • Embodiment 113: The immunoresponsive cell of embodiment 112, wherein the OX40 intracellular signaling domain comprises the amino acid sequence of SEQ ID NO: 269.

    • Embodiment 114: The immunoresponsive cell of embodiment 111, wherein the one or more intracellular signaling domains comprises a CD28 intracellular signaling domain.

    • Embodiment 115: The immunoresponsive cell of embodiment 114, wherein the CD28 intracellular signaling domain comprises the amino acid sequence of SEQ ID NO: 267.

    • Embodiment 116: The immunoresponsive cell of embodiment 111, wherein the one or more intracellular signaling domains comprises a CD3z intracellular signaling domain.

    • Embodiment 117: The immunoresponsive cell of embodiment 116, wherein the CD3z intracellular signaling domain comprises an amino acid sequence of SEQ ID NO: 277 or SEQ ID NO: 279.

    • Embodiment 118: The immunoresponsive cell of any one of embodiments 1-117, wherein the CAR comprises a transmembrane domain, and the transmembrane domain is selected from the group consisting of: a CD8 transmembrane domain, a CD28 transmembrane domain a CD3zeta-chain transmembrane domain, a CD4 transmembrane domain, a 4-1BB transmembrane domain, an OX40 transmembrane domain, an ICOS transmembrane domain, a CTLA-4 transmembrane domain, a PD-1 transmembrane domain, a LAG-3 transmembrane domain, a 2B4 transmembrane domain, a BTLA transmembrane domain, an OX40 transmembrane domain, a DAP10 transmembrane domain, a DAP12 transmembrane domain, a CD16a transmembrane domain, a DNAM-1 transmembrane domain, a KIR2DS1 transmembrane domain, a KIR3DS1 transmembrane domain, an NKp44 transmembrane domain, an NKp46 transmembrane domain, an FceR1g transmembrane domain, and an NKG2D transmembrane domain.

    • Embodiment 119: The immunoresponsive cell of embodiment 118, wherein the transmembrane domain is an OX40 transmembrane domain.

    • Embodiment 120: The immunoresponsive cell of embodiment 119, wherein the OX40 transmembrane domain comprises the amino acid sequence of SEQ ID NO: 244.

    • Embodiment 121: The immunoresponsive cell of embodiment 118, wherein the transmembrane domain is a CD8 transmembrane domain.

    • Embodiment 122: The immunoresponsive cell of embodiment 121, wherein the CD8 transmembrane domain comprises an amino acid sequence of SEQ ID NO: 236 or SEQ ID NO: 242.

    • Embodiment 123: The immunoresponsive cell of any one of embodiments 118-122, wherein the CAR comprises a spacer region between the antigen-binding domain and the transmembrane domain.

    • Embodiment 124: The immunoresponsive cell of embodiment 123, wherein the spacer region is derived from a protein selected from the group consisting of: CD8, CD28, IgG4, IgG1, LNGFR, PDGFR-beta, and MAG.

    • Embodiment 125: The immunoresponsive cell of embodiment 124, wherein the spacer region is a CD8 hinge.

    • Embodiment 126: The immunoresponsive cell of embodiment 125, wherein the CD8 hinge comprises the amino acid sequence of SEQ ID NO: 226 or SEQ ID NO: 228.

    • Embodiment 127: The immunoresponsive cell of any one of embodiments 1-123, wherein the ACP comprises a DNA binding domain and a transcriptional effector domain.

    • Embodiment 128: The immunoresponsive cell of embodiment 127, wherein the transcriptional effector domain comprises a transcriptional activator domain.

    • Embodiment 129: The immunoresponsive cell of embodiment 128, wherein the transcriptional activator domain is selected from the group consisting of: a Herpes Simplex Virus Protein 16 (VP16) activation domain; an activation domain comprising four tandem copies of VP16, a VP64 activation domain; a p65 activation domain of NFκB; an Epstein-Barr virus R transactivator (Rta) activation domain; a tripartite activator comprising the VP64, the p65, and the Rta activation domains (VPR activation domain); a histone acetyltransferase (HAT) core domain of the human E1A-associated protein p300 (p300 HAT core activation domain).

    • Embodiment 130: The immunoresponsive cell of embodiment 129, wherein the transcriptional activator domain comprises a VPR activation domain.

    • Embodiment 131: The immunoresponsive cell of embodiment 131, wherein the VPR activation domain comprises the amino acid sequence of SEQ ID NO: 325.

    • Embodiment 132: The immunoresponsive cell of embodiment 128, wherein the transcriptional effector domain comprises a transcriptional repressor domain.

    • Embodiment 133: The immunoresponsive cell of embodiment 132, wherein the transcriptional repressor domain is selected from the group consisting of: a Krüppel associated box (KRAB) repression domain; a truncated Krüppel associated box (KRAB) repression domain; a Repressor Element Silencing Transcription Factor (REST) repression domain; a WRPW motif (SEQ ID NO: 346) of the hairy-related basic helix-loop-helix repressor proteins, the motif is known as a WRPW repression domain (SEQ ID NO: 346); a DNA (cytosine-5)-methyltransferase 3B (DNMT3B) repression domain; and an HP1 alpha chromoshadow repression domain.

    • Embodiment 134: The immunoresponsive cell of any one of embodiments 127-133, wherein the DNA binding domain comprises a zinc finger (ZF) protein domain.

    • Embodiment 135: The immunoresponsive cell of embodiment 134, wherein the ZF protein domain is modular in design and comprises an array of zinc finger motifs.

    • Embodiment 136: The immunoresponsive cell of embodiment 134, wherein the ZF protein domain comprises an array of one to ten zinc finger motifs.

    • Embodiment 137: The immunoresponsive cell of embodiment 136, wherein the ZF protein domain comprises the amino acid sequence of SEQ ID NO: 320.

    • Embodiment 138: The immunoresponsive cell of any one of embodiments 1-136, wherein the ACP further comprises a repressible protease and one or more cognate cleavage sites of the repressible protease.

    • Embodiment 139: The immunoresponsive cell of embodiment 138, wherein the repressible protease is hepatitis C virus (HCV) nonstructural protein 3 (NS3).

    • Embodiment 140: The immunoresponsive cell of embodiment 139, wherein the NS3 protease comprises the amino acid sequence of SEQ ID NO: 321.

    • Embodiment 141: The immunoresponsive cell of embodiment 138 or embodiment 139, wherein the cognate cleavage site of the repressible protease comprises an NS3 protease cleavage site.

    • Embodiment 142: The immunoresponsive cell of embodiment 141, wherein the NS3 protease cleavage site comprises a NS3/NS4A, a NS4A/NS4B, a NS4B/NS5A, or a NS5A/NS5B junction cleavage site.

    • Embodiment 143: The immunoresponsive cell of any one of embodiments 139-142, wherein the NS3 protease is repressible by a protease inhibitor.

    • Embodiment 144: The immunoresponsive cell of embodiment 143, wherein the protease inhibitor is selected from the group consisting of: simeprevir, danoprevir, asunaprevir, ciluprevir, boceprevir, sovaprevir, paritaprevir, telaprevir, grazoprevir, glecaprevir, and voxiloprevir.

    • Embodiment 145: The immunoresponsive cell of embodiment 144, wherein the protease inhibitor is grazoprevir (GRZ).

    • Embodiment 146: The immunoresponsive cell of any one of embodiments 1-145, wherein the ACP further comprises a nuclear localization signal (NLS).

    • Embodiment 147: The immunoresponsive cell of embodiment 146, wherein the NLS comprises the amino acid sequence of SEQ ID NO: 296.

    • Embodiment 148: The immunoresponsive cell of any one of embodiments 138-144, wherein the one or more cognate cleavage sites of the repressible protease are localized between the DNA binding domain and the transcriptional effector domain.

    • Embodiment 149: The immunoresponsive cell of any one of embodiments 1-148, wherein the ACP further comprises a hormone binding domain of estrogen receptor variant ERT2.

    • Embodiment 150: The immunoresponsive cell of any one of embodiments 1-149, wherein the ACP-responsive promoter is a synthetic promoter.

    • Embodiment 151: The immunoresponsive cell of any one of embodiments 1-150, wherein the ACP-responsive promoter comprises an ACP binding domain sequence and a minimal promoter sequence.

    • Embodiment 152: The immunoresponsive cell of embodiment 151, wherein the ACP binding domain sequence comprises one or more zinc finger binding sites.

    • Embodiment 153: The immunoresponsive cell of any one of embodiments 1, 15, or 20, wherein the first engineered nucleic acid comprises a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 309.

    • Embodiment 154: The immunoresponsive cell of any one of embodiments 1, 15, or 20, wherein the first engineered nucleic acid comprises a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 326.

    • Embodiment 155: The immunoresponsive cell of any one of embodiments 1, 15, or 20, wherein the first engineered nucleic acid comprises a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 310.

    • Embodiment 156: The immunoresponsive cell of any one of embodiments 1, 15, or 20, wherein the first engineered nucleic acid comprises a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 327.

    • Embodiment 157: The immunoresponsive cell of any one of embodiments 1, 15, or 20, wherein the first engineered nucleic acid comprises a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 314.

    • Embodiment 158: The immunoresponsive cell of any one of embodiments 1, 15, or 20, wherein the first engineered nucleic acid comprises a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 315.

    • Embodiment 159: The immunoresponsive cell of any one of embodiments 1-11 or 20-152, wherein the second engineered nucleic acid comprises a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 317.

    • Embodiment 160: The immunoresponsive cell of any one of embodiments 1-11 or 20-152, wherein the second engineered nucleic acid comprises a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 318.

    • Embodiment 161: An immunoresponsive cell comprising:
      • a) a first engineered nucleic acid comprising the nucleotide sequence of SEQ ID NO: 310; and
      • b) a second engineered nucleic acid comprising the nucleotide sequence of SEQ ID NO: 317.

    • Embodiment 162: An immunoresponsive cell comprising:
      • a) a first engineered nucleic acid comprising the nucleotide sequence of SEQ ID NO: 327; and
      • c) a second engineered nucleic acid comprising the nucleotide sequence of SEQ ID NO: 317.

    • Embodiment 163: The immunoresponsive cell of any one of embodiments 1-162, wherein the cell is selected from the group consisting of: a T cell, a CD8+ T cell, a CD4+ T cell, a gamma-delta T cell, a cytotoxic T lymphocyte (CTL), a regulatory T cell, a viral-specific T cell, a Natural Killer T (NKT) cell, a Natural Killer (NK) cell, a B cell, a tumor-infiltrating lymphocyte (TIL), an innate lymphoid cell, a mast cell, an eosinophil, a basophil, a neutrophil, a myeloid cell, a macrophage, a monocyte, a dendritic cell, an erythrocyte, a platelet cell, a human embryonic stem cell (ESC), an ESC-derived cell, a pluripotent stem cell, a mesenchymal stromal cell (MSC), an induced pluripotent stem cell (iPSC), and an iPSC-derived cell.

    • Embodiment 164: The immunoresponsive cell of any one of embodiments 1-162, wherein the cell is a Natural Killer (NK) cell.

    • Embodiment 165: The immunoresponsive cell of embodiment 163 or embodiment 164, wherein the cell is autologous.

    • Embodiment 166: The immunoresponsive cell of embodiment 163 of embodiment 164, wherein the cell is allogeneic.

    • Embodiment 167: An engineered nucleic acid comprising:
      • a first expression cassette comprising a first promoter operably linked to a first, exogenous polynucleotide sequence encoding IL15, and
      • a second expression cassette comprising a second promoter operably linked to a second exogenous polynucleotide sequence encoding a chimeric antigen receptor (CAR) that binds to GPC3,
      • wherein the first exogenous polynucleotide sequence encodes a membrane-cleavable chimeric protein, oriented from N-terminal to C-terminal, having the formula:
      • S-C-MT or MT-C-S
      • wherein
      • S comprises a secretable effector molecule comprising the IL15,
      • C comprises a protease cleavage site, and
      • MT comprises a cell membrane tethering domain, and
      • wherein S-C-MT or MT-C-S is configured to be expressed as a single polypeptide.

    • Embodiment 168: The engineered nucleic acid of embodiment 167, wherein
      • a) the first expression cassette and the second expression cassette are oriented within the first engineered nucleic acid in a head-to-tail directionality,
      • b) the first exogenous polynucleotide sequence and the second exogenous polynucleotide sequence are separated by a linker polynucleotide sequence comprising an E2A/T2A ribosome skipping element, and
      • c) the CAR that binds to GPC3 comprises a CD28 intracellular signaling domain or an OX40 intracellular signaling domain.

    • Embodiment 169: An engineered nucleic acid comprising:
      • a first expression cassette comprising a first promoter operably linked to a first, exogenous polynucleotide sequence encoding a chimeric antigen receptor (CAR) that binds to GPC3 and a second exogenous polynucleotide sequence encoding IL15, wherein the first exogenous polynucleotide sequence encodes a membrane-cleavable chimeric protein, oriented from N-terminal to C-terminal, having the formula:
      • S-C-MT or MT-C-S
      • wherein
      • S comprises a secretable effector molecule comprising the IL15,
      • C comprises a protease cleavage site, and
      • MT comprises a cell membrane tethering domain, and
      • wherein S-C-MT or MT-C-S is configured to be expressed as a single polypeptide.

    • Embodiment 170: The engineered nucleic acid of embodiment 169, wherein
      • a) the first exogenous polynucleotide sequence and the second exogenous polynucleotide sequence are separated by a linker polynucleotide sequence comprising an E2A/T2A ribosome skipping element, and
      • b) the CAR that binds to GPC3 comprises a CD28 intracellular signaling domain or an OX40 intracellular signaling domain.

    • Embodiment 171: The engineered nucleic acid of any one of embodiments 167-170, wherein the engineered nucleic acid comprises a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 309.

    • Embodiment 172: The engineered nucleic acid of any one of embodiments 167-170, wherein the engineered nucleic acid comprises a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 326.

    • Embodiment 173: The engineered nucleic acid of any one of embodiments 167-170, wherein the engineered nucleic acid comprises a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 310.

    • Embodiment 174: The engineered nucleic acid of any one of embodiments 167-170, wherein the engineered nucleic acid comprises a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 327.

    • Embodiment 175: The engineered nucleic acid of any one of embodiments 167-170, wherein the engineered nucleic acid comprises a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 314.

    • Embodiment 176: The engineered nucleic acid of any one of embodiments 167-170, wherein the engineered nucleic acid comprises a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 315.

    • Embodiment 177: An engineered nucleic acid comprising the nucleotide sequence of SEQ ID NO: 310.

    • Embodiment 178: An engineered nucleic acid comprising the nucleotide sequence of SEQ ID NO: 327.

    • Embodiment 179: An engineered nucleic acid comprising:
      • a first expression cassette comprising a synthetic transcription factor-responsive promoter operably linked to a first exogenous polynucleotide sequence encoding an IL12p70 fusion protein, and
      • a second expression cassette comprising a second promoter operably linked to a second exogenous polynucleotide sequence encoding an activation-conditional control polypeptide (ACP), wherein the ACP comprises a synthetic transcription factor comprising a DNA-binding domain and a transcriptional effector domain,
      • wherein the ACP is capable of inducing expression of the first exogenous polynucleotide sequence by binding to the ACP-responsive promoter,
      • wherein the first exogenous polynucleotide sequence encodes a membrane-cleavable chimeric protein, oriented from N-terminal to C-terminal, having the formula:
      • S-C-MT or MT-C-S
      • wherein
      • S comprises a secretable effector molecule comprising the IL12p70 fusion protein,
      • C comprises a protease cleavage site, and
      • MT comprises a cell membrane tethering domain, and
      • wherein S-C-MT or MT-C-S is configured to be expressed as a single polypeptide.

    • Embodiment 180: The engineered nucleic acid of embodiment 179, wherein
      • a) the first expression cassette and the second expression cassette are oriented within the first engineered nucleic acid in a head-to-head directionality, and
      • b) the ACP comprises a DNA binding domain and a transcriptional effector domain, wherein the transcriptional activator domain comprises a VPR activation domain.

    • Embodiment 181: The engineered nucleic acid of embodiment 179 or 180, wherein the engineered nucleic acid comprises a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 317.

    • Embodiment 182: The engineered nucleic acid of embodiment 179 or 180, wherein the engineered nucleic acid comprises a nucleotide sequence at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to SEQ ID NO: 318.

    • Embodiment 183: An engineered nucleic acid comprising the nucleotide sequence of SEQ ID NO: 317.

    • Embodiment 184: An expression vector comprising the engineered nucleic acid of any one of embodiments 167-183.

    • Embodiment 185: An immunoresponsive cell comprising the engineered nucleic acid of any one of embodiments 167-183 or the expression vector of embodiment 184.

    • Embodiment 186: A pharmaceutical composition comprising the immunoresponsive cell of any one of embodiments 1-166 or 185, the engineered nucleic acid of any one of embodiments 167-183, or the expression vector of embodiment 184, and a pharmaceutically acceptable carrier, pharmaceutically acceptable excipient, or a combination thereof.

    • Embodiment 187: A method of treating a subject in need thereof, the method comprising administering a therapeutically effective dose of any of the immunoresponsive cells of any one of embodiments 1-166 or 185, the engineered nucleic acid of any one of embodiments 167-183, the expression vector of embodiment 184, or the pharmaceutical composition of embodiment 186.

    • Embodiment 188: A method of stimulating a cell-mediated immune response to a tumor cell in a subject, the method comprising administering to a subject having a tumor a therapeutically effective dose of any of the immunoresponsive cells of any one of embodiments 1-166 or 185, the engineered nucleic acid of any one of embodiments 167-183, the expression vector of embodiment 184, or the pharmaceutical composition of embodiment 186.

    • Embodiment 189: A method of reducing tumor volume in a subject, the method comprising administering to a subject having a tumor a composition comprising any of the immunoresponsive cells of any one of embodiments 1-166 or 185, the engineered nucleic acid of any one of embodiments 167-183, the expression vector of embodiment 184, or the pharmaceutical composition of embodiment 186.

    • Embodiment 190: A method of providing an anti-tumor immunity in a subject, the method comprising administering to a subject in need thereof a therapeutically effective dose of any of the immunoresponsive cells of any one of embodiments 1-166 or 185, the engineered nucleic acid of any one of embodiments 167-183, the expression vector of embodiment 184, or the pharmaceutical composition of embodiment 186.

    • Embodiment 191: The method of any one of embodiments 188-190, wherein the tumor comprises a GPC3-expressing tumor.

    • Embodiment 192: The method of any one of embodiments 188-191, wherein the tumor is selected from the group consisting of: hepatocellular carcinoma (HCC), ovarian clear cell carcinoma, melanoma, squamous cell carcinoma of the lung, hepatoblastoma, nephroblastoma (Wilms tumor), and yolk sac tumor.

    • Embodiment 193: A method of treating a subject having cancer, the method comprising administering a therapeutically effective dose of any of the immunoresponsive cells of any one of embodiments 1-166 or 185, the engineered nucleic acid of any one of embodiments 167-183, the expression vector of embodiment 184, or the pharmaceutical composition of embodiment 186.

    • Embodiment 194: The method of embodiment 193, wherein the cancer comprises a GPC3-expressing cancer.

    • Embodiment 195: The method of embodiment 193 or embodiment 194, wherein the cancer is selected from the group consisting of: hepatocellular carcinoma (HCC), ovarian clear cell carcinoma, melanoma, squamous cell carcinoma of the lung, hepatoblastoma, nephroblastoma (Wilms tumor), and yolk sac tumor.

    • Embodiment 196: The method of any one of embodiments 187-195, wherein the administering comprises systemic administration.

    • Embodiment 197: The method of any one of embodiments 187-195, wherein the administering comprises intratumoral administration.

    • Embodiment 198: The method of any one of embodiments 187-197, wherein the immunoresponsive cell is derived from the subject.

    • Embodiment 199: The method of any one of embodiments 187-198, wherein the immunoresponsive cell is allogeneic with reference to the subject.





EXAMPLES

Below are examples of specific embodiments for carrying out the present invention. The examples are offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way. For example, the experiments described and performed below demonstrate the general utility of engineering cells to secrete payloads (e.g., effector molecules) and delivering those cells to induce an immunogenic response against tumors.


Efforts have been made to ensure accuracy with respect to numbers used (e.g., amounts, temperatures, etc.), but some experimental error and deviation should, of course, be allowed for.


Example 1: Expression and Function of an Anti-GPC3 CAR+IL15 Bidirectional Construct

Protein expression, cellular activation, and killing activity of cells transduced with anti-GPC3 CAR+IL15 bidirectional constructs were assessed. A cartoon diagram of the bidirectional orientation of the constructs is shown in FIGS. 1A-1D.


Materials and Methods

Primary, donor-derived NK cells were transduced (50,000 to 100,000 cells/transduction) in a non-TC treated retronectin coated plate with lentivirus (at a multiplicity of infection, MOI, of 40) or retrovirus (SinVec, approximately 400 each) encoding constructs having a first expression cassette encoding an anti-GPC3 CAR and a second expression cassette encoding IL15, with the two expression cassettes in a head-to-head bidirectional orientation. Constructs varied in the intracellular domains of the CAR, having 4-1BB and CD3-zeta signaling domains (41BBz), CD28 and CD3-zeta signaling domains (CD28z), OX40 and CD3-zeta signaling domains (OX40z) or a KIR3DS1 signaling domain (KIR3DS1), and transductions using either a lentivirus or a retrovirus system were compared for each construct. As a control, transductions were also performed with retroviruses and lentiviruses encoding each of the same CARs, but without the IL15 expression cassette (“CAR-only). After transduction, NK cells were rested in the same plate for 3 days before transfer to a 24-well non-adherent cell-optimized plate. NK cells were expanded to a total of 5 ml with a first cytokine spike-in on day 7 following transduction and a second cytokine spike-in on day 15 (each spike-in included 500 IU/ml IL12 for the CAR+IL15 transductions and the CAR-only transductions, and 10 ng/ml IL15 for the CAR only constructs).


On days five and seven following transduction, CAR expression was assessed by flow cytometry for each construct. Day seven CAR expression from cells transduced with lentivirus encoding a bidirectional CAR+IL15 bidirectional construct and cells transduced with a lentivirus encoding the CAR-only is shown in FIG. 2. Day seven CAR expression from cells transduced with retrovirus encoding a bidirectional CAR+IL15 bidirectional construct and cells transduced with a retrovirus encoding the CAR-only is shown in FIG. 3. Day fifteen CAR expression from cells transduced with lentivirus encoding a bidirectional CAR+IL15 bidirectional construct and cells transduced with a lentivirus encoding the CAR-only is shown in FIG. 4. Day fifteen CAR expression from cells transduced with retrovirus encoding a bidirectional CAR+IL15 bidirectional construct and cells transduced with a retrovirus encoding the CAR-only is shown in FIG. 5.


On day seven following transduction, a payload assay was conducted to assess IL15 levels for each construct. 200,000 cells per well were plated in 200 μl media (NK MACs complete media with IL2) in a 96-well plate. NK cells were incubated for 48 hours, and then IL15 levels were assessed by immunoassay. IL15 expression is shown in FIG. 6.


Co-culture killing assays were then performed. 25,000 target cells (a Huh7 mKate cell line or a HepG2 mKate cell line) per well were plated in a 96-well plate. Effector cells (the NK cells expressing each construct) were added to the plate at effector to target (E to T) cell ratios of 1:1 or 0.5:1, and the cells were cultured with NK MACs complete media without cytokines in a total volume of 200 μl. Two to three days following co-culture, real-time, fluorescence-based assays to measure mKate levels were performed to assess target cell killing. Killing by lentivirus-transduced NK cells expressing each construct is shown in FIG. 7, and killing by retrovirus-transduced NK cells expressing each construct is shown in FIG. 8.


Results

CAR expression from NK cells transduced with each construct was assessed. As shown in FIG. 2, at day seven transduced NK cells had measurable CAR expression for each construct, with at least 10% of cells in each transduced population positive for CAR expression. As shown in FIG. 3, at day fifteen lentivirus-transduced NK cells had measurable CAR expression for each construct (top panel), with at least 20% of cells in each transduced population positive for CAR expression. Additionally, as shown in FIG. 3, retrovirus-transduced NK cells expressing the 28z CAR+IL15 bidirectional construct had measurable CAR expression, with at least 42% of cells in the transduced population positive for CAR expression.


IL15 expression by NK cells transduced with each construct was also assessed. Assay of IL15 expression by non-transduced cells and Ox40z CAR-only cells was performed as a negative control. As shown in FIG. 6, retrovirus-transduced NK cells expressing bidirectional CAR+IL15 had statistically significant increase in IL15 production over reciprocal lentivirus-transduced NK cells.


Killing by NK cells transduced with each construct was then assessed. As shown in FIG. 7, lentivirus-transduced NK cells expressing the CAR+IL15 bidirectional construct had statistically significant increased killing over lentivirus-transduced NK cells expressing the CAR alone (without the IL15 expression cassette). As shown in FIG. 8, retrovirus-transduced NK cells expressing the CAR+IL15 bidirectional construct had statistically significant increased killing over retrovirus-transduced NK cells expressing the CAR alone (without the IL15 expression cassette).


Example 2: Expression of IL12 from Bidirectional Constructs Encoding a Regulatable IL12 and a Synthetic Transcription Factor

IL12 expression was assessed from NK cells transduced to express bidirectional constructs including a first expression cassette encoding a regulatable IL12 and a second expression cassette encoding a synthetic transcription factor. The regulatable IL12 is operably linked to a synthetic transcription factor-responsive promoter, which includes a ZF-10-1 binding site and a minimal promoter sequence (YBTATA). The synthetic transcription factor includes a DNA binding domain (an array of six zinc finger motifs known as ZF-10-1) and a transcriptional activation domain (Vpr). Between the DNA biding domain and the transcriptional activation domain is a protease domain (NS3) and cognate cleavage site for the protease. In the absence of an inhibitor of the protease, the protease induces cleavage at the cleavage site, resulting in a non-functional synthetic transcription factor. In the presence of the protease inhibitor, the synthetic transcription factor is not cleaved and is thus capable of modulating expression of the IL12. Constructs tested included IL12 expression cassettes having mRNA destabilization elements in the 3′ untranslated region. A cartoon diagram of the bidirectional orientation of the constructs is shown in FIG. 9.


Materials and Methods

Bidirectional constructs including two expression cassettes, a first expression cassette encoding a regulatable IL12 and a second expression cassette encoding a small molecule-regulatable synthetic transcription factor, were produced. A first construct lacks an mRNA destabilization element (“WT”), and four constructs each include a different mRNA destabilization element added to the 5′ non-coding region. The four destabilization elements used were: 1) an AU-rich motif (“AU” or “1×AU”); 2) a stem-loop destabilization element (“SLDE” or “1×SLDE”); 3) a tandem AU motif and SLDE motif (“AuSLDE” or “1× AuSLDE”); and 4) two repeated AuSLDE motifs (2× AuSLDE). The destabilization elements were added to attempt to reduce leakiness of IL12 expression in the absence of the small molecule regulator of the synthetic promoter (e.g., grazoprevir).


Primary, donor-derived NK cells were expanded for ten days and grown in IL21 and IL15, with K562 feeder cells, and then were transduced with a multiplicity of infection (MOI) of 40 (as determined by infection units titer) in a retronectin-coated 24 well plate, following Bx795 pre-treatment. Transduction was performed with spinoculation, at 800 g for 2 hours at 32° C.


On day three following transduction, NK cells were counted and seeded at 1e6 cells/mL with no drug or 0.1 uM grazoprevir (GRZ) for 24 hours.


On day four following transduction (with 24 hours of drug treatment), supernatant was harvested and analyzed for IL12 levels by immunoassay. IL12 concentrations for each cell type and condition are shown in FIG. 10.


Results

As shown in FIG. 10, NK cells transduced with each construct demonstrated increased IL12 expression following treatment with grazoprevir, as compared to the absence of drug. NK cells transduced with the IL12 lacking a destabilization element (“WT”) had greater than 19-fold induction of IL12 expression following treatment with grazoprevir. However, NK cells transduced with constructs that included destabilization tags demonstrated about a 457-fold, 58-fold, 50-fold, and 89-fold induction of IL12 upon treatment with grazoprevir for 2× AuSLDE, 1× AuSLDE, 1× AU, and 1× SLDE, respectively. Additionally, each of the destabilization tags decreased the baseline IL12 expression in the absence of grazoprevir. Furthermore, the construct encoding an IL12 with a 2× AuSLDE destabilization element resulted in a non-detectable level of IL12 expression in the absence of grazoprevir.


Example 3: Expression and Function of Anti-GPC3 CAR+IL15 Bidirectional Constructs

Protein expression, cellular activation, and killing activity of cells transduced with anti-GPC3 CAR+cleavable release IL15 bidirectional constructs were assessed. The expression cassette encoding the cleavable release IL15 includes a chimeric polypeptide including the IL15 and a transmembrane domain. Between the IL15 and the transmembrane domain is a protease cleavage domain that is cleavable by a protease endogenous to NK cells. A cartoon diagram of the bidirectional construct encoding a cleavable release IL15 is shown in FIG. 11.


Briefly, primary, donor-derived NK cells were transduced with viral vectors encoding constructs having a first expression cassette encoding an anti-GPC3 CAR and a second expression cassette encoding a cleavable release IL15 expression cassette, with the two expression cassettes in a head-to-head bidirectional orientation.


Culture Supernatant: Spinoculation of NK cells was performed (day 0). A partial culture media exchange was performed on days 1, 2, and 6. Cell culture supernatant was harvested on day 8.


Flow cytometry: On day 10 following transduction, CAR and mbIL15 expression was assessed by flow cytometry for each construct. NK cells were stained with an IL-15 primary antibody and PE-secondary, and rhGPC3-FITC and Sytox blue (viability stain). Cells were run on Cytoflex and analyzed using Flowjo for CAR/mbIL15 expression.


Payload assay: On day 7 or 8 following transduction, a payload assay was conducted to assess IL15 levels for each construct. 200,000 cells per well were plated in 200 μl media (NK MACs complete media with IL2 only) in a 96-well plate, run in duplicates. Cells were incubated for 48 hours, and then cleaved IL15 levels were assessed by Luminex immunoassay.


Serial killing assay: Co-culture killing assays were performed. About 25,000 target cells (a Huh7 mKate cell line or a HepG2 mKate cell line) per well were plated in a 96-well plate. Effector cells (the NK cells expressing each construct) were added to the plate at effector to target (E to T) cell ratios of 1:1 in triplicates, and the cells were cultured with NK MAC complete media (no cytokines) in a total volume of 200 μl. Real-time, fluorescence-based assays were used to measure mKate to assess target cell killing in a serial-killing assay performed at 37° C.; initial killing was at day 9 post-transduction, serial one was at day 11 post-transduction, and serial 2 was at day 14 post transduction.


Over 150 IL15 cleavable release (crIL15) constructs were designed, and 33 constructs were selected for experimental testing. (see Table 7A). Each construct was tested in two viral backbones (e.g., SB06250 and SB06256, as shown in Table 7A). A summary of expression and killing activity of cells expressing a subset of bicistronic constructs is shown in Table 7B. Full-length sequences of a subset of constructs are shown in Table 7C. A summary of bicistronic constructs tested and their functional activities is provided in FIG. 12.











TABLE 7A






SB#
SB#


Construct
(CD3 Senti)
(CD3mut)







GPC3-CAR (41BB) 2A crIL15(Tace10)
SB06250
SB06290



SB06256
SB06296


GPC3-CAR (OX40) 2A crIL15(Tace10)
SB06251
SB06291



SB06257
SB06297


GPC3-CAR (CD28) 2A crIL15(Tace10)
SB06252
SB06292



SB06258
SB06298


crIL15(Tace10) 2A GPC3-CAR (41BB)
SB06253
SB06293



SB06259
SB06299


crIL15(Tace10) 2A GPC3-CAR (OX40)
SB06254
SB06294



SB06260
SB06300


crIL15(Tace10) 2A GPC3-CAR (CD28)
SB06255
SB06295



SB06261
SB06301


crIL15(TaceOPT) 2A GPC3-CAR (41BB)
SB06685
SB06688



SB06691
SB06694


crIL15(TaceOPT) 2A GPC3-CAR (OX40)
SB06686
SB06689



SB06692
SB06695


crIL15(TaceOPT) 2A GPC3-CAR (CD28)
SB06687
SB06690



SB06693
SB06696



























TABLE 7B










% Target













cell







growth


Virus
SB#
CAR %
IL15%
IL15(pg/ml)
(round3)a
Hinge
TM
Co-stim
CD3z
IL15
Description


























Retrovec
SB06252
76.7
64.8
151
n/a
CD8FA
CD8FA
CD28
wt
Tace10
CAR 2A




60.6
51.2
117
70





crIL15


SinVec
SB06258
66.8
38.5
84
n/a




52.5
30.6
74
62


Retrovec
SB06255
59.8
67.6
54
n/a





crIL15




37.5
41.0
68
  81.4





2A CAR


Retrovec
SB06251
64.2
30.9
17
  11.2*
CD8S2L
OX40
OX40
wt
Tace10
CAR 2A




44.2
18.5
65
22





crIL15


SinVec
SB06257
78.3
30.1
53
 59*




55.8
15.8
40
39


Retrovec
SB06254
67.5
52.2
137
 89*





crIL15




48.9
30.1
43
74





2A CAR


Retrovec
SB06294
60
39
50
 8
CD8S2L
OX40
OX40
CD3z-
Tace10
crIL15




71
58
27




Alt

2A CAR






aNormalized to Target cells alone



*crIL-15 control did not function as expected


*crIL-15 control did not killed as














TABLE 7C





Construct
Full nucleotide sequence







SB06251
aagctttgctcttaggagtttcctaatacatcccaaactcaaatatataaagcatttgacttgttctatgccctagggggcggggggaagcta



agccagctttttttaacatttaaaatgttaattccattttaaatgcacagatgtttttatttcataagggtttcaatgtgcatgaatgctgcaatattc



ctgttaccaaagctagtataaataaaaatagataaacgtggaaattacttagagtttctgtcattaacgtttccttcctcagttgacaacataaa



tgcgctgctgagaagccagtttgcatctgtcaggatcaatttcccattatgccagtcatattaattactagtcaattagttgatttttatttttgac



atatacatgtgaaagaccccacctgtaggtttggcaagctagcttaagtaacgccattttgcaaggcatggaaaaatacataactgagaat



agaaaagttcagatcaaggtcaggaacagatggaacagctgaatatgggccaaacaggatatctgtggtaagcagttcctgccccggc



tcagggccaagaacagatggaacagctgaatatgggccaaacaggatatctgtggtaagcagttcctgccccggctcagggccaaga



acagatggtccccagatgcggtccagccctcagcagtttctagagaaccatcagatgtttccagggtgccccaaggacctgaaatgacc



ctgtgccttatttgaactaaccaatcagttcgcttctcgcttctgttcgcgcgcttctgctccccgagctcaataaaagagcccacaacccct



cactcggcgcgccagtcctccgattgactgagtcgcccgggtacccgtgtatccaataaaccctcttgcagttgcatccgacttgtggtct



cgctgttccttgggagggtctcctctgagtgattgactacccgtcagcgggggtctttcatttgggggctcgtccgagatcgggagaccc



ctgcccagggaccaccgacccaccaccgggaggtaagctggccagcaacttatctgtgtctgtccgattgtctagtgtctatgactgattt



tatgcgcctgcgtcggtactagttagctaactagctctgtatctggcggacccgtggtggaactgacgagttcggaacacccggccgca



accctgggagacgtcccagggacttcgggggccgtttttgtggcccgacctgagtcctaaaatcccgatcgtttaggactctttggtgca



ccccccttagaggagggatatgtggttctggtaggagacgagaacctaaaacagttcccgcctccgtctgaatttttgctttcggtttggga



ccgaagccgcgccgcgcgtcttgtctgctgcagcatcgttctgtgttgtctctgtctgactgtgtttctgtatttgtctgaaaatatggatcttat



atggggcacccccgccccttgtaaacttccctgaccctgacatgacaagagttactaacagcccctctctccaagctcacttacaggctct



ctacttagtccagcacgaagtctggagacctctggggcagcctaccaagaacaactggaccgaccggtggtacctcacccttaccga



gtcggcgacacagtgtgggtccgccgacaccagactaagaacctagaacctcgctggaaaggaccttacacagtcctgctgaccacc



cccaccgccctcaaagtagacggcatcgcagcttggatacacgccgcccacgtgaaggctgccgaccccgggggtggaccatcctct



agactgccggatccGCCGCCACCATGCTGCTGCTGGTCACATCTCTGCTGCTGTGCGAGCT



GCCCCATCCTGCCTTTCTGCTGATCCCTCACATGGACATCGTGATGACACAGAGCC



CCGATAGCCTGGCCGTGTCTCTGGGAGAAAGAGCCACCATCAACTGCAAGAGCAG



CCAGAGCCTGCTGTACTCCAGCAACCAGAAGAACTACCTGGCCTGGTATCAGCAA



AAGCCCGGCCAGCCTCCTAAGCTGCTGATCTATTGGGCCAGCTCCAGAGAAAGCG



GCGTGCCCGATAGATTTTCTGGCTCTGGCAGCGGCACCGACTTCACCCTGACAATT



TCTAGCCTGCAAGCCGAGGACGTGGCCGTGTACTACTGCCAGCAGTACTACAACT



ACCCTCTGACCTTCGGCCAGGGCACCAAGCTGGAAATCAAAGGCGGCGGAGGATC



TGGCGGAGGTGGAAGTGGCGGAGGCGGATCTGAAGTGCAGCTGGTTGAATCAGG



TGGCGGCCTGGTTCAACCTGGCGGATCTCTGAGACTGAGCTGTGCCGCCAGCGGC



TTCACCTTCAACAAGAACGCCATGAACTGGGTCCGACAGGCCCCTGGCAAAGGCC



TTGAATGGGTCGGACGGATCCGGAACAAGACCAACAACTACGCCACCTACTACGC



CGACAGCGTGAAGGCCAGATTCACCATCAGCCGGGACGACAGCAAGAACAGCCT



GTACCTGCAGATGAACTCCCTGAAAACCGAGGACACCGCCGTGTATTATTGCGTG



GCCGGCAACAGCTTTGCCTACTGGGGACAGGGAACCCTGGTCACCGTGTCTGCCA



CAACAACCCCTGCTCCTAGACCTCCTACACCAGCTCCTACAATCGCCCTGCAGCCT



CTGTCTCTGAGGCCAGAAGCTTGTAGACCAGCTGCTGGCGGAGCCGTGCATACAA



GAGGACTGGACTTCGCCTGTGATGTGGCCGCCATTCTCGGACTGGGACTTGTTCTG



GGACTGCTGGGACCTCTGGCCATTCTGCTGGCTCTGTATCTGCTGCGGAGGGACCA



AAGACTGCCTCCTGATGCTCACAAGCCTCCAGGCGGAGGCAGCTTCAGAACCCCT



ATCCAAGAGGAACAGGCCGACGCTCACAGCACCCTGGCCAAGATTAGAGTGAAG



TTCAGCAGAAGCGCCGACGCACCCGCCTATAAGCAGGGACAGAACCAGCTGTACA



ACGAGCTGAACCTGGGGAGAAGAGAAGAGTACGACGTGCTGGACAAGCGGAGAG



GCAGAGATCCTGAGATGGGCGGCAAGCCCAGACGGAAGAATCCTCAAGAGGGCC



TGTATAATGAGCTGCAGAAAGACAAGATGGCCGAGGCCTACAGCGAGATCGGAA



TGAAGGGCGAGCGCAGAAGAGGCAAGGGACACGATGGACTGTACCAGGGCCTGA



GCACCGCCACCAAGGATACCTATGATGCCCTGCACATGCAGGCCCTGCCTCCAAG



AGGTAGCGGCCAGTGTACCAACTACGCCCTGCTGAAACTGGCCGGCGACGTGGAA



TCTAATCCTGGACCTGGATCTGGCGAGGGACGCGGGAGTCTACTGACGTGTGGAG



ACGTGGAGGAAAACCCTGGACCTATGGACTGGACCTGGATCCTGTTTCTGGTGGC



CGCTGCCACAAGAGTGCACAGCAATTGGGTCAACGTGATCAGCGACCTGAAGAAG



ATCGAGGACCTGATCCAGAGCATGCACATCGACGCCACACTGTACACCGAGAGCG



ACGTGCACCCTAGCTGTAAAGTGACCGCCATGAAGTGCTTTCTGCTGGAACTGCA



AGTGATCAGCCTGGAAAGCGGCGACGCCAGCATCCACGACACCGTGGAAAACCT



GATCATCCTGGCCAACAACAGCCTGAGCAGCAACGGCAATGTGACCGAGTCCGGC



TGCAAAGAGTGCGAGGAACTGGAAGAGAAGAATATCAAAGAGTTCCTGCAGAGC



TTCGTGCACATCGTGCAGATGTTCATCAACACAAGCTCTGGCGGCGGAGGATCTG



GCGGAGGTGGAAGCGGAGTTACACCCGAGCCTATCTTCAGCCTGATCGGAGGCGG



TAGCGGAGGCGGAGGAAGTGGTGGCGGATCTCTGCAACTGCTGCCTAGCTGGGCC



ATCACACTGATCTCCGTGAACGGCATCTTCGTGATCTGCTGCCTGACCTACTGCTT



CGCCCCTAGATGCAGAGAGCGGCGGAGAAACGAACGGCTGAGAAGAGAATCTGT



GCGGCCCGTTtaaagatctagatccggattagtccaatttgttaaagacaggatatcagtggtccaggctctagttttgactcaaca



atatcaccagctgaagcctatagagtacgagccatagataaaataaaagattttatttagtctccagaaaaaggggggaatgaaagaccc



cacctgtaggtttggcaagctagcttaagtaacgccattttgcaaggcatggaaaaatacataactgagaatagagaagttcagatcaag



gtcaggaacagatggaacagctgaatatgggccaaacaggatatctgtggtaagcagttcctgccccggctcagggccaagaacagat



ggaacagctgaatatgggccaaacaggatatctgtggtaagcagttcctgccccggctcagggccaagaacagatggtccccagatgc



ggtccagccctcagcagtttctagagaaccatcagatgtttccagggtgccccaaggacctgaaatgaccctgtgccttatttgaactaac



caatcagttcgcttctcgcttctgttcgcgcgcttctgctccccgagctcaataaaagagcccacaacccctcactcggggcgccagtcct



ccgattgactgagtcgcccgggtacccgtgtatccaataaaccctcttgcagttgcatccgacttgtggtctcgctgttccttgggagggtc



tcctctgagtgattgactacccgtcagcgggggtctttcacatgcagcatgtatcaaaattaatttggttttttttcttaagtatttacattaaatg



gccatagtacttaaagttacattggcttccttgaaataaacatggagtattcagaatgtgtcataaatatttctaattttaagatagtatctccatt



ggctttctactttttcttttatttttttttgtcctctgtcttccatttgttgttgttgttgtttgtttgtttgtttgttggttggttggttaatttttttttaaagatc



ctacactatagttcaagctagactattagctactctgtaacccagggtgaccttgaagtcatgggtagcctgctgttttagccttcccacatct



aagattacaggtatgagctatcatttttggtatattgattgattgattgattgatgtgtgtgtgtgtgattgtgtttgtgtgtgtgaTtgtgTaTat



gtgtgtatggTtgtgtgtgaTtgtgtgtatgtatgTTtgtgtgtgaTtgTgtgtgtgtgaTtgtgcatgtgtgtgtgtgtgaTtgtgtTtat



gtgtatgaTtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgttgtgTaTaTatatttatggtagtgagagGcaacgctc



cggctcaggtgtcaggttggtttttgagacagagtctttcacttagcttggaattaattcactggccgtcgttttacaacgtcgtgactgggaa



aaccctggcgttacccaacttaatcgccttgcagcacatccccctttcgccagctggcgtaatagcgaagaggcccgcaccgatcgccc



ttcccaacagttgcgcagcctgaatggcgaatggcgcctgatgcggtattttctccttacgcatctgtgcggtatttcacaccgcatatggt



gcactctcagtacaatctgctctgatgccgcatagttaagccagccccgacacccgccaacacccgctgacgcgccctgacgggcttgt



ctgctcccggcatccgcttacagacaagctgtgaccgtctccgggagctgcatgtgtcagaggttttcaccgtcatcaccgaaacgcgc



gagacgaaagggcctcgtgatacgcctatttttataggttaatgtcatgataataatggtttcttagacgtcaggtggcacttttcggggaaa



tgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgagacaataaccctgataaatgcttcaataatattg



aaaaaggaagagtatgagtattcaacatttccgtgtcgcccttattcccttttttgcggcattttgccttcctgtttttgctcacccagaaacgct



ggtgaaagtaaaagatgctgaagatcagttgggtgcacgagtgggttacatcgaactggatctcaacagcggtaagatccttgagagttt



tcgccccgaagaacgttttccaatgatgagcacttttaaagttctgctatgtggcgcggtattatcccgtattgacgccgggcaagagcaa



ctcggtcgccgcatacactattctcagaatgacttggttgagtactcaccagtcacagaaaagcatcttacggatggcatgacagtaaga



gaattatgcagtgctgccataaccatgagtgataacactgcggccaacttacttctgacaacgatcggaggaccgaaggagctaaccgc



ttttttgcacaacatgggggatcatgtaactcgccttgatcgttgggaaccggagctgaatgaagccataccaaacgacgagcgtgacac



cacgatgcctgtagcaatggcaacaacgttgcgcaaactattaactggcgaactacttactctagcttcccggcaacaattaatagactgg



atggaggcggataaagttgcaggaccacttctgcgctcggcccttccggctggctggtttattgctgataaatctggagccggtgagcgt



gggtctcgcggtatcattgcagcactggggccagatggtaagccctcccgtatcgtagttatctacacgacggggagtcaggcaactat



ggatgaacgaaatagacagatcgctgagataggtgcctcactgattaagcattggtaactgtcagaccaagtttactcatatatactttaga



ttgatttaaaacttcatttttaatttaaaaggatctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagttttcgttccac



tgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccacc



gctaccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatact



gtccttctagtgtagccgtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggct



gctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcggtcgggctgaacgggg



ggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgcttc



ccgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcacgagggagcttccagggggaaac



gcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaa



aaacgccagcaacgcggcctttttacggttcctggccttttgctggccttttgctcacatgttctttcctgcgttatcccctgattctgtggata



accgtattaccgcctttgagtgagctgataccgctcgccgcagccgaacgaccgagcgcagcgagtcagtgagcgaggaagcggaa



gagcgcccaatacgcaaaccgcctctccccgcgcgttggccgattcattaatgcagctggcacgacaggtttcccgactggaaagcgg



gcagtgagcgcaacgcaattaatgtgagttagctcactcattaggcaccccaggctttacactttatgcttccggctcgtatgttgtgtgga



attgtgagcggataacaatttcacacaggaaacagctatgaccatgattacgcc (SEQ ID NO: 307)





SB06252
aagctttgctcttaggagtttcctaatacatcccaaactcaaatatataaagcatttgacttgttctatgccctagggggcggggggaagcta



agccagctttttttaacatttaaaatgttaattccattttaaatgcacagatgtttttatttcataagggtttcaatgtgcatgaatgctgcaatattc



ctgttaccaaagctagtataaataaaaatagataaacgtggaaattacttagagtttctgtcattaacgtttccttcctcagttgacaacataaa



tgcgctgctgagaagccagtttgcatctgtcaggatcaatttcccattatgccagtcatattaattactagtcaattagttgatttttatttttgac



atatacatgtgaaagaccccacctgtaggtttggcaagctagcttaagtaacgccattttgcaaggcatggaaaaatacataactgagaat



agaaaagttcagatcaaggtcaggaacagatggaacagctgaatatgggccaaacaggatatctgtggtaagcagttcctgccccggc



tcagggccaagaacagatggaacagctgaatatgggccaaacaggatatctgtggtaagcagttcctgccccggctcagggccaaga



acagatggtccccagatgcggtccagccctcagcagtttctagagaaccatcagatgtttccagggtgccccaaggacctgaaatgacc



ctgtgccttatttgaactaaccaatcagttcgcttctcgcttctgttcgcgcgcttctgctccccgagctcaataaaagagcccacaacccct



cactcggcgcgccagtcctccgattgactgagtcgcccgggtacccgtgtatccaataaaccctcttgcagttgcatccgacttgtggtct



cgctgttccttgggagggtctcctctgagtgattgactacccgtcagcgggggtctttcatttgggggctcgtccgagatcgggagaccc



ctgcccagggaccaccgacccaccaccgggaggtaagctggccagcaacttatctgtgtctgtccgattgtctagtgtctatgactgattt



tatgcgcctgcgtcggtactagttagctaactagctctgtatctggcggacccgtggtggaactgacgagttcggaacacccggccgca



accctgggagacgtcccagggacttcgggggccgtttttgtggcccgacctgagtcctaaaatcccgatcgtttaggactctttggtgca



ccccccttagaggagggatatgtggttctggtaggagacgagaacctaaaacagttcccgcctccgtctgaatttttgctttcggtttggga



ccgaagccgcgccgcgcgtcttgtctgctgcagcatcgttctgtgttgtctctgtctgactgtgtttctgtatttgtctgaaaatatggatcttat



atggggcacccccgccccttgtaaacttccctgaccctgacatgacaagagttactaacagcccctctctccaagctcacttacaggctct



ctacttgtccagcacgaagtctggagacctctggcggcagcctaccaagaacaactggaccgaccggtggtacctcacccttaccga



gtcggcgacacagtgtgggtccgccgacaccagactaagaacctagaacctcgctggaaaggaccttacacagtcctgctgaccacc



cccaccgccctcaaagtagacggcatcgcagcttggatacacgccgcccacgtgaaggctgccgaccccgggggtggaccatcctct



agactgccggatccGCCGCCACCATGCTGCTGCTGGTCACATCTCTGCTGCTGTGCGAGCT



GCCCCATCCTGCCTTTCTGCTGATCCCTCACATGGAAGTGCAGCTGGTGGAATCTG



GCGGAGGACTGGTTCAACCTGGCGGCTCTCTGAGACTGTCTTGTGCCGCCAGCGG



CTTCACCTTCAACAAGAACGCCATGAACTGGGTCCGACAGGCCCCTGGCAAAGGC



CTTGAATGGGTCGGACGGATCCGGAACAAGACCAACAACTACGCCACCTACTACG



CCGACAGCGTGAAGGCCAGGTTCACCATCTCCAGAGATGACAGCAAGAACAGCCT



GTACCTGCAGATGAACTCCCTGAAAACCGAGGACACCGCCGTGTACTATTGCGTG



GCCGGCAATAGCTTTGCCTACTGGGGACAGGGCACCCTGGTTACAGTTTCTGCTGG



CGGCGGAGGAAGCGGAGGCGGAGGATCCGGTGGTGGTGGATCTGACATCGTGAT



GACACAGAGCCCCGATAGCCTGGCCGTGTCTCTGGGAGAAAGAGCCACCATCAAC



TGCAAGAGCAGCCAGAGCCTGCTGTACTCCAGCAACCAGAAGAACTACCTGGCCT



GGTATCAGCAAAAGCCCGGCCAGCCTCCTAAGCTGCTGATCTATTGGGCCAGCTC



CAGAGAAAGCGGCGTGCCCGATAGATTTTCTGGCTCTGGCAGCGGCACCGACTTC



ACCCTGACAATTTCTAGCCTGCAAGCCGAGGACGTGGCCGTGTATTACTGCCAGC



AGTACTACAACTACCCTCTGACCTTCGGCCAGGGCACCAAGCTGGAAATCAAATC



TGGCGCCCTGAGCAACAGCATCATGTACTTCAGCCACTTCGTGCCCGTGTTTCTGC



CCGCCAAGCCTACAACAACCCCTGCTCCTAGACCTCCTACACCAGCTCCTACAATC



GCCAGCCAGCCTCTGTCTCTGAGGCCAGAAGCTTGTAGACCTGCTGCAGGCGGAG



CCGTGCATACAAGAGGACTGGATTTCGCCTGCGACATCTACATCTGGGCCCCTCTG



GCTGGAACATGTGGTGTCCTGCTGCTGAGCCTGGTCATCACCCTGTACTGCAACCA



CCGGCGGAGCAAGAGAAGCAGACTGCTGCACAGCGACTACATGAACATGACCCC



TAGACGGCCCGGACCTACCAGAAAGCACTACCAGCCTTACGCTCCTCCTAGAGAC



TTCGCCGCCTACCGGTCCAGAGTGAAGTTCAGCAGATCCGCCGATGCTCCCGCCTA



TCAGCAGGGACAGAACCAGCTGTACAACGAGCTGAACCTGGGGAGAAGAGAAGA



GTACGACGTGCTGGACAAGCGGAGAGGCAGAGATCCTGAGATGGGCGGCAAGCC



CAGACGGAAGAATCCTCAAGAGGGCCTGTATAATGAGCTGCAGAAAGACAAGAT



GGCCGAGGCCTACAGCGAGATCGGAATGAAGGGCGAGCGCAGAAGAGGCAAGGG



ACACGATGGACTGTACCAGGGCCTGAGCACCGCCACCAAGGATACCTATGATGCC



CTGCACATGCAGGCCCTGCCTCCAAGAGGTAGCGGCCAGTGTACCAACTACGCCC



TGCTGAAACTGGCCGGCGACGTGGAATCTAATCCTGGACCTGGATCTGGCGAGGG



ACGCGGGAGTCTACTGACGTGTGGAGACGTGGAGGAAAACCCTGGACCTATGGAC



TGGACCTGGATCCTGTTTCTGGTGGCCGCTGCCACAAGAGTGCACAGCAATTGGG



TCAACGTGATCAGCGACCTGAAGAAGATCGAGGACCTGATCCAGAGCATGCACAT



CGACGCCACACTGTACACCGAGAGCGACGTGCACCCTAGCTGTAAAGTGACCGCC



ATGAAGTGCTTTCTGCTGGAACTGCAAGTGATCAGCCTGGAAAGCGGCGACGCCA



GCATCCACGACACCGTGGAAAACCTGATCATCCTGGCCAACAACAGCCTGAGCAG



CAACGGCAATGTGACCGAGTCCGGCTGCAAAGAGTGCGAGGAACTGGAAGAGAA



GAATATCAAAGAGTTCCTGCAGAGCTTCGTGCACATCGTGCAGATGTTCATCAAC



ACAAGCTCTGGCGGCGGAGGATCTGGCGGAGGTGGAAGCGGAGTTACACCCGAG



CCTATCTTCAGCCTGATCGGAGGCGGTAGCGGAGGCGGAGGAAGTGGTGGCGGAT



CTCTGCAACTGCTGCCTAGCTGGGCCATCACACTGATCTCCGTGAACGGCATCTTC



GTGATCTGCTGCCTGACCTACTGCTTCGCCCCTAGATGCAGAGAGCGGCGGAGAA



ACGAACGGCTGAGAAGAGAATCTGTGCGGCCCGTTtaaagatctagatccggattagtccaatttgttaa



agacaggatatcagtggtccaggctctagttttgactcaacaatatcaccagctgaagcctatagagtacgagccatagataaaataaaa



gattttatttagtctccagaaaaaggggggaatgaaagaccccacctgtaggtttggcaagctagcttaagtaacgccattttgcaaggca



tggaaaaatacataactgagaatagagaagttcagatcaaggtcaggaacagatggaacagctgaatatgggccaaacaggatatctgt



ggtaagcagttcctgccccggctcagggccaagaacagatggaacagctgaatatgggccaaacaggatatctgtggtaagcagttcc



tgccccggctcagggccaagaacagatggtccccagatgcggtccagccctcagcagtttctagagaaccatcagatgtttccagggt



gccccaaggacctgaaatgaccctgtgccttatttgaactaaccaatcagttcgcttctcgcttctgttcgcgcgcttctgctccccgagctc



aataaaagagcccacaacccctcactcggggcgccagtcctccgattgactgagtcgcccgggtacccgtgtatccaataaaccctctt



gcagttgcatccgacttgtggtctcgctgttccttgggagggtctcctctgagtgattgactacccgtcagcgggggtctttcacatgcagc



atgtatcaaaattaatttggttttttttcttaagtatttacattaaatggccatagtacttaaagttacattggcttccttgaaataaacatggagtat



tcagaatgtgtcataaatatttctaattttaagatagtatctccattggctttctactttttcttttatttttttttgtcctctgtcttccatttgttgttgttg



ttgtttgtttgtttgtttgttggttggttggttaatttttttttaaagatcctacactatagttcaagctagactattagctactctgtaacccagggtg



accttgaagtcatgggtagcctgctgttttagccttcccacatctaagattacaggtatgagctatcatttttggtatattgattgattgattgatt



gatgtgtgtgtgtgtgattgtgtttgtgtgtgtgaTtgtgTaTatgtgtgtatggTtgtgtgtgaTtgtgtgtatgtatgTTtgtgtgtgaTt



gTgtgtgtgtgaTtgtgcatgtgtgtgtgtgtgaTtgtgtTtatgtgtatgaTtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgt



gtgtgttgtgTaTaTatatttatggtagtgagagGcaacgctccggctcaggtgtcaggttggtttttgagacagagtctttcacttagctt



ggaattaattcactggccgtcgttttacaacgtcgtgactgggaaaaccctggcgttacccaacttaatcgccttgcagcacatcccccttt



cgccagctggcgtaatagcgaagaggcccgcaccgatcgcccttcccaacagttgcgcagcctgaatggcgaatggcgcctgatgcg



gtattttctccttacgcatctgtgcggtatttcacaccgcatatggtgcactctcagtacaatctgctctgatgccgcatagttaagccagccc



cgacacccgccaacacccgctgacgcgccctgacgggcttgtctgctcccggcatccgcttacagacaagctgtgaccgtctccggga



gctgcatgtgtcagaggttttcaccgtcatcaccgaaacgcgcgagacgaaagggcctcgtgatacgcctatttttataggttaatgtcatg



ataataatggtttcttagacgtcaggtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtat



ccgctcatgagacaataaccctgataaatgcttcaataatattgaaaaaggaagagtatgagtattcaacatttccgtgtcgcccttattccc



ttttttgcggcattttgccttcctgtttttgctcacccagaaacgctggtgaaagtaaaagatgctgaagatcagttgggtgcacgagtgggtt



acatcgaactggatctcaacagcggtaagatccttgagagttttcgccccgaagaacgttttccaatgatgagcacttttaaagttctgctat



gtggcgcggtattatcccgtattgacgccgggcaagagcaactcggtcgccgcatacactattctcagaatgacttggttgagtactcac



cagtcacagaaaagcatcttacggatggcatgacagtaagagaattatgcagtgctgccataaccatgagtgataacactgcggccaac



ttacttctgacaacgatcggaggaccgaaggagctaaccgcttttttgcacaacatgggggatcatgtaactcgccttgatcgttgggaac



cggagctgaatgaagccataccaaacgacgagcgtgacaccacgatgcctgtagcaatggcaacaacgttgcgcaaactattaactgg



cgaactacttactctagcttcccggcaacaattaatagactggatggaggcggataaagttgcaggaccacttctgcgctcggcccttcc



ggctggctggtttattgctgataaatctggagccggtgagcgtgggtctcgcggtatcattgcagcactggggccagatggtaagccctc



ccgtatcgtagttatctacacgacggggagtcaggcaactatggatgaacgaaatagacagatcgctgagataggtgcctcactgattaa



gcattggtaactgtcagaccaagtttactcatatatactttagattgatttaaaacttcatttttaatttaaaaggatctaggtgaagatcctttttg



ataatctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatcctt



tttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgccggatcaagagctaccaactctttttc



cgaaggtaactggcttcagcagagcgcagataccaaatactgtccttctagtgtagccgtagttaggccaccacttcaagaactctgtag



caccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcgataagtcgtgtcttaccgggttggactcaagacg



atagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaac



tgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtc



ggaacaggagagcgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcg



tcgatttttgtgatgctcgtcaggggggggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctggcctt



ttgctcacatgttctttcctgcgttatcccctgattctgtggataaccgtattaccgcctttgagtgagctgataccgctcgccgcagccgaac



gaccgagcgcagcgagtcagtgagcgaggaagcggaagagcgcccaatacgcaaaccgcctctccccgcggttggccgattcatt



aatgcagctggcacgacaggtttcccgactggaaagcgggcagtgagcgcaacgcaattaatgtgagttagctcactcattaggcacc



ccaggctttacactttatgcttccggctcgtatgttgtgtggaattgtgagcggataacaatttcacacaggaaacagctatgaccatgatta



cgcc (SEQ ID NO: 308)





SB06257
aagcttgaattcgagcttgcatgcctgcaggtcgttacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgccc


(GM-CSF-Ra
attgacgtcaataatgacgtatgttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagtatttacggtaaactgccc


(SS) - aGPC3
acttggcagtacatcaagtgtatcatatgccaagtacgccccctattgacgtcaatgacggtaaatggcccgcctggcattatgcccagta


hPY7 vL -
catgaccttatgggactttcctacttggcagtacatctacgtattagtcatcgctattaccatggtgatgcggttttggcagtacatcaatggg


(GGGGS)3 -
cgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgtcaatgggagtttgttttggcaccaaaatcaacgggactt


aGPC3 hPY7
tccaaaatgtcgtaacaactccgccccattgacgcaaatgggggtaggcgtgtacggtgggaggtctatataagcagagctcaataaa


vH - CD8 S2L
agagcccacaacccctcactcggcgcgccagtcctccgattgactgagtcgcccgggtacccgtgtatccaataaaccctcttgcagtt


(Hinge) -
gcatccgacttgtggtctcgctgttccttgggagggtctcctctgagtgattgactacccgtcagcgggggtctttcatttgggggctcgtc


OX40 (TM) -
cgagatcgggagacccctgcccagggaccaccgacccaccaccgggaggtaagctggccagcaacttatctgtgtctgtccgattgtc


OX40 (ICD) -
tagtgtctatgactgattttatgcgcctgcgtcggtactagttagctaactagctctgtatctggggacccgtggtggaactgacgagttcg


CD3z (ICD) -
gaacacccggccgcaaccctgggagacgtcccagggacttcgggggccgtttttgtggcccgacctgagtcctaaaatcccgatcgttt


E2A T2A - IgE
aggactctttggtgcaccccccttagaggagggatatgtggttctggtaggagacgagaacctaaaacagttcccgcctccgtctgaattt


(SS) - IL-15 -
ttgctttcggtttgggaccgaagccgcgccgcgcgtcttgtctgctgcagcatcgttctgtgttgtctctgtctgactgtgtttctgtatttgtct


Tace10
gaaaatatgggccccccctcgaggtaacgccattttgcaaggcatggaaaaataccaaaccaagaatagagaagttcagatcaagggc


(cleavage site) -
gggtacatgaaaatagctaacgttgggccaaacaggatatctgcggtgagcagtttcggccccggcccggggccaagaacagatggt


B7-1 (TM))
caccgcagtttcggccccggcccgaggccaagaacagatggtccccagatatggcccaaccctcagcagtttcttaagacccatcaga


[(GGGGS)3 is
tgtttccaggctcccccaaggacctgaaatgaccctgcgccttatttgaattaaccaatcagcctgcttctcgcttctgttcgcgcgcttctg


SEQ ID NO:
cttcccgagctctataaaagagctcacaacccctcactcggcgcgccagtcctccgacagactgagtcgcccgggGCCGCCAC


223]
CATGCTGCTGCTGGTCACATCTCTGCTGCTGTGCGAGCTGCCCCATCCTGCCTTTCT



GCTGATCCCTCACATGGACATCGTGATGACACAGAGCCCCGATAGCCTGGCCGTG



TCTCTGGGAGAAAGAGCCACCATCAACTGCAAGAGCAGCCAGAGCCTGCTGTACT



CCAGCAACCAGAAGAACTACCTGGCCTGGTATCAGCAAAAGCCCGGCCAGCCTCC



TAAGCTGCTGATCTATTGGGCCAGCTCCAGAGAAAGCGGCGTGCCCGATAGATTT



TCTGGCTCTGGCAGCGGCACCGACTTCACCCTGACAATTTCTAGCCTGCAAGCCGA



GGACGTGGCCGTGTACTACTGCCAGCAGTACTACAACTACCCTCTGACCTTCGGCC



AGGGCACCAAGCTGGAAATCAAAGGCGGCGGAGGATCTGGCGGAGGTGGAAGTG



GCGGAGGCGGATCTGAAGTGCAGCTGGTTGAATCAGGTGGCGGCCTGGTTCAACC



TGGCGGATCTCTGAGACTGAGCTGTGCCGCCAGCGGCTTCACCTTCAACAAGAAC



GCCATGAACTGGGTCCGACAGGCCCCTGGCAAAGGCCTTGAATGGGTCGGACGGA



TCCGGAACAAGACCAACAACTACGCCACCTACTACGCCGACAGCGTGAAGGCCAG



ATTCACCATCAGCCGGGACGACAGCAAGAACAGCCTGTACCTGCAGATGAACTCC



CTGAAAACCGAGGACACCGCCGTGTATTATTGCGTGGCCGGCAACAGCTTTGCCT



ACTGGGGACAGGGAACCCTGGTCACCGTGTCTGCCACAACAACCCCTGCTCCTAG



ACCTCCTACACCAGCTCCTACAATCGCCCTGCAGCCTCTGTCTCTGAGGCCAGAAG



CTTGTAGACCAGCTGCTGGCGGAGCCGTGCATACAAGAGGACTGGACTTCGCCTG



TGATGTGGCCGCCATTCTCGGACTGGGACTTGTTCTGGGACTGCTGGGACCTCTGG



CCATTCTGCTGGCTCTGTATCTGCTGCGGAGGGACCAAAGACTGCCTCCTGATGCT



CACAAGCCTCCAGGCGGAGGCAGCTTCAGAACCCCTATCCAAGAGGAACAGGCC



GACGCTCACAGCACCCTGGCCAAGATTAGAGTGAAGTTCAGCAGAAGCGCCGACG



CACCCGCCTATAAGCAGGGACAGAACCAGCTGTACAACGAGCTGAACCTGGGGA



GAAGAGAAGAGTACGACGTGCTGGACAAGCGGAGAGGCAGAGATCCTGAGATGG



GCGGCAAGCCCAGACGGAAGAATCCTCAAGAGGGCCTGTATAATGAGCTGCAGA



AAGACAAGATGGCCGAGGCCTACAGCGAGATCGGAATGAAGGGCGAGCGCAGAA



GAGGCAAGGGACACGATGGACTGTACCAGGGCCTGAGCACCGCCACCAAGGATA



CCTATGATGCCCTGCACATGCAGGCCCTGCCTCCAAGAGGTAGCGGCCAGTGTAC



CAACTACGCCCTGCTGAAACTGGCCGGCGACGTGGAATCTAATCCTGGACCTGGA



TCTGGCGAGGGACGCGGGAGTCTACTGACGTGTGGAGACGTGGAGGAAAACCCT



GGACCTATGGACTGGACCTGGATCCTGTTTCTGGTGGCCGCTGCCACAAGAGTGC



ACAGCAATTGGGTCAACGTGATCAGCGACCTGAAGAAGATCGAGGACCTGATCCA



GAGCATGCACATCGACGCCACACTGTACACCGAGAGCGACGTGCACCCTAGCTGT



AAAGTGACCGCCATGAAGTGCTTTCTGCTGGAACTGCAAGTGATCAGCCTGGAAA



GCGGCGACGCCAGCATCCACGACACCGTGGAAAACCTGATCATCCTGGCCAACAA



CAGCCTGAGCAGCAACGGCAATGTGACCGAGTCCGGCTGCAAAGAGTGCGAGGA



ACTGGAAGAGAAGAATATCAAAGAGTTCCTGCAGAGCTTCGTGCACATCGTGCAG



ATGTTCATCAACACAAGCTCTGGCGGCGGAGGATCTGGCGGAGGTGGAAGCGGA



GTTACACCCGAGCCTATCTTCAGCCTGATCGGAGGCGGTAGCGGAGGCGGAGGAA



GTGGTGGCGGATCTCTGCAACTGCTGCCTAGCTGGGCCATCACACTGATCTCCGTG



AACGGCATCTTCGTGATCTGCTGCCTGACCTACTGCTTCGCCCCTAGATGCAGAGA



GCGGCGGAGAAACGAACGGCTGAGAAGAGAATCTGTGCGGCCCGTTtaaggatccggatt



agtccaatttgttaaagacaggatgggctgcaggaattccgataatcaacctctggattacaaaatttgtgaaagattgactggtattcttaa



ctatgttgctccttttacgctatgtggatacgctgctttaatgcctttgtatcatgctattgcttcccgtatggctttcattttctcctccttgtataaa



tcctggttgctgtctctttatgaggagttgtggcccgttgtcaggcaacgtggcgtggtgtgcactgtgtttgctgacgcaacccccactgg



ttggggcattgccaccacctgtcagctcctttccgggactttcgctttccccctccctattgccacggcggaactcatcgccgcctgccttg



cccgctgctggacaggggctcggctgttgggcactgacaattccgtggtgttgtcggggaagctgacgtcctttccatggctgctcgcct



gtgttgccacctggattctgcgcgggacgtccttctgctacgtcccttcggccctcaatccagcggaccttccttcccgcggcctgctgcc



ggctctgcggcctcttccgcgtcttcgccttcgccctcagacgagtcggatctccctttgggccgcctccccgcctggagaattcgatatc



agtggtccaggctctagttttgactcaacaatatcaccagctgaagcctatagagtacgagccatagataaaataaaagattttatttagtct



ccagaaaaaggggggaatgaaagaccccacctgtaggtttggcaagctagcaataaaagagcccacaacccctcactcggggcgcc



agtcctccgattgactgagtcgcccggccgcttcgagcagacatgataagatacattgatgagtttggacaaaccacaactagaatgcag



tgaaaaaaatgctttatttgtgaaatttgtgatgctattgctttatttgtaaccattataagctgcaataaacaagttaacaacaacaattgcattc



attttatgtttcaggttcagggggagatgtgggaggttttttaaagcaagtaaaacctctacaaatgtggtaaaatcgataaggatcgggta



cccgtgtatccaataaaccctcttgcagttgcatccgacttgtggtctcgctgttccttgggagggtctcctctgagtgattgactacccgtc



agcgggggtctttcacacatgcagcatgtatcaaaattaatttggttttttttcttaagctgtgccttctagttgccagccatctgttgtttgcccc



tcccccgtgccttccttgaccctggaaggtgccactcccactgtcctttcctaataaaatgaggaaattgcatcgcattgtctgagtaggtgt



cattctattctggggggtggggggggcaggacagcaagggggaggattgggaagacaatagcaggcatgctggggatgcggtggg



ctctatggagatcccgcggtacctcgcgaatgcatctagatccaatggcctttttggcccagacatgataagatacattgatgagtttggac



aaaccacaactagaatgcagtgaaaaaaatgctttatttgtgaaatttgtgatgctattgctttatttgtaaccattataagctgcaataaacaa



gttgcggccgcttagccctcccacacataaccagagggcagcaattcacgaatcccaactgccgtcggctgtccatcactgtccttcact



atggctttgatcccaggatgcagatcgagaagcacctgtcggcaccgtccgcaggggctcaagatgcccctgttctcatttccgatcgcg



acgatacaagtcaggttgccagctgccgcagcagcagcagtgcccagcaccacgagttctgcacaaggtcccccagtaaaatgatata



cattgacaccagtgaagatgcggccgtcgctagagagagctgcgctggcgacgctgtagtcttcagagatggggatgctgttgattgta



gccgttgctctttcaatgagggtggattcttcttgagacaaaggcttggccatgcggccgccgctcggtgttcgaggccacacgcgtcac



cttaatatgcgaagtggacctcggaccgcgccgccccgactgcatctgcgtgttcgaattcgccaatgacaagacgctgggcggggttt



gtgtcatcatagaactaaagacatgcaaatatatttcttccggggggtaccggcctttttggccATTGGatcggatctggccaaaaag



gcccttaagtatttacattaaatggccatagtacttaaagttacattggcttccttgaaataaacatggagtattcagaatgtgtcataaatattt



ctaattttaagatagtatctccattggctttctactttttcttttatttttttttgtcctctgtcttccatttgttgttgttgttgtttgtttgtttgtttgttggtt



ggttggttaatttttttttaaagatcctacactatagttcaagctagactattagctactctgtaacccagggtgaccttgaagtcatgggtagc



ctgctgttttagccttcccacatctaagattacaggtatgagctatcatttttggtatattgattgattgattgattgatgtgtgtgtgtgtgattgt



gtttgtgtgtgtgaTtgtgTaTatgtgtgtatggTtgtgtgtgaTtgtgtgtatgtatgTTtgtgtgtgaTtgTgtgtgtgtgaTtgtgca



tgtgtgtgtgtgtgaTtgtgtTtatgtgtatgaTtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgttgtgTaTaTatatt



tatggtagtgagagGcaacgctccggctcaggtgtcaggttggtttttgagacagagtctttcacttagcttggaattcactggccgtcgtt



ttacaacgtcgtgactgggaaaaccctggcgttacccaacttaatcgccttgcagcacatccccctttcgccagctggcgtaatagcgaa



gaggcccgcaccgatcgcccttcccaacagttgcgcagcctgaatggcgaatggcgcctgatgcggtattttctccttacgcatctgtgc



ggtatttcacaccgcatatggtgcactctcagtacaatctgctctgatgccgcatagttaagccagccccgacacccgccaacacccgct



gacgcgccctgacgggcttgtctgctcccggcatccgcttacagacaagctgtgaccgtctccgggagctgcatgtgtcagaggttttca



ccgtcatcaccgaaacgcgcgagacgaaagggcctcgtgatacgcctatttttataggttaatgtcatgataataatggtttcttagacgtc



aggtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgagacaataaccct



gataaatgcttcaataatattgaaaaaggaagagtatgagtattcaacatttccgtgtcgcccttattcccttttttgcggcattttgccttcctgt



ttttgctcacccagaaacgctggtgaaagtaaaagatgctgaagatcagttgggtgcacgagtgggttacatcgaactggatctcaacag



cggtaagatccttgagagttttcgccccgaagaacgttttccaatgatgagcacttttaaagttctgctatgtggcgcggtattatcccgtatt



gacgccgggcaagagcaactcggtcgccgcatacactattctcagaatgacttggttgagtactcaccagtcacagaaaagcatcttac



ggatggcatgacagtaagagaattatgcagtgctgccataaccatgagtgataacactgcggccaacttacttctgacaacgatcggag



gaccgaaggagctaaccgcttttttgcacaacatgggggatcatgtaactcgccttgatcgttgggaaccggagctgaatgaagccatac



caaacgacgagcgtgacaccacgatgcctgtagcaatggcaacaacgttgcgcaaactattaactggcgaactacttactctagcttccc



ggcaacaattaatagactggatggaggcggataaagttgcaggaccacttctgcgctcggcccttccggctggctggtttattgctgata



aatctggagccggtgagcgtgggtctcgcggtatcattgcagcactggggccagatggtaagccctcccgtatcgtagttatctacacga



cggggagtcaggcaactatggatgaacgaaatagacagatcgctgagataggtgcctcactgattaagcattggtaactgtcagaccaa



gtttactcatatatactttagattgatttaaaacttcatttttaatttaaaaggatctaggtgaagatcctttttgataatctcatgaccaaaatccct



taacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgctt



gcaaacaaaaaaaccaccgctaccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggcttcagcag



agcgcagataccaaatactgtccttctagtgtagccgtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgctctg



ctaatcctgttaccagtggctgctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcag



cggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgagatacctacagcgtgagcta



tgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcacgagg



gagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgtgatgctcgtcaggg



gggcggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctggccttttgctcacatgttctttcctgcgtta



tcccctgattctgtggataaccgtattaccgcctttgagtgagctgataccgctcgccgcagccgaacgaccgagcgcagcgagtcagt



gagcgaggaagcggaagagcgcccaatacgcaaaccgcctctccccgcgcgttggccgattcattaatgcagctggcacgacaggtt



tcccgactggaaagcgggcagtgagcgcaacgcaattaatgtgagttagctcactcattaggcaccccaggctttacactttatgcttccg



gctcgtatgttgtgtggaattgtgagcggataacaatttcacacaggaaacagctatgaccatgattacgcc (SEQ ID NO: 309)





SB06258
aagcttgaattcgagcttgcatgcctgcaggtcgttacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgccc


(GM-CSF-Ra
attgacgtcaataatgacgtatgttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagtatttacggtaaactgccc


(SS) - aGPC3
acttggcagtacatcaagtgtatcatatgccaagtacgccccctattgacgtcaatgacggtaaatggcccgcctggcattatgcccagta


hPY7 vH -
catgaccttatgggactttcctacttggcagtacatctacgtattagtcatcgctattaccatggtgatgcggttttggcagtacatcaatggg


(GGGGS)3 -
cgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgtcaatgggagtttgttttggcaccaaaatcaacgggactt


aGPC3 hPY7
tccaaaatgtcgtaacaactccgccccattgacgcaaatgggggtaggcgtgtacgggggaggtctatataagcagagctcaataaa


vL - CD8FA
agagcccacaacccctcactcggcgcgccagtcctccgattgactgagtcgcccgggtacccgtgtatccaataaaccctcttgcagtt


(Hinge) - CD8
gcatccgacttgtggtctcgctgttccttgggagggtctcctctgagtgattgactacccgtcagcgggggtctttcatttgggggctcgtc


(TM) - CD28
cgagatcgggagacccctgcccagggaccaccgacccaccaccgggaggtaagctggccagcaacttatctgtgtctgtccgattgtc


(ICD) - CD3z
tagtgtctatgactgattttatgcgcctgcgtcggtactagttagctaactagctctgtatctggcggacccgtggtggaactgacgagttcg


(ICD) - E2A
gaacacccggccgcaaccctgggagacgtcccagggacttcgggggccgtttttgtggcccgacctgagtcctaaaatcccgatcgttt


T2A - IgE (SS) -
aggactctttggtgcaccccccttagaggagggatatgtggttctggtaggagacgagaacctaaaacagttcccgcctccgtctgaattt


IL-15 -
ttgctttcggtttgggaccgaagccgcgccgcgcgtcttgtctgctgcagcatcgttctgtgttgtctctgtctgactgtgtttctgtatttgtct


Tace10
gaaaatatgggccccccctcgaggtaacgccattttgcaaggcatggaaaaataccaaaccaagaatagagaagttcagatcaagggc


(cleavage site) -
gggtacatgaaaatagctaacgttgggccaaacaggatatctgcggtgagcagtttcggccccggcccggggccaagaacagatggt


B7-1 (TM))
caccgcagtttcggccccggcccgaggccaagaacagatggtccccagatatggcccaaccctcagcagtttcttaagacccatcaga


[(GGGGS)3 is
tgtttccaggctcccccaaggacctgaaatgaccctgcgccttatttgaattaaccaatcagcctgcttctcgcttctgttcgcgcgcttctg


SEQ ID NO:
cttcccgagctctataaaagagctcacaacccctcactcggcgcgccagtcctccgacagactgagtcgcccgggGCCGCCAC


223]
CATGCTGCTGCTGGTCACATCTCTGCTGCTGTGCGAGCTGCCCCATCCTGCCTTTCT



GCTGATCCCTCACATGGAAGTGCAGCTGGTGGAATCTGGCGGAGGACTGGTTCAA



CCTGGCGGCTCTCTGAGACTGTCTTGTGCCGCCAGCGGCTTCACCTTCAACAAGAA



CGCCATGAACTGGGTCCGACAGGCCCCTGGCAAAGGCCTTGAATGGGTCGGACGG



ATCCGGAACAAGACCAACAACTACGCCACCTACTACGCCGACAGCGTGAAGGCCA



GGTTCACCATCTCCAGAGATGACAGCAAGAACAGCCTGTACCTGCAGATGAACTC



CCTGAAAACCGAGGACACCGCCGTGTACTATTGCGTGGCCGGCAATAGCTTTGCC



TACTGGGGACAGGGCACCCTGGTTACAGTTTCTGCTGGCGGCGGAGGAAGCGGAG



GCGGAGGATCCGGTGGTGGTGGATCTGACATCGTGATGACACAGAGCCCCGATAG



CCTGGCCGTGTCTCTGGGAGAAAGAGCCACCATCAACTGCAAGAGCAGCCAGAGC



CTGCTGTACTCCAGCAACCAGAAGAACTACCTGGCCTGGTATCAGCAAAAGCCCG



GCCAGCCTCCTAAGCTGCTGATCTATTGGGCCAGCTCCAGAGAAAGCGGCGTGCC



CGATAGATTTTCTGGCTCTGGCAGCGGCACCGACTTCACCCTGACAATTTCTAGCC



TGCAAGCCGAGGACGTGGCCGTGTATTACTGCCAGCAGTACTACAACTACCCTCT



GACCTTCGGCCAGGGCACCAAGCTGGAAATCAAATCTGGCGCCCTGAGCAACAGC



ATCATGTACTTCAGCCACTTCGTGCCCGTGTTTCTGCCCGCCAAGCCTACAACAAC



CCCTGCTCCTAGACCTCCTACACCAGCTCCTACAATCGCCAGCCAGCCTCTGTCTC



TGAGGCCAGAAGCTTGTAGACCTGCTGCAGGCGGAGCCGTGCATACAAGAGGACT



GGATTTCGCCTGCGACATCTACATCTGGGCCCCTCTGGCTGGAACATGTGGTGTCC



TGCTGCTGAGCCTGGTCATCACCCTGTACTGCAACCACCGGCGGAGCAAGAGAAG



CAGACTGCTGCACAGCGACTACATGAACATGACCCCTAGACGGCCCGGACCTACC



AGAAAGCACTACCAGCCTTACGCTCCTCCTAGAGACTTCGCCGCCTACCGGTCCA



GAGTGAAGTTCAGCAGATCCGCCGATGCTCCCGCCTATCAGCAGGGACAGAACCA



GCTGTACAACGAGCTGAACCTGGGGAGAAGAGAAGAGTACGACGTGCTGGACAA



GCGGAGAGGCAGAGATCCTGAGATGGGCGGCAAGCCCAGACGGAAGAATCCTCA



AGAGGGCCTGTATAATGAGCTGCAGAAAGACAAGATGGCCGAGGCCTACAGCGA



GATCGGAATGAAGGGCGAGCGCAGAAGAGGCAAGGGACACGATGGACTGTACCA



GGGCCTGAGCACCGCCACCAAGGATACCTATGATGCCCTGCACATGCAGGCCCTG



CCTCCAAGAGGTAGCGGCCAGTGTACCAACTACGCCCTGCTGAAACTGGCCGGCG



ACGTGGAATCTAATCCTGGACCTGGATCTGGCGAGGGACGCGGGAGTCTACTGAC



GTGTGGAGACGTGGAGGAAAACCCTGGACCTATGGACTGGACCTGGATCCTGTTT



CTGGTGGCCGCTGCCACAAGAGTGCACAGCAATTGGGTCAACGTGATCAGCGACC



TGAAGAAGATCGAGGACCTGATCCAGAGCATGCACATCGACGCCACACTGTACAC



CGAGAGCGACGTGCACCCTAGCTGTAAAGTGACCGCCATGAAGTGCTTTCTGCTG



GAACTGCAAGTGATCAGCCTGGAAAGCGGCGACGCCAGCATCCACGACACCGTG



GAAAACCTGATCATCCTGGCCAACAACAGCCTGAGCAGCAACGGCAATGTGACCG



AGTCCGGCTGCAAAGAGTGCGAGGAACTGGAAGAGAAGAATATCAAAGAGTTCC



TGCAGAGCTTCGTGCACATCGTGCAGATGTTCATCAACACAAGCTCTGGCGGCGG



AGGATCTGGCGGAGGTGGAAGCGGAGTTACACCCGAGCCTATCTTCAGCCTGATC



GGAGGCGGTAGCGGAGGCGGAGGAAGTGGTGGCGGATCTCTGCAACTGCTGCCT



AGCTGGGCCATCACACTGATCTCCGTGAACGGCATCTTCGTGATCTGCTGCCTGAC



CTACTGCTTCGCCCCTAGATGCAGAGAGCGGCGGAGAAACGAACGGCTGAGAAG



AGAATCTGTGCGGCCCGTTtaaggatccggattagtccaatttgttaaagacaggatgggctgcaggaattccgataat



caacctctggattacaaaatttgtgaaagattgactggtattcttaactatgttgctccttttacgctatgtggatacgctgctttaatgcctttgt



atcatgctattgcttcccgtatggctttcattttctcctccttgtataaatcctggttgctgtctctttatgaggagttgtggcccgttgtcaggca



acgtggcgtggtgtgcactgtgtttgctgacgcaacccccactggttggggcattgccaccacctgtcagctcctttccgggactttcgctt



tccccctccctattgccacggcggaactcatcgccgcctgccttgcccgctgctggacaggggctcggctgttgggcactgacaattcc



gtggtgttgtcggggaagctgacgtcctttccatggctgctcgcctgtgttgccacctggattctgcgcgggacgtccttctgctacgtccc



ttcggccctcaatccagcggaccttccttcccgcggcctgctgccggctctgcggcctcttccgcgtcttcgccttcgccctcagacgagt



cggatctccctttgggccgcctccccgcctggagaattcgatatcagtggtccaggctctagttttgactcaacaatatcaccagctgaag



cctatagagtacgagccatagataaaataaaagattttatttagtctccagaaaaaggggggaatgaaagaccccacctgtaggtttggc



aagctagcaataaaagagcccacaacccctcactcggggcgccagtcctccgattgactgagtcgcccggccgcttcgagcagacat



gataagatacattgatgagtttggacaaaccacaactagaatgcagtgaaaaaaatgctttatttgtgaaatttgtgatgctattgctttatttgt



aaccattataagctgcaataaacaagttaacaacaacaattgcattcattttatgtttcaggttcagggggagatgtgggaggttttttaaagc



aagtaaaacctctacaaatgtggtaaaatcgataaggatcgggtacccgtgtatccaataaaccctcttgcagttgcatccgacttgtggtc



tcgctgttccttgggagggtctcctctgagtgattgactacccgtcagcgggggtctttcacacatgcagcatgtatcaaaattaatttggttt



tttttcttaagctgtgccttctagttgccagccatctgttgtttgcccctcccccgtgccttccttgaccctggaaggtgccactcccactgtcc



tttcctaataaaatgaggaaattgcatcgcattgtctgagtaggtgtcattctattctggggggtggggggggcaggacagcaaggggg



aggattgggaagacaatagcaggcatgctggggatgcggtgggctctatggagatcccgcggtacctcgcgaatgcatctagatccaa



tggcctttttggcccagacatgataagatacattgatgagtttggacaaaccacaactagaatgcagtgaaaaaaatgctttatttgtgaaat



ttgtgatgctattgctttatttgtaaccattataagctgcaataaacaagttgcggccgcttagccctcccacacataaccagagggcagca



attcacgaatcccaactgccgtcggctgtccatcactgtccttcactatggctttgatcccaggatgcagatcgagaagcacctgtcggca



ccgtccgcaggggctcaagatgcccctgttctcatttccgatcgcgacgatacaagtcaggttgccagctgccgcagcagcagcagtg



cccagcaccacgagttctgcacaaggtcccccagtaaaatgatatacattgacaccagtgaagatgcggccgtcgctagagagagctg



cgctggcgacgctgtagtcttcagagatggggatgctgttgattgtagccgttgctctttcaatgagggtggattcttcttgagacaaaggc



ttggccatgcggccgccgctcggtgttcgaggccacacgcgtcaccttaatatgcgaagtggacctcggaccgcgccgccccgactg



catctgcgtgttcgaattcgccaatgacaagacgctgggcggggtttgtgtcatcatagaactaaagacatgcaaatatatttcttccgggg



ggtaccggcctttttggccATTGGatcggatctggccaaaaaggcccttaagtatttacattaaatggccatagtacttaaagttacatt



ggcttccttgaaataaacatggagtattcagaatgtgtcataaatatttctaattttaagatagtatctccattggctttctactttttttttattttttt



ttgtcctctgtcttccatttgttgttgttgttgtttgtttgtttgtttgttggttggttggttaatttttttttaaagatcctacactatagttcaagctaga



ctattagctactctgtaacccagggtgaccttgaagtcatgggtagcctgctgttttagccttcccacatctaagattacaggtatgagctatc



atttttggtatattgattgattgattgattgatgtgtgtgtgtgtgattgtgtttgtgtgtgtgaTtgtgTaTatgtgtgtatggTtgtgtgtgaTt



gtgtgtatgtatgTTtgtgtgtgaTtgTgtgtgtgtgaTtgtgcatgtgtgtgtgtgtgaTtgtgtTtatgtgtatgaTtgtgtgtgtgtgt



gtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgttgtgTaTaTatatttatggtagtgagagGcaacgctccggctcaggtgtcaggttgg



tttttgagacagagtctttcacttagcttggaattcactggccgtcgttttacaacgtcgtgactgggaaaaccctggcgttacccaacttaat



cgccttgcagcacatccccctttcgccagctggcgtaatagcgaagaggcccgcaccgatcgcccttcccaacagttgcgcagcctga



atggcgaatggcgcctgatgcggtattttctccttacgcatctgtgcggtatttcacaccgcatatggtgcactctcagtacaatctgctctg



atgccgcatagttaagccagccccgacacccgccaacacccgctgacgcgccctgacgggcttgtctgctcccggcatccgcttacag



acaagctgtgaccgtctccgggagctgcatgtgtcagaggttttcaccgtcatcaccgaaacgcgcgagacgaaagggcctcgtgata



cgcctatttttataggttaatgtcatgataataatggtttcttagacgtcaggtggcacttttcggggaaatgtgcgcggaacccctatttgttt



atttttctaaatacattcaaatatgtatccgctcatgagacaataaccctgataaatgcttcaataatattgaaaaaggaagagtatgagtattc



aacatttccgtgtcgcccttattcccttttttgcggcattttgccttcctgtttttgctcacccagaaacgctggtgaaagtaaaagatgctgaa



gatcagttgggtgcacgagtgggttacatcgaactggatctcaacagcggtaagatccttgagagttttcgccccgaagaacgttttccaa



tgatgagcacttttaaagttctgctatgtggcgcggtattatcccgtattgacgccgggcaagagcaactcggtcgccgcatacactattct



cagaatgacttggttgagtactcaccagtcacagaaaagcatcttacggatggcatgacagtaagagaattatgcagtgctgccataacc



atgagtgataacactgcggccaacttacttctgacaacgatcggaggaccgaaggagctaaccgcttttttgcacaacatgggggatcat



gtaactcgccttgatcgttgggaaccggagctgaatgaagccataccaaacgacgagcgtgacaccacgatgcctgtagcaatggcaa



caacgttgcgcaaactattaactggcgaactacttactctagcttcccggcaacaattaatagactggatggaggcggataaagttgcag



gaccacttctgcgctcggcccttccggctggctggtttattgctgataaatctggagccggtgagcgtgggtctcgcggtatcattgcagc



actggggccagatggtaagccccccgtatcgtagttatctacacgacggggagtcaggcaactatggatgaacgaaatagacagatc



gctgagataggtgcctcactgattaagcattggtaactgtcagaccaagtttactcatatatactttagattgatttaaaacttcatttttaattta



aaaggatctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaa



agatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgcc



ggatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgtccttctagtgtagccgtagttag



gccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcgataagtcgtg



tcttaccgggttggactcaagacgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttg



gagcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggaca



ggtatccggtaagcggcagggtcggaacaggagagcgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcg



ggtttcgccacctctgacttgagcgtcgatttttgtgatgctcgtcaggggggggagcctatggaaaaacgccagcaacgcggccttttt



acggttcctggccttttgctggccttttgctcacatgttctttcctgcgttatcccctgattctgtggataaccgtattaccgcctttgagtgagc



tgataccgctcgccgcagccgaacgaccgagcgcagcgagtcagtgagcgaggaagcggaagagcgcccaatacgcaaaccgcc



tctccccgcgcgttggccgattcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagtgagcgcaacgcaattaatg



tgagttagctcactcattaggcaccccaggctttacactttatgcttccggctcgtatgttgtgtggaattgtgagcggataacaatttcacac



aggaaacagctatgaccatgattacgcc (SEQ ID NO: 310)





SB06298
aagcttgaattcgagcttgcatgcctgcaggtcgttacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgccc



attgacgtcaataatgacgtatgttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagtatttacggtaaactgccc



acttggcagtacatcaagtgtatcatatgccaagtacgccccctattgacgtcaatgacggtaaatggcccgcctggcattatgcccagta



catgaccttatgggactttcctacttggcagtacatctacgtattagtcatcgctattaccatggtgatgcggttttggcagtacatcaatggg



cgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgtcaatgggagtttgttttggcaccaaaatcaacgggactt



tccaaaatgtcgtaacaactccgccccattgacgcaaatgggggtaggcgtgtacggtgggaggtctatataagcagagctcaataaa



agagcccacaacccctcactcggcgcgccagtcctccgattgactgagtcgcccgggtacccgtgtatccaataaaccctcttgcagtt



gcatccgacttgtggtctcgctgttccttgggagggtctcctctgagtgattgactacccgtcagcgggggtctttcatttgggggctcgtc



cgagatcgggagacccctgcccagggaccaccgacccaccaccgggaggtaagctggccagcaacttatctgtgtctgtccgattgtc



tagtgtctatgactgattttatgcgcctgcgtcggtactagttagctaactagctctgtatctggcggacccgtggtggaactgacgagttcg



gaacacccggccgcaaccctgggagacgtcccagggacttcgggggccgtttttgtggcccgacctgagtcctaaaatcccgatcgttt



aggactctttggtgcaccccccttagaggagggatatgtggttctggtaggagacgagaacctaaaacagttcccgcctccgtctgaattt



ttgctttcggtttgggaccgaagccgcgccgcgcgtcttgtctgctgcagcatcgttctgtgttgtctctgtctgactgtgtttctgtatttgtct



gaaaatatgggccccccctcgaggtaacgccattttgcaaggcatggaaaaataccaaaccaagaatagagaagttcagatcaagggc



gggtacatgaaaatagctaacgttgggccaaacaggatatctgcggtgagcagtttcggccccggcccggggccaagaacagatggt



caccgcagtttcggccccggcccgaggccaagaacagatggtccccagatatggcccaaccctcagcagtttcttaagacccatcaga



tgtttccaggctcccccaaggacctgaaatgaccctgcgccttatttgaattaaccaatcagcctgcttctcgcttctgttcgcgcgcttctg



cttcccgagctctataaaagagctcacaacccctcactcggcgcgccagtcctccgacagactgagtcgcccgggGCCGCCAC



CATGCTGCTGCTGGTCACATCTCTGCTGCTGTGCGAGCTGCCCCATCCTGCCTTTCT



GCTGATCCCTCACATGGAAGTGCAGCTGGTGGAATCTGGCGGAGGACTGGTTCAA



CCTGGCGGCTCTCTGAGACTGTCTTGTGCCGCCAGCGGCTTCACCTTCAACAAGAA



CGCCATGAACTGGGTCCGACAGGCCCCTGGCAAAGGCCTTGAATGGGTCGGACGG



ATCCGGAACAAGACCAACAACTACGCCACCTACTACGCCGACAGCGTGAAGGCCA



GGTTCACCATCTCCAGAGATGACAGCAAGAACAGCCTGTACCTGCAGATGAACTC



CCTGAAAACCGAGGACACCGCCGTGTACTATTGCGTGGCCGGCAATAGCTTTGCC



TACTGGGGACAGGGCACCCTGGTTACAGTTTCTGCTGGCGGCGGAGGAAGCGGAG



GCGGAGGATCCGGTGGTGGTGGATCTGACATCGTGATGACACAGAGCCCCGATAG



CCTGGCCGTGTCTCTGGGAGAAAGAGCCACCATCAACTGCAAGAGCAGCCAGAGC



CTGCTGTACTCCAGCAACCAGAAGAACTACCTGGCCTGGTATCAGCAAAAGCCCG



GCCAGCCTCCTAAGCTGCTGATCTATTGGGCCAGCTCCAGAGAAAGCGGCGTGCC



CGATAGATTTTCTGGCTCTGGCAGCGGCACCGACTTCACCCTGACAATTTCTAGCC



TGCAAGCCGAGGACGTGGCCGTGTATTACTGCCAGCAGTACTACAACTACCCTCT



GACCTTCGGCCAGGGCACCAAGCTGGAAATCAAATCTGGCGCCCTGAGCAACAGC



ATCATGTACTTCAGCCACTTCGTGCCCGTGTTTCTGCCCGCCAAGCCTACAACAAC



CCCTGCTCCTAGACCTCCTACACCAGCTCCTACAATCGCCAGCCAGCCTCTGTCTC



TGAGGCCAGAAGCTTGTAGACCTGCTGCAGGCGGAGCCGTGCATACAAGAGGACT



GGATTTCGCCTGCGACATCTACATCTGGGCCCCTCTGGCTGGAACATGTGGTGTCC



TGCTGCTGAGCCTGGTCATCACCCTGTACTGCAACCACCGGCGGAGCAAGAGAAG



CAGACTGCTGCACAGCGACTACATGAACATGACCCCTAGACGGCCCGGACCTACC



AGAAAGCACTACCAGCCTTACGCTCCTCCTAGAGACTTCGCCGCCTACCGGTCCA



GAGTGAAGTTCAGCAGGAGCGCAGACGCCCCCGCGTACAAGCAGGGCCAGAACC



AGCTCTATAACGAGCTCAATCTAGGACGAAGAGAGGAGTACGATGTTTTGGACAA



GAGACGTGGCCGGGACCCTGAGATGGGGGGAAAGCCGAGAAGGAAGAACCCTCA



GGAAGGCCTGTACAATGAACTGCAGAAAGATAAGATGGCGGAGGCCTACAGTGA



GATTGGGATGAAAGGCGAGCGCCGGAGGGGCAAGGGGCACGATGGCCTTTACCA



GGGTCTCAGTACAGCCACCAAGGACACCTACGACGCCCTTCACATGCAGGCCCTG



CCCCCTCGCCAGTGTACCAACTACGCCCTGCTGAAACTGGCCGGCGACGTGGAAT



CTAATCCTGGACCTGGATCTGGCGAGGGACGCGGGAGTCTACTGACGTGTGGAGA



CGTGGAGGAAAACCCTGGACCTATGGACTGGACCTGGATCCTGTTTCTGGTGGCC



GCTGCCACAAGAGTGCACAGCAATTGGGTCAACGTGATCAGCGACCTGAAGAAG



ATCGAGGACCTGATCCAGAGCATGCACATCGACGCCACACTGTACACCGAGAGCG



ACGTGCACCCTAGCTGTAAAGTGACCGCCATGAAGTGCTTTCTGCTGGAACTGCA



AGTGATCAGCCTGGAAAGCGGCGACGCCAGCATCCACGACACCGTGGAAAACCT



GATCATCCTGGCCAACAACAGCCTGAGCAGCAACGGCAATGTGACCGAGTCCGGC



TGCAAAGAGTGCGAGGAACTGGAAGAGAAGAATATCAAAGAGTTCCTGCAGAGC



TTCGTGCACATCGTGCAGATGTTCATCAACACAAGCTCTGGCGGCGGAGGATCTG



GCGGAGGTGGAAGCGGAGTTACACCCGAGCCTATCTTCAGCCTGATCGGAGGCGG



TAGCGGAGGCGGAGGAAGTGGTGGCGGATCTCTGCAACTGCTGCCTAGCTGGGCC



ATCACACTGATCTCCGTGAACGGCATCTTCGTGATCTGCTGCCTGACCTACTGCTT



CGCCCCTAGATGCAGAGAGCGGCGGAGAAACGAACGGCTGAGAAGAGAATCTGT



GCGGCCCGTTtaaggatccggattagtccaatttgttaaagacaggatgggctgcaggaattccgataatcaacctctggattac



aaaatttgtgaaagattgactggtattcttaactatgttgctccttttacgctatgtggatacgctgctttaatgcctttgtatcatgctattgcttc



ccgtatggctttcattttctcctccttgtataaatcctggttgctgtctctttatgaggagttgtggcccgttgtcaggcaacgtggcgtggtgt



gcactgtgtttgctgacgcaacccccactggttggggcattgccaccacctgtcagctcctttccgggactttcgctttccccctccctattg



ccacggcggaactcatcgccgcctgccttgcccgctgctggacaggggctcggctgttgggcactgacaattccgtggtgttgtcggg



gaagctgacgtcctttccatggctgctcgcctgtgttgccacctggattctgcgcgggacgtccttctgctacgtcccttcggccctcaatc



cagcggaccttccttcccgcggcctgctgccggctctgcggcctcttccgcgtcttcgccttcgccctcagacgagtcggatctccctttg



ggccgcctccccgcctggagaattcgatatcagtggtccaggctctagttttgactcaacaatatcaccagctgaagcctatagagtacg



agccatagataaaataaaagattttatttagtctccagaaaaaggggggaatgaaagaccccacctgtaggtttggcaagctagcaataa



aagagcccacaacccctcactcggggcgccagtcctccgattgactgagtcgcccggccgcttcgagcagacatgataagatacattg



atgagtttggacaaaccacaactagaatgcagtgaaaaaaatgctttatttgtgaaatttgtgatgctattgctttatttgtaaccattataagct



gcaataaacaagttaacaacaacaattgcattcattttatgtttcaggttcagggggagatgtgggaggttttttaaagcaagtaaaacctct



acaaatgtggtaaaatcgataaggatcgggtacccgtgtatccaataaaccctcttgcagttgcatccgacttgtggtctcgctgttccttgg



gagggtctcctctgagtgattgactacccgtcagcgggggtctttcacacatgcagcatgtatcaaaattaatttggttttttttcttaagctgt



gccttctagttgccagccatctgttgtttgcccctcccccgtgccttccttgaccctggaaggtgccactcccactgtcctttcctaataaaat



gaggaaattgcatcgcattgtctgagtaggtgtcattctattctggggggtggggggggcaggacagcaagggggaggattgggaag



acaatagcaggcatgctggggatgcggtgggctctatggagatcccgcggtacctcgcgaatgcatctagatccaatggcctttttggcc



cagacatgataagatacattgatgagtttggacaaaccacaactagaatgcagtgaaaaaaatgctttatttgtgaaatttgtgatgctattg



ctttatttgtaaccattataagctgcaataaacaagttgcggccgcttagccctcccacacataaccagagggcagcaattcacgaatccc



aactgccgtcggctgtccatcactgtccttcactatggctttgatcccaggatgcagatcgagaagcacctgtcggcaccgtccgcaggg



gctcaagatgcccctgttctcatttccgatcgcgacgatacaagtcaggttgccagctgccgcagcagcagcagtgcccagcaccacg



agttctgcacaaggtcccccagtaaaatgatatacattgacaccagtgaagatgcggccgtcgctagagagagctgcgctggcgacgc



tgtagtcttcagagatggggatgctgttgattgtagccgttgctctttcaatgagggtggattcttcttgagacaaaggcttggccatgcggc



cgccgctcggtgttcgaggccacacgcgtcaccttaatatgcgaagtggacctcggaccgcgccgccccgactgcatctgcgtgttcg



aattcgccaatgacaagacgctgggcggggtttgtgtcatcatagaactaaagacatgcaaatatatttcttccggggggtaccggcctttt



tggccATTGGatcggatctggccaaaaaggcccttaagtatttacattaaatggccatagtacttaaagttacattggcttccttgaaat



aaacatggagtattcagaatgtgtcataaatatttctaattttaagatagtatctccattggctttctactttttttttatttttttttgtcctctgtcttc



catttgttgttgttgttgtttgtttgtttgtttgttggttggttggttaatttttttttaaagatcctacactatagttcaagctagactattagctactct



gtaacccagggtgaccttgaagtcatgggtagcctgctgttttagccttcccacatctaagattacaggtatgagctatcatttttggtatatt



gattgattgattgattgatgtgtgtgtgtgtgattgtgtttgtgtgtgtgaTtgtgTaTatgtgtgtatggTtgtgtgtgaTtgtgtgtatgtat



gTTtgtgtgtgaTtgTgtgtgtgtgaTtgtgcatgtgtgtgtgtgtgaTtgtgtTtatgtgtatgaTtgtgtgtgtgtgtgtgtgtgtgtgt



gtgtgtgtgtgtgtgtgtgtgttgtgTaTaTatatttatggtagtgagagGcaacgctccggctcaggtgtcaggttggtttttgagacag



agtctttcacttagcttggaattcactggccgtcgttttacaacgtcgtgactgggaaaaccctggcgttacccaacttaatcgccttgcagc



acatccccctttcgccagctggcgtaatagcgaagaggcccgcaccgatcgcccttcccaacagttgcgcagcctgaatggcgaatgg



cgcctgatgcggtattttctccttacgcatctgtgcggtatttcacaccgcatatggtgcactctcagtacaatctgctctgatgccgcatagt



taagccagccccgacacccgccaacacccgctgacgcgccctgacgggcttgtctgctcccggcatccgcttacagacaagctgtga



ccgtctccgggagctgcatgtgtcagaggttttcaccgtcatcaccgaaacgcgcgagacgaaagggcctcgtgatacgcctatttttat



aggttaatgtcatgataataatggtttcttagacgtcaggtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatac



attcaaatatgtatccgctcatgagacaataaccctgataaatgcttcaataatattgaaaaaggaagagtatgagtattcaacatttccgtgt



cgcccttattcccttttttgcggcattttgccttcctgtttttgctcacccagaaacgctggtgaaagtaaaagatgctgaagatcagttgggt



gcacgagtgggttacatcgaactggatctcaacagcggtaagatccttgagagttttcgccccgaagaacgttttccaatgatgagcactt



ttaaagttctgctatgtggcgcggtattatcccgtattgacgccgggcaagagcaactcggtcgccgcatacactattctcagaatgacttg



gttgagtactcaccagtcacagaaaagcatcttacggatggcatgacagtaagagaattatgcagtgctgccataaccatgagtgataac



actgcggccaacttacttctgacaacgatcggaggaccgaaggagctaaccgcttttttgcacaacatgggggatcatgtaactcgcctt



gatcgttgggaaccggagctgaatgaagccataccaaacgacgagcgtgacaccacgatgcctgtagcaatggcaacaacgttgcgc



aaactattaactggcgaactacttactctagcttcccggcaacaattaatagactggatggaggcggataaagttgcaggaccacttctgc



gctcggcccttccggctggctggtttattgctgataaatctggagccggtgagcgtgggtctcgcggtatcattgcagcactggggccag



atggtaagccctcccgtatcgtagttatctacacgacggggagtcaggcaactatggatgaacgaaatagacagatcgctgagataggt



gcctcactgattaagcattggtaactgtcagaccaagtttactcatatatactttagattgatttaaaacttcatttttaatttaaaaggatctagg



tgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggat



cttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgccggatcaagagct



accaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgtccttctagtgtagccgtagttaggccaccacttca



agaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcgataagtcgtgtcttaccgggttg



gactcaagacgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacgac



ctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaa



gcggcagggtcggaacaggagagcgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacct



ctgacttgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggc



cttttgctggccttttgctcacatgttctttcctgcgttatcccctgattctgtggataaccgtattaccgcctttgagtgagctgataccgctcg



ccgcagccgaacgaccgagcgcagcgagtcagtgagcgaggaagcggaagagcgcccaatacgcaaaccgcctctccccgcgcg



ttggccgattcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagtgagcgcaacgcaattaatgtgagttagctca



ctcattaggcaccccaggctttacactttatgcttccggctcgtatgttgtgtggaattgtgagcggataacaatttcacacaggaaacagct



atgaccatgattacgcc (SEQ ID NO: 311)





SB06254
aagctttgctcttaggagtttcctaatacatcccaaactcaaatatataaagcatttgacttgttctatgccctagggggcggggggaagcta



agccagctttttttaacatttaaaatgttaattccattttaaatgcacagatgtttttatttcataagggtttcaatgtgcatgaatgctgcaatattc



ctgttaccaaagctagtataaataaaaatagataaacgtggaaattacttagagtttctgtcattaacgtttccttcctcagttgacaacataaa



tgcgctgctgagaagccagtttgcatctgtcaggatcaatttcccattatgccagtcatattaattactagtcaattagttgatttttatttttgac



atatacatgtgaaagaccccacctgtaggtttggcaagctagcttaagtaacgccattttgcaaggcatggaaaaatacataactgagaat



agaaaagttcagatcaaggtcaggaacagatggaacagctgaatatgggccaaacaggatatctgtggtaagcagttcctgccccggc



tcagggccaagaacagatggaacagctgaatatgggccaaacaggatatctgtggtaagcagttcctgccccggctcagggccaaga



acagatggtccccagatgcggtccagccctcagcagtttctagagaaccatcagatgtttccagggtgccccaaggacctgaaatgacc



ctgtgccttatttgaactaaccaatcagttcgcttctcgcttctgttcgcgcgcttctgctccccgagctcaataaaagagcccacaacccct



cactcggcgcgccagtcctccgattgactgagtcgcccgggtacccgtgtatccaataaaccctcttgcagttgcatccgacttgtggtct



cgctgttccttgggagggtctcctctgagtgattgactacccgtcagcgggggtctttcatttgggggctcgtccgagatcgggagaccc



ctgcccagggaccaccgacccaccaccgggaggtaagctggccagcaacttatctgtgtctgtccgattgtctagtgtctatgactgattt



tatgcgcctgcgtcggtactagttagctaactagctctgtatctggcggacccgtggtggaactgacgagttcggaacacccggccgca



accctgggagacgtcccagggacttcgggggccgtttttgtggcccgacctgagtcctaaaatcccgatcgtttaggactctttggtgca



ccccccttagaggagggatatgtggttctggtaggagacgagaacctaaaacagttcccgcctccgtctgaatttttgctttcggtttggga



ccgaagccgcgccgcgcgtcttgtctgctgcagcatcgttctgtgttgtctctgtctgactgtgtttctgtatttgtctgaaaatatggatcttat



atggggcacccccgccccttgtaaacttccctgaccctgacatgacaagagttactaacagcccctctctccaagctcacttacaggctct



ctacttagtccagcacgaagtctggagacctctggcggcagcctaccaagaacaactggaccgaccggtggtacctcacccttaccga



gtcggcgacacagtgtgggtccgccgacaccagactaagaacctagaacctcgctggaaaggaccttacacagtcctgctgaccacc



cccaccgccctcaaagtagacggcatcgcagcttggatacacgccgcccacgtgaaggctgccgaccccgggggtggaccatcctct



agactgccggatccGCCGCCACCATGGACTGGACCTGGATCCTGTTTCTGGTGGCCGCTGC



CACAAGAGTGCACAGCAATTGGGTCAACGTGATCAGCGACCTGAAGAAGATCGA



GGACCTGATCCAGAGCATGCACATCGACGCCACACTGTACACCGAGAGCGACGTG



CACCCTAGCTGTAAAGTGACCGCCATGAAGTGCTTTCTGCTGGAACTGCAAGTGA



TCAGCCTGGAAAGCGGCGACGCCAGCATCCACGACACCGTGGAAAACCTGATCAT



CCTGGCCAACAACAGCCTGAGCAGCAACGGCAATGTGACCGAGTCCGGCTGCAAA



GAGTGCGAGGAACTGGAAGAGAAGAATATCAAAGAGTTCCTGCAGAGCTTCGTG



CACATCGTGCAGATGTTCATCAACACAAGCTCTGGCGGCGGAGGATCTGGCGGAG



GTGGAAGCGGAGTTACACCCGAGCCTATCTTCAGCCTGATCGGAGGCGGTAGCGG



AGGCGGAGGAAGTGGTGGCGGATCTCTGCAACTGCTGCCTAGCTGGGCCATCACA



CTGATCTCCGTGAACGGCATCTTCGTGATCTGCTGCCTGACCTACTGCTTCGCCCC



TAGATGCAGAGAGCGGCGGAGAAACGAACGGCTGAGAAGAGAATCTGTGCGGCC



CGTTGGTAGCGGCCAGTGTACCAACTACGCCCTGCTGAAACTGGCCGGCGACGTG



GAATCTAATCCTGGACCTGGATCTGGCGAGGGACGCGGGAGTCTACTGACGTGTG



GAGACGTGGAGGAAAACCCTGGACCTATGCTGCTGCTGGTCACATCTCTGCTGCT



GTGCGAGCTGCCCCATCCTGCCTTTCTGCTGATCCCTCACATGGACATCGTGATGA



CACAGAGCCCCGATAGCCTGGCCGTGTCTCTGGGAGAAAGAGCCACCATCAACTG



CAAGAGCAGCCAGAGCCTGCTGTACTCCAGCAACCAGAAGAACTACCTGGCCTGG



TATCAGCAAAAGCCCGGCCAGCCTCCTAAGCTGCTGATCTATTGGGCCAGCTCCA



GAGAAAGCGGCGTGCCCGATAGATTTTCTGGCTCTGGCAGCGGCACCGACTTCAC



CCTGACAATTTCTAGCCTGCAAGCCGAGGACGTGGCCGTGTACTACTGCCAGCAG



TACTACAACTACCCTCTGACCTTCGGCCAGGGCACCAAGCTGGAAATCAAAGGCG



GCGGAGGATCTGGCGGAGGTGGAAGTGGCGGAGGCGGATCTGAAGTGCAGCTGG



TTGAATCAGGTGGCGGCCTGGTTCAACCTGGCGGATCTCTGAGACTGAGCTGTGC



CGCCAGCGGCTTCACCTTCAACAAGAACGCCATGAACTGGGTCCGACAGGCCCCT



GGCAAAGGCCTTGAATGGGTCGGACGGATCCGGAACAAGACCAACAACTACGCC



ACCTACTACGCCGACAGCGTGAAGGCCAGATTCACCATCAGCCGGGACGACAGCA



AGAACAGCCTGTACCTGCAGATGAACTCCCTGAAAACCGAGGACACCGCCGTGTA



TTATTGCGTGGCCGGCAACAGCTTTGCCTACTGGGGACAGGGAACCCTGGTCACC



GTGTCTGCCACAACAACCCCTGCTCCTAGACCTCCTACACCAGCTCCTACAATCGC



CCTGCAGCCTCTGTCTCTGAGGCCAGAAGCTTGTAGACCAGCTGCTGGCGGAGCC



GTGCATACAAGAGGACTGGACTTCGCCTGTGATGTGGCCGCCATTCTCGGACTGG



GACTTGTTCTGGGACTGCTGGGACCTCTGGCCATTCTGCTGGCTCTGTATCTGCTG



CGGAGGGACCAAAGACTGCCTCCTGATGCTCACAAGCCTCCAGGCGGAGGCAGCT



TCAGAACCCCTATCCAAGAGGAACAGGCCGACGCTCACAGCACCCTGGCCAAGAT



TAGAGTGAAGTTCAGCAGAAGCGCCGACGCACCCGCCTATAAGCAGGGACAGAA



CCAGCTGTACAACGAGCTGAACCTGGGGAGAAGAGAAGAGTACGACGTGCTGGA



CAAGCGGAGAGGCAGAGATCCTGAGATGGGCGGCAAGCCCAGACGGAAGAATCC



TCAAGAGGGCCTGTATAATGAGCTGCAGAAAGACAAGATGGCCGAGGCCTACAG



CGAGATCGGAATGAAGGGCGAGCGCAGAAGAGGCAAGGGACACGATGGACTGTA



CCAGGGCCTGAGCACCGCCACCAAGGATACCTATGATGCCCTGCACATGCAGGCC



CTGCCTCCAAGAtaaagatctagatccggattagtccaatttgttaaagacaggatatcagtggtccaggctctagttttgactc



aacaatatcaccagctgaagcctatagagtacgagccatagataaaataaaagattttatttagtctccagaaaaaggggggaatgaaag



accccacctgtaggtttggcaagctagcttaagtaacgccattttgcaaggcatggaaaaatacataactgagaatagagaagttcagatc



aaggtcaggaacagatggaacagctgaatatgggccaaacaggatatctgtggtaagcagttcctgccccggctcagggccaagaac



agatggaacagctgaatatgggccaaacaggatatctgtggtaagcagttcctgccccggctcagggccaagaacagatggtccccag



atgcggtccagccctcagcagtttctagagaaccatcagatgtttccagggtgccccaaggacctgaaatgaccctgtgccttatttgaac



taaccaatcagttcgcttctcgcttctgttcgcgcgcttctgctccccgagctcaataaaagagcccacaacccctcactcggggcgcca



gtcctccgattgactgagtcgcccgggtacccgtgtatccaataaaccctcttgcagttgcatccgacttgtggtctcgctgttccttggga



gggtctcctctgagtgattgactacccgtcagcgggggtctttcacatgcagcatgtatcaaaattaatttggttttttttcttaagtatttacatt



aaatggccatagtacttaaagttacattggcttccttgaaataaacatggagtattcagaatgtgtcataaatatttctaattttaagatagtatc



tccattggctttctactttttcttttatttttttttgtcctctgtcttccatttgttgttgttgttgtttgtttgtttgtttgttggttggttggttaattttttttta



aagatcctacactatagttcaagctagactattagctactctgtaacccagggtgaccttgaagtcatgggtagcctgctgttttagccttcc



cacatctaagattacaggtatgagctatcatttttggtatattgattgattgattgattgatgtgtgtgtgtgtgattgtgtttgtgtgtgtgaTtgt



gTaTatgtgtgtatggTtgtgtgtgaTtgtgtgtatgtatgTTtgtgtgtgaTtgTgtgtgtgtgaTtgtgcatgtgtgtgtgtgtgaTt



gtgtTtatgtgtatgaTtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgttgtgTaTaTatatttatggtagtgagagG



caacgctccggctcaggtgtcaggttggtttttgagacagagtctttcacttagcttggaattaattcactggccgtcgttttacaacgtcgtg



actgggaaaaccctggcgttacccaacttaatcgccttgcagcacatccccctttcgccagctggcgtaatagcgaagaggcccgcacc



gatcgcccttcccaacagttgcgcagcctgaatggcgaatggcgcctgatgcggtattttctccttacgcatctgtgcggtatttcacaccg



catatggtgcactctcagtacaatctgctctgatgccgcatagttaagccagccccgacacccgccaacacccgctgacgcgccctgac



gggcttgtctgctcccggcatccgcttacagacaagctgtgaccgtctccgggagctgcatgtgtcagaggttttcaccgtcatcaccga



aacgcgcgagacgaaagggcctcgtgatacgcctatttttataggttaatgtcatgataataatggtttcttagacgtcaggtggcacttttc



ggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgagacaataaccctgataaatgcttca



ataatattgaaaaaggaagagtatgagtattcaacatttccgtgtcgcccttattcccttttttgcggcattttgccttcctgtttttgctcaccca



gaaacgctggtgaaagtaaaagatgctgaagatcagttgggtgcacgagtgggttacatcgaactggatctcaacagcggtaagatcct



tgagagttttcgccccgaagaacgttttccaatgatgagcacttttaaagttctgctatgtggcgcggtattatcccgtattgacgccgggca



agagcaactcggtcgccgcatacactattctcagaatgacttggttgagtactcaccagtcacagaaaagcatcttacggatggcatgac



agtaagagaattatgcagtgctgccataaccatgagtgataacactgcggccaacttacttctgacaacgatcggaggaccgaaggagc



taaccgcttttttgcacaacatgggggatcatgtaactcgccttgatcgttgggaaccggagctgaatgaagccataccaaacgacgagc



gtgacaccacgatgcctgtagcaatggcaacaacgttgcgcaaactattaactggcgaactacttactctagcttcccggcaacaattaat



agactggatggaggcggataaagttgcaggaccacttctgcgctcggcccttccggctggctggtttattgctgataaatctggagccgg



tgagcgtgggtctcgcggtatcattgcagcactggggccagatggtaagccctcccgtatcgtagttatctacacgacggggagtcagg



caactatggatgaacgaaatagacagatcgctgagataggtgcctcactgattaagcattggtaactgtcagaccaagtttactcatatata



ctttagattgatttaaaacttcatttttaatttaaaaggatctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagttttc



gttccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaa



accaccgctaccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagatacc



aaatactgtccttctagtgtagccgtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttacc



agtggctgctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcggtcgggctga



acggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgc



cacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcacgagggagcttccagg



gggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgtgatgctcgtcaggggggcggagcc



tatggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctggccttttgctcacatgttctttcctgcgttatcccctgattct



gtggataaccgtattaccgcctttgagtgagctgataccgctcgccgcagccgaacgaccgagcgcagcgagtcagtgagcgaggaa



gcggaagagcgcccaatacgcaaaccgcctctccccgcgcgttggccgattcattaatgcagctggcacgacaggtttcccgactgga



aagcgggcagtgagcgcaacgcaattaatgtgagttagctcactcattaggcaccccaggctttacactttatgcttccggctcgtatgttg



tgtggaattgtgagcggataacaatttcacacaggaaacagctatgaccatgattacgcc (SEQ ID NO: 312)





SB06255
aagctttgctcttaggagtttcctaatacatcccaaactcaaatatataaagcatttgacttgttctatgccctagggggcggggggaagcta



agccagctttttttaacatttaaaatgttaattccattttaaatgcacagatgtttttatttcataagggtttcaatgtgcatgaatgctgcaatattc



ctgttaccaaagctagtataaataaaaatagataaacgtggaaattacttagagtttctgtcattaacgtttccttcctcagttgacaacataaa



tgcgctgctgagaagccagtttgcatctgtcaggatcaatttcccattatgccagtcatattaattactagtcaattagttgatttttatttttgac



atatacatgtgaaagaccccacctgtaggtttggcaagctagcttaagtaacgccattttgcaaggcatggaaaaatacataactgagaat



agaaaagttcagatcaaggtcaggaacagatggaacagctgaatatgggccaaacaggatatctgtggtaagcagttcctgccccggc



tcagggccaagaacagatggaacagctgaatatgggccaaacaggatatctgtggtaagcagttcctgccccggctcagggccaaga



acagatggtccccagatgcggtccagccctcagcagtttctagagaaccatcagatgtttccagggtgccccaaggacctgaaatgacc



ctgtgccttatttgaactaaccaatcagttcgcttctcgcttctgttcgcgcgcttctgctccccgagctcaataaaagagcccacaacccct



cactcggcgcgccagtcctccgattgactgagtcgcccgggtacccgtgtatccaataaaccctcttgcagttgcatccgacttgtggtct



cgctgttccttggggggtctcctctgagtgattgactacccgtcagcgggggtctttcatttgggggctcgtccgagatcgggagaccc



ctgcccagggaccaccgacccaccaccgggaggtaagctggccagcaacttatctgtgtctgtccgattgtctagtgtctatgactgattt



tatgcgcctgcgtcggtactagttagctaactagctctgtatctggggacccgtggtggaactgacgagttcggaacacccggccgca



accctgggagacgtcccagggacttcgggggccgtttttgtggcccgacctgagtcctaaaatcccgatcgtttaggactctttggtgca



ccccccttagaggagggatatgtggttctggtaggagacgagaacctaaaacagttcccgcctccgtctgaatttttgctttcggtttggga



ccgaagccgcgccgcgcgtcttgtctgctgcagcatcgttctgtgttgtctctgtctgactgtgtttctgtatttgtctgaaaatatggatcttat



atggggcacccccgccccttgtaaacttccctgaccctgacatgacaagagttactaacagcccctctctccaagctcacttacaggctct



ctacttagtccagcacgaagtctggagacctctggcggcagcctaccaagaacaactggaccgaccggtggtacctcacccttaccga



gtcggcgacacagtgtgggtccgccgacaccagactaagaacctagaacctcgctggaaaggaccttacacagtcctgctgaccacc



cccaccgccctcaaagtagacggcatcgcagcttggatacacgccgcccacgtgaaggctgccgaccccgggggtggaccatcctct



agactgccggatccGCCGCCACCATGGACTGGACCTGGATCCTGTTTCTGGTGGCCGCTGC



CACAAGAGTGCACAGCAATTGGGTCAACGTGATCAGCGACCTGAAGAAGATCGA



GGACCTGATCCAGAGCATGCACATCGACGCCACACTGTACACCGAGAGCGACGTG



CACCCTAGCTGTAAAGTGACCGCCATGAAGTGCTTTCTGCTGGAACTGCAAGTGA



TCAGCCTGGAAAGCGGCGACGCCAGCATCCACGACACCGTGGAAAACCTGATCAT



CCTGGCCAACAACAGCCTGAGCAGCAACGGCAATGTGACCGAGTCCGGCTGCAAA



GAGTGCGAGGAACTGGAAGAGAAGAATATCAAAGAGTTCCTGCAGAGCTTCGTG



CACATCGTGCAGATGTTCATCAACACAAGCTCTGGCGGCGGAGGATCTGGCGGAG



GTGGAAGCGGAGTTACACCCGAGCCTATCTTCAGCCTGATCGGAGGCGGTAGCGG



AGGCGGAGGAAGTGGTGGCGGATCTCTGCAACTGCTGCCTAGCTGGGCCATCACA



CTGATCTCCGTGAACGGCATCTTCGTGATCTGCTGCCTGACCTACTGCTTCGCCCC



TAGATGCAGAGAGCGGCGGAGAAACGAACGGCTGAGAAGAGAATCTGTGCGGCC



CGTTGGTAGCGGCCAGTGTACCAACTACGCCCTGCTGAAACTGGCCGGCGACGTG



GAATCTAATCCTGGACCTGGATCTGGCGAGGGACGCGGGAGTCTACTGACGTGTG



GAGACGTGGAGGAAAACCCTGGACCTATGCTGCTGCTGGTCACATCTCTGCTGCT



GTGCGAGCTGCCCCATCCTGCCTTTCTGCTGATCCCTCACATGGAAGTGCAGCTGG



TGGAATCTGGCGGAGGACTGGTTCAACCTGGCGGCTCTCTGAGACTGTCTTGTGCC



GCCAGCGGCTTCACCTTCAACAAGAACGCCATGAACTGGGTCCGACAGGCCCCTG



GCAAAGGCCTTGAATGGGTCGGACGGATCCGGAACAAGACCAACAACTACGCCA



CCTACTACGCCGACAGCGTGAAGGCCAGGTTCACCATCTCCAGAGATGACAGCAA



GAACAGCCTGTACCTGCAGATGAACTCCCTGAAAACCGAGGACACCGCCGTGTAC



TATTGCGTGGCCGGCAATAGCTTTGCCTACTGGGGACAGGGCACCCTGGTTACAG



TTTCTGCTGGCGGCGGAGGAAGCGGAGGCGGAGGATCCGGTGGTGGTGGATCTGA



CATCGTGATGACACAGAGCCCCGATAGCCTGGCCGTGTCTCTGGGAGAAAGAGCC



ACCATCAACTGCAAGAGCAGCCAGAGCCTGCTGTACTCCAGCAACCAGAAGAACT



ACCTGGCCTGGTATCAGCAAAAGCCCGGCCAGCCTCCTAAGCTGCTGATCTATTG



GGCCAGCTCCAGAGAAAGCGGCGTGCCCGATAGATTTTCTGGCTCTGGCAGCGGC



ACCGACTTCACCCTGACAATTTCTAGCCTGCAAGCCGAGGACGTGGCCGTGTATTA



CTGCCAGCAGTACTACAACTACCCTCTGACCTTCGGCCAGGGCACCAAGCTGGAA



ATCAAATCTGGCGCCCTGAGCAACAGCATCATGTACTTCAGCCACTTCGTGCCCGT



GTTTCTGCCCGCCAAGCCTACAACAACCCCTGCTCCTAGACCTCCTACACCAGCTC



CTACAATCGCCAGCCAGCCTCTGTCTCTGAGGCCAGAAGCTTGTAGACCTGCTGCA



GGCGGAGCCGTGCATACAAGAGGACTGGATTTCGCCTGCGACATCTACATCTGGG



CCCCTCTGGCTGGAACATGTGGTGTCCTGCTGCTGAGCCTGGTCATCACCCTGTAC



TGCAACCACCGGCGGAGCAAGAGAAGCAGACTGCTGCACAGCGACTACATGAAC



ATGACCCCTAGACGGCCCGGACCTACCAGAAAGCACTACCAGCCTTACGCTCCTC



CTAGAGACTTCGCCGCCTACCGGTCCAGAGTGAAGTTCAGCAGATCCGCCGATGC



TCCCGCCTATCAGCAGGGACAGAACCAGCTGTACAACGAGCTGAACCTGGGGAGA



AGAGAAGAGTACGACGTGCTGGACAAGCGGAGAGGCAGAGATCCTGAGATGGGC



GGCAAGCCCAGACGGAAGAATCCTCAAGAGGGCCTGTATAATGAGCTGCAGAAA



GACAAGATGGCCGAGGCCTACAGCGAGATCGGAATGAAGGGCGAGCGCAGAAGA



GGCAAGGGACACGATGGACTGTACCAGGGCCTGAGCACCGCCACCAAGGATACC



TATGATGCCCTGCACATGCAGGCCCTGCCTCCAAGAtaaagatctagatccggattagtccaatttgtta



aagacaggatatcagtggtccaggctctagttttgactcaacaatatcaccagctgaagcctatagagtacgagccatagataaaataaa



agattttatttagtctccagaaaaaggggggaatgaaagaccccacctgtaggtttggcaagctagcttaagtaacgccattttgcaaggc



atggaaaaatacataactgagaatagagaagttcagatcaaggtcaggaacagatggaacagctgaatatgggccaaacaggatatct



gtggtaagcagttcctgccccggctcagggccaagaacagatggaacagctgaatatgggccaaacaggatatctgtggtaagcagtt



cctgccccggctcagggccaagaacagatggtccccagatgcggtccagccctcagcagtttctagagaaccatcagatgtttccagg



gtgccccaaggacctgaaatgaccctgtgccttatttgaactaaccaatcagttcgcttctcgcttctgttcgcgcgcttctgctccccgagc



tcaataaaagagcccacaacccctcactcggggcgccagtcctccgattgactgagtcgcccgggtacccgtgtatccaataaaccctc



ttgcagttgcatccgacttgtggtctcgctgttccttgggagggtctcctctgagtgattgactacccgtcaggggggtctttcacatgcag



catgtatcaaaattaatttggttttttttcttaagtatttacattaaatggccatagtacttaaagttacattggcttccttgaaataaacatggagt



attcagaatgtgtcataaatatttctaattttaagatagtatctccattggctttctactttttcttttatttttttttgtcctctgtcttccatttgttgttgt



tgttgtttgtttgtttgtttgttggttggttggttaatttttttttaaagatcctacactatagttcaagctagactattagctactctgtaacccaggg



tgaccttgaagtcatgggtagcctgctgttttagccttcccacatctaagattacaggtatgagctatcatttttggtatattgattgattgattg



attgatgtgtgtgtgtgtgattgtgtttgtgtgtgtgaTtgtgTaTatgtgtgtatggTtgtgtgtgaTtgtgtgtatgtatgTTtgtgtgtga



TtgTgtgtgtgtgaTtgtgcatgtgtgtgtgtgtgaTtgtgtTtatgtgtatgaTtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgt



gtgtgtgttgtgTaTaTatatttatggtagtgagagGcaacgctccggctcaggtgtcaggttggtttttgagacagagtctttcacttag



cttggaattaattcactggccgtcgttttacaacgtcgtgactgggaaaaccctggcgttacccaacttaatcgccttgcagcacatccccc



tttcgccagctggcgtaatagcgaagaggcccgcaccgatcgcccttcccaacagttgcgcagcctgaatggcgaatggcgcctgatg



cggtattttctccttacgcatctgtgcggtatttcacaccgcatatggtgcactctcagtacaatctgctctgatgccgcatagttaagccagc



cccgacacccgccaacacccgctgacgcgccctgacgggcttgtctgctcccggcatccgcttacagacaagctgtgaccgtctccgg



gagctgcatgtgtcagaggttttcaccgtcatcaccgaaacgcgcgagacgaaagggcctcgtgatacgcctatttttataggttaatgtc



atgataataatggtttcttagacgtcaggtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatg



tatccgctcatgagacaataaccctgataaatgcttcaataatattgaaaaaggaagagtatgagtattcaacatttccgtgtcgcccttattc



ccttttttgcggcattttgccttcctgtttttgctcacccagaaacgctggtgaaagtaaaagatgctgaagatcagttgggtgcacgagtgg



gttacatcgaactggatctcaacagcggtaagatccttgagagttttcgccccgaagaacgttttccaatgatgagcacttttaaagttctgc



tatgtggcgcggtattatcccgtattgacgccgggcaagagcaactcggtcgccgcatacactattctcagaatgacttggttgagtactc



accagtcacagaaaagcatcttacggatggcatgacagtaagagaattatgcagtgctgccataaccatgagtgataacactgcggcca



acttacttctgacaacgatcggaggaccgaaggagctaaccgcttttttgcacaacatgggggatcatgtaactcgccttgatcgttggga



accggagctgaatgaagccataccaaacgacgagcgtgacaccacgatgcctgtagcaatggcaacaacgttgcgcaaactattaact



ggcgaactacttactctagcttcccggcaacaattaatagactggatggaggcggataaagttgcaggaccacttctgcgctcggccctt



ccggctggctggtttattgctgataaatctggagccggtgagcgtgggtctcgcggtatcattgcagcactggggccagatggtaagcc



ctcccgtatcgtagttatctacacgacggggagtcaggcaactatggatgaacgaaatagacagatcgctgagataggtgcctcactgat



taagcattggtaactgtcagaccaagtttactcatatatactttagattgatttaaaacttcatttttaatttaaaaggatctaggtgaagatccttt



ttgataatctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatc



ctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgccggatcaagagctaccaactctttt



tccgaaggtaactggcttcagcagagcgcagataccaaatactgtccttctagtgtagccgtagttaggccaccacttcaagaactctgta



gcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcgataagtcgtgtcttaccgggttggactcaagac



gatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaa



ctgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggt



cggaacaggagagcgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagc



gtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctggcc



ttttgctcacatgttctttcctgcgttatcccctgattctgtggataaccgtattaccgcctttgagtgagctgataccgctcgccgcagccga



acgaccgagcgcagcgagtcagtgagcgaggaagcggaagagcgcccaatacgcaaaccgcctctccccgcgcgttggccgattc



attaatgcagctggcacgacaggtttcccgactggaaagcgggcagtgagcgcaacgcaattaatgtgagttagctcactcattaggca



ccccaggctttacactttatgcttccggctcgtatgttgtgtggaattgtgagcggataacaatttcacacaggaaacagctatgaccatgat



tacgcc (SEQ ID NO: 313)





SB06294
aagctttgctcttaggagtttcctaatacatcccaaactcaaatatataaagcatttgacttgttctatgccctagggggcggggggaagcta


(IgE (SS) - IL-
agccagctttttttaacatttaaaatgttaattccattttaaatgcacagatgtttttatttcataagggtttcaatgtgcatgaatgctgcaatattc


15 Tace10
ctgttaccaaagctagtataaataaaaatagataaacgtggaaattacttagagtttctgtcattaacgtttccttcctcagttgacaacataaa


(cleavage site) -
tgcgctgctgagaagccagtttgcatctgtcaggatcaatttcccattatgccagtcatattaattactagtcaattagttgatttttatttttgac


B7-1 (TM) -
atatacatgtgaaagaccccacctgtaggtttggcaagctagcttaagtaacgccattttgcaaggcatggaaaaatacataactgagaat


E2A T2A -
agaaaagttcagatcaaggtcaggaacagatggaacagctgaatatgggccaaacaggatatctgtggtaagcagttcctgccccggc


GM-CSF-Ra
tcagggccaagaacagatggaacagctgaatatgggccaaacaggatatctgtggtaagcagttcctgccccggctcagggccaaga


(SS) - aGPC3
acagatggtccccagatgcggtccagccctcagcagtttctagagaaccatcagatgtttccagggtgccccaaggacctgaaatgacc


hPY7 vL -
ctgtgccttatttgaactaaccaatcagttcgcttctcgcttctgttcgcgcgcttctgctccccgagctcaataaaagagcccacaacccct


(GGGGS)3 -
cactcggcgcgccagtcctccgattgactgagtcgcccgggtacccgtgtatccaataaaccctcttgcagttgcatccgacttgtggtct


aGPC3 hPY7
cgctgttccttgggagggtctcctctgagtgattgactacccgtcagcgggggtctttcatttgggggctcgtccgagatcgggagaccc


vH - CD8 S2L
ctgcccagggaccaccgacccaccaccgggaggtaagctggccagcaacttatctgtgtctgtccgattgtctagtgtctatgactgattt


(Hinge) -
tatgcgcctgcgtcggtactagttagctaactagctctgtatctggcggacccgtggtggaactgacgagttcggaacacccggccgca


OX40 (TM) -
accctgggagacgtcccagggacttcgggggccgtttttgtggcccgacctgagtcctaaaatcccgatcgtttaggactctttggtgca


OX40 (ICD) -
ccccccttagaggagggatatgtggttctggtaggagacgagaacctaaaacagttcccgcctccgtctgaatttttgctttcggtttggga


CD3z mut
ccgaagccgcgccgcgcgtcttgtctgctgcagcatcgttctgtgttgtctctgtctgactgtgtttctgtatttgtctgaaaatatggatcttat


(ICD))
atggggcacccccgccccttgtaaacttccctgaccctgacatgacaagagttactaacagcccctctctccaagctcacttacaggctct


[(GGGGS)3 is
ctacttagtccagcacgaagtctggagacctctggcggcagcctaccaagaacaactggaccgaccggtggtacctcacccttaccga


SEQ ID NO:
gtcggcgacacagtgtgggtccgccgacaccagactaagaacctagaacctcgctggaaaggaccttacacagtcctgctgaccacc


223]
cccaccgccctcaaagtagacggcatcgcagcttggatacacgccgcccacgtgaaggctgccgaccccgggggtggaccatcctct



agactgccggatccGCCGCCACCATGGACTGGACCTGGATCCTGTTTCTGGTGGCCGCTGC



CACAAGAGTGCACAGCAATTGGGTCAACGTGATCAGCGACCTGAAGAAGATCGA



GGACCTGATCCAGAGCATGCACATCGACGCCACACTGTACACCGAGAGCGACGTG



CACCCTAGCTGTAAAGTGACCGCCATGAAGTGCTTTCTGCTGGAACTGCAAGTGA



TCAGCCTGGAAAGCGGCGACGCCAGCATCCACGACACCGTGGAAAACCTGATCAT



CCTGGCCAACAACAGCCTGAGCAGCAACGGCAATGTGACCGAGTCCGGCTGCAAA



GAGTGCGAGGAACTGGAAGAGAAGAATATCAAAGAGTTCCTGCAGAGCTTCGTG



CACATCGTGCAGATGTTCATCAACACAAGCTCTGGCGGCGGAGGATCTGGCGGAG



GTGGAAGCGGAGTTACACCCGAGCCTATCTTCAGCCTGATCGGAGGCGGTAGCGG



AGGCGGAGGAAGTGGTGGCGGATCTCTGCAACTGCTGCCTAGCTGGGCCATCACA



CTGATCTCCGTGAACGGCATCTTCGTGATCTGCTGCCTGACCTACTGCTTCGCCCC



TAGATGCAGAGAGCGGCGGAGAAACGAACGGCTGAGAAGAGAATCTGTGCGGCC



CGTTCAGTGTACCAACTACGCCCTGCTGAAACTGGCCGGCGACGTGGAATCTAAT



CCTGGACCTGGATCTGGCGAGGGACGCGGGAGTCTACTGACGTGTGGAGACGTGG



AGGAAAACCCTGGACCTATGCTGCTGCTGGTCACATCTCTGCTGCTGTGCGAGCTG



CCCCATCCTGCCTTTCTGCTGATCCCTCACATGGACATCGTGATGACACAGAGCCC



CGATAGCCTGGCCGTGTCTCTGGGAGAAAGAGCCACCATCAACTGCAAGAGCAGC



CAGAGCCTGCTGTACTCCAGCAACCAGAAGAACTACCTGGCCTGGTATCAGCAAA



AGCCCGGCCAGCCTCCTAAGCTGCTGATCTATTGGGCCAGCTCCAGAGAAAGCGG



CGTGCCCGATAGATTTTCTGGCTCTGGCAGCGGCACCGACTTCACCCTGACAATTT



CTAGCCTGCAAGCCGAGGACGTGGCCGTGTACTACTGCCAGCAGTACTACAACTA



CCCTCTGACCTTCGGCCAGGGCACCAAGCTGGAAATCAAAGGCGGCGGAGGATCT



GGCGGAGGTGGAAGTGGCGGAGGCGGATCTGAAGTGCAGCTGGTTGAATCAGGT



GGCGGCCTGGTTCAACCTGGCGGATCTCTGAGACTGAGCTGTGCCGCCAGCGGCT



TCACCTTCAACAAGAACGCCATGAACTGGGTCCGACAGGCCCCTGGCAAAGGCCT



TGAATGGGTCGGACGGATCCGGAACAAGACCAACAACTACGCCACCTACTACGCC



GACAGCGTGAAGGCCAGATTCACCATCAGCCGGGACGACAGCAAGAACAGCCTG



TACCTGCAGATGAACTCCCTGAAAACCGAGGACACCGCCGTGTATTATTGCGTGG



CCGGCAACAGCTTTGCCTACTGGGGACAGGGAACCCTGGTCACCGTGTCTGCCAC



AACAACCCCTGCTCCTAGACCTCCTACACCAGCTCCTACAATCGCCCTGCAGCCTC



TGTCTCTGAGGCCAGAAGCTTGTAGACCAGCTGCTGGCGGAGCCGTGCATACAAG



AGGACTGGACTTCGCCTGTGATGTGGCCGCCATTCTCGGACTGGGACTTGTTCTGG



GACTGCTGGGACCTCTGGCCATTCTGCTGGCTCTGTATCTGCTGCGGAGGGACCAA



AGACTGCCTCCTGATGCTCACAAGCCTCCAGGCGGAGGCAGCTTCAGAACCCCTA



TCCAAGAGGAACAGGCCGACGCTCACAGCACCCTGGCCAAGATTAGAGTGAAGTT



CAGCAGGAGCGCAGACGCCCCCGCGTACAAGCAGGGCCAGAACCAGCTCTATAA



CGAGCTCAATCTAGGACGAAGAGAGGAGTACGATGTTTTGGACAAGAGACGTGG



CCGGGACCCTGAGATGGGGGGAAAGCCGAGAAGGAAGAACCCTCAGGAAGGCCT



GTACAATGAACTGCAGAAAGATAAGATGGCGGAGGCCTACAGTGAGATTGGGAT



GAAAGGCGAGCGCCGGAGGGGCAAGGGGCACGATGGCCTTTACCAGGGTCTCAG



TACAGCCACCAAGGACACCTACGACGCCCTTCACATGCAGGCCCTGCCCCCTCGCt



aaagatctagatccggattagtccaatttgttaaagacaggatatcagtggtccaggctctagttttgactcaacaatatcaccagctgaag



cctatagagtacgagccatagataaaataaaagattttatttagtctccagaaaaaggggggaatgaaagaccccacctgtaggtttggc



aagctagcttaagtaacgccattttgcaaggcatggaaaaatacataactgagaatagagaagttcagatcaaggtcaggaacagatgg



aacagctgaatatgggccaaacaggatatctgtggtaagcagttcctgccccggctcagggccaagaacagatggaacagctgaatat



gggccaaacaggatatctgtggtaagcagttcctgccccggctcagggccaagaacagatggtccccagatgcggtccagccctcag



cagtttctagagaaccatcagatgtttccagggtgccccaaggacctgaaatgaccctgtgccttatttgaactaaccaatcagttcgcttct



cgcttctgttcgcgcgcttctgctccccgagctcaataaaagagcccacaacccctcactcggggcgccagtcctccgattgactgagtc



gcccgggtacccgtgtatccaataaaccctcttgcagttgcatccgacttgtggtctcgctgttccttgggagggtctcctctgagtgattga



ctacccgtcagcgggggtctttcacatgcagcatgtatcaaaattaatttggttttttttcttaagtatttacattaaatggccatagtacttaaag



ttacattggcttccttgaaataaacatggagtattcagaatgtgtcataaatatttctaattttaagatagtatctccattggctttctactttttcttt



tatttttttttgtcctctgtcttccatttgttgttgttgttgtttgtttgtttgtttgttggttggttggttaatttttttttaaagatcctacactatagttcaa



gctagactattagctactctgtaacccagggtgaccttgaagtcatgggtagcctgctgttttagccttcccacatctaagattacaggtatg



agctatcatttttggtatattgattgattgattgattgatgtgtgtgtgtgtgattgtgtttgtgtgtgtgaTtgtgTaTatgtgtgtatggTtgtg



tgtgaTtgtgtgtatgtatgTTtgtgtgtgaTtgTgtgtgtgtgaTtgtgcatgtgtgtgtgtgtgaTtgtgtTtatgtgtatgaTtgtgtg



tgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgttgtgTaTaTatatttatggtagtgagagGcaacgctccggctcaggtgtca



ggttggtttttgagacagagtctttcacttagcttggaattaattcactggccgtcgttttacaacgtcgtgactgggaaaaccctggcgttac



ccaacttaatcgccttgcagcacatccccctttcgccagctggcgtaatagcgaagaggcccgcaccgatcgcccttcccaacagttgc



gcagcctgaatggcgaatggcgcctgatgcggtattttctccttacgcatctgtgcggtatttcacaccgcatatggtgcactctcagtaca



atctgctctgatgccgcatagttaagccagccccgacacccgccaacacccgctgacgcgccctgacgggcttgtctgctcccggcatc



cgcttacagacaagctgtgaccgtctccgggagctgcatgtgtcagaggttttcaccgtcatcaccgaaacgcgcgagacgaaagggc



ctcgtgatacgcctatttttataggttaatgtcatgataataatggtttcttagacgtcaggtggcacttttcggggaaatgtgcgcggaaccc



ctatttgtttatttttctaaatacattcaaatatgtatccgctcatgagacaataaccctgataaatgcttcaataatattgaaaaaggaagagta



tgagtattcaacatttccgtgtcgcccttattcccttttttgcggcattttgccttcctgtttttgctcacccagaaacgctggtgaaagtaaaag



atgctgaagatcagttgggtgcacgagtgggttacatcgaactggatctcaacagcggtaagatccttgagagttttcgccccgaagaac



gttttccaatgatgagcacttttaaagttctgctatgtggcgcggtattatcccgtattgacgccgggcaagagcaactcggtcgccgcata



cactattctcagaatgacttggttgagtactcaccagtcacagaaaagcatcttacggatggcatgacagtaagagaattatgcagtgctg



ccataaccatgagtgataacactgcggccaacttacttctgacaacgatcggaggaccgaaggagctaaccgcttttttgcacaacatgg



gggatcatgtaactcgccttgatcgttgggaaccggagctgaatgaagccataccaaacgacgagcgtgacaccacgatgcctgtagc



aatggcaacaacgttgcgcaaactattaactggcgaactacttactctagcttcccggcaacaattaatagactggatggaggggataa



agttgcaggaccacttctgcgctcggcccttccggctggctggtttattgctgataaatctggagccggtgagcgtgggtctcgcggtatc



attgcagcactggggccagatggtaagccctcccgtatcgtagttatctacacgacggggagtcaggcaactatggatgaacgaaatag



acagatcgctgagataggtgcctcactgattaagcattggtaactgtcagaccaagtttactcatatatactttagattgatttaaaacttcattt



ttaatttaaaaggatctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagacccc



gtagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtt



tgtttgccggatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgtccttctagtgtagcc



gtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcgat



aagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagc



ccagcttggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaag



gcggacaggtatccggtaagcggcagggtcggaacaggagagcgcacgagggagcttccagggggaaacgcctggtatctttatag



tcctgtcgggtttcgccacctctgacttgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgc



ggcctttttacggttcctggccttttgctggccttttgctcacatgttctttcctgcgttatcccctgattctgtggataaccgtattaccgcctttg



agtgagctgataccgctcgccgcagccgaacgaccgagcgcagcgagtcagtgagcgaggaagcggaagagcgcccaatacgca



aaccgcctctccccgcgcgttggccgattcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagtgagcgcaacgc



aattaatgtgagttagctcactcattaggcaccccaggctttacactttatgcttccggctcgtatgttgtgtggaattgtgagcggataacaa



tttcacacaggaaacagctatgaccatgattacgcc



(SEQ ID NO: 314)





SB06692
aagcttggaattcgagcttgcatgcctgcaggtcgttacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgcc



cattgacgtcaataatgacgtatgttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagtatttacggtaaactgcc



cacttggcagtacatcaagtgtatcatatgccaagtacgccccctattgacgtcaatgacggtaaatggcccgcctggcattatgcccagt



acatgaccttatgggactttcctacttggcagtacatctacgtattagtcatcgctattaccatggtgatgcggttttggcagtacatcaatgg



gcgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgtcaatgggagtttgttttggcaccaaaatcaacgggac



tttccaaaatgtcgtaacaactccgccccattgacgcaaatgggggtaggcgtgtacggtgggaggtctatataagcagagctcaataa



aagagcccacaacccctcactcggcgcgccagtcctccgattgactgagtcgcccgggtacccgtgtatccaataaaccctcttgcagtt



gcatccgacttgtggtctcgctgttccttgggagggtctcctctgagtgattgactacccgtcagcgggggtctttcatttgggggctcgtc



cgagatcgggagacccctgcccagggaccaccgacccaccaccgggaggtaagctggccagcaacttatctgtgtctgtccgattgtc



tagtgtctatgactgattttatgcgcctgcgtcggtactagttagctaactagctctgtatctggcggacccgtggtggaactgacgagttcg



gaacacccggccgcaaccctgggagacgtcccagggacttcgggggccgtttttgtggcccgacctgagtcctaaaatcccgatcgttt



aggactctttggtgcaccccccttagaggagggatatgtggttctggtaggagacgagaacctaaaacagttcccgcctccgtctgaattt



ttgctttcggtttgggaccgaagccgcgccgcgcgtcttgtctgctgcagcatcgttctgtgttgtctctgtctgactgtgtttctgtatttgtct



gaaaatatgggccccccctcgaggtaacgccattttgcaaggcatggaaaaataccaaaccaagaatagagaagttcagatcaagggc



gggtacatgaaaatagctaacgttgggccaaacaggatatctgcggtgagcagtttcggccccggcccggggccaagaacagatggt



caccgcagtttcggccccggcccgaggccaagaacagatggtccccagatatggcccaaccctcagcagtttcttaagacccatcaga



tgtttccaggctcccccaaggacctgaaatgaccctgcgccttatttgaattaaccaatcagcctgcttctcgcttctgttcgcgcgcttctg



cttcccgagctctataaaagagctcacaacccctcactcggcgcgccagtcctccgacagactgagtcgcccgggGCCGCCAC



CATGGACTGGACCTGGATCCTGTTTCTGGTGGCCGCTGCCACAAGAGTGCACAGC



AATTGGGTCAACGTGATCAGCGACCTGAAGAAGATCGAGGACCTGATCCAGAGCA



TGCACATCGACGCCACACTGTACACCGAGAGCGACGTGCACCCTAGCTGTAAAGT



GACCGCCATGAAGTGCTTTCTGCTGGAACTGCAAGTGATCAGCCTGGAAAGCGGC



GACGCCAGCATCCACGACACCGTGGAAAACCTGATCATCCTGGCCAACAACAGCC



TGAGCAGCAACGGCAATGTGACCGAGTCCGGCTGCAAAGAGTGCGAGGAACTGG



AAGAGAAGAATATCAAAGAGTTCCTGCAGAGCTTCGTGCACATCGTGCAGATGTT



CATCAACACAAGCCCCAGAGCCGAGGCTCTGAAAGGCGGATCAGGCGGCGGTGG



TAGTGGAGGCGGAGGCTCAGGCGGCGGAGGTTCCGGAGGTGGCGGTTCCGGCGG



AGGATCTCTTCAATTGCTGCCTAGCTGGGCCATCACACTGATCTCCGTGAACGGCA



TCTTCGTGATCTGCTGCCTGACCTACTGCTTCGCCCCTAGATGCAGAGAGCGGAGA



AGAAACGAGCGGCTGAGAAGAGAAAGCGTGCGGCCTGTGGGTAGCGGCCAGTGT



ACCAACTACGCCCTGCTGAAACTGGCCGGCGACGTGGAATCTAATCCTGGACCTG



GATCTGGCGAGGGACGCGGGAGTCTACTGACGTGTGGAGACGTGGAGGAAAACC



CTGGACCTATGCTGCTGCTGGTCACATCTCTGCTGCTGTGCGAGCTGCCCCATCCT



GCCTTTCTGCTGATCCCTCACATGGACATCGTGATGACACAGAGCCCCGATAGCCT



GGCCGTGTCTCTGGGAGAAAGAGCCACCATCAACTGCAAGAGCAGCCAGAGCCTG



CTGTACTCCAGCAACCAGAAGAACTACCTGGCCTGGTATCAGCAAAAGCCCGGCC



AGCCTCCTAAGCTGCTGATCTATTGGGCCAGCTCCAGAGAAAGCGGCGTGCCCGA



TAGATTTTCTGGCTCTGGCAGCGGCACCGACTTCACCCTGACAATTTCTAGCCTGC



AAGCCGAGGACGTGGCCGTGTACTACTGCCAGCAGTACTACAACTACCCTCTGAC



CTTCGGCCAGGGCACCAAGCTGGAAATCAAAGGCGGCGGAGGATCTGGCGGAGG



TGGAAGTGGCGGAGGCGGATCTGAAGTGCAGCTGGTTGAATCAGGTGGCGGCCTG



GTTCAACCTGGCGGATCTCTGAGACTGAGCTGTGCCGCCAGCGGCTTCACCTTCAA



CAAGAACGCCATGAACTGGGTCCGACAGGCCCCTGGCAAAGGCCTTGAATGGGTC



GGACGGATCCGGAACAAGACCAACAACTACGCCACCTACTACGCCGACAGCGTG



AAGGCCAGATTCACCATCAGCCGGGACGACAGCAAGAACAGCCTGTACCTGCAG



ATGAACTCCCTGAAAACCGAGGACACCGCCGTGTATTATTGCGTGGCCGGCAACA



GCTTTGCCTACTGGGGACAGGGAACCCTGGTCACCGTGTCTGCCACAACAACCCC



TGCTCCTAGACCTCCTACACCAGCTCCTACAATCGCCCTGCAGCCTCTGTCTCTGA



GGCCAGAAGCTTGTAGACCAGCTGCTGGCGGAGCCGTGCATACAAGAGGACTGG



ACTTCGCCTGTGATGTGGCCGCCATTCTCGGACTGGGACTTGTTCTGGGACTGCTG



GGACCTCTGGCCATTCTGCTGGCTCTGTATCTGCTGCGGAGGGACCAAAGACTGCC



TCCTGATGCTCACAAGCCTCCAGGCGGAGGCAGCTTCAGAACCCCTATCCAAGAG



GAACAGGCCGACGCTCACAGCACCCTGGCCAAGATTAGAGTGAAGTTCAGCAGA



AGCGCCGACGCACCCGCCTATAAGCAGGGACAGAACCAGCTGTACAACGAGCTG



AACCTGGGGAGAAGAGAAGAGTACGACGTGCTGGACAAGCGGAGAGGCAGAGAT



CCTGAGATGGGCGGCAAGCCCAGACGGAAGAATCCTCAAGAGGGCCTGTATAAT



GAGCTGCAGAAAGACAAGATGGCCGAGGCCTACAGCGAGATCGGAATGAAGGGC



GAGCGCAGAAGAGGCAAGGGACACGATGGACTGTACCAGGGCCTGAGCACCGCC



ACCAAGGATACCTATGATGCCCTGCACATGCAGGCCCTGCCTCCAAGAtaaggatccgga



ttagtccaatttgttaaagacaggatgggctgcaggaattccgataatcaacctctggattacaaaatttgtgaaagattgactggtattctta



actatgttgctccttttacgctatgtggatacgctgctttaatgcctttgtatcatgctattgcttcccgtatggctttcattttctcctccttgtataa



atcctggttgctgtctctttatgaggagttgtggcccgttgtcaggcaacgtggcgtggtgtgcactgtgtttgctgacgcaacccccactg



gttggggcattgccaccacctgtcagctcctttccgggactttcgctttccccctccctattgccacggcggaactcatcgccgcctgcctt



gcccgctgctggacaggggctcggctgttgggcactgacaattccgtggtgttgtcggggaagctgacgtcctttccatggctgctcgc



ctgtgttgccacctggattctgcgcgggacgtccttctgctacgtcccttcggccctcaatccagcggaccttccttcccgcggcctgctg



ccggctctgcggcctcttccgcgtcttcgccttcgccctcagacgagtcggatctccctttgggccgcctccccgcctggagaattcgata



tcagtggtccaggctctagttttgactcaacaatatcaccagctgaagcctatagagtacgagccatagataaaataaaagattttatttagt



ctccagaaaaaggggggaatgaaagaccccacctgtaggtttggcaagctagcaataaaagagcccacaacccctcactcggggcg



ccagtcctccgattgactgagtcgcccggccgcttcgagcagacatgataagatacattgatgagtttggacaaaccacaactagaatgc



agtgaaaaaaatgctttatttgtgaaatttgtgatgctattgctttatttgtaaccattataagctgcaataaacaagttaacaacaacaattgca



ttcattttatgtttcaggttcagggggagatgtgggaggttttttaaagcaagtaaaacctctacaaatgtggtaaaatcgataaggatcggg



tacccgtgtatccaataaaccctcttgcagttgcatccgacttgtggtctcgctgttccttgggagggtctcctctgagtgattgactacccgt



cagcgggggtctttcacacatgcagcatgtatcaaaattaatttggttttttttcttaagctgtgccttctagttgccagccatctgttgtttgccc



ctcccccgtgccttccttgaccctggaaggtgccactcccactgtcctttcctaataaaatgaggaaattgcatcgcattgtctgagtaggt



gtcattctattctggggggtggggggggcaggacagcaagggggaggattgggaagacaatagcaggcatgctggggatgcggtg



ggctctatggagatcccgcggtacctcgcgaatgcatctagatccaatggcctttttggcccagacatgataagatacattgatgagtttgg



acaaaccacaactagaatgcagtgaaaaaaatgctttatttgtgaaatttgtgatgctattgctttatttgtaaccattataagctgcaataaac



aagttgcggccgcttagccctcccacacataaccagagggcagcaattcacgaatcccaactgccgtcggctgtccatcactgtccttca



ctatggctttgatcccaggatgcagatcgagaagcacctgtcggcaccgtccgcaggggctcaagatgcccctgttctcatttccgatcg



cgacgatacaagtcaggttgccagctgccgcagcagcagcagtgcccagcaccacgagttctgcacaaggtcccccagtaaaatgat



atacattgacaccagtgaagatgcggccgtcgctagagagagctgcgctggcgacgctgtagtcttcagagatggggatgctgttgatt



gtagccgttgctctttcaatgagggtggattcttcttgagacaaaggcttggccatgcggccgccgctcggtgttcgaggccacacgcgt



caccttaatatgcgaagtggacctcggaccgcgccgccccgactgcatctgcgtgttcgaattcgccaatgacaagacgctgggcggg



gtttgtgtcatcatagaactaaagacatgcaaatatatttcttccggggggtaccggcctttttggccATTGGatcggatctggccaaa



aaggcccttaagtatttacattaaatggccatagtacttaaagttacattggcttccttgaaataaacatggagtattcagaatgtgtcataaat



atttctaattttaagatagtatctccattggctttctactttttcttttattttttttttgtcctctgtcttccatttgttgttgttgttgtttgtttgtttgtttgtt



ggttggttggttaatttttttttaaagatcctacactatagttcaagctagactattagctactctgtaacccagggtgaccttgaagtcatgggt



agcctgctgttttagccttcccacatctaagattacaggtatgagctatcatttttggtatattgattgattgattgattgatgtgtgtgtgtgtgat



tgtgtttgtgtgtgtgaTtgtgTaTatgtgtgtatggTtgtgtgtgaTtgtgtgtatgtatgTTtgtgtgtgaTtgTgtgtgtgtgaTtgt



gcatgtgtgtgtgtgtgaTtgtgtTtatgtgtatgaTtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgttgtgTaTaTa



tatttatggtagtgagagGcaacgctccggctcaggtgtcaggttggtttttgagacagagtctttcacttagcttggaattcactggccgtc



gttttacaacgtcgtgactgggaaaaccctggcgttacccaacttaatcgccttgcagcacatccccctttcgccagctggcgtaatagcg



aagaggcccgcaccgatcgcccttcccaacagttgcgcagcctgaatggcgaatggcgcctgatgcggtattttctccttacgcatctgt



gcggtatttcacaccgcatatggtgcactctcagtacaatctgctctgatgccgcatagttaagccagccccgacacccgccaacacccg



ctgacgcgccctgacgggcttgtctgctcccggcatccgcttacagacaagctgtgaccgtctccgggagctgcatgtgtcagaggtttt



caccgtcatcaccgaaacgcgcgagacgaaagggcctcgtgatacgcctatttttataggttaatgtcatgataataatggtttcttagacg



tcaggtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgagacaataacc



ctgataaatgcttcaataatattgaaaaaggaagagtatgagtattcaacatttccgtgtcgcccttattcccttttttgcggcattttgccttcct



gtttttgctcacccagaaacgctggtgaaagtaaaagatgctgaagatcagttgggtgcacgagtgggttacatcgaactggatctcaac



agcggtaagatccttgagagttttcgccccgaagaacgttttccaatgatgagcacttttaaagttctgctatgtggcgcggtattatcccgt



attgacgccgggcaagagcaactcggtcgccgcatacactattctcagaatgacttggttgagtactcaccagtcacagaaaagcatctt



acggatggcatgacagtaagagaattatgcagtgctgccataaccatgagtgataacactgcggccaacttacttctgacaacgatcgga



ggaccgaaggagctaaccgcttttttgcacaacatgggggatcatgtaactcgccttgatcgttgggaaccggagctgaatgaagccat



accaaacgacgagcgtgacaccacgatgcctgtagcaatggcaacaacgttgcgcaaactattaactggcgaactacttactctagcttc



ccggcaacaattaatagactggatggaggcggataaagttgcaggaccacttctgcgctcggcccttccggctggctggtttattgctga



taaatctggagccggtgagcgtgggtctcgcggtatcattgcagcactggggccagatggtaagccctcccgtatcgtagttatctacac



gacggggagtcaggcaactatggatgaacgaaatagacagatcgctgagataggtgcctcactgattaagcattggtaactgtcagacc



aagtttactcatatatactttagattgatttaaaacttcatttttaatttaaaaggatctaggtgaagatcctttttgataatctcatgaccaaaatc



ccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgct



gcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggcttcag



cagagcgcagataccaaatactgtccttctagtgtagccgtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgct



ctgctaatcctgttaccagtggctgctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcg



cagcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgagatacctacagcgtga



gctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcac



gagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgtgatgctcgtc



aggggggcggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctggccttttgctcacatgttctttcctg



cgttatcccctgattctgtggataaccgtattaccgcctttgagtgagctgataccgctcgccgcagccgaacgaccgagcgcagcgagt



cagtgagcgaggaagcggaagagcgcccaatacgcaaaccgcctctccccgcgcgttggccgattcattaatgcagctggcacgaca



ggtttcccgactggaaagcgggcagtgagcgcaacgcaattaatgtgagttagctcactcattaggcaccccaggctttacactttatgct



tccggctcgtatgttgtgtggaattgtgagcggataacaatttcacacaggaaacagctatgaccatgattacgcc



(SEQ ID NO: 315)





SB06261
aagcttgaattcgagcttgcatgcctgcaggtcgttacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgccc



attgacgtcaataatgacgtatgttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagtatttacggtaaactgccc



acttggcagtacatcaagtgtatcatatgccaagtacgccccctattgacgtcaatgacggtaaatggcccgcctggcattatgcccagta



catgaccttatgggactttcctacttggcagtacatctacgtattagtcatcgctattaccatggtgatgcggttttggcagtacatcaatggg



cgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgtcaatgggagtttgttttggcaccaaaatcaacgggactt



tccaaaatgtcgtaacaactccgccccattgacgcaaatgggggtaggcgtgtacggtgggaggtctatataagcagagctcaataaa



agagcccacaacccctcactcggcgcgccagtcctccgattgactgagtcgcccgggtacccgtgtatccaataaaccctcttgcagtt



gcatccgacttgtggtctcgctgttccttgggagggtctcctctgagtgattgactacccgtcagcgggggtctttcatttgggggctcgtc



cgagatcgggagacccctgcccagggaccaccgacccaccaccgggaggtaagctggccagcaacttatctgtgtctgtccgattgtc



tagtgtctatgactgattttatgcgcctgcgtcggtactagttagctaactagctctgtatctggcggacccgtggtggaactgacgagttcg



gaacacccggccgcaaccctgggagacgtcccagggacttcgggggccgtttttgtggcccgacctgagtcctaaaatcccgatcgttt



aggactctttggtgcaccccccttagaggagggatatgtggttctggtaggagacgagaacctaaaacagttcccgcctccgtctgaattt



ttgctttcggtttgggaccgaagccgcgccgcgcgtcttgtctgctgcagcatcgttctgtgttgtctctgtctgactgtgtttctgtatttgtct



gaaaatatgggccccccctcgaggtaacgccattttgcaaggcatggaaaaataccaaaccaagaatagagaagttcagatcaagggc



gggtacatgaaaatagctaacgttgggccaaacaggatatctgcggtgagcagtttcggccccggcccggggccaagaacagatggt



caccgcagtttcggccccggcccgaggccaagaacagatggtccccagatatggcccaaccctcagcagtttcttaagacccatcaga



tgtttccaggctcccccaaggacctgaaatgaccctgcgccttatttgaattaaccaatcagcctgcttctcgcttctgttcgcgcgcttctg



cttcccgagctctataaaagagctcacaacccctcactcggcgcgccagtcctccgacagactgagtcgcccgggGCCGCCAC



CATGGACTGGACCTGGATCCTGTTTCTGGTGGCCGCTGCCACAAGAGTGCACAGC



AATTGGGTCAACGTGATCAGCGACCTGAAGAAGATCGAGGACCTGATCCAGAGCA



TGCACATCGACGCCACACTGTACACCGAGAGCGACGTGCACCCTAGCTGTAAAGT



GACCGCCATGAAGTGCTTTCTGCTGGAACTGCAAGTGATCAGCCTGGAAAGCGGC



GACGCCAGCATCCACGACACCGTGGAAAACCTGATCATCCTGGCCAACAACAGCC



TGAGCAGCAACGGCAATGTGACCGAGTCCGGCTGCAAAGAGTGCGAGGAACTGG



AAGAGAAGAATATCAAAGAGTTCCTGCAGAGCTTCGTGCACATCGTGCAGATGTT



CATCAACACAAGCTCTGGCGGCGGAGGATCTGGCGGAGGTGGAAGCGGAGTTAC



ACCCGAGCCTATCTTCAGCCTGATCGGAGGCGGTAGCGGAGGCGGAGGAAGTGGT



GGCGGATCTCTGCAACTGCTGCCTAGCTGGGCCATCACACTGATCTCCGTGAACG



GCATCTTCGTGATCTGCTGCCTGACCTACTGCTTCGCCCCTAGATGCAGAGAGCGG



CGGAGAAACGAACGGCTGAGAAGAGAATCTGTGCGGCCCGTTGGTAGCGGCCAG



TGTACCAACTACGCCCTGCTGAAACTGGCCGGCGACGTGGAATCTAATCCTGGAC



CTGGATCTGGCGAGGGACGCGGGAGTCTACTGACGTGTGGAGACGTGGAGGAAA



ACCCTGGACCTATGCTGCTGCTGGTCACATCTCTGCTGCTGTGCGAGCTGCCCCAT



CCTGCCTTTCTGCTGATCCCTCACATGGAAGTGCAGCTGGTGGAATCTGGCGGAGG



ACTGGTTCAACCTGGCGGCTCTCTGAGACTGTCTTGTGCCGCCAGCGGCTTCACCT



TCAACAAGAACGCCATGAACTGGGTCCGACAGGCCCCTGGCAAAGGCCTTGAATG



GGTCGGACGGATCCGGAACAAGACCAACAACTACGCCACCTACTACGCCGACAGC



GTGAAGGCCAGGTTCACCATCTCCAGAGATGACAGCAAGAACAGCCTGTACCTGC



AGATGAACTCCCTGAAAACCGAGGACACCGCCGTGTACTATTGCGTGGCCGGCAA



TAGCTTTGCCTACTGGGGACAGGGCACCCTGGTTACAGTTTCTGCTGGCGGCGGA



GGAAGCGGAGGCGGAGGATCCGGTGGTGGTGGATCTGACATCGTGATGACACAG



AGCCCCGATAGCCTGGCCGTGTCTCTGGGAGAAAGAGCCACCATCAACTGCAAGA



GCAGCCAGAGCCTGCTGTACTCCAGCAACCAGAAGAACTACCTGGCCTGGTATCA



GCAAAAGCCCGGCCAGCCTCCTAAGCTGCTGATCTATTGGGCCAGCTCCAGAGAA



AGCGGCGTGCCCGATAGATTTTCTGGCTCTGGCAGCGGCACCGACTTCACCCTGAC



AATTTCTAGCCTGCAAGCCGAGGACGTGGCCGTGTATTACTGCCAGCAGTACTAC



AACTACCCTCTGACCTTCGGCCAGGGCACCAAGCTGGAAATCAAATCTGGCGCCC



TGAGCAACAGCATCATGTACTTCAGCCACTTCGTGCCCGTGTTTCTGCCCGCCAAG



CCTACAACAACCCCTGCTCCTAGACCTCCTACACCAGCTCCTACAATCGCCAGCCA



GCCTCTGTCTCTGAGGCCAGAAGCTTGTAGACCTGCTGCAGGCGGAGCCGTGCAT



ACAAGAGGACTGGATTTCGCCTGCGACATCTACATCTGGGCCCCTCTGGCTGGAA



CATGTGGTGTCCTGCTGCTGAGCCTGGTCATCACCCTGTACTGCAACCACCGGCGG



AGCAAGAGAAGCAGACTGCTGCACAGCGACTACATGAACATGACCCCTAGACGG



CCCGGACCTACCAGAAAGCACTACCAGCCTTACGCTCCTCCTAGAGACTTCGCCG



CCTACCGGTCCAGAGTGAAGTTCAGCAGATCCGCCGATGCTCCCGCCTATCAGCA



GGGACAGAACCAGCTGTACAACGAGCTGAACCTGGGGAGAAGAGAAGAGTACGA



CGTGCTGGACAAGCGGAGAGGCAGAGATCCTGAGATGGGCGGCAAGCCCAGACG



GAAGAATCCTCAAGAGGGCCTGTATAATGAGCTGCAGAAAGACAAGATGGCCGA



GGCCTACAGCGAGATCGGAATGAAGGGCGAGCGCAGAAGAGGCAAGGGACACGA



TGGACTGTACCAGGGCCTGAGCACCGCCACCAAGGATACCTATGATGCCCTGCAC



ATGCAGGCCCTGCCTCCAAGAtaaggatccggattagtccaatttgttaaagacaggatgggctgcaggaattccga



taatcaacctctggattacaaaatttgtgaaagattgactggtattcttaactatgttgctccttttacgctatgtggatacgctgctttaatgcct



ttgtatcatgctattgcttcccgtatggctttcattttctcctccttgtataaatcctggttgctgtctctttatgaggagttgtggcccgttgtcag



gcaacgtggcgtggtgtgcactgtgtttgctgacgcaacccccactggttggggcattgccaccacctgtcagctcctttccgggactttc



gctttccccctccctattgccacggggaactcatcgccgcctgccttgcccgctgctggacaggggctcggctgttgggcactgacaat



tccgtggtgttgtcggggaagctgacgtcctttccatggctgctcgcctgtgttgccacctggattctgcgcgggacgtccttctgctacgt



cccttcggccctcaatccagcggaccttccttcccgcggcctgctgccggctctgcggcctcttccgcgtcttcgccttcgccctcagac



gagtcggatctccctttgggccgcctccccgcctggagaattcgatatcagtggtccaggctctagttttgactcaacaatatcaccagct



gaagcctatagagtacgagccatagataaaataaaagattttatttagtctccagaaaaaggggggaatgaaagaccccacctgtaggtt



tggcaagctagcaataaaagagcccacaacccctcactcggggcgccagtcctccgattgactgagtcgcccggccgcttcgagcag



acatgataagatacattgatgagtttggacaaaccacaactagaatgcagtgaaaaaaatgctttatttgtgaaatttgtgatgctattgcttta



tttgtaaccattataagctgcaataaacaagttaacaacaacaattgcattcattttatgtttcaggttcagggggagatgtgggaggtttttta



aagcaagtaaaacctctacaaatgtggtaaaatcgataaggatcgggtacccgtgtatccaataaaccctcttgcagttgcatccgacttgt



ggtctcgctgttccttgggagggtctcctctgagtgattgactacccgtcagcgggggtctttcacacatgcagcatgtatcaaaattaattt



ggttttttttcttaagctgtgccttctagttgccagccatctgttgtttgcccctcccccgtgccttccttgaccctggaaggtgccactcccact



gtcctttcctaataaaatgaggaaattgcatcgcattgtctgagtaggtgtcattctattctggggggtggggggggcaggacagcaagg



gggaggattgggaagacaatagcaggcatgctggggatgcggtgggctctatggagatcccgcggtacctcgcgaatgcatctagat



ccaatggcctttttggcccagacatgataagatacattgatgagtttggacaaaccacaactagaatgcagtgaaaaaaatgctttatttgtg



aaatttgtgatgctattgctttatttgtaaccattataagctgcaataaacaagttgcggccgcttagccctcccacacataaccagagggca



gcaattcacgaatcccaactgccgtcggctgtccatcactgtccttcactatggctttgatcccaggatgcagatcgagaagcacctgtcg



gcaccgtccgcaggggctcaagatgcccctgttctcatttccgatcgcgacgatacaagtcaggttgccagctgccgcagcagcagca



gtgcccagcaccacgagttctgcacaaggtcccccagtaaaatgatatacattgacaccagtgaagatgcggccgtcgctagagagag



ctgcgctggcgacgctgtagtcttcagagatggggatgctgttgattgtagccgttgctctttcaatgagggtggattcttcttgagacaaa



ggcttggccatgcggccgccgctcggtgttcgaggccacacgcgtcaccttaatatgcgaagtggacctcggaccgcgccgccccga



ctgcatctgcgtgttcgaattcgccaatgacaagacgctgggggggtttgtgtcatcatagaactaaagacatgcaaatatatttcttccg



gggggtaccggcctttttggccATTGGatcggatctggccaaaaaggcccttaagtatttacattaaatggccatagtacttaaagtta



cattggcttccttgaaataaacatggagtattcagaatgtgtcataaatatttctaattttaagatagtatctccattggctttctactttttcttttat



ttttttttgtcctctgtcttccatttgttgttgttgttgtttgtttgtttgtttgttggttggttggttaatttttttttaaagatcctacactatagttcaagct



agactattagctactctgtaacccagggtgaccttgaagtcatgggtagcctgctgttttagccttcccacatctaagattacaggtatgagc



tatcatttttggtatattgattgattgattgattgatgtgtgtgtgtgtgattgtgtttgtgtgtgtgaTtgtgTaTatgtgtgtatggTtgtgtgt



gaTtgtgtgtatgtatgTTtgtgtgtgaTtgTgtgtgtgtgaTtgtgcatgtgtgtgtgtgtgaTtgtgtTtatgtgtatgaTtgtgtgtgt



gtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgttgtgTaTaTatatttatggtagtgagagGcaacgctccggctcaggtgtcagg



ttggtttttgagacagagtctttcacttagcttggaattcactggccgtcgttttacaacgtcgtgactgggaaaaccctggcgttacccaact



taatcgccttgcagcacatccccctttcgccagctggcgtaatagcgaagaggcccgcaccgatcgcccttcccaacagttgcgcagcc



tgaatggcgaatggcgcctgatgcggtattttctccttacgcatctgtgcggtatttcacaccgcatatggtgcactctcagtacaatctgct



ctgatgccgcatagttaagccagccccgacacccgccaacacccgctgacgcgccctgacgggcttgtctgctcccggcatccgctta



cagacaagctgtgaccgtctccgggagctgcatgtgtcagaggttttcaccgtcatcaccgaaacgcgcgagacgaaagggcctcgtg



atacgcctatttttataggttaatgtcatgataataatggtttcttagacgtcaggtggcacttttcggggaaatgtgcgcggaacccctatttg



tttatttttctaaatacattcaaatatgtatccgctcatgagacaataaccctgataaatgcttcaataatattgaaaaaggaagagtatgagtat



tcaacatttccgtgtcgcccttattcccttttttgcggcattttgccttcctgtttttgctcacccagaaacgctggtgaaagtaaaagatgctga



agatcagttgggtgcacgagtgggttacatcgaactggatctcaacagcggtaagatccttgagagttttcgccccgaagaacgttttcca



atgatgagcacttttaaagttctgctatgtggcgcggtattatcccgtattgacgccgggcaagagcaactcggtcgccgcatacactattc



tcagaatgacttggttgagtactcaccagtcacagaaaagcatcttacggatggcatgacagtaagagaattatgcagtgctgccataac



catgagtgataacactgcggccaacttacttctgacaacgatcggaggaccgaaggagctaaccgcttttttgcacaacatgggggatc



atgtaactcgccttgatcgttgggaaccggagctgaatgaagccataccaaacgacgagcgtgacaccacgatgcctgtagcaatggc



aacaacgttgcgcaaactattaactggcgaactacttactctagcttcccggcaacaattaatagactggatggaggcggataaagttgca



ggaccacttctgcgctcggcccttccggctggctggtttattgctgataaatctggagccggtgagcgtgggtctcgcggtatcattgcag



cactggggccagatggtaagccctcccgtatcgtagttatctacacgacggggagtcaggcaactatggatgaacgaaatagacagat



cgctgagataggtgcctcactgattaagcattggtaactgtcagaccaagtttactcatatatactttagattgatttaaaacttcatttttaattt



aaaaggatctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaa



aagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgc



cggatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgtccttctagtgtagccgtagtta



ggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcgataagtcgt



gtcttaccgggttggactcaagacgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcccagctt



ggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggac



aggtatccggtaagcggcagggtcggaacaggagagcgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtc



gggtttcgccacctctgacttgagcgtcgatttttgtgatgctcgtcaggggggggagcctatggaaaaacgccagcaacgcggccttt



ttacggttcctggccttttgctggccttttgctcacatgttctttcctgcgttatcccctgattctgtggataaccgtattaccgcctttgagtgag



ctgataccgctcgccgcagccgaacgaccgagcgcagcgagtcagtgagcgaggaagcggaagagcgcccaatacgcaaaccgc



ctctccccgcgcgttggccgattcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagtgagcgcaacgcaattaat



gtgagttagctcactcattaggcaccccaggctttacactttatgcttccggctcgtatgttgtgtggaattgtgagcggataacaatttcaca



caggaaacagctatgaccatgattacgcc



(SEQ ID NO: 316)









NK cells comprising CARs comprising OX40 transmembrane (TM) and co-stimulatory (co-stim) domains, SB06251, SB06257, and SB06254, were assessed for expression of constructs as described above. Results as determined by flow cytometry are shown in FIG. 13A and FIG. 13B. Secreted IL-15 was measured as described above; results are summarized in FIG. 14A and FIG. 14B. To assess killing of the target cell population, cell growth was determined as described above (FIG. 15A and FIG. 15B).


Serial killing by the NK cells comprising SB06257 was also assessed. Target cells were added at Days 0, 2, and 5, and Huh7 target cell count was calculated using an Incucyte. Results are shown in FIG. 16.


NK cells comprising CARs comprising CD28 co-stimulatory (co-stim) domains, SB06252, SB06258, and SB06255, were assessed for expression of constructs as described above. Results as determined by flow cytometry FACS are shown in FIG. 17A and FIG. 17B. Secreted IL-15 was measured as described above; results are summarized in FIG. 18A and FIG. 18B. To assess killing of the target cell population, cell growth was determined as described above (FIG. 19A and FIG. 19B).


Serial killing by the NK cells comprising SB06252 and SB06258 was also assessed. Target cells were added at Days 0, 2, and 5, and Huh7 target cell count was calculated using an Incucyte. Results are shown in FIG. 20.


Screening for Bicistronic Constructs

0.5e6 NK donor 7B cells were expanded in the presence of fresh irradiated mbIL21/IL15 K562 feeder cells on retronectin coated non-TC 24-well plates. Spinoculation was performed at 800 g at 32° C. for 2 hr. For viral transduction, 300 μl of virus added, for a total transduction volume of 500 μl.


Cells were cultured in the same plate for the entire expansion period, in 2 ml final volume. Three partial media exchanges were performed as described above before assessing expression and using the cells in functional assays. Results of expression and cytotoxicity against target cells are shown in Table 8. As shown, SB06261, SB6294, and SB6298 showed good CAR and IL-15 expression levels as determined by flow and good cytotoxicity in serial killing assay (n=2). Flow cytometry expression data is shown in FIG. 21A and FIG. 21B, IL-15 levels are shown in FIG. 22A and FIG. 22B, and cell growth of the target cell population (as a measure of cell killing by the NK cells) is shown in FIG. 23A and FIG. 23B.


Due to its high CAR and IL-15 expression and performance in functional assays, SB06294, a retroviral vector with crIL15 2A OX40 CAR design, was selected for further study.





















TABLE 8













Double +
sIL15





SB#
Virus
Insert 1
2A
Insert 2
Expt #
CAR %
mbIL15%
%
(pg/mL)
Round 1
Round 2
Round 3



























6261
Sinvec
crIL15
E2A
CD28
CARn-173
37
32
24.5
62
9.8
8.5
16.6




TACE-10
T2A

CARn-174
63.3
49
46
36
9.5
39
100


6294
Retrovec
crIL15
E2A
OX40-
CARn-173
59.8
38.7
32.8
50
8.8
7.7
8




TACE-10
T2A
CD3 alt
CARn-174
74
53
52
27
9.2
32
98


6298
Sinvec
CD28-CD3
E2A
crIL15
CARn-173
48.7
27.9
23.1
75
5.3
3.6
6.2




alt
T2A
TACE-10
CARn-174
65
39
39
82
13.8
41
98









Analysis of TACE-OPT Constructs

Bicistronic TACE-OPT constructs comprising a TACE10 cleavage site, were analyzed for CAR and IL-15 expression, CNA assay, and payload assay for secreted cytokines, as described above. A TACE10 cleavage site was modified to increase cleavage kinetics, resulting in “TACE-OPT,” which results in higher cytokine secretion levels as compared to the parent TACE10. Tricistronic constructs were analyzed for CAR and IL-15 expression, and IL-12 induction.


Briefly, 0.5e6 NK donor 7B cells were expanded in the presence of fresh irradiated mbIL21/IL15 K562 feeder cells on retronectin coated non-TC 24-well plates. Spinoculation was performed at 800 g at 32° C. for 2 hr. For viral transduction, 300 μl of virus was added, for a total transduction volume of 500 μl.


Bicistronic constructs SB6691 (comprising 41BB co-stimulatory domain), SB6692 (comprising OX40 co-stimulatory domain), and SB6693 (comprising CD28 co-stimulatory domain) were assessed by flow cytometry for expression of CAR and IL-15 (FIG. 24A). Copy number of each construct per cell is shown in Table 9. IL-15 secretion was quantified as described above at 48 hours and 24 weeks post-transduction (FIG. 24B). While the TACE-OPT constructs tested have similar expression levels and cytokine secretion, SB06692 (comprising an OX40 co-stimulatory domain) has the highest CAR expression.













TABLE 9







YP7 [CAR]
IL-15
WPRE



COPY #
(copies/cell)
(copies/cell)
(copies/cell)




















SB06691
116.6
120.2
147.2



SB06692
308.3
318.3
313.0



SB06693
48.8
49.4
57.6









SB06258, SB06257, SB06294 and SB06692 demonstrated high CAR expression, high crIL-15 expression (both membrane-bound and secreted), and high serial killing function in vitro.


Example 4: Expression of IL12 from Bidirectional Constructs Encoding a Regulatable, Cleavable-Release IL12 and a Synthetic Transcription Factor

IL12 expression was assessed for NK cells transduced with bidirectional constructs encoding regulatable, cleavable release IL12 and a synthetic transcription factor, with transductions performed as described in Example 3 above. The regulatable, cleavable IL12 is operably linked to a synthetic transcription factor-responsive promoter, which includes a ZF-10-1 binding site and a minimal promoter sequence. The synthetic transcription factor includes a DNA binding domain and a transcriptional activation domain. Between the DNA binding domain and the transcriptional activation domain is a protease domain that is regulatable by a protease inhibitor and cognate cleavage site for the protease. In the absence of an inhibitor of the protease, the protease induces cleavage at the cleavage site, resulting in a non-functional synthetic transcription factor. In the presence of the protease inhibitor, the synthetic transcription factor is not cleaved and is thus capable of modulating expression of the cleavable IL12. The expression cassette encoding the cleavable release IL12 includes a chimeric polypeptide including the IL12 and a transmembrane domain. Between the IL12 and the transmembrane domain is a protease cleavage domain that is cleavable by a protease endogenous to NK cells. A cartoon diagram of the bidirectional constructs encoding cleavable release 12 is shown in FIG. 25. Parameters of the constructs tested herein are summarized in Table 10. Designs tested include: cleavable-release IL12 (crIL12) regulated constructs (32 constructs tested), soluble IL12 (sIL12) regulated and/or WPRE and polyA+different destabilizing domains (32 constructs tested), destabilizing domain and/or WPRE and polyA (26 constructs tested). Initial studies demonstrated toxicity generally due to leaky expression of IL-12, resulting in poor NK cell viability and expansion following transduction (data not shown). A screen was designed to discover constructs that could overcome or reduce IL-12 associated toxicity by modifying the parameters in Table 10. A summary of screening criteria for is shown in Table 11A. Suitable candidates SB05058 and SB05042 (both gammaretroviral vectors) and SB04599 (lentiviral vector) were identified. A summary of these candidates is provided in Table 11B.









TABLE 10







Parameters tested












ZF

Effector domain



Promoter
copies
IL12
orientation
Modifications





SFFV
10-1 
crIL12
N-terminal
UTR




CD16




SV40
5-7
crIL12
C-terminal
Destabilizing




TACE 10

domains




sIL12

Remove






WPRE/PolyA
















TABLE 11A







Screen








Metrics
Recommendations





IL 12 induction at 0.1 uM GRZ in 24 hours in vitro
>50-fold



>1000 pg/ml


NK cell viability Day 10 post-transduction
>75%


Fold-expansion in 10 days (mid-scale, 6 well G-rex)
>10-fold (research)
















TABLE 11B







Candidates

















Effector






NS3
domain


Viral vector
SB#
ZF
IL12
promoter
orientation





Gamma retro
SB05058
5-7
CD16 crIL12
SV40
C-terminal


Gamma retro
SB05042
5-7
CD16 crIL12
SV40
N-terminal


Lenti
SB04599
10-1 
1X SLDE
SFFV
C-terminal





sIL12









Assessment of gammaretroviral vectors and lentiviral vectors was performed. A grazoprevir (GRZ) dose response assay measuring IL12 secretion demonstrated that both gammaretroviral constructs showed higher sensitivity to GRZ as compared to the lentiviral construct (FIG. 26 and Table 12A).













TABLE 12A






[GRZ]






μM
SB04599
SB05042
SB05058




















2
1762.68
10629.99
7167.37



0.6
1387.37
8722.87
10922.93



0.16
514.02
2031.82
1470.22



0.05
112.14
173.44
151.69



0.013
4.80
31.57
29.72



0.004
u.d
28.48
35.83



0.001
u.d
28.48
14.83



0
u.d
11.27
17.56





u.d = <5 pg/ml, undetectable






Construct expression and cellular viability were determined 10-days following transduction of NK cells. Results are shown in Table 12B and demonstrate an above 10-fold cellular expansion in mid-scale plates, above 85% viability, and greater than 2 copies/cell. Gammaretroviral vectors displayed higher transduction efficiency of NK cells than lentiviral vectors, particularly for the bidirectional vectors tested.














TABLE 12B








Viability
Fold
CNA (avg


Viral vector
SB#
MOI
(%)
expansion
copies/cell)





















NV
n/a
88
29.9
n/a


Lenti
4599
29.7
89
19.6
1.0


Gamma retro
5042
83.5
89
15.1
1.6


Gamma retro
5058
0.8
86
11.6
1.8









Additionally, IL12 induction was assessed in vivo. Briefly, mice were injected intravenously with transduced NK cells at a dose of 15e6 cells in a 200 μL volume. Blood was collected 24 hours after injection and assayed for IL12 expression levels. SB05042 and SB05058 showed the highest IL12 fold-induction. No induction was observed in 10 mg/kg dose groups (data not shown). The percentage of % hNKs in mouse blood was determined to be less than 2% for all constructs. Results are summarized in Table 12C. IL12 levels are shown in FIG. 27A and fold change is shown in FIG. 27B.














TABLE 12C








−GRZ
+GRZ
Fold-



Viral vector
SB#
(pg/ml)
(pg/ml)
change






















NV
0.6
1.35
1.35



Lenti
4599
1.35
14.16
9.30



Gamma retro
5042
0.71
49.0
48.99



Gamma retro
5058
1.0
117.62
118.12









The gammaretroviral vectors (SB05042 and SB305058) demonstrated superior IL12 induction in vitro compared to the lentiviral vector (SB04599), while maintaining good viability and cell growth post-transduction. Importantly, both gammaretroviral vectors tested showed IL12 induction in NIK cells in vivo.


Full-length sequences of constructs described in this Example are shown in Table 13.










TABLE 13





Construct
Full nucleotide sequence







SB05042
aagcttggaattcgagcttgcatgcctgcaggtcgttacataacttacggtaaatggcccgcctggctgaccgcccaacgaccccc


(B7-1 (TM)-
gcccattgacgtcaataatgacgtatgttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagtatttacggtaa


CD16 TACE
actgcccacttggcagtacatcaagtgtatcatatgccaagtacgccccctattgacgtcaatgacggtaaatggcccgcctggcatt


(cleavage
atgcccagtacatgaccttatgggactttcctacttggcagtacatctacgtattagtcatcgctattaccatggtgatgcggttttggc


site)-
agtacatcaatgggcgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgtcaatgggagtttgttttggcac


IL12-YB_TATA
caaaatcaacgggactttccaaaatgtcgtaacaactccgccccattgacgcaaatgggggtaggcgtgtacggtgggaggtcta


ZFBD (syn
tataagcagagctcaataaaagagcccacaacccctcactcggcgcgccagtcctccgattgactgagtcgcccgggtacccgtg


prmoter)-A2
tatccaataaaccctcttgcagttgcatccgacttgtggtctcgctgttccttgggagggtctcctctgagtgattgactacccgtcagc


(insulator)-
gggggtctttcatttgggggctcgtccgagatcgggagacccctgcccagggaccaccgacccaccaccgggaggtaagctgg


SV40
ccagcaacttatctgtgtctgtccgattgtctagtgtctatgactgattttatgcgcctgcgtcggtactagttagctaactagctctgt


(promoter)-
atctggcggacccgtggtggaactgacgagttcggaacacccggccgcaaccctgggagacgtcccagggacttcgggggccgtt


Syn
tttgtggcccgacctgagtcctaaaatcccgatcgtttaggactctttggtgcaccccccttagaggagggatatgtggttctggtagg


TF (NLS +
agacgagaacctaaaacagttcccgcctccgtctgaatttttgctttcggtttgggaccgaagccgcgccgcgcgtcttgtctgctgc


miniVPR
agcatcgttctgtgttgtctctgtctgactgtgtttctgtatttgtctgaaaatatgggccccccctcgagtccccagcatgcctgctat


activation
tctcttcccaatcctcccccttgctgtcctgccccaccccaccccccagaatagaatgacacctactcagacaatgcgatgcaatttcct


domain + NS3
cattttattaggaaaggacagtgggagtggcaccttccagggtcaaggaaggcacgggggaggggcaaacaacagatggctgg


protease +
caactagaaggcacagttacttaCACAGGCCGCACAGATTCTCTCCGCAGCCGTTCGTTTCTT


ZFBD DNA
CTCCGCTCTCTGCACCGAGGGGCGAAGCAGTAGGTCAGGCAACAGATCACGAA


binding
GATGCCGTTCACGGAGATCAGTGTGATGGCCCAGCTTGGCAGCAGTTGAAGAG


domain)
ATCCACCGCCACTGCCACCGCCGCCACTACCGCCACCAAAGAAGCTGGAGATT



GTAGACACGGCGAGTCCCTGTGTAATTCCAGATCCTCCGCCTCCGCTACCACCT



CCGCCGCTAGAGGCGTTCAGGTAGCTCATCACTCTGTCGATGGTCACGGCTCTG



ATCCGGAAGGCGTGCAGCAGGATGCACAGCTTGATCTTGGTCTTGTAGAAGTC



GGGTTCTTCCAGGCTAGACTTCTGGGGCACTGTCTCGCTGTTGAAGTTCAGGGC



CTGCATCAGCTCGTCGATCACGGCCAGCATATTCTGGTCCAGGAAGATCTGCC



GCTTGGGGTCCATCAGCAGCTTGGCGTTCATGGTCTTGAATTCCACCTGGTACA



TCTTCAGGTCCTCGTAGATGCTGCTCAGGCACAGGGCCATCATGAAGGAGGTC



TTTCTGCTGGCCAGGCAAGAGCCGTTGGTGATGAAGCTGGTTTCCCGGCTGTTC



AGGCAGCTCTCGTTCTTGGTCAGTTCCAGAGGCAGGCAGGCTTCCACGGTGCT



GGTCTTATCCTTGGTGATGTCCTCGTGGTCGATTTCCTCGCTGGTGCAGGGGTA



GAATTCCAGGGTCTGTCTGGCCTTCTGCAGCATGTTGGACACGGCTCTCAGCAG



GTTCTGGCTGTGGTGCAGACAAGGGAACATGCCAGGATCAGGAGTGGCCACAG



GCAGGTTTCTAGATCCGCCGCCAGATCCACCACCTGATCCGCCACCGCTTCCTC



CGCCAGAACATGGCACGCTGGCCCATTCGCTCCAAGAGCTGCTGTAGTACCGG



TCCTGGGCTCTGACGCTGATGCTGGCGTTCTTTCTGCAGATCACGGTGGCGCTG



GTCTTGTCGGTGAACACCCGGTCCTTTTTCTCGCGCTTGGACTTGCCCTGCACTT



GCACGCAAAAGGTCAGGCTGAAGTAGCTGTGGGGTGTAGACCAGGTGTCGGG



GTACTCCCAGGACACTTCCACCTGTCTGCTGTTCTTCAGAGGCTTCAGCTGCAG



GTTCTTTGGAGGATCGGGCTTGATGATGTCCCGGATGAAAAAGCTGGAGGTGT



AGTTCTCGTACTTCAGCTTGTGCACGGCGTCCACCATCACTTCGATAGGCAGAG



ACTCTTCGGCGGCTGGACAGGCGCTGTCCTCTTGGCATTCCACGCTGTACTCGT



ATTCTTTGTTGTCGCCCCGCACTCTTTCGGCAGACAGTGTAGCGGCGCCACATG



TAACGCCCTGAGGATCACTGCTGCCTCTGCTGGACTTCACGCTGAAGGTCAGGT



CGGTGCTGATGGTGGTCAGCCACCAACATGTGAACCGGCCGCTGTAGTTCTTG



GCCTCGCATCTCAGGAAGGTCTTGTTCTTGGGCTCTTTCTGGTCCTTCAGGATG



TCGGTGCTCCAAATGCCATCCTCTTTCTTGTGGAGCAGCAGCAGGCTGTGGCTC



AGCACTTCTCCGCCTTTGTGACAGGTGTACTGGCCGGCGTCGCCAAACTCTTTC



ACTTGGATGGTCAGGGTCTTGCCGCTGCCGAGCACCTCGCTAGACTGATCCAGT



GTCCAGGTGATGCCGTCCTCTTCAGGGGTATCGCAGGTCAGCACCACCATCTCG



CCAGGAGCATCGGGATACCAGTCCAGTTCCACCACGTACACGTCTTTCTTCAGC



TCCCAGATGGCCACCAGAGGAGAGGCCAGGAACACCAGGCTGAACCAGCTGA



TGACCAGCTGCTGGTGACACATCATGGTGGCGACACCGGTACGCGTTGGCCCC



CATTATATACCCTCTAGAACTAGTtatccactccgtgtaagggagagtgagcctcttacgaatcTTCGG



CGTCGACTGCTTCattccgaggcgactgataccTTCGGCGTCGACTGCTTCatacgaaggcagtccga



ttcTTCGGCGTCGACTGCTTCaacctttactgagacgggacTTCGGCGTCGACTGCTTCaaaggc



gttgcgaatcctcatgcgattgttacgaaacccgTTAATTAAAGAGCGAGATTCCGTCTCAAAGAAA



AAAAAAGTAATGAAATGAATAAAATGAGTCCTAGAGCCAGTAAATGTCGTAA



ATGTCTCAGCTAGTCAGGTAGTAAAAGGTCTCAACTAGGCAGTGGCAGAGCAG



GATTCAAATTCAGGGCTGTTGTGATGCCTCCGCAGACTCTGAGCGCCACCTGGT



GGTAATTTGTCTGTGCCTCTTCTGACGTGGAAGAACAGCAACTAACACACTAA



CACGGCATTTACTATGGGCCAGCCATTGTCCATCTAGATGGccgataaaataaaagattttat



ttagtctccagaaaaaggggggaatgaaagaccccacctgtaggtttggcaagctagctgcaGTGTGTCAGTTAGG



GTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATC



TCAATTAGTCAGCAACCAGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGA



AGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAAC



TCCGCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGG



CTGACTAATTTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCTGCCTCTGAGCT



ATTCCAGAAGTAGTGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAGGAT



CCGCCACCATGCCCAAGAAAAAGCGGAAGGTGGACGCCCTGGACGACTTCGAT



CTGGATATGCTGGGCAGCGACGCTCTGGATGATTTTGACCTGGACATGCTCGG



CTCTGATGCACTCGACGATTTCGACCTCGATATGTTGGGATCTGATGCCCTTGA



TGACTTTGATCTCGACATGTTGATCAATAGCCGGTCCAGCGGCAGCCCCAAGA



AGAAGAGAAAAGTCGGCTCTGGCGGCGGATCTGGCGGTTCTGGATCTGTTTTG



CCCCAAGCTCCTGCTCCTGCACCAGCTCCAGCTATGGTTTCTGCTCTGGCTCAG



GCTCCAGCTCCTGTGCCTGTTCTTGCTCCTGGACCTCCTCAGGCTGTTGCTCCAC



CAGCACCTAAACCTACACAGGCCGGCGAGGGAACACTGTCTGAAGCTCTGCTG



CAGCTCCAGTTCGACGACGAAGATCTGGGAGCCCTGCTGGGCAATAGCACAGA



TCCTGCCGTGTTCACCGATCTGGCCAGCGTGGACAATAGCGAGTTCCAGCAGC



TCCTGAACCAGGGCATTCCTGTGGCTCCTCACACCACCGAGCCTATGCTGATGG



AATACCCCGAGGCCATCACCAGACTGGTCACCGGTGCTCAAAGACCACCTGAT



CCGGCTCCAGCACCTCTTGGAGCACCTGGACTGCCTAATGGACTGCTGTCTGGC



GACGAGGACTTCAGCTCTATCGCCGACATGGATTTCAGCGCCCTGCTCAGTGG



CGGTGGAAGCGGAGGAAGTGGCAGCGATCTTTCTCACCCTCCACCTAGAGGCC



ACCTGGACGAGCTGACAACCACACTGGAATCCATGACCGAGGACCTGAACCTG



GACAGCCCTCTGACACCCGAGCTGAACGAGATCCTGGACACCTTCCTGAACGA



CGAGTGTCTGCTGCACGCCATGCACATCTCTACCGGCCTGAGCATCTTCGACAC



CAGCCTGTTTGAGGATGTCGTGTGCTGCCACAGCATCTACGGCAAGAAGAAGG



GCGACATCGACACCTACCGGTACATCGGCAGCTCTGGCACAGGCTGTGTGGTC



ATCGTGGGCAGAATCGTGCTGTCTGGCAGCGGAACAAGCGCCCCTATCACAGC



CTATGCTCAGCAGACAAGAGGCCTGCTGGGCTGCATCATCACAAGCCTGACCG



GCAGAGACAAGAACCAGGTGGAAGGCGAGGTGCAGATCGTGTCTACAGCTAC



CCAGACCTTCCTGGCCACCTGTATCAATGGCGTGTGCTGGGCCGTGTATCACGG



CGCTGGAACCAGAACAATCGCCTCTCCTAAGGGCCCCGTGATCCAGATGTACA



CCAACGTGGACCAGGACCTCGTTGGCTGGCCTGCTCCTCAAGGCAGCAGAAGC



CTGACACCTTGCACCTGTGGCTCCAGCGATCTGTACCTGGTCACCAGACACGCC



GACGTGATCCCTGTCAGAAGAAGAGGGGATTCCAGAGGCAGCCTGCTGAGCCC



TAGACCTATCAGCTACCTGAAGGGCTCTAGCGGCGGACCTCTGCTTTGTCCTGC



TGGACATGCCGTGGGCCTGTTTAGAGCCGCCGTGTGTACAAGAGGCGTGGCCA



AAGCCGTGGACTTCATCCCCGTGGAAAACCTGGAAACCACCATGCGGAGCCCC



GTGTTCACCGACAATTCTAGCCCTCCAGCCGTGACACTGACACACCCCATCACC



AAGATCGACAGAGAGGTGCTGTACCAAGAGTTCGACGAGATGGAAGAGTGCA



GCCAGCACATGTCTAGACCTGGCGAGAGGCCCTTCCAGTGCCGGATCTGCATG



CGGAACTTCAGCAACATGAGCAACCTGACCAGACACACCCGGACACACACAG



GCGAGAAGCCTTTTCAGTGCAGAATCTGTATGCGCAATTTCTCCGACAGAAGC



GTGCTGCGGAGACACCTGAGAACCCACACCGGCAGCCAGAAACCATTCCAGTG



TCGCATCTGTATGAGAAACTTTAGCGACCCCTCCAATCTGGCCCGGCACACCA



GAACACATACCGGGGAAAAACCCTTTCAGTGTAGGATATGCATGAGGAATTTT



TCCGACCGGTCCAGCCTGAGGCGGCACCTGAGGACACATACTGGCTCCCAAAA



GCCGTTCCAATGTCGGATATGTATGCGCAACTTTAGCCAGAGCGGCACCCTGC



ACAGACACACAAGAACCCATACTGGCGAGAAACCTTTCCAATGTAGAATCTGC



ATGCGAAATTTTTCCCAGCGGCCTAATCTGACCAGGCATCTGAGGACCCACCT



GAGAGGATCTTaAGTCGACAATCAACCTCtggattacaaaatttgtgaaagattgactggtattcttaacta



tgttgctccttttacgctatgtggatacgctgctttaatgcctttgtatcatgctattgcttcccgtatggctttcattttctcctcctt



gtataaatcctggttgctgtctctttatgaggagttgtggcccgttgtcaggcaacgtggcgtggtgtgcactgtgtttgctgacgcaac



ccccactggttggggcattgccaccacctgtcagctcctttccgggactttcgctttccccctccctattgccacggcggaactcatcgc



cgcctgccttgcccgctgctggacaggggctcggctgttgggcactgacaattccgtggtgttgtcggggaaatcatcgtcctttccttg



gctgctcgcctgtgttgccacctggattctgcgcgggacgtccttctgctacgtcccttcggccctcaatccagcggaccttccttcccg



cggcctgctgccggctctgcggcctcttccgcgtctacgccttcgccctcagacgagtcggatctccctttgggccgcctccccgc



gatatcagtggtccaggctctagttttgactcaacaatatcaccagctgaagcctatagagtacgagccatagataaaataaaagattt



tatttagtctccagaaaaaggggggaatgaaagaccccacctgtaggtttggcaagctagcaataaaagagcccacaacccctca



ctcggggcgccagtcctccgattgactgagtcgcccggccgcttcgagcagacatgataagatacattgatgagtttggacaaacc



acaactagaatgcagtgaaaaaaatgctttatttgtgaaatttgtgatgctattgctttatttgtaaccattataagctgcaataaacaa



gttaacaacaacaattgcattcattttatgtttcaggttcagggggagatgtgggaggttttttaaagcaagtaaaacctctacaaatgt



ggtaaaatcgataaggatcgggtacccgtgtatccaataaaccctcttgcagttgcatccgacttgtggtctcgctgttccttgggaggg



tctcctctgagtgattgactacccgtcagcgggggtctttcacacatgcagcatgtatcaaaattaatttggttttttttcttaagctgt



gccttctagttgccagccatctgttgtttgcccctcccccgtgccttccttgaccctggaaggtgccactcccactgtcctttcctaata



aaatgaggaaattgcatcgcattgtctgagtaggtgtcattctattctggggggtggggggggcaggacagcaagggggaggattggga



agacaatagcaggcatgctggggatgcggtgggctctatggagatcccgcggtacctcgcgaatgcatctagatccaatggccttt



ttggcccagacatgataagatacattgatgagtttggacaaaccacaactagaatgcagtgaaaaaaatgctttatttgtgaaatttgtg



atgctattgctttatttgtaaccattataagctgcaataaacaagttgcggccgcttagccctcccacacataaccagagggcagcaat



tcacgaatcccaactgccgtcggctgtccatcactgtccttcactatggctttgatcccaggatgcagatcgagaagcacctgtcggc



accgtccgcaggggctcaagatgcccctgttctcatttccgatcgcgacgatacaagtcaggttgccagctgccgcagcagcagc



agtgcccagcaccacgagttctgcacaaggtcccccagtaaaatgatatacattgacaccagtgaagatgcggccgtcgctagag



agagctgcgctggcgacgctgtagtcttcagagatggggatgctgttgattgtagccgttgctctttcaatgagggtggattcttcttg



agacaaaggcttggccatgcggccgccgctcggtgttcgaggccacacgcgtcaccttaatatgcgaagtggacctcggaccgc



gccgccccgactgcatctgcgtgttcgaattcgccaatgacaagacgctgggggggtttgtgtcatcatagaactaaagacatgc



aaatatatttcttccggggggtaccggcctttttggccATTGGatcggatctggccaaaaaggcccttaagtatttacattaaatgg



ccatagtacttaaagttacattggcttccttgaaataaacatggagtattcagaatgtgtcataaatatttctaattttaagatagtatc



tccattggctttctactttttcttttatttttttttgtcctctgtcttccatttgttgttgttgttgtttgtttgtttgtttgttggttg



gttggttaatttttttttaaagatcctacactatagttcaagctagactattagctactctgtaacccagggtgaccttgaagtcatggg



tagcctgctgttttagccttcccacatctaagattacaggtatgagctatcatttttggtatattgattgattgattgattgatgtgtgt



gtgtgtgattgtgtttgtgtgtgtgaTtgtgTaTatgtgtgtatggTtgtgtgtgaTtgtgtgtatgtatgTTtgtgtgtgaTtgTgtgt



gtgtgaTtgtgcatgtgtgtgtgtgtgaTtgtgtTtatgtgtatgaTtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgt



gtgttgtgTaTaTatatttatggtagtgagagGcaacgctccggctcaggtgtcaggttggtttttgagacagagtctttcacttagctt



ggaattcactggccgtcgttttacaacgtcgtgactgggaaaaccctggcgttacccaacttaatcgccttgcagcacatccccctttcg



ccagctggcgtaatagcgaagaggcccgcaccgatcgcccttcccaacagttgcgcagcctgaatggcgaatggcgcctgatgcggtatt



ttctccttacgcatctgtgcggtatttcacaccgcatatggtgcactctcagtacaatctgctctgatgccgcatagttaagccagcccc



gacacccgccaacacccgctgacgcgccctgacgggcttgtctgctcccggcatccgcttacagacaagctgtgaccgtctccgggagct



gcatgtgtcagaggttttcaccgtcatcaccgaaacgcgcgagacgaaagggcctcgtgatacgcctatttttataggttaatgtcatga



taataatggtttcttagacgtcaggtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaata



tgtatccgctcatgagacaataaccctgataaatgcttcaataatattgaaaaaggaagagtatgagtattcaacatttccgtgtcgccc



ttattcccttttttgcggcattttgccttcctgtttttgctcacccagaaacgctggtgaaagtaaaagatgctgaagatcagttgggtg



cacgagtgggttacatcgaactggatctcaacagcggtaagatccttgagagttttcgccccgaagaacgttttccaatgatgagcactt



ttaaagttctgctatgtggcgcggtattatcccgtattgacgccgggcaagagcaactcggtcgccgcatacactattctcagaatgact



tggttgagtactcaccagtcacagaaaagcatcttacggatggcatgacagtaagagaattatgcagtgctgccataaccatgagtgata



acactgcggccaacttacttctgacaacgatcggaggaccgaaggagctaaccgcttttttgcacaacatgggggatcatgtaactcgcc



ttgatcgttgggaaccggagctgaatgaagccataccaaacgacgagcgtgacaccacgatgcctgtagcaatggcaacaacgtt



gcgcaaactattaactggcgaactacttactctagcttcccggcaacaattaatagactggatggaggcggataaagttgcaggacc



acttctgcgctcggcccttccggctggctggtttattgctgataaatctggagccggtgagcgtgggtctcgcggtatcattgcagca



ctggggccagatggtaagccctcccgtatcgtagttatctacacgacggggagtcaggcaactatggatgaacgaaatagacaga



tcgctgagataggtgcctcactgattaagcattggtaactgtcagaccaagtttactcatatatactttagattgatttaaaacttcatt



tttaatttaaaaggatctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcag



accccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccag



cggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgttcttc



tagtgtagccgtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctg



ccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcggtcgggctgaacggggggtt



cgtgcacacagcccagcttggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgcttc



ccgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcacgagggagcttccaggggga



aacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgtgatgctcgtcaggggggcggagcct



atggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctggccttttgctcacatgttctttcctgcgttatcccctga



ttctgtggataaccgtattaccgcctttgagtgagctgataccgctcgccgcagccgaacgaccgagcgcagcgagtcagtgagcga



ggaagcggaagagcgcccaatacgcaaaccgcctctccccgcgcgttggccgattcattaatgcagctggcacgacaggtttccc



gactggaaagcgggcagtgagcgcaacgcaattaatgtgagttagctcactcattaggcaccccaggctttacactttatgcttccg



gctcgtatgttgtgtggaattgtgagcggataacaatttcacacaggaaacagctatgaccatgattacgcc (SEQ ID NO:



317)





SB05058
aagcttggaattcgagcttgcatgcctgcaggtcgttacataacttacggtaaatggcccgcctggctgaccgcccaacgaccccc



gcccattgacgtcaataatgacgtatgttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagtatttacggtaa



actgcccacttggcagtacatcaagtgtatcatatgccaagtacgccccctattgacgtcaatgacggtaaatggcccgcctggcatt



atgcccagtacatgaccttatgggactttcctacttggcagtacatctacgtattagtcatcgctattaccatggtgatgcggttttggc



agtacatcaatgggcgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgtcaatgggagtttgttttggcac



caaaatcaacgggactttccaaaatgtcgtaacaactccgccccattgacgcaaatgggcggtaggcgtgtacggtgggaggtcta



tataagcagagctcaataaaagagcccacaacccctcactcggcgcgccagtcctccgattgactgagtcgcccgggtacccgtg



tatccaataaaccctcttgcagttgcatccgacttgtggtctcgctgttccttgggagggtctcctctgagtgattgactacccgtcagc



gggggtctttcatttgggggctcgtccgagatcgggagacccctgcccagggaccaccgacccaccaccgggaggtaagctgg



ccagcaacttatctgtgtctgtccgattgtctagtgtctatgactgattttatgcgcctgcgtcggtactagttagctaactagctctgt



atctggcggacccgtggtggaactgacgagttcggaacacccggccgcaaccctgggagacgtcccagggacttcgggggccgtt



tttgtggcccgacctgagtcctaaaatcccgatcgtttaggactctttggtgcaccccccttagaggagggatatgtggttctggtagg



agacgagaacctaaaacagttcccgcctccgtctgaatttttgctttcggtttgggaccgaagccgcgccgcgcgtcttgtctgctgc



agcatcgttctgtgttgtctctgtctgactgtgtttctgtatttgtctgaaaatatgggccccccctcgagtccccagcatgcctgctat



tctcttcccaatcctcccccttgctgtcctgccccaccccaccccccagaatagaatgacacctactcagacaatgcgatgcaatttcct



cattttattaggaaaggacagtgggagtggcaccttccagggtcaaggaaggcacgggggaggggcaaacaacagatggctgg



caactagaaggcacagttacttaCACAGGCCGCACAGATTCTCTCCGCAGCCGTTCGTTTCTT



CTCCGCTCTCTGCACCGAGGGGCGAAGCAGTAGGTCAGGCAACAGATCACGAA



GATGCCGTTCACGGAGATCAGTGTGATGGCCCAGCTTGGCAGCAGTTGAAGAG



ATCCACCGCCACTGCCACCGCCGCCACTACCGCCACCAAAGAAGCTGGAGATT



GTAGACACGGCGAGTCCCTGTGTAATTCCAGATCCTCCGCCTCCGCTACCACCT



CCGCCGCTAGAGGCGTTCAGGTAGCTCATCACTCTGTCGATGGTCACGGCTCTG



ATCCGGAAGGCGTGCAGCAGGATGCACAGCTTGATCTTGGTCTTGTAGAAGTC



GGGTTCTTCCAGGCTAGACTTCTGGGGCACTGTCTCGCTGTTGAAGTTCAGGGC



CTGCATCAGCTCGTCGATCACGGCCAGCATATTCTGGTCCAGGAAGATCTGCC



GCTTGGGGTCCATCAGCAGCTTGGCGTTCATGGTCTTGAATTCCACCTGGTACA



TCTTCAGGTCCTCGTAGATGCTGCTCAGGCACAGGGCCATCATGAAGGAGGTC



TTTCTGCTGGCCAGGCAAGAGCCGTTGGTGATGAAGCTGGTTTCCCGGCTGTTC



AGGCAGCTCTCGTTCTTGGTCAGTTCCAGAGGCAGGCAGGCTTCCACGGTGCT



GGTCTTATCCTTGGTGATGTCCTCGTGGTCGATTTCCTCGCTGGTGCAGGGGTA



GAATTCCAGGGTCTGTCTGGCCTTCTGCAGCATGTTGGACACGGCTCTCAGCAG



GTTCTGGCTGTGGTGCAGACAAGGGAACATGCCAGGATCAGGAGTGGCCACAG



GCAGGTTTCTAGATCCGCCGCCAGATCCACCACCTGATCCGCCACCGCTTCCTC



CGCCAGAACATGGCACGCTGGCCCATTCGCTCCAAGAGCTGCTGTAGTACCGG



TCCTGGGCTCTGACGCTGATGCTGGCGTTCTTTCTGCAGATCACGGTGGCGCTG



GTCTTGTCGGTGAACACCCGGTCCTTTTTCTCGCGCTTGGACTTGCCCTGCACTT



GCACGCAAAAGGTCAGGCTGAAGTAGCTGTGGGGTGTAGACCAGGTGTCGGG



GTACTCCCAGGACACTTCCACCTGTCTGCTGTTCTTCAGAGGCTTCAGCTGCAG



GTTCTTTGGAGGATCGGGCTTGATGATGTCCCGGATGAAAAAGCTGGAGGTGT



AGTTCTCGTACTTCAGCTTGTGCACGGCGTCCACCATCACTTCGATAGGCAGAG



ACTCTTCGGCGGCTGGACAGGCGCTGTCCTCTTGGCATTCCACGCTGTACTCGT



ATTCTTTGTTGTCGCCCCGCACTCTTTCGGCAGACAGTGTAGCGGCGCCACATG



TAACGCCCTGAGGATCACTGCTGCCTCTGCTGGACTTCACGCTGAAGGTCAGGT



CGGTGCTGATGGTGGTCAGCCACCAACATGTGAACCGGCCGCTGTAGTTCTTG



GCCTCGCATCTCAGGAAGGTCTTGTTCTTGGGCTCTTTCTGGTCCTTCAGGATG



TCGGTGCTCCAAATGCCATCCTCTTTCTTGTGGAGCAGCAGCAGGCTGTGGCTC



AGCACTTCTCCGCCTTTGTGACAGGTGTACTGGCCGGCGTCGCCAAACTCTTTC



ACTTGGATGGTCAGGGTCTTGCCGCTGCCGAGCACCTCGCTAGACTGATCCAGT



GTCCAGGTGATGCCGTCCTCTTCAGGGGTATCGCAGGTCAGCACCACCATCTCG



CCAGGAGCATCGGGATACCAGTCCAGTTCCACCACGTACACGTCTTTCTTCAGC



TCCCAGATGGCCACCAGAGGAGAGGCCAGGAACACCAGGCTGAACCAGCTGA



TGACCAGCTGCTGGTGACACATCATGGTGGCGACACCGGTACGCGTTGGCCCC



CATTATATACCCTCTAGAACTAGTtatccactccgtgtaagggagagtgagcctcttacgaatcTTCGG



CGTCGACTGCTTCattccgaggcgactgataccTTCGGCGTCGACTGCTTCatacgaaggcagtccga



ttcTTCGGCGTCGACTGCTTCaacctttactgagacgggacTTCGGCGTCGACTGCTTCaaaggc



gttgcgaatcctcatgcgattgttacgaaacccgTTAATTAAAGAGCGAGATTCCGTCTCAAAGAAA



AAAAAAGTAATGAAATGAATAAAATGAGTCCTAGAGCCAGTAAATGTCGTAA



ATGTCTCAGCTAGTCAGGTAGTAAAAGGTCTCAACTAGGCAGTGGCAGAGCAG



GATTCAAATTCAGGGCTGTTGTGATGCCTCCGCAGACTCTGAGCGCCACCTGGT



GGTAATTTGTCTGTGCCTCTTCTGACGTGGAAGAACAGCAACTAACACACTAA



CACGGCATTTACTATGGGCCAGCCATTGTCCATCTAGATGGccgataaaataaaagattttat



ttagtctccagaaaaaggggggaatgaaagaccccacctgtaggtttggcaagctagctgcaGTGTGTCAGTTAGG



GTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATC



TCAATTAGTCAGCAACCAGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGA



AGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAAC



TCCGCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGG



CTGACTAATTTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCTGCCTCTGAGCT



ATTCCAGAAGTAGTGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAGGAT



CCGCCACCATGCCCAAGAAAAAGCGGAAGGTGATGTCTAGACCTGGCGAGAG



GCCCTTCCAGTGCCGGATCTGCATGCGGAACTTCAGCAACATGAGCAACCTGA



CCAGACACACCCGGACACACACAGGCGAGAAGCCTTTTCAGTGCAGAATCTGT



ATGCGCAATTTCTCCGACAGAAGCGTGCTGCGGAGACACCTGAGAACCCACAC



CGGCAGCCAGAAACCATTCCAGTGTCGCATCTGTATGAGAAACTTTAGCGACC



CCTCCAATCTGGCCCGGCACACCAGAACACATACCGGGGAAAAACCCTTTCAG



TGTAGGATATGCATGAGGAATTTTTCCGACCGGTCCAGCCTGAGGCGGCACCT



GAGGACACATACTGGCTCCCAAAAGCCGTTCCAATGTCGGATATGTATGCGCA



ACTTTAGCCAGAGCGGCACCCTGCACAGACACACAAGAACCCATACTGGCGAG



AAACCTTTCCAATGTAGAATCTGCATGCGAAATTTTTCCCAGCGGCCTAATCTG



ACCAGGCATCTGAGGACCCACCTGAGAGGATCTGAGGATGTCGTGTGCTGCCA



CAGCATCTACGGCAAGAAGAAGGGCGACATCGACACCTACCGGTACATCGGC



AGCTCTGGCACAGGCTGTGTGGTCATCGTGGGCAGAATCGTGCTGTCTGGCAG



CGGAACAAGCGCCCCTATCACAGCCTATGCTCAGCAGACAAGAGGCCTGCTGG



GCTGCATCATCACAAGCCTGACCGGCAGAGACAAGAACCAGGTGGAAGGCGA



GGTGCAGATCGTGTCTACAGCTACCCAGACCTTCCTGGCCACCTGTATCAATGG



CGTGTGCTGGGCCGTGTATCACGGCGCTGGAACCAGAACAATCGCCTCTCCTA



AGGGCCCCGTGATCCAGATGTACACCAACGTGGACCAGGACCTCGTTGGCTGG



CCTGCTCCTCAAGGCAGCAGAAGCCTGACACCTTGCACCTGTGGCTCCAGCGA



TCTGTACCTGGTCACCAGACACGCCGACGTGATCCCTGTCAGAAGAAGAGGGG



ATTCCAGAGGCAGCCTGCTGAGCCCTAGACCTATCAGCTACCTGAAGGGCTCT



AGCGGCGGACCTCTGCTTTGTCCTGCTGGACATGCCGTGGGCCTGTTTAGAGCC



GCCGTGTGTACAAGAGGCGTGGCCAAAGCCGTGGACTTCATCCCCGTGGAAAA



CCTGGAAACCACCATGCGGAGCCCCGTGTTCACCGACAATTCTAGCCCTCCAG



CCGTGACACTGACACACCCCATCACCAAGATCGACAGAGAGGTGCTGTACCAA



GAGTTCGACGAGATGGAAGAGTGCAGCCAGCACGACGCCCTGGACGACTTCG



ATCTGGATATGCTGGGCAGCGACGCTCTGGATGATTTTGACCTGGACATGCTCG



GCTCTGATGCACTCGACGATTTCGACCTCGATATGTTGGGATCTGATGCCCTTG



ATGACTTTGATCTCGACATGTTGATCAATAGCCGGTCCAGCGGCAGCCCCAAG



AAGAAGAGAAAAGTCGGCTCTGGCGGCGGATCTGGCGGTTCTGGATCTGTTTT



GCCCCAAGCTCCTGCTCCTGCACCAGCTCCAGCTATGGTTTCTGCTCTGGCTCA



GGCTCCAGCTCCTGTGCCTGTTCTTGCTCCTGGACCTCCTCAGGCTGTTGCTCCA



CCAGCACCTAAACCTACACAGGCCGGCGAGGGAACACTGTCTGAAGCTCTGCT



GCAGCTCCAGTTCGACGACGAAGATCTGGGAGCCCTGCTGGGCAATAGCACAG



ATCCTGCCGTGTTCACCGATCTGGCCAGCGTGGACAATAGCGAGTTCCAGCAG



CTCCTGAACCAGGGCATTCCTGTGGCTCCTCACACCACCGAGCCTATGCTGATG



GAATACCCCGAGGCCATCACCAGACTGGTCACCGGTGCTCAAAGACCACCTGA



TCCGGCTCCAGCACCTCTTGGAGCACCTGGACTGCCTAATGGACTGCTGTCTGG



CGACGAGGACTTCAGCTCTATCGCCGACATGGATTTCAGCGCCCTGCTCAGTG



GCGGTGGAAGCGGAGGAAGTGGCAGCGATCTTTCTCACCCTCCACCTAGAGGC



CACCTGGACGAGCTGACAACCACACTGGAATCCATGACCGAGGACCTGAACCT



GGACAGCCCTCTGACACCCGAGCTGAACGAGATCCTGGACACCTTCCTGAACG



ACGAGTGTCTGCTGCACGCCATGCACATCTCTACCGGCCTGAGCATCTTCGACA



CCAGCCTGTTTTaAGTCGACAATCAACCTCtggattacaaaatttgtgaaagattgactggtattcttaact



atgttgctccttttacgctatgtggatacgctgctttaatgcctttgtatcatgctattgcttcccgtatggctttcattttctcctcct



tgtataaatcctggttgctgtctctttatgaggagttgtggcccgttgtcaggcaacgtggcgtggtgtgcactgtgtttgctgacgcaa



cccccactggttggggcattgccaccacctgtcagctcctttccgggactttcgctttccccctccctattgccacggcggaactcatcg



ccgcctgccttgcccgctgctggacaggggctcggctgttgggcactgacaattccgtggtgttgtcggggaaatcatcgtcctttcctt



ggctgctcgcctgtgttgccacctggattctgcgcgggacgtccttctgctacgtcccttcggccctcaatccagcggaccttccttccc



gcggcctgctgccggctctgcggcctcttccgcgtctacgccttcgccctcagacgagtcggatctccctttgggccgcctccccg



cgatatcagtggtccaggctctagttttgactcaacaatatcaccagctgaagcctatagagtacgagccatagataaaataaaagat



tttatttagtctccagaaaaaggggggaatgaaagaccccacctgtaggtttggcaagctagcaataaaagagcccacaacccctc



actcggggcgccagtcctccgattgactgagtcgcccggccgcttcgagcagacatgataagatacattgatgagtttggacaaac



cacaactagaatgcagtgaaaaaaatgctttatttgtgaaatttgtgatgctattgctttatttgtaaccattataagctgcaataaaca



agttaacaacaacaattgcattcattttatgtttcaggttcagggggagatgtgggaggttttttaaagcaagtaaaacctctacaaatg



tggtaaaatcgataaggatcgggtacccgtgtatccaataaaccctcttgcagttgcatccgacttgtggtctcgctgttccttgggagg



gtctcctctgagtgattgactacccgtcagcgggggtctttcacacatgcagcatgtatcaaaattaatttggttttttttcttaagctg



tgccttctagttgccagccatctgttgtttgcccctcccccgtgccttccttgaccctggaaggtgccactcccactgtcctttcctaat



aaaatgaggaaattgcatcgcattgtctgagtaggtgtcattctattctggggggtggggggggcaggacagcaagggggaggattggg



aagacaatagcaggcatgctggggatgcggtgggctctatggagatcccgcggtacctcgcgaatgcatctagatccaatggcctt



tttggcccagacatgataagatacattgatgagtttggacaaaccacaactagaatgcagtgaaaaaaatgctttatttgtgaaatttgt



gatgctattgctttatttgtaaccattataagctgcaataaacaagttgcggccgcttagccctcccacacataaccagagggcagca



attcacgaatcccaactgccgtcggctgtccatcactgtccttcactatggctttgatcccaggatgcagatcgagaagcacctgtcg



gcaccgtccgcaggggctcaagatgcccctgttctcatttccgatcgcgacgatacaagtcaggttgccagctgccgcagcagca



gcagtgcccagcaccacgagttctgcacaaggtcccccagtaaaatgatatacattgacaccagtgaagatgcggccgtcgctag



agagagctgcgctggcgacgctgtagtcttcagagatggggatgctgttgattgtagccgttgctctttcaatgagggggattcttct



tgagacaaaggcttggccatgcggccgccgctcggtgttcgaggccacacgcgtcaccttaatatgcgaagtggacctcggacc



gcgccgccccgactgcatctgcgtgttcgaattcgccaatgacaagacgctgggggggtttgtgtcatcatagaactaaagacat



gcaaatatatttcttccggggggtaccggcctttttggccATTGGatcggatctggccaaaaaggcccttaagtatttacattaaat



ggccatagtacttaaagttacattggcttccttgaaataaacatggagtattcagaatgtgtcataaatatttctaattttaagatagta



tctccattggctttctactttttcttttatttttttttgtcctctgtcttccatttgttgttgttgttgtttgtttgtttgtttgttggt



tggttggttaatttttttttaaagatcctacactatagttcaagctagactattagctactctgtaacccagggtgaccttgaagtcatg



ggtagcctgctgttttagccttcccacatctaagattacaggtatgagctatcatttttggtatattgattgattgattgattgatgtg



tgtgtgtgtgattgtgtttgtgtgtgtgaTtgtgTaTatgtgtgtatggTtgtgtgtgaTtgtgtgtatgtatgTTtgtgtgtgaTtgTg



tgtgtgtgaTtgtgcatgtgtgtgtgtgtgaTtgtgtTtatgtgtatgaTtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtg



tgtgtgttgtgTaTaTatatttatggtagtgagagGcaacgctccggctcaggtgtcaggttggtttttgagacagagtctttcacttag



cttggaattcactggccgtcgttttacaacgtcgtgactgggaaaaccctggcgttacccaacttaatcgccttgcagcacatccccctt



tcgccagctggcgtaatagcgaagaggcccgcaccgatcgcccttcccaacagttgcgcagcctgaatggcgaatggcgcctgatgcggt



attttctccttacgcatctgtgcggtatttcacaccgcatatggtgcactctcagtacaatctgctctgatgccgcatagttaagccagc



cccgacacccgccaacacccgctgacgcgccctgacgggcttgtctgctcccggcatccgcttacagacaagctgtgaccgtctccggga



gctgcatgtgtcagaggttttcaccgtcatcaccgaaacgcgcgagacgaaagggcctcgtgatacgcctatttttataggttaatgtca



tgataataatggtttcttagacgtcaggtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaa



atatgtatccgctcatgagacaataaccctgataaatgcttcaataatattgaaaaaggaagagtatgagtattcaacatttccgtgtcg



cccttattcccttttttgcggcattttgccttcctgtttttgctcacccagaaacgctggtgaaagtaaaagatgctgaagatcagttgg



gtgcacgagtgggttacatcgaactggatctcaacagcggtaagatccttgagagttttcgccccgaagaacgttttccaatgatgagca



cttttaaagttctgctatgtggcgcggtattatcccgtattgacgccgggcaagagcaactcggtcgccgcatacactattctcagaatg



acttggttgagtactcaccagtcacagaaaagcatcttacggatggcatgacagtaagagaattatgcagtgctgccataaccatgagtg



ataacactgcggccaacttacttctgacaacgatcggaggaccgaaggagctaaccgcttttttgcacaacatgggggatcatgtaactc



gccttgatcgttgggaaccggagctgaatgaagccataccaaacgacgagcgtgacaccacgatgcctgtagcaatggcaacaac



gttgcgcaaactattaactggcgaactacttactctagcttcccggcaacaattaatagactggatggaggcggataaagttgcagg



accacttctgcgctcggcccttccggctggctggtttattgctgataaatctggagccggtgagcgtgggtctcgcggtatcattgca



gcactggggccagatggtaagccctcccgtatcgtagttatctacacgacggggagtcaggcaactatggatgaacgaaatagac



agatcgctgagataggtgcctcactgattaagcattggtaactgtcagaccaagtttactcatatatactttagattgatttaaaacttc



atttttaatttaaaaggatctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgt



cagaccccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctac



cagcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgttc



ttctagtgtagccgtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctg



ctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcggtcgggctgaacgggg



ggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacg



cttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcacgagggagcttccaggg



ggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgtgatgctcgtcaggggggcggag



cctatggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctggccttttgctcacatgttctttcctgcgttatcccc



tgattctgtggataaccgtattaccgcctttgagtgagctgataccgctcgccgcagccgaacgaccgagcgcagcgagtcagtga



gcgaggaagcggaagagcgcccaatacgcaaaccgcctctccccgcgcgttggccgattcattaatgcagctggcacgacaggt



ttcccgactggaaagcgggcagtgagcgcaacgcaattaatgtgagttagctcactcattaggcaccccaggctttacactttatgct



tccggctcgtatgttgtgtggaattgtgagcggataacaatttcacacaggaaacagctatgaccatgattacgcc (SEQ ID



NO: 318)





SB04599
acgcgtgtagtcttatgcaatactcttgtagtcttgcaacatggtaacgatgagttagcaacatgccttacaaggagagaaaaagcac



cgtgcatgccgattggtggaagtaaggtggtacgatcgtgccttattaggaaggcaacagacgggtctgacatggattggacgaac



cactgaattgccgcattgcagagatattgtatttaagtgcctagctcgatacataaacgggtctctctggttagaccagatctgagcct



gggagctctctggctaactagggaacccactgcttaagcctcaataaagcttgccttgagtgcttcaagtagtgtgtgcccgtctgttg



tgtgactctggtaactagagatccctcagacccttttagtcagtgtggaaaatctctagcagtggcgcccgaacagggacctgaaag



cgaaagggaaaccagagctctctcgacgcaggactcggcttgctgaagcgcgcacggcaagaggcgaggggcggcgactggt



gagtacgccaaaaattttgactagcggaggctagaaggagagagatgggtgcgagagcgtcagtattaagcgggggagaattag



atcgcgatgggaaaaaattcggttaaggccagggggaaagaaaaaatataaattaaaacatatagtatgggcaagcagggagcta



gaacgattcgcagttaatcctggcctgttagaaacatcagaaggctgtagacaaatactgggacagctacaaccatcccttcagaca



ggatcagaagaacttagatcattatataatacagtagcaaccctctattgtgtgcatcaaaggatagagataaaagacaccaaggaa



gctttagacaagatagaggaagagcaaaaaaaagtaagaccaccgcacagcaagcggccactgatcttcagacctggaggag



gagatatgagggacaattggagaagtgaattatataaatataaagtagtaaaaattgaaccattaggagtagcacccaccaaggca



aagagaagagtggtgcagagagaaaaaagagcagtgggaataggagctttgttccttgggttcttgggagcagcaggaagcact



atgggcgcagcctcaatgacgctgacggtacaggccagacaattattgtctggtatagtgcagcagcagaacaatttgctgagggc



tattgaggcgcaacagcatctgttgcaactcacagtctggggcatcaagcagctccaggcaagaatcctggctgtggaaagatacc



taaaggatcaacagctcctggggatttggggttgctctggaaaactcatttgcaccactgctgtgccttggaatgctagttggagtaat



aaatctctggaacagattggaatcacacgacctggatggagtgggacagagaaattaacaattacacaagcttaatacactccttaat



tgaagaatcgcaaaaccagcaagaaaagaatgaacaagaattattggaattagataaatgggcaagtttgtggaattggtttaacata



acaaattggctgtggtatataaaattattcataatgatagtaggaggcttggtaggtttaagaatagtttttgctgtactttctatagtg



aatagagttaggcagggatattcaccattatcgtttcagacccacctcccaaccccgaggggacccgacaggcccgaaggaatagaa



gaagaaggtggagagagagacagagacagatccattcgattagtgaacggatctcgacggtATCGGTtaacTTTTAA



AAGAAAAGGGGGGATTGGGGGGTACAGTGCAGGGGAAAGAATAGTAGACATA



ATAGCAACAGACATACAAACTAAAGAATTACAAAAACAAATTACAAAAATTC



AAATTTTCGGGGGATCaGCGGAATTCtagagtcgcggccgctccccagcatgcctgctattctcttcccaat



cctcccccttgctgtcctgccccaccccaccccccagaatagaatgacacctactcagacaatgcgatgcaatttcctcattttattag



gaaaggacagtgggagtggcaccttccagggtcaaggaaggcacgggggaggggcaaacaacagatggctggcaactagaa



ggcacagCTGTTTAAATATTAAACAGggaaccgatgtGTTTAAACTAGAGTCGCGGCCTC



AGTCAGTCACGCATGCCTGCAGTttaACTGGCGTTCAGGTAGGACATCACGCGGT



CAATGGTCACGGCTCGAATGCGGAAAGCGTGCAACAGGATGCACAGCTTGATC



TTGGTCTTGTAGAAGTCCGGTTCTTCCAGGCTGGACTTTTGAGGCACAGTCTCG



GAGTTGAAATTCAGGGCCTGCATCAGTTCATCAATCACGGCGAGCATATTCTG



GTCCAGGAAGATCTGCCGCTTCGGGTCCATGAGCAGCTTGGCGTTCATGGTCTT



GAACTCGACCTGATACATCTTCAGATCTTCGTAGATCGAGGAAAGACAGAGCG



CCATCATGAATGAGGTCTTTCTCGACGCCAGGCAGCTGCCGTTAGTGATAAAG



CTTGTCTCGCGGGAGTTCAGACACGATTCGTTCTTGGTCAGTTCCAGCGGCAGG



CAGGCTTCCACGGTCGAGGTCTTGTCCTTGGTGATGTCCTCGTGATCAATTTCT



TCCGAGGTGCAGGGGTAGAACTCAAGGGTCTGGCGGGCCTTCTGCAACATGTT



CGACACAGCCCTCAGGAGGTTTTGGGAGTGGTGTAGGCACGGGAACATTCCAG



GGTCGGGGGTTGCCACAGGGAGGTTCCGGGAACCTCCTCCGGAGCCTCCTCCT



GAACCTCCGCCTGATCCGCCACCGGAACAAGGCACGCTGGCCCATTCGCTCCA



GGAGGACGAGTAGTATCTATCCTGCGCCCGGACGCTGATTGACGCGTTCTTCC



GACAAATCACAGTGGCGGAGGTTTTGTCGGTGAACACCCGGTCTTTCTTCTCCC



GTTTGGACTTTCCCTGCACTTGCACACAGAAAGTGAGCGAGAAGTATGAGTGC



GGGGTGCTCCAAGTGTCTGGATATTCCCAAGACACTTCCACTTGGCGGGAGTTC



TTGAGTGGCTTCAGCTGCAAGTTCTTGGGGGGGTCAGGCTTGATGATGTCGCGG



ATAAAGAAGGAGGAAGTGTAGTTCTCGTATTTCAGCTTATGCACGGCATCGAC



CATGACCTCGATAGGCAGGGACTCTTCCGCGGCAGGGCAGGCGCTGTCCTCCT



GGCATTCCACGGAGTACTCATATTCCTTGTTGTCTCCCCTGACTCTCTCGGCGG



ACAGAGTGGCGGCTCCACAGGTCACGCCCTGAGGATCGCTTGATCCCCGTGAC



GACTTCACGGAGAAAGTCAGGTCGGTGGAGATTGTCGTCAGCCACCAACAGGT



GAACCGACCGCTGTAGTTCTTGGCTTCGCAGCGGAGGAAGGTCTTGTTCTTCGG



TTCTTTTTGGTCCTTGAGGATGTCAGTGGACCAGATTCCATCCTCTTTCTTGTGC



AGCAGCAGCAGGGAGTGGGACAGCACTTCGCCACCCTTGTGGCAAGTGTACTG



GCCCGCGTCGCCGAACTCCTTGACTTGAATGGTCAGGGTCTTTCCGCTTCCGAG



CACCTCGGAGCTCTGATCCAGGGTCCAGGTTATGCCGTCCTCTTCTGGCGTATC



GCAAGTCAGCACGACCATTTCTCCAGGGGCGTCCGGGTACCAATCCAGCTCGA



CCACGTAGACGTCCTTCTTCAGTTCCCAAATGGCGACCAGAGGGGAAGCGAGG



AACACAAGGGAGAACCAGGAGATGACGAGTTGCTGATGGCACATCATGGTGG



CGACACCGGTACGCGTTGGCCCCCATTATATACCCTCTAGAACTAGTtatccactccgt



gtaagggagagtgagcctcttacgaatgCGCGACATCGGCTACGCCgttccgaggcgactgatacgCGCGA



CATCGGCTACGCCgtacgaaggcagtccgattgCGCGACATCGGCTACGCCgacctttactgagacg



ggagCGCGACATCGGCTACGCCgaaggcgttgcgaatcctcatgcgattgttacgaaacccgTTAATTAA



AGAGCGAGATTCCGTCTCAAAGAAAAAAAAAGTAATGAAATGAATAAAATGA



GTCCTAGAGCCAGTAAATGTCGTAAATGTCTCAGCTAGTCAGGTAGTAAAAGG



TCTCAACTAGGCAGTGGCAGAGCAGGATTCAAATTCAGGGCTGTTGTGATGCC



TCCGCAGACTCTGAGCGCCACCTGGTGGTAATTTGTCTGTGCCTCTTCTGACGT



GGAAGAACAGCAACTAACACACTAACACGGCATTTACTATGGGCCAGCCATTG



TCCATCTAGATGGccgataaaataaaagattttatttagtctccagaaaaaggggggaatgaaagaccccacctgtagg



tttggcaagctagctgcagtaacgccattttgcaaggcatggaaaaataccaaaccaagaatagagaagttcagatcaagggcgg



gtacatgaaaatagctaacgttgggccaaacaggatatctgcggtgagcagtttcggccccggcccggggccaagaacagatgg



tcaccgcagtttcggccccggcccgaggccaagaacagatggtccccagatatggcccaaccctcagcagtttcttaagacccat



cagatgtttccaggctcccccaaggacctgaaatgaccctgcgccttatttgaattaaccaatcagcctgcttctcgcttctgttcgcg



cgcttctgcttcccgagctctataaaagagctcacaacccctcactcggcgcgccagtcctccgacagactgagtcgcccgggG



GATCCGCCACCATGCCCAAGAAGAAGCGGAAGGTTTCCCGGCCTGGCGAGAG



GCCTTTCCAGTGCAGAATCTGCATGCGGAACTTCAGCAGACGGCACGGCCTGG



ACAGACACACCAGAACACACACAGGCGAGAAACCCTTCCAGTGCCGGATCTGT



ATGAGAAATTTCAGCGACCACAGCAGCCTGAAGCGGCACCTGAGAACCCATAC



CGGCAGCCAGAAACCATTTCAGTGTAGGATATGCATGCGCAATTTCTCCGTGC



GGCACAACCTGACCAGACACCTGAGGACACACACCGGGGAGAAGCCTTTTCAA



TGTCGCATATGCATGAGAAACTTCTCTGACCACTCCAACCTGAGCCGCCACCTC



AAAACCCACACCGGCTCTCAAAAGCCCTTCCAATGTAGAATATGTATGAGGAA



CTTTAGCCAGCGGAGCAGCCTCGTGCGCCATCTGAGAACTCACACTGGCGAAA



AGCCGTTTCAATGCCGTATCTGTATGCGCAACTTTAGCGAGAGCGGCCACCTG



AAGAGACATCTGCGCACACACCTGAGAGGCAGCGAGGATGTCGTGTGCTGCCA



CAGCATCTACGGAAAGAAGAAGGGCGACATCGACACCTATCGGTACATCGGC



AGCAGCGGCACAGGCTGTGTTGTGATCGTGGGCAGAATCGTGCTGAGCGGCTC



TGGAACAAGCGCCCCTATCACAGCCTACGCTCAGCAGACAAGAGGCCTGCTGG



GCTGCATCATCACAAGCCTGACCGGCAGAGACAAGAACCAGGTGGAAGGCGA



GGTGCAGATCGTGTCTACAGCTACCCAGACCTTCCTGGCCACCTGTATCAATGG



CGTGTGCTGGGCCGTGTATCACGGCGCTGGCACAAGAACAATCGCCTCTCCAA



AGGGCCCCGTGATCCAGATGTACACCAACGTGGACCAGGACCTCGTTGGCTGG



CCTGCTCCTCAAGGCAGCAGAAGCCTGACACCTTGCACCTGTGGCTCCAGCGA



TCTGTACCTGGTCACCAGACACGCCGACGTGATCCCTGTCAGAAGAAGAGGGG



ATTCCAGAGGCAGCCTGCTGAGCCCTAGACCTATCAGCTACCTGAAGGGCAGC



TCTGGCGGACCTCTGCTTTGTCCTGCTGGACATGCCGTGGGCCTGTTTAGAGCC



GCCGTGTGTACAAGAGGCGTGGCCAAAGCCGTGGACTTCATCCCCGTGGAAAA



CCTGGAAACCACCATGCGGAGCCCCGTGTTCACCGACAATTCTAGCCCTCCAG



CCGTGACACTGACACACCCCATCACCAAGATCGACAGAGAGGTGCTGTACCAA



GAGTTCGACGAGATGGAAGAGTGCAGCCAGCACGACGCTCTTGATGACTTTGA



CCTGGATATGCTCGGATCAGATGCCCTGGACGATTTCGATCTGGACATGTTGGG



GTCTGATGCTCTCGACGACTTCGATCTGGATATGCTTGGAAGTGACGCGCTGGA



TGATTTCGACCTTGACATGCTCATCAATTCTCGATCCAGTGGAAGCCCGAAAAA



GAAACGCAAGGTGGGAAGTGGGGGCGGCTCCGGTGGGAGCGGTAGTGTATTG



CCTCAAGCTCCCGCGCCCGCTCCTGCTCCGGCAATGGTTTCAGCTCTGGCACAA



GCTCCAGCTCCAGTGCCTGTGCTCGCCCCTGGCCCTCCGCAGGCCGTAGCACCT



CCCGCCCCCAAACCGACGCAAGCCGGTGAGGGGACTCTCTCTGAAGCCTTGCT



GCAGCTTCAGTTCGATGATGAAGATCTGGGCGCGCTCTTGGGGAACAGCACGG



ATCCGGCAGTATTTACGGACCTCGCATCAGTTGACAATAGTGAATTTCAACAA



CTTCTTAACCAGGGAATACCGGTTGCGCCCCATACGACGGAACCTATGCTGAT



GGAGTACCCTGAAGCTATAACCAGACTCGTAACTGGCGCCCAACGCCCGCCCG



ACCCGGCTCCTGCGCCGCTGGGTGCGCCGGGTCTTCCGAATGGTCTTCTCTCAG



GGGACGAAGATTTCAGTTCCATTGCGGATATGGACTTTTCCGCGCTCCTGAGTG



GGGGTGGCTCTGGAGGCTCTGGTTCCGACCTCAGCCATCCTCCACCGAGAGGA



CACCTCGACGAGCTGACAACCACCCTCGAAAGTATGACGGAAGATCTGAACTT



GGATTCCCCCCTTACCCCAGAACTGAATGAAATCCTCGATACGTTCTTGAACGA



TGAGTGCCTTTTGCACGCCATGCATATATCAACAGGTTTGTCTATCTTCGACAC



GTCCCTCTTTTGAGTCGACAATCAACCTCtggattacaaaatttgtgaaagattgactggtattcttaactat



gttgctccttttacgctatgtggatacgctgctttaatgcctttgtatcatgctattgcttcccgtatggctttcattttctcctccttg



tataaatcctggttgctgtctctttatgaggagttgtggcccgttgtcaggcaacgtggcgtggtgtgcactgtgtttgctgacgcaacc



cccactggttggggcattgccaccacctgtcagctcctttccgggactttcgctttccccctccctattgccacggcggaactcatcgcc



gcctgccttgcccgctgctggacaggggctcggctgttgggcactgacaattccgtggtgttgtcggggaaatcatcgtcctttccttgg



ctgctcgcctgtgttgccacctggattctgcgcgggacgtccttctgctacgtcccttcggccctcaatccagcggaccttccttcccgc



ggcctgctgccggctctgcggcctcttccgcgtctacgccttcgccctcagacgagtcggatctccctttgggccgcctccccgcct



ggtacctttaagaccaatgacttacaaggcagctgtagatcttagccactttttaaaagaaaaggggggactggaagggctaattca



ctcccaacgaaaataagatctgctttttgcttgtactgggtctctctggttagaccagatctgagcctgggagctctctggctaactagg



gaacccactgcttaagcctcaataaagcttgccttgagtgcttcaagtagtgtgtgcccgtctgttgtgtgactctggtaactagagatc



cctcagacccttttagtcagtgtggaaaatctctagcagtagtagttcatgtcatcttattattcagtatttataacttgcaaagaaatg



aatatcagagagtgagaggaacttgtttattgcagcttataatggttacaaataaagcaatagcatcacaaatttcacaaataaagcatt



tttttcactgcattctagttgtggtttgtccaaactcatcaatgtatcttatcatgtctggctctagctatcccgcccctaactccgccc



agttccgcccattctccgccccatggctgactaattttttttatttatgcagaggccgaggccgcctcggcctctgagctattccagaag



tagtgaggaggcttttttggaggcctagacttttgcagagacggcccaaattcgtaatcatggtcatagctgtttcctgtgtgaaattgt



tatccgctcacaattccacacaacatacgagccggaagcataaagtgtaaagcctggggtgcctaatgagtgagctaactcacattaatt



gcgttgcgctcactgcccgctttccagtcgggaaacctgtcgtgccagctgcattaatgaatcggccaacgcgcggggagaggcggt



ttgcgtattgggcgctcttccgcttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactcaa



aggcggtaatacggttatccacagaatcaggggataacgcaggaaagaacatgtgagcaaaaggccagcaaaaggccaggaa



ccgtaaaaaggccgcgttgctggcgtttttccataggctccgcccccctgacgagcatcacaaaaatcgacgctcaagtcagaggt



ggcgaaacccgacaggactataaagataccagggtttccccctggaagctccctcgtgcgctctcctgttccgaccctgccgctt



accggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgctgtaggtatctcagttcggtgtaggtcgtt



cgctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaaccc



ggtaagacacgacttatcgccactggcagcagccactggtaacaggattagcagagcgaggtatgtaggcggtgctacagagttc



ttgaagtggtggcctaactacggctacactagaaggacagtatttggtatctgcgctctgctgaagccagttaccttcggaaaaaga



gttggtagctcttgatccggcaaacaaaccaccgctggtagcggtggtttttttgtttgcaagcagcagattacgcgcagaaaaaaa



ggatctcaagaagatcctttgatcttttctacggggtctgacgctcagtggaacgaaaactcacgttaagggattttggtcatgagatt



atcaaaaaggatcttcacctagatccttttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttggtctgacag



ttaccaatgcttaatcagtgaggcacctatctcagcgatctgtctatttcgttcatccatagttgcctgactccccgtcgtgtagataac



tacgatacgggagggcttaccatctggccccagtgctgcaatgataccgcgagacccacgctcaccggctccagatttatcagcaataa



accagccagccggaagggccgagcgcagaagtggtcctgcaactttatccgcctccatccagtctattaattgttgccgggaagct



agagtaagtagttcgccagttaatagtttgcgcaacgttgttgccattgctacaggcatcgtggtgtcacgctcgtcgtttggtatggct



tcattcagctccggttcccaacgatcaaggcgagttacatgatcccccatgttgtgcaaaaaagcggttagctccttcggtcctccga



tcgttgtcagaagtaagttggccgcagtgttatcactcatggttatggcagcactgcataattctcttactgtcatgccatccgtaagat



gcttttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatgcggcgaccgagttgctcttgcccggcgtcaatacg



ggataataccgcgccacatagcagaactttaaaagtgctcatcattggaaaacgttcttcggggcgaaaactctcaaggatcttacc



gctgttgagatccagttcgatgtaacccactcgtgcacccaactgatcttcagcatcttttactttcaccagcgtttctgggtgagcaaa



aacaggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttgaatactcatactcttcctttttcaatattattga



agcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaataggggttccgcgcacatttccc



cgaaaagtgccacctgacgtctaagaaaccattattatcatgacattaacctataaaaataggcgtatcacgaggccctttcgtctcgc



gcgtttcggtgatgacggtgaaaacctctgacacatgcagctcccggagacggtcacagcttgtctgtaagcggatgccgggagc



agacaagcccgtcagggcgcgtcagcgggtgttggcgggtgtcggggctggcttaactatgcggcatcagagcagattgtactg



agagtgcaccatatgcggtgtgaaataccgcacagatgcgtaaggagaaaataccgcatcaggcgccattcgccattcaggctgc



gcaactgttgggaagggcgatcggtgcgggcctcttcgctattacgccagctggcgaaagggggatgtgctgcaaggcgattaa



gttgggtaacgccagggttttcccagtcacgacgttgtaaaacgacggccagtgccaagctg (SEQ ID NO: 319)









Example 5: Screening of GPC3 CAR/IL15 Expression Constructs

Assessment of the expression and function of the GPC3 CAR/IL15 expression constructs in NK cells was performed. 2e6 NK cells were plated into a 6-well non-TC treated, retronectin coated plate. A single viral transduction via spinoculation (MOI=15) was performed on plated NK cells. The NK cells were transduced using lentivirus or retrovirus containing the expression construct. Expression of the CAR and membrane IL15 were assessed as seen in FIG. 28A. NK cells transduced with constructs SB06257, SB06258, SB06294, and SB06692 exhibited expression of greater than 65% of cells in the gated population. In addition, FIG. 28A shows the measured copy numbers of YP7 and IL15 of each transduced NK cell population.


In addition to CAR expression being assessed, secreted IL-15 was also measured using the same expression constructs. To measure the levels of secreted IL-15, 200,000 transduced NK cells were suspended in 200 μL of MACS media in the presence of IL2. Secreted IL-15 was measured 48 hours after transduction. The concentrations of secreted IL-15 were measured for each construct and the results are shown in FIG. 28B.


Serial killing by NK cells transduced with the constructs was also assessed. Target cells were added at Days 0, 2, and 5, and target cell killing was measured over the course of the study. Results for serial NK cell killing of HepG2 target cells are shown in FIG. 28C and FIG. 29A. FIG. 29B shows results of serial NK cell killing of HuH-7 target cells.


Table 14 shows the exemplary constructs and their components used in this study.












TABLE 14





Construct
Base Vector
Co-Stim
Orientation







SB06257
SinVec
OX40
CAR 2A crIL15 (T10)


SB06258
SinVec
CD28
CAR 2A crIL15 (T10)


SB06294
RetroVec
OX40
crIL15 2A CAR (T10)


SB06692
SinVec
OX40
crIL15 2A CAR (T-OPT)









Example 6: Measuring GPC3 CAR/IL15 Expression and Function in Expanded NK Cells

In this study, the expression and function of GPC3 CAR/IL15 were measured for NK cells that were expanded using the G-Rex (Gas rapid expansion) system.


7-day-old donor-derived 7B NK cells (mbIL21/IL15 K562 feeders) were transduced and expanded in two different G-Rex experimental methods. Experiment 1 transduced 7-day donor 7B NK cells (mbIL21/IL15 K562 feeders) in G-Rex 6M culture containers for 11 days and harvested 11 days after transduction. Experiment 2 transduced 7-day donor 7B NK cells (mbIL21/IL15 K562 feeders) in G-Rex 1 L culture containers for 7 days and harvested 10 days after transduction. FIG. 30A demonstrated the effects of the different expansion conditions have on the expression of different proteins of interest in the engineered NK cells. FIG. 30B shows the serial killing assay measurements from the NK Cells derived from the different experiments.


Table 15 shows a summary of the study performed in Example 6. The top number corresponds to results obtained from NK cells expanded using the method of Experiment 1. The bottom number corresponds to results obtained from NK cells expended using the method of Experiment 2.





















TABLE 15










%


1st round -
2nd round-
3rd round-
CAN




Back
Co-


GPC3
%
pg/ml
% HepG2
% HepG2
% HepG2
(copies


SB#
bone
stim
IL15
Orientation
CAR
mIL15
sIL15
killing
killing
killing
per cell)
MOI



























NV




1.02
1.37
4.9
0
0
0









0.2
1.9
4.9
77.2
11.0
3.9


6257
SinVec
OX40
Tace10
CAR/
37.5
1.69
5.1
71.6
37.2
17.8
23.3
30.6






crIL15
57.4
10.3
17.0
81.2
78.8
83.2
23.9
30.6


6258
SinVec
CD28
Tace10
CAR/
36.8
10.7
5.5
18.3
1.4
0
39.2
15.5






crIL15
70.7
35.9
56.7
87.6
79.0
73.0
54.1
15.5


6294
RetroVec
OX40
Tace10
crIL15/
78.4
58.9
26.2
58.5
33.2
12.5
41.7
10.5






CAR
91.9
63.9
60.1
85.2
83.8
84.2
35.0
8.8


6692
SinVec
OX40
TaceOPT
crIL15/














CAR
78.8
16.9
104.5
83.4
83.0
83.2
47.5
15.0









Example 7: Assessment of GPC3 CAR/IL15 Bicistronic Constructs in a Xenograft Tumor Model

The in vivo function of selected engineered NK cells was assessed using a HepG2 xenotransplantation tumor model. Two studies were conducted: a double NK dose and a triple NK dose.


Double NK Dose In Vivo Xenograft Tumor Model

The tumor was implanted in NSG mice at day 0. Mice were randomized at day 9. NK cells were injected twice over the course of the study on days 10 and 17. Table 16 summarizes the study set-up.









TABLE 16







Summary of double NK dosing in vivo xenograft tumor model










Tumor model
Group Name
# NKs per dose
Dose day(s)





IP
PBS

10, 17


HepG2, 6e6
No virus (NV)
30e6




SB06257





SB06258





SB06294*





*Due to cell # limitation, second dose was ~15e6






For this survival study, Jackson Labs NSG mice were also injected with 50,000 IU rhIL2 per mouse twice per week. Bioluminescence imaging (BLI), body weight, and overall health measurements were conducted twice a week. Upon euthanizing mice, tumor were collected, weighed, and formalin fixed paraffin embedded (FFPE) for histology. IP fluid and cells were collected from the IP space and the % NK cells were assessed by flow cytometry. FIG. 31 summarizes the results the fold change in normalized mean BLI measurement in the HepG2 xenotransplantation tumor model. SB06258 showed the lowest normalized mean BLI compared to other treatment groups and was found to be statistically significant compared to the no virus (NV) group. FIG. 32A shows a survival curve of animals and FIG. 32B shows a summary of the median survival of each of the treatment groups. Each of the different CAR constructs tested were found to be statistically significant compared to un-engineered NK cells.



FIG. 33 shows a time course of the mice treated with different CAR-NK cells as measured and observed through bioluminescence imaging (BLI). The animals shown here were imaged 3 days, 10 days, 34 days, 48 days, and 69 days after treatment. In FIG. 34, BLI measurements were normalized to day 10 (first dose).


Triple Dosing In Vivo HepG2 Xenograft Tumor Model

The in vivo function of selected engineered NK cells was assessed using a HepG2 xenotransplantation tumor model. The tumor was implanted in NSG mice at day 0 in another in vivo experiments. Mice were randomized at day 9 and day 20. 30e6 NK cells were injected (IP) three times over the course of the study on days 10, 15, and 22. Table 17 summarizes the study set-up. On day 21, half of the mice were euthanized. The other half were euthanized on day 50 of the study. Upon euthanizing mice, tumor were collected, weighed, and formalin fixed paraffin embedded (FFPE) for histology.









TABLE 17







Study Design of HepG2 xenograft model










Tumor model
Group Name
# NKs per dose
NK dose days





IP
PBS

10, 15, 22


6e6
No virus (NV)
IP



HepG2
SB06257
30e6




SB06258





SB06294





SB06692










For this survival study, Jackson Labs NSG mice were also injected with 50,000 IU rhIL2 per mouse twice per week. Bioluminescence imaging (BLI), body weight, and overall health measurements were conducted twice a week. IP fluid and cells were collected from the IP space and the % NK cells were assessed by flow cytometry. FIG. 35A shows a representative BLI image at day 23 of the study. FIG. 35B summarizes the results the fold change in normalized mean BLI measurement in the HepG2 xenograft tumor model.


The fold change of BLI measurements were assessed at different stages of the experiments to assess the effect of a single or double dose of the engineered NK cells had an effect. FIG. 36A shows the fold change of BLI measurements on day 13, in which the mice had undergone one dose of the engineered NK cells. FIG. 36B shows the fold change of BLI measurements on day 20, in which the mice had undergone two doses of the engineered NK cells.


Comparison of the results from the two in vivo experiments are presented in FIG. 37A and FIG. 37B. In FIG. 37A, the different CAR constructs were tested in a xenograft model, plotting fold change of BLI over the course of the study. As seen in FIG. 37A and FIG. 37B, the two in vivo experiments exhibit differences in antitumor function of SB06257 and SB06258. GPC3 CAR-crIL-15 NK cell therapy shows statically significant in vivo anti-tumor efficacy compared to unengineered NK cells in an IP HCC (HepG2+luciferase) xenotransplantation model. All 3 groups treated with GPC3 CAR-crIL-15 engineered NK cells show significant increased survival over untreated (PBS) and unengineered NK cell-treated groups.


In Vivo Xenograft Model Intratumoral Injection of NK Cells

Another experimental approach was used to demonstrate NK-mediated anti-tumor killing for an HepG2 (HCC) subcutaneous xenograft tumor model. In this survival study, mice were injected three times with 3e6 NK cells on days 20, 25, and 32. FIG. 38A demonstrates tumor growth in mice in the absence or presence of injected engineered NK cells. GPC3 CAR-crIL-15 NK cell therapy shows significant in vivo anti-tumor efficacy compared to unengineered NK cells injected intratumorally (IT) within a subcutaneous HCC (HepG2+luciferase) xenotransplantation model. NK cells transduced with SB05605 show significantly increased survival over untreated (PBS) and unengineered NK cell-treated groups. Table 18 provides the constructs used for intratumoral injection of NK cells. SB05009 and SB06205 contain IL15 and the GPC3 CAR that are separate, and their expression is driven by separate promoters (SV40 promoter=GPC3 CAR, hPGK promoter=IL15). In addition, these constructs are oriented such that the reading frames are oriented in opposing directions.











TABLE 18





SEQ ID




NO:
Construct
Sequence







328
SB05009
aagcttgaattcgagcttgcatgcctgcaggtcgttacataacttacggtaaatggcccgcctgg




ctgaccgcccaacgacccccgcccattgacgtcaataatgacgtatgttcccatagtaacgcca




atagggactttccattgacgtcaatgggtggagtatttacggtaaactgcccacttggcagtacat




caagtgtatcatatgccaagtacgccccctattgacgtcaatgacggtaaatggcccgcctggc




attatgcccagtacatgaccttatgggactttcctacttggcagtacatctacgtattagtcatcgct




attaccatggtgatgcggttttggcagtacatcaatgggcgtggatagcggtttgactcacgggg




atttccaagtctccaccccattgacgtcaatgggagtttgttttggcaccaaaatcaacgggacttt




ccaaaatgtcgtaacaactccgccccattgacgcaaatgggcggtaggcgtgtacggtggga




ggtctatataagcagagctcaataaaagagcccacaacccctcactcggcgcgccagtcctcc




gattgactgagtcgcccgggtacccgtgtatccaataaaccctcttgcagttgcatccgacttgtg




gtctcgctgttccttgggagggtctcctctgagtgattgactacccgtcagcgggggtctttcattt




gggctcgtccgagatcgggagacccctgcccagggaccaccgacccaccaccgggagg




taagctggccagcaacttatctgtgtctgtccgattgtctagtgtctatgactgattttatgcgcctg




cgtcggtactagttagctaactagctctgtatctggcggacccgtggtggaactgacgagttcg




gaacacccggccgcaaccctgggagacgtcccagggacttcgggggccgtttttgtggcccg




acctgagtcctaaaatcccgatcgtttaggactctttggtgcaccccccttagaggagggatatgt




ggttctggtaggagacgagaacctaaaacagttcccgcctccgtctgaatttttgctttcggtttg




ggaccgaagccgcgccgcgcgtcttgtctgctgcagcatcgttctgtgttgtctctgtctgactgt




gtttctgtatttgtctgaaaatatgggccccccctcgagtccccagcatgcctgctattctcttccca




atcctcccccttgctgtcctgccccaccccaccccccagaatagaatgacacctactcagacaa




tgcgatgcaatttcctcattttattaggaaaggacagtgggagtggcaccttccagggtcaagga




aggcacgggggaggggcaaacaacagatggctggcaactagaaggcacagcttaAACG




GGCCGCACAGATTCTCTTCTCAGCCGTTCGTTTCTCCGCC




GCTCTCTGCATCTAGGGGCGAAGCAGTAGGTCAGGCAGC




AGATCACGAAGATGCCGTTCACGGAGATCAGTGTGATGG




CCCAGCTAGGCAGCAGTTGCAGAGATCCGCCACCACTTC




CTCCGCCTCCGCTACCGCCTCCGATCAGGCTGAAGATAG




GCTCGGGTGTAACTCCGCTTCCACCTCCGCCAGATCCTCC




GCCGCCAGAGCTTGTGTTGATGAACATCTGCACGATGTG




CACGAAGCTCTGCAGGAACTCTTTGATATTCTTCTCTTCC




AGTTCCTCGCACTCTTTGCAGCCGGACTCGGTCACATTGC




CGTTGCTGCTCAGGCTGTTGTTGGCCAGGATGATCAGGTT




TTCCACGGTGTCGTGGATGCTGGCGTCGCCGCTTTCCAGG




CTGATCACTTGCAGTTCCAGCAGAAAGCACTTCATGGCG




GTCACTTTACAGCTAGGGTGCACGTCGCTCTCGGTGTACA




GTGTGGCGTCGATGTGCATGCTCTGGATCAGGTCCTCGAT




CTTCTTCAGGTCGCTGATCACGTTGACCCAATTGCTGTGC




ACTCTTGTGGCAGCGGCCACCAGAAACAGGATCCAGGTC




CAGTCCATGGTGGCGGCacgcgtctggggagagaggtcggtgattcggtcaa




cgagggagccgactgccgacgtgcgctccggaggcttgcagaatgcggaacaccgcgcgg




gcaggaacagggcccacactaccgccccacaccccgcctcccgcaccgccccttcccggcc




gctgctctcggcgcgccctgctgagcagccgctattggccacagcccatcgcggtcggcgcg




ctgccattgctccctggcgctgtccgtctgcgagggtaatagtgagacgtgcggcttccgtttgt




cacgtccggcacgccgcgaaccgcaaggaaccttcccgacttaggggcggagcaggaagc




gtcgccggggggcccacaagggtagcggcgaagatccgggtgacgctgcgaacggacgtg




aagaatgtgcgagacccagggtcggcgccgctgcgtttcccggaaccacgcccagagcagc




cgcgtccctgcgcaaacccagggctgccttggaaaaggcgcaaccccaaccccgaattcccg




ataaaataaaagattttatttagtctccagaaaaaggggggaatgaaagaccccacctgtaggtt




tggcaagctagctgcaGTGTGTCAGTTAGGGTGTGGAAAGTCCCC




AGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCT




CAATTAGTCAGCAACCAGGTGTGGAAAGTCCCCAGGCTC




CCCAGCAGGCAGAAGTATGCAAAGCATGCATCTCAATTA




GTCAGCAACCATAGTCCCGCCCCTAACTCCGCCCATCCCG




CCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATG




GCTGACTAATTTTTTTTATTTATGCAGAGGCCGAGGCCGC




CTCTGCCTCTGAGCTATTCCAGAAGTAGTGAGGAGGCTTT




TTTGGAGGCCTAGGCTTTTGCAAAggatccgccaccATGCTGCT




GCTGGTCACATCTCTGCTGCTGTGCGAGCTGCCCCATCCT




GCCTTTCTGCTGATCCCTCACATGGAAGTGCAGCTGGTGG




AATCTGGCGGAGGACTGGTTCAACCTGGCGGCTCTCTGA




GACTGTCTTGTGCCGCCAGCGGCTTCACCTTCAACAAGAA




CGCCATGAACTGGGTCCGACAGGCCCCTGGCAAAGGCCT




TGAATGGGTCGGACGGATCCGGAACAAGACCAACAACTA




CGCCACCTACTACGCCGACAGCGTGAAGGCCAGGTTCAC




CATCTCCAGAGATGACAGCAAGAACAGCCTGTACCTGCA




GATGAACTCCCTGAAAACCGAGGACACCGCCGTGTACTA




TTGCGTGGCCGGCAATAGCTTTGCCTACTGGGGACAGGG




CACCCTGGTTACAGTTTCTGCTGGCGGCGGAGGAAGCGG




AGGCGGAGGATCCGGTGGTGGTGGATCTGACATCGTGAT




GACACAGAGCCCCGATAGCCTGGCCGTGTCTCTGGGAGA




AAGAGCCACCATCAACTGCAAGAGCAGCCAGAGCCTGCT




GTACTCCAGCAACCAGAAGAACTACCTGGCCTGGTATCA




GCAAAAGCCCGGCCAGCCTCCTAAGCTGCTGATCTATTG




GGCCAGCTCCAGAGAAAGCGGCGTGCCCGATAGATTTTC




TGGCTCTGGCAGCGGCACCGACTTCACCCTGACAATTTCT




AGCCTGCAAGCCGAGGACGTGGCCGTGTATTACTGCCAG




CAGTACTACAACTACCCTCTGACCTTCGGCCAGGGCACC




AAGCTGGAAATCAAATCTGGCGCCCTGAGCAACAGCATC




ATGTACTTCAGCCACTTCGTGCCCGTGTTTCTGCCCGCCA




AGCCTACAACAACCCCTGCTCCTAGACCTCCTACACCAGC




TCCTACAATCGCCAGCCAGCCTCTGTCTCTGAGGCCAGAA




GCTTGTAGACCTGCTGCAGGCGGAGCCGTGCATACAAGA




GGACTGGATTTCGCCTGCGACATCTACATCTGGGCCCCTC




TGGCTGGAACATGTGGTGTCCTGCTGCTGAGCCTGGTCAT




CACCCTGTACTGCAACCACCGGCGGAGCAAGAGAAGCAG




ACTGCTGCACAGCGACTACATGAACATGACCCCTAGACG




GCCCGGACCTACCAGAAAGCACTACCAGCCTTACGCTCC




TCCTAGAGACTTCGCCGCCTACCGGTCCAGAGTGAAGTTC




AGCAGATCCGCCGATGCTCCCGCCTATCAGCAGGGACAG




AACCAGCTGTACAACGAGCTGAACCTGGGGAGAAGAGA




AGAGTACGACGTGCTGGACAAGCGGAGAGGCAGAGATC




CTGAGATGGGCGGCAAGCCCAGACGGAAGAATCCTCAAG




AGGGCCTGTATAATGAGCTGCAGAAAGACAAGATGGCCG




AGGCCTACAGCGAGATCGGAATGAAGGGCGAGCGCAGA




AGAGGCAAGGGACACGATGGACTGTACCAGGGCCTGAG




CACCGCCACCAAGGATACCTATGATGCCCTGCACATGCA




GGCCCTGCCTCCAAGAGGAtaaggatccggattagtccaatttgttaaagaca




ggatgggctgcaggaattccgataatcaacctctggattacaaaatttgtgaaagattgactggt




attcttaactatgttgctccttttacgctatgtggatacgctgctttaatgcctttgtatcatgctattgc




ttcccgtatggctttcattttctcctccttgtataaatcctggttgctgtctctttatgaggagttgtgg




cccgttgtcaggcaacgtggcgtggtgtgcactgtgtttgctgacgcaacccccactggttggg




gcattgccaccacctgtcagctcctttccgggactttcgctttccccctccctattgccacggcgg




aactcatcgccgcctgccttgcccgctgctggacaggggctcggctgttgggcactgacaattc




cgtggtgttgtcggggaagctgacgtcctttccatggctgctcgcctgtgttgccacctggattct




gcgcgggacgtccttctgctacgtcccttcggccctcaatccagcggaccttccttcccgcggc




ctgctgccggctctgcggcctcttccgcgtcttcgccttcgccctcagacgagtcggatctccctt




tgggccgcctccccgcctggagaattcgatatcagtggtccaggctctagttttgactcaacaat




atcaccagctgaagcctatagagtacgagccatagataaaataaaagattttatttagtctccaga




aaaaggggggaatgaaagaccccacctgtaggtttggcaagctagcaataaaagagcccaca




acccctcactcggggcgccagtcctccgattgactgagtcgcccggccgcttcgagcagacat




gataagatacattgatgagtttggacaaaccacaactagaatgcagtgaaaaaaatgctttatttg




tgaaatttgtgatgctattgctttatttgtaaccattataagctgcaataaacaagttaacaacaaca




attgcattcattttatgtttcaggttcagggggagatgtgggaggttttttaaagcaagtaaaacct




ctacaaatgtggtaaaatcgataaggatcgggtacccgtgtatccaataaaccctcttgcagttg




catccgacttgtggtctcgctgttccttgggagggtctcctctgagtgattgactacccgtcagcg




ggggtctttcacacatgcagcatgtatcaaaattaatttggttttttttcttaagctgtgccttctagtt




gccagccatctgttgtttgcccctcccccgtgccttccttgaccctggaaggtgccactcccact




gtcctttcctaataaaatgaggaaattgcatcgcattgtctgagtaggtgtcattctattctggggg




gtggggggggcaggacagcaagggggaggattgggaagacaatagcaggcatgctggg




gatgcggtgggctctatggagatcccgcggtacctcgcgaatgcatctagatccaatggcctttt




tggcccagacatgataagatacattgatgagtttggacaaaccacaactagaatgcagtgaaaa




aaatgctttatttgtgaaatttgtgatgctattgctttatttgtaaccattataagctgcaataaacaag




ttgcggccgcttagccctcccacacataaccagagggcagcaattcacgaatcccaactgccg




tcggctgtccatcactgtccttcactatggctttgatcccaggatgcagatcgagaagcacctgtc




ggcaccgtccgcaggggctcaagatgcccctgttctcatttccgatcgcgacgatacaagtcag




gttgccagctgccgcagcagcagcagtgcccagcaccacgagttctgcacaaggtcccccag




taaaatgatatacattgacaccagtgaagatgcggccgtcgctagagagagctgcgctggcga




cgctgtagtcttcagagatggggatgctgttgattgtagccgttgctctttcaatgagggtggattc




ttcttgagacaaaggcttggccatgcggccgccgctcggtgttcgaggccacacgcgtcacctt




aatatgcgaagtggacctcggaccgcgccgccccgactgcatctgcgtgttcgaattcgccaat




gacaagacgctgggcggggtttgtgtcatcatagaactaaagacatgcaaatatatttcttccgg




ggggtaccggcctttttggccATTGGatcggatctggccaaaaaggcccttaagtatttaca




ttaaatggccatagtacttaaagttacattggcttccttgaaataaacatggagtattcagaatgtgt




cataaatatttctaattttaagatagtatctccattggctttctactttttcttttatttttttttgtcctctgtc




ttccatttgttgttgttgttgtttgtttgtttgtttgttggttggttggttaatttttttttaaagatcctacact




atagttcaagctagactattagctactctgtaacccagggtgaccttgaagtcatgggtagcctgc




tgttttagccttcccacatctaagattacaggtatgagctatcatttttggtatattgattgattgattg




attgatgtgtgtgtgtgtgattgtgtttgtgtgtgtgaTtgtgTaTatgtgtgtatggTtgtgtgtg




aTtgtgtgtatgtatgTTtgtgtgtgaTtgTgtgtgtgtgaTtgtgcatgtgtgtgtgtgtgaTt




gtgtTtatgtgtatgaTtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgttgtg




TaTaTatatttatggtagtgagagGcaacgctccggctcaggtgtcaggttggtttttgagac




agagtctttcacttagcttggaattcactggccgtcgttttacaacgtcgtgactgggaaaaccct




ggcgttacccaacttaatcgccttgcagcacatccccctttcgccagctggcgtaatagcgaag




aggcccgcaccgatcgcccttcccaacagttgcgcagcctgaatggcgaatggcgcctgatg




cggtattttctccttacgcatctgtgcggtatttcacaccgcatatggtgcactctcagtacaatctg




ctctgatgccgcatagttaagccagccccgacacccgccaacacccgctgacgcgccctgac




gggcttgtctgctcccggcatccgcttacagacaagctgtgaccgtctccgggagctgcatgtg




tcagaggttttcaccgtcatcaccgaaacgcgcgagacgaaagggcctcgtgatacgcctattt




ttataggttaatgtcatgataataatggtttcttagacgtcaggtggcacttttcggggaaatgtgc




gcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgagacaataaccct




gataaatgcttcaataatattgaaaaaggaagagtatgagtattcaacatttccgtgtcgcccttatt




cccttttttgcggcattttgccttcctgtttttgctcacccagaaacgctggtgaaagtaaaagatgc




tgaagatcagttgggtgcacgagtgggttacatcgaactggatctcaacagcggtaagatcctt




gagagttttcgccccgaagaacgttttccaatgatgagcacttttaaagttctgctatgtggcgcg




gtattatcccgtattgacgccgggcaagagcaactcggtcgccgcatacactattctcagaatga




cttggttgagtactcaccagtcacagaaaagcatcttacggatggcatgacagtaagagaattat




gcagtgctgccataaccatgagtgataacactgcggccaacttacttctgacaacgatcggagg




accgaaggagctaaccgcttttttgcacaacatgggggatcatgtaactcgccttgatcgttggg




aaccggagctgaatgaagccataccaaacgacgagcgtgacaccacgatgcctgtagcaatg




gcaacaacgttgcgcaaactattaactggcgaactacttactctagcttcccggcaacaattaata




gactggatggaggcggataaagttgcaggaccacttctgcgctcggcccttccggctggctgg




tttattgctgataaatctggagccggtgagcgtgggtctcgcggtatcattgcagcactggggcc




agatggtaagccctcccgtatcgtagttatctacacgacggggagtcaggcaactatggatgaa




cgaaatagacagatcgctgagataggtgcctcactgattaagcattggtaactgtcagaccaag




tttactcatatatactttagattgatttaaaacttcatttttaatttaaaaggatctaggtgaagatccttt




ttgataatctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtag




aaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaa




accaccgctaccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaa




ctggcttcagcagagcgcagataccaaatactgtccttctagtgtagccgtagttaggccaccac




ttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgcc




agtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcag




cggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacctacaccg




aactgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggc




ggacaggtatccggtaagcggcagggtcggaacaggagagcgcacgagggagcttccagg




gggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttg




tgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggcctttttacggttc




ctggccttttgctggccttttgctcacatgttctttcctgcgttatcccctgattctgtggataaccgt




attaccgcctttgagtgagctgataccgctcgccgcagccgaacgaccgagcgcagcgagtc




agtgagcgaggaagcggaagagcgcccaatacgcaaaccgcctctccccgcgcgttggccg




attcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagtgagcgcaacgca




attaatgtgagttagctcactcattaggcaccccaggctttacactttatgcttccggctcgtatgtt




gtgtggaattgtgagcggataacaatttcacacaggaaacagctatgaccatgattacgcc





329
SB05605
aagcttgaattcgagcttgcatgcctgcaggtcgttacataacttacggtaaatggcccgcctgg




ctgaccgcccaacgacccccgcccattgacgtcaataatgacgtatgttcccatagtaacgcca




atagggactttccattgacgtcaatgggggagtatttacggtaaactgcccacttggcagtacat




caagtgtatcatatgccaagtacgccccctattgacgtcaatgacggtaaatggcccgcctggc




attatgcccagtacatgaccttatgggactttcctacttggcagtacatctacgtattagtcatcgct




attaccatggtgatgcggttttggcagtacatcaatgggcgtggatagcggtttgactcacgggg




atttccaagtctccaccccattgacgtcaatgggagtttgttttggcaccaaaatcaacgggacttt




ccaaaatgtcgtaacaactccgccccattgacgcaaatgggcggtaggcgtgtacggtggga




ggtctatataagcagagctcaataaaagagcccacaacccctcactcggcgcgccagtcctcc




gattgactgagtcgcccgggtacccgtgtatccaataaaccctcttgcagttgcatccgacttgtg




gtctcgctgttccttgggagggtctcctctgagtgattgactacccgtcagcgggggtctttcattt




gggggctcgtccgagatcgggagacccctgcccagggaccaccgacccaccaccgggagg




taagctggccagcaacttatctgtgtctgtccgattgtctagtgtctatgactgattttatgcgcctg




cgtcggtactagttagctaactagctctgtatctggcggacccgtggtggaactgacgagttcg




gaacacccggccgcaaccctgggagacgtcccagggacttcgggggccgtttttgtggcccg




acctgagtcctaaaatcccgatcgtttaggactctttggtgcaccccccttagaggagggatatgt




ggttctggtaggagacgagaacctaaaacagttcccgcctccgtctgaatttttgctttcggtttg




ggaccgaagccgcgccgcgcgtcttgtctgctgcagcatcgttctgtgttgtctctgtctgactgt




gtttctgtatttgtctgaaaatatgggccccccctcgagtccccagcatgcctgctattctcttccca




atcctcccccttgctgtcctgccccaccccaccccccagaatagaatgacacctactcagacaa




tgcgatgcaatttcctcattttattaggaaaggacagtgggagtggcaccttccagggtcaagga




aggcacgggggaggggcaaacaacagatggctggcaactagaaggcacagcttaAACG




GGCCGCACAGATTCTCTTCTCAGCCGTTCGTTTCTCCGCC




GCTCTCTGCATCTAGGGGCGAAGCAGTAGGTCAGGCAGC




AGATCACGAAGATGCCGTTCACGGAGATCAGTGTGATGG




CCCAGCTAGGCAGCAGTTGCAGAGATCCGCCACCACTTC




CTCCGCCTCCGCTACCGCCTCCGATCAGGCTGAAGATAG




GCTCGGGTGTAACTCCGCTTCCACCTCCGCCAGATCCTCC




GCCGCCAGAGCTTGTGTTGATGAACATCTGCACGATGTG




CACGAAGCTCTGCAGGAACTCTTTGATATTCTTCTCTTCC




AGTTCCTCGCACTCTTTGCAGCCGGACTCGGTCACATTGC




CGTTGCTGCTCAGGCTGTTGTTGGCCAGGATGATCAGGTT




TTCCACGGTGTCGTGGATGCTGGCGTCGCCGCTTTCCAGG




CTGATCACTTGCAGTTCCAGCAGAAAGCACTTCATGGCG




GTCACTTTACAGCTAGGGTGCACGTCGCTCTCGGTGTACA




GTGTGGCGTCGATGTGCATGCTCTGGATCAGGTCCTCGAT




CTTCTTCAGGTCGCTGATCACGTTGACCCAATTGCTGTGC




ACTCTTGTGGCAGCGGCCACCAGAAACAGGATCCAGGTC




CAGTCCATGGTGGCGGCacgcgtctggggagagaggtcggtgattcggtcaa




cgagggagccgactgccgacgtgcgctccggaggcttgcagaatgcggaacaccgcgcgg




gcaggaacagggcccacactaccgccccacaccccgcctcccgcaccgccccttcccggcc




gctgctctcggcgcgccctgctgagcagccgctattggccacagcccatcgcggtcggcgcg




ctgccattgctccctggcgctgtccgtctgcgagggtaatagtgagacgtgcggcttccgtttgt




cacgtccggcacgccgcgaaccgcaaggaaccttcccgacttaggggcggagcaggaagc




gtcgccggggggcccacaagggtagcggcgaagatccgggtgacgctgcgaacggacgtg




aagaatgtgcgagacccagggtcggcgccgctgcgtttcccggaaccacgcccagagcagc




cgcgtccctgcgcaaacccagggctgccttggaaaaggcgcaaccccaaccccgaattcccg




ataaaataaaagattttatttagtctccagaaaaaggggggaatgaaagaccccacctgtaggtt




tggcaagctagctgcaGTGTGTCAGTTAGGGTGTGGAAAGTCCCC




AGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCT




CAATTAGTCAGCAACCAGGTGTGGAAAGTCCCCAGGCTC




CCCAGCAGGCAGAAGTATGCAAAGCATGCATCTCAATTA




GTCAGCAACCATAGTCCCGCCCCTAACTCCGCCCATCCCG




CCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATG




GCTGACTAATTTTTTTTATTTATGCAGAGGCCGAGGCCGC




CTCTGCCTCTGAGCTATTCCAGAAGTAGTGAGGAGGCTTT




TTTGGAGGCCTAGGCTTTTGCAAAggatccgccaccATGCTGCT




GCTGGTCACATCTCTGCTGCTGTGCGAGCTGCCCCATCCT




GCCTTTCTGCTGATCCCTCACATGGAAGTGCAGCTGGTGG




AATCTGGCGGAGGACTGGTTCAACCTGGCGGCTCTCTGA




GACTGTCTTGTGCCGCCAGCGGCTTCACCTTCAACAAGAA




CGCCATGAACTGGGTCCGACAGGCCCCTGGCAAAGGCCT




TGAATGGGTCGGACGGATCCGGAACAAGACCAACAACTA




CGCCACCTACTACGCCGACAGCGTGAAGGCCAGGTTCAC




CATCTCCAGAGATGACAGCAAGAACAGCCTGTACCTGCA




GATGAACTCCCTGAAAACCGAGGACACCGCCGTGTACTA




TTGCGTGGCCGGCAATAGCTTTGCCTACTGGGGACAGGG




CACCCTGGTTACAGTTTCTGCTGGCGGCGGAGGAAGCGG




AGGCGGAGGATCCGGTGGTGGTGGATCTGACATCGTGAT




GACACAGAGCCCCGATAGCCTGGCCGTGTCTCTGGGAGA




AAGAGCCACCATCAACTGCAAGAGCAGCCAGAGCCTGCT




GTACTCCAGCAACCAGAAGAACTACCTGGCCTGGTATCA




GCAAAAGCCCGGCCAGCCTCCTAAGCTGCTGATCTATTG




GGCCAGCTCCAGAGAAAGCGGCGTGCCCGATAGATTTTC




TGGCTCTGGCAGCGGCACCGACTTCACCCTGACAATTTCT




AGCCTGCAAGCCGAGGACGTGGCCGTGTATTACTGCCAG




CAGTACTACAACTACCCTCTGACCTTCGGCCAGGGCACC




AAGCTGGAAATCAAGACCACCACACCAGCTCCTCGGCCA




CCAACTCCAGCTCCAACAATTGCCAGCCAGCCTCTGTCTC




TGAGGCCCGAAGCTTGTAGACCTGCTGCAGGCGGAGCCG




TGCATACAAGAGGACTGGATTTCGCCTGCGACATCTACA




TCTGGGCCCCTCTGGCTGGAACATGTGGTGTCTTGCTGCT




GAGCCTGGTCATCACCAAGCGGGGCAGAAAGAAGCTGCT




GTACATCTTCAAGCAGCCCTTCATGCGGCCCGTGCAGACC




ACACAAGAGGAAGATGGCTGCAGCTGTCGGTTCCCCGAG




GAAGAAGAAGGCGGCTGCGAGCTGAGAGTGAAGTTCAG




CAGGAGCGCAGACGCCCCCGCGTACAAGCAGGGCCAGA




ACCAGCTCTATAACGAGCTCAATCTAGGACGAAGAGAGG




AGTACGATGTTTTGGACAAGAGACGTGGCCGGGACCCTG




AGATGGGGGGAAAGCCGAGAAGGAAGAACCCTCAGGAA




GGCCTGTACAATGAACTGCAGAAAGATAAGATGGCGGAG




GCCTACAGTGAGATTGGGATGAAAGGCGAGCGCCGGAG




GGGCAAGGGGCACGATGGCCTTTACCAGGGTCTCAGTAC




AGCCACCAAGGACACCTACGACGCCCTTCACATGCAGGC




CCTGCCCCCTCGCtaaggatccggattagtccaatttgttaaagacaggatgggctg




caggaattccgataatcaacctctggattacaaaatttgtgaaagattgactggtattcttaactatg




ttgctccttttacgctatgtggatacgctgctttaatgcctttgtatcatgctattgcttcccgtatggc




tttcattttctcctccttgtataaatcctggttgctgtctctttatgaggagttgtggcccgttgtcagg




caacgtggcgtggtgtgcactgtgtttgctgacgcaacccccactggttggggcattgccacca




cctgtcagctcctttccgggactttcgctttccccctccctattgccacggcggaactcatcgccg




cctgccttgcccgctgctggacaggggctcggctgttgggcactgacaattccgtggtgttgtc




ggggaagctgacgtcctttccatggctgctcgcctgtgttgccacctggattctgcgcgggacg




tccttctgctacgtcccttcggccctcaatccagcggaccttccttcccgcggcctgctgccggc




tctgcggcctcttccgcgtcttcgccttcgccctcagacgagtcggatctccctttgggccgcctc




cccgcctggagaattcgatatcagtggtccaggctctagttttgactcaacaatatcaccagctg




aagcctatagagtacgagccatagataaaataaaagattttatttagtctccagaaaaagggggg




aatgaaagaccccacctgtaggtttggcaagctagcaataaaagagcccacaacccctcactc




ggggcgccagtcctccgattgactgagtcgcccggccgcttcgagcagacatgataagataca




ttgatgagtttggacaaaccacaactagaatgcagtgaaaaaaatgctttatttgtgaaatttgtga




tgctattgctttatttgtaaccattataagctgcaataaacaagttaacaacaacaattgcattcatttt




atgtttcaggttcagggggagatgtgggaggttttttaaagcaagtaaaacctctacaaatgtggt




aaaatcgataaggatcgggtacccgtgtatccaataaaccctcttgcagttgcatccgacttgtg




gtctcgctgttccttgggagggtctcctctgagtgattgactacccgtcagcgggggtctttcaca




catgcagcatgtatcaaaattaatttggttttttttcttaagctgtgccttctagttgccagccatctgt




tgtttgcccctcccccgtgccttccttgaccctggaaggtgccactcccactgtcctttcctaataa




aatgaggaaattgcatcgcattgtctgagtaggtgtcattctattctggggggtggggtggggca




ggacagcaagggggaggattgggaagacaatagcaggcatgctggggatgcggtgggctct




atggagatcccgcggtacctcgcgaatgcatctagatccaatggcctttttggcccagacatgat




aagatacattgatgagtttggacaaaccacaactagaatgcagtgaaaaaaatgctttatttgtga




aatttgtgatgctattgctttatttgtaaccattataagctgcaataaacaagttgcggccgcttagc




cctcccacacataaccagagggcagcaattcacgaatcccaactgccgtcggctgtccatcact




gtccttcactatggctttgatcccaggatgcagatcgagaagcacctgtcggcaccgtccgcag




gggctcaagatgcccctgttctcatttccgatcgcgacgatacaagtcaggttgccagctgccg




cagcagcagcagtgcccagcaccacgagttctgcacaaggtcccccagtaaaatgatatacat




tgacaccagtgaagatgcggccgtcgctagagagagctgcgctggcgacgctgtagtcttca




gagatggggatgctgttgattgtagccgttgctctttcaatgagggtggattcttcttgagacaaa




ggcttggccatgcggccgccgctcggtgttcgaggccacacgcgtcaccttaatatgcgaagt




ggacctcggaccgcgccgccccgactgcatctgcgtgttcgaattcgccaatgacaagacgct




gggcggggtttgtgtcatcatagaactaaagacatgcaaatatatttcttccggggggtaccggc




ctttttggccATTGGatcggatctggccaaaaaggcccttaagtatttacattaaatggccat




agtacttaaagttacattggcttccttgaaataaacatggagtattcagaatgtgtcataaatatttct




aattttaagatagtatctccattggctttctactttttcttttatttttttttgtcctctgtcttccatttgttgtt




gttgttgtttgtttgtttgtttgttggttggttggttaatttttttttaaagatcctacactatagttcaagct




agactattagctactctgtaacccagggtgaccttgaagtcatgggtagcctgctgttttagccttc




ccacatctaagattacaggtatgagctatcatttttggtatattgattgattgattgattgatgtgtgtg




tgtgtgattgtgtttgtgtgtgtgaTtgtgTaTatgtgtgtatggTtgtgtgtgaTtgtgtgtatgt




atgTTtgtgtgtgaTtgTgtgtgtgtgaTtgtgcatgtgtgtgtgtgtgaTtgtgtTtatgtgta




tgaTtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgttgtgTaTaTatatttat




ggtagtgagagGcaacgctccggctcaggtgtcaggttggtttttgagacagagtctttcactta




gcttggaattcactggccgtcgttttacaacgtcgtgactgggaaaaccctggcgttacccaactt




aatcgccttgcagcacatccccctttcgccagctggcgtaatagcgaagaggcccgcaccgat




cgcccttcccaacagttgcgcagcctgaatggcgaatggcgcctgatgcggtattttctccttac




gcatctgtgcggtatttcacaccgcatatggtgcactctcagtacaatctgctctgatgccgcata




gttaagccagccccgacacccgccaacacccgctgacgcgccctgacgggcttgtctgctcc




cggcatccgcttacagacaagctgtgaccgtctccgggagctgcatgtgtcagaggttttcacc




gtcatcaccgaaacgcgcgagacgaaagggcctcgtgatacgcctatttttataggttaatgtca




tgataataatggtttcttagacgtcaggtggcacttttcggggaaatgtgcgcggaacccctattt




gtttatttttctaaatacattcaaatatgtatccgctcatgagacaataaccctgataaatgcttcaat




aatattgaaaaaggaagagtatgagtattcaacatttccgtgtcgcccttattcccttttttgcggca




ttttgccttcctgtttttgctcacccagaaacgctggtgaaagtaaaagatgctgaagatcagttgg




gtgcacgagtgggttacatcgaactggatctcaacagcggtaagatccttgagagttttcgccc




cgaagaacgttttccaatgatgagcacttttaaagttctgctatgtggcgcggtattatcccgtatt




gacgccgggcaagagcaactcggtcgccgcatacactattctcagaatgacttggttgagtact




caccagtcacagaaaagcatcttacggatggcatgacagtaagagaattatgcagtgctgccat




aaccatgagtgataacactgcggccaacttacttctgacaacgatcggaggaccgaaggagct




aaccgcttttttgcacaacatgggggatcatgtaactcgccttgatcgttgggaaccggagctga




atgaagccataccaaacgacgagcgtgacaccacgatgcctgtagcaatggcaacaacgttg




cgcaaactattaactggcgaactacttactctagcttcccggcaacaattaatagactggatgga




ggcggataaagttgcaggaccacttctgcgctcggcccttccggctggctggtttattgctgata




aatctggagccggtgagcgtgggtctcgcggtatcattgcagcactggggccagatggtaagc




cctcccgtatcgtagttatctacacgacggggagtcaggcaactatggatgaacgaaatagaca




gatcgctgagataggtgcctcactgattaagcattggtaactgtcagaccaagtttactcatatata




ctttagattgatttaaaacttcatttttaatttaaaaggatctaggtgaagatcctttttgataatctcat




gaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaa




ggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctac




cagcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggcttcagca




gagcgcagataccaaatactgtccttctagtgtagccgtagttaggccaccacttcaagaactct




gtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcgataa




gtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcggtcgggctg




aacggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgagatacc




tacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatcc




ggtaagcggcagggtcggaacaggagagcgcacgagggagcttccagggggaaacgcct




ggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgtgatgctcgtca




ggggggcggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggccttttgct




ggccttttgctcacatgttctttcctgcgttatcccctgattctgtggataaccgtattaccgcctttg




agtgagctgataccgctcgccgcagccgaacgaccgagcgcagcgagtcagtgagcgagg




aagcggaagagcgcccaatacgcaaaccgcctctccccgcgcgttggccgattcattaatgca




gctggcacgacaggtttcccgactggaaagcgggcagtgagcgcaacgcaattaatgtgagtt




agctcactcattaggcaccccaggctttacactttatgcttccggctcgtatgttgtgtggaattgt




gagcggataacaatttcacacaggaaacagctatgaccatgattacgcc









Example 8: Assessment of Grazoprevir Induction of IL12 in Natural Killer Cells

For this study, the induction of IL12 was measured in the presence and absence of grazoprevir, an inhibitor of the HCV NS3 protease. The construct used in this study has been previously described in Example 2. Two regulatable IL-12 constructs demonstrated controlled crIL-12 expression by GRZ in a dose-response manner and show low donor-to-donor variability The tested construct candidates resulted in low IL-12 basal levels in the absence of GRZ (less than 100 pg/ml) and greater than 100-fold induction of IL-12 by 0.1 μM of GRZ (p=<0.0001). FIG. 39A-39B show two different time points (24 hours and 72 hours, respectively) after addition of GRZ to NK cells expressing the SB05042 and SB05058 constructs.


To assess whether the grazoprevir can be used to transition the circuit in an on to off or off to on state in a mouse model, the following study was designed. On day 0, NK cells were injected (IV) in the presence of grazoprevir or vehicle. On days 1, 9, and 10, another dose of grazoprevir or vehicle was injected. Mice were bled on days 2, 9, and 11 to assess expression of IL-12. FIG. 40 shows the results of the study. On day 2, IL12 expression increased in the presence of 20, 50, and 100 mg/kg GRZ as compared to the control. On day 9, where GRZ administration has not occurred for 8 days, expression of IL12 is decreased as compared to sampling on day 2. On day 11, expression has increased once again in relation to the control.


Example 9: Assessment of Co-Transduction of GPC3 CAR/IL15 and Regulated IL12 Constructs

Function and expression of GPC3 CAR, IL15 and IL12 were assessed in NK cells that were co-transduced with GPC/IL15 constructs and the regulated IL12 construct.


Expression of GPC3 CAR IL15

Three construct combinations were tested: 1) SB05042+SB0257, 2) SB05042+SB06258, and 3) SB05042 and SB06294. NK cells co-transduced with SB05042+SB06257 or SB05042+SB06258 expressed GPC3 CAR and IL15 populations and similar copies per cell. NK cells co-transduced with SB06294 exhibited a higher double positive (GPC+/IL15+) population with a slight decrease in CAR only population and with similar copies per cell (FIG. 41)


Expression of Secreted IL12 and IL15

Expression of secreted IL12 and IL15 were measured in NK cells in the presence or absence of grazoprevir was tested. 200,000 transduced NK cells were suspended in 200 μL of NK MACS media supplemented with IL-2. Grazoprevir was added to “+” conditions at a molar concentration of 0.1 μM. NK cells were incubated for 48 hours at 37 C prior to measurement of the supernatant for IL15 (FIG. 42A) and IL12 (FIG. 42B) concentration. IL15 expression increased slightly in the presence of grazoprevir, with the co-transduced NK cells showing statistically significant IL15 expression in the presence of GRZ. NK cells co-transduced with SB05042+SB06257 expressed 2201 pg/mL IL12 in the presence of grazoprevir, as compared to 12 pg/mL in the absence of grazoprevir (1100-fold induction). SB05042+SB06258 cotransduction exhibited 1003-fold induction in the presence of grazoprevir. SB05042+SB06294 co transduction exhibited 736-fold induction. The three co-transduction combinations were statistically significant compared to NK cells transduced with SB05042 alone. Assessing IL12 expression, NK cells transduced with SB05042 alone showed induction of IL12 in the presence of grazoprevir, showing an 390-fold increase in expression.


Cytokine Secretion During Serial Killing (Huh77)

Serial killing of target cells were carried out as previously described using NK cells singly transduced or co-transduced with GPC3 CAR/IL15 (SB06257, SB06258, SB06294) and/or IL12 constructs (SB05042).


Co-transduced samples maintained low amounts of IL12 induction into the 3rd round in the presence of GRZ. Overall cytokine secretion decreases overtime in both IL12 and IL15 (FIG. 43). In the presence of grazoprevir, SB05042 and SB05042+SB06257 transductions showed significant induction of IL12 expression in the first round of killing. In the second round, the three co-transductions with the different GPC3 CAR expressing constructs (SB06257, SB06258, SB06294) and SB05042 showed statistically significant induction of IL12. In the third round, only SB05042+SB06257 and SB05042+SB06294 showed significant IL12 induction.


Serial Killing Assays with Co-Transduced NK Cells


The cell killing effect of NK cells that were co-transduced with GPC3 CAR/IL15 (SB06257, SB06258, SB06294) and/or IL12 constructs (SB05042) were assessed using a serial killing assay. NK cells co-transduced with SB05042+SB06258 (FIG. 44A), SB05042+SB06257 (FIG. 44B) and SB05042+SB06294 (FIG. 44C) were used in a serial killing assay in which GRZ was added at the first and third rounds of cell killing. When co-cultured with HepG2 we see a greater difference between +/−GRZ (induced IL12 or not) as compared to huh7. FIG. 44D shows a combination of the data shown in FIGS. 44A-44C.


Example 10: Selection of GPC3 CAR/IL15 Clones

Selection of clones were performed by transducing NK cells that have stably integrated the expression construct. A lower MOI was used (MOI=3) was used for clonal selection of SB06258. A control transient transduction (MOI=15) was also performed used in SB06258 and SB07273 (identical to SB06258 but contains a kanamycin resistance marker instead of an ampicillin resistance marker). 8 days after transduction, the cells were assessed. The copies per cell was lower in the PCB clones as compared to the transient transduction using SB06258 (FIG. 45A). CAR expression was relatively constant across the different PCB clones (FIG. 45B), as well as the IL15+ population (FIG. 45C). Secreted IL15 of PCB clones was measured to be greater than 30 pg/mL (FIG. 45D).


Flow cytometry was also used to assess the expression of the GPC3 CAR and IL15 in the PCM clones. As a control, SB07473 was used to transduced NK cells at an M0I=15. PCB clones were transduced at an MOI of 3.0. For all PCR clones, GPC3 CAR expression was greater than 20% (FIG. 46A).


For select clones, SB05042 was also co-transduced to assess the expression of the GPC3 CAR, membrane bound IL15 and membrane bound IL12 9 days after transduction. Clone 3 (MOI=3.0) and clone 4 (MOI=3.0) was co-transduced with SB05042 (MOI=0.05). During co-transduction, there was similar expression of the GPC3 CAR and membrane bound IL12 (FIG. 46B). Table 19 shows a summary of the expression levels of the PCB clones transduced with SB06258.











TABLE 19









PCB Clones


















6258
7473
2
3
4
5
6
7
9
10





















Copy #
19.8
3.9

8.88
6.2
10.7
14.4
7.9
9
12.1



19.2
2.4



10.4
10.9
6.2



24.2

8.3
11.6
10.2


CAR %
59.5
22.5

35.2
29
40.9
43.1
36.7
38.8
46.3



59.5
16.5



46.8
41.5
31.6



75.1
37.1
46.8
54.6
44.8


memb-
32.7
9.23

15.2
13.4
18.8
20.1
15.4
16.1
21.6


IL-15
20.4
9.9



14.6
19.2
15.2



55.1
20.6
25.5
36.3
31.5


Sec-
73.0
11.9
30.6
49.9
39.9
51.0
51.5
33.8


IL15
63.8
13.9
29.8
44.8
30.4
45.8
46.5
29.0



67.6
13.5
28.3
52.4
35.4
47.1
51.3
29.8


















TABLE 20





SEQ ID NO
Construct
Sequence







326
SB07472
aagcttggaattcgagcttgcatgcctgcaggtcgttacataacttacggtaaatggcccgcct




ggctgaccgcccaacgacccccgcccattgacgtcaataatgacgtatgttcccatagtaacg




ccaatagggactttccattgacgtcaatgggtggagtatttacggtaaactgcccacttggcagt




acatcaagtgtatcatatgccaagtacgccccctattgacgtcaatgacggtaaatggcccgcc




tggcattatgcccagtacatgaccttatgggactttcctacttggcagtacatctacgtattagtca




tcgctattaccatggtgatgcggttttggcagtacatcaatgggcgtggatagcggtttgactca




cggggatttccaagtctccaccccattgacgtcaatgggagtttgttttggcaccaaaatcaac




gggactttccaaaatgtcgtaacaactccgccccattgacgcaaatgggcggtaggcgtgtac




ggtgggaggtctatataagcagagctcaataaaagagcccacaacccctcactcggcgcgc




cagtcctccgattgactgagtcgcccgggtacccgtgtatccaataaaccctcttgcagttgcat




ccgacttgtggtctcgctgttccttgggagggtctcctctgagtgattgactacccgtcagcgg




gggtctttcatttgggggctcgtccgagatcgggagacccctgcccagggaccaccgaccca




ccaccgggaggtaagctggccagcaacttatctgtgtctgtccgattgtctagtgtctatgactg




attttatgcgcctgcgtcggtactagttagctaactagctctgtatctggcggacccgtggtgga




actgacgagttcggaacacccggccgcaaccctgggagacgtcccagggacttcgggggc




cgtttttgtggcccgacctgagtcctaaaatcccgatcgtttaggactctttggtgcacccccctt




agaggagggatatgtggttctggtaggagacgagaacctaaaacagttcccgcctccgtctg




aatttttgctttcggtttgggaccgaagccgcgccgcgcgtcttgtctgctgcagcatcgttctgt




gttgtctctgtctgactgtgtttctgtatttgtctgaaaatatgggccccccctcgaggtaacgcca




ttttgcaaggcatggaaaaataccaaaccaagaatagagaagttcagatcaagggcgggtac




atgaaaatagctaacgttgggccaaacaggatatctgcggtgagcagtttcggccccggccc




ggggccaagaacagatggtcaccgcagtttcggccccggcccgaggccaagaacagatgg




tccccagatatggcccaaccctcagcagtttcttaagacccatcagatgtttccaggctccccc




aaggacctgaaatgaccctgcgccttatttgaattaaccaatcagcctgcttctcgcttctgttcg




cgcgcttctgcttcccgagctctataaaagagctcacaacccctcactcggcgcgccagtcct




ccgacagactgagtcgcccgggGCCGCCACCATGCTGCTGCTGGTCA




CATCTCTGCTGCTGTGCGAGCTGCCCCATCCTGCCTTTCT




GCTGATCCCTCACATGGACATCGTGATGACACAGAGCCC




CGATAGCCTGGCCGTGTCTCTGGGAGAAAGAGCCACCAT




CAACTGCAAGAGCAGCCAGAGCCTGCTGTACTCCAGCA




ACCAGAAGAACTACCTGGCCTGGTATCAGCAAAAGCCC




GGCCAGCCTCCTAAGCTGCTGATCTATTGGGCCAGCTCC




AGAGAAAGCGGCGTGCCCGATAGATTTTCTGGCTCTGGC




AGCGGCACCGACTTCACCCTGACAATTTCTAGCCTGCAA




GCCGAGGACGTGGCCGTGTACTACTGCCAGCAGTACTAC




AACTACCCTCTGACCTTCGGCCAGGGCACCAAGCTGGAA




ATCAAAGGCGGCGGAGGATCTGGCGGAGGTGGAAGTGG




CGGAGGCGGATCTGAAGTGCAGCTGGTTGAATCAGGTG




GCGGCCTGGTTCAACCTGGCGGATCTCTGAGACTGAGCT




GTGCCGCCAGCGGCTTCACCTTCAACAAGAACGCCATGA




ACTGGGTCCGACAGGCCCCTGGCAAAGGCCTTGAATGG




GTCGGACGGATCCGGAACAAGACCAACAACTACGCCAC




CTACTACGCCGACAGCGTGAAGGCCAGATTCACCATCAG




CCGGGACGACAGCAAGAACAGCCTGTACCTGCAGATGA




ACTCCCTGAAAACCGAGGACACCGCCGTGTATTATTGCG




TGGCCGGCAACAGCTTTGCCTACTGGGGACAGGGAACC




CTGGTCACCGTGTCTGCCACAACAACCCCTGCTCCTAGA




CCTCCTACACCAGCTCCTACAATCGCCCTGCAGCCTCTG




TCTCTGAGGCCAGAAGCTTGTAGACCAGCTGCTGGCGGA




GCCGTGCATACAAGAGGACTGGACTTCGCCTGTGATGTG




GCCGCCATTCTCGGACTGGGACTTGTTCTGGGACTGCTG




GGACCTCTGGCCATTCTGCTGGCTCTGTATCTGCTGCGG




AGGGACCAAAGACTGCCTCCTGATGCTCACAAGCCTCCA




GGCGGAGGCAGCTTCAGAACCCCTATCCAAGAGGAACA




GGCCGACGCTCACAGCACCCTGGCCAAGATTAGAGTGA




AGTTCAGCAGAAGCGCCGACGCACCCGCCTATAAGCAG




GGACAGAACCAGCTGTACAACGAGCTGAACCTGGGGAG




AAGAGAAGAGTACGACGTGCTGGACAAGCGGAGAGGCA




GAGATCCTGAGATGGGCGGCAAGCCCAGACGGAAGAAT




CCTCAAGAGGGCCTGTATAATGAGCTGCAGAAAGACAA




GATGGCCGAGGCCTACAGCGAGATCGGAATGAAGGGCG




AGCGCAGAAGAGGCAAGGGACACGATGGACTGTACCAG




GGCCTGAGCACCGCCACCAAGGATACCTATGATGCCCTG




CACATGCAGGCCCTGCCTCCAAGAGGTAGCGGCCAGTGT




ACCAACTACGCCCTGCTGAAACTGGCCGGCGACGTGGA




ATCTAATCCTGGACCTGGATCTGGCGAGGGACGCGGGA




GTCTACTGACGTGTGGAGACGTGGAGGAAAACCCTGGA




CCTATGGACTGGACCTGGATCCTGTTTCTGGTGGCCGCT




GCCACAAGAGTGCACAGCAATTGGGTCAACGTGATCAG




CGACCTGAAGAAGATCGAGGACCTGATCCAGAGCATGC




ACATCGACGCCACACTGTACACCGAGAGCGACGTGCAC




CCTAGCTGTAAAGTGACCGCCATGAAGTGCTTTCTGCTG




GAACTGCAAGTGATCAGCCTGGAAAGCGGCGACGCCAG




CATCCACGACACCGTGGAAAACCTGATCATCCTGGCCAA




CAACAGCCTGAGCAGCAACGGCAATGTGACCGAGTCCG




GCTGCAAAGAGTGCGAGGAACTGGAAGAGAAGAATATC




AAAGAGTTCCTGCAGAGCTTCGTGCACATCGTGCAGATG




TTCATCAACACAAGCTCTGGCGGCGGAGGATCTGGCGG




AGGTGGAAGCGGAGTTACACCCGAGCCTATCTTCAGCCT




GATCGGAGGCGGTAGCGGAGGCGGAGGAAGTGGTGGCG




GATCTCTGCAACTGCTGCCTAGCTGGGCCATCACACTGA




TCTCCGTGAACGGCATCTTCGTGATCTGCTGCCTGACCT




ACTGCTTCGCCCCTAGATGCAGAGAGCGGCGGAGAAAC




GAACGGCTGAGAAGAGAATCTGTGCGGCCCGTTtaaggatcc




ggattagtccaatttgttaaagacaggatgggctgcaggaattccgataatcaacctctggatta




caaaatttgtgaaagattgactggtattcttaactatgttgctccttttacgctatgtggatacgctg




ctttaatgcctttgtatcatgctattgcttcccgtatggctttcattttctcctccttgtataaatcctgg




ttgctgtctctttatgaggagttgtggcccgttgtcaggcaacgtggcgtggtgtgcactgtgttt




gctgacgcaacccccactggttggggcattgccaccacctgtcagctcctttccgggactttcg




ctttccccctccctattgccacggcggaactcatcgccgcctgccttgcccgctgctggacag




gggctcggctgttgggcactgacaattccgtggtgttgtcggggaagctgacgtcctttccatg




gctgctcgcctgtgttgccacctggattctgcgcgggacgtccttctgctacgtcccttcggcc




ctcaatccagcggaccttccttcccgcggcctgctgccggctctgcggcctcttccgcgtcttc




gccttcgccctcagacgagtcggatctccctttgggccgcctccccgcctggagaattcgatat




cagtggtccaggctctagttttgactcaacaatatcaccagctgaagcctatagagtacgagcc




atagataaaataaaagattttatttagtctccagaaaaaggggggaatgaaagaccccacctgt




aggtttggcaagctagcaataaaagagcccacaacccctcactcggggcgccagtcctccg




attgactgagtcgcccggccgcttcgagcagacatgataagatacattgatgagtttggacaa




accacaactagaatgcagtgaaaaaaatgctttatttgtgaaatttgtgatgctattgctttatttgt




aaccattataagctgcaataaacaagttaacaacaacaattgcattcattttatgtttcaggttcag




ggggagatgtgggaggttttttaaagcaagtaaaacctctacaaatgtggtaaaatcgataagg




atcgggtacccgtgtatccaataaaccctcttgcagttgcatccgacttgtggtctcgctgttcct




tgggagggtctcctctgagtgattgactacccgtcagcgggggtctttcacacatgcagcatgt




atcaaaattaatttggttttttttcttaagctgtgccttctagttgccagccatctgttgtttgcccctc




ccccgtgccttccttgaccctggaaggtgccactcccactgtcctttcctaataaaatgaggaa




attgcatcgcattgtctgagtaggtgtcattctattctggggggtggggggggcaggacagca




agggggaggattgggaagacaatagcaggcatgctggggatgcggtgggctctatggagat




cccgcggtacctcgcgaatgcatctagatccaatggcctttttggcccagacatgataagatac




attgatgagtttggacaaaccacaactagaatgcagtgaaaaaaatgctttatttgtgaaatttgt




gatgctattgctttatttgtaaccattataagctgcaataaacaagttgcggccgcttagccctcc




cacacataaccagagggcagcaattcacgaatcccaactgccgtcggctgtccatcactgtcc




ttcactatggctttgatcccaggatgcagatcgagaagcacctgtcggcaccgtccgcaggg




gctcaagatgcccctgttctcatttccgatcgcgacgatacaagtcaggttgccagctgccgca




gcagcagcagtgcccagcaccacgagttctgcacaaggtcccccagtaaaatgatatacatt




gacaccagtgaagatgcggccgtcgctagagagagctgcgctggcgacgctgtagtcttca




gagatggggatgctgttgattgtagccgttgctctttcaatgagggtggattcttcttgagacaaa




ggcttggccatgcggccgccgctcggtgttcgaggccacacgcgtcaccttaatatgcgaag




tggacctcggaccgcgccgccccgactgcatctgcgtgttcgaattcgccaatgacaagacg




ctgggcggggtttgtgtcatcatagaactaaagacatgcaaatatatttcttccggggggtacc




ggcctttttggccATTGGatcggatctggccaaaaaggcccttaagtatttacattaaatgg




ccatagtacttaaagttacattggcttccttgaaataaacatggagtattcagaatgtgtcataaat




atttctaattttaagatagtatctccattggctttctactttttcttttatttttttttgtcctctgtcttccatt




tgttgttgttgttgtttgtttgtttgtttgttggttggttggttaatttttttttaaagatcctacactatagt




tcaagctagactattagctactctgtaacccagggtgaccttgaagtcatgggtagcctgctgtt




ttagccttcccacatctaagattacaggtatgagctatcatttttggtatattgattgattgattgatt




gatgtgtgtgtgtgtgattgtgtttgtgtgtgtgaTtgtgTaTatgtgtgtatggTtgtgtgtgtg




tgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgttgtgTaTaTatatttatggtagtgagag




Gcaacgctccggctcaggtgtcaggttggtttttgagacagagtctttcacttagcttggaattc




actggccgtcgttttacaacgtcgtgactgggaaaaccctggcgttacccaacttaatcgcctt




gcagcacatccccctttcgccagctggcgtaatagcgaagaggcccgcaccgatcgcccttc




ccaacagttgcgcagcctgaatggcgaatggcgcctgatgcggtattttctccttacgcatctgt




gcggtatttcacaccgcatatggtgcactctcagtacaatctgctctgatgccgcatagttaagc




cagccccgacacccgccaacacccgctgacgcgccctgacgggcttgtctgctcccggcat




ccgcttacagacaagctgtgaccgtctccgggagctgcatgtgtcagaggttttcaccgtcatc




accgaaacgcgcgagacgaaagggcctcgtgatacgcctatttttataggttaatgtcatgata




ataatggtttcttagacgtcaggtggcacttttcggggaaatgtgcgcggaacccctatttgttta




tttttctaaatacattcaaatatgtatccgctcatgagacaataaccctgataaatgcttcaataata




ttgaaaaaggaagagtatgagccatattcaacgggaaacgtcgaggccgcgattaaattcca




acatggatgctgatttatatgggtataaatgggctcgcgataatgtcgggcaatcaggtgcgac




aatctatcgcttgtatgggaagcccgatgcgccagagttgtttctgaaacatggcaaaggtagc




gttgccaatgatgttacagatgagatggtcagactaaactggctgacggaatttatgcctcttcc




gaccatcaagcattttatccgtactcctgatgatgcatggttactcaccactgcgatccccggaa




aaacagcattccaggtattagaagaatatcctgattcaggtgaaaatattgttgatgcgctggca




gtgttcctgcgccggttgcattcgattcctgtttgtaattgtccttttaacagcgatcgcgtatttcg




tctcgctcaggcgcaatcacgaatgaataacggtttggttgatgcgagtgattttgatgacgag




cgtaatggctggcctgttgaacaagtctggaaagaaatgcataaacttttgccattctcaccgg




attcagtcgtcactcatggtgatttctcacttgataaccttatttttgacgaggggaaattaataggt




tgtattgatgttggacgagtcggaatcgcagaccgataccaggatcttgccatcctatggaact




gcctcggtgagttttctccttcattacagaaacggctttttcaaaaatatggtattgataatcctgat




atgaataaattgcagtttcatttgatgctcgatgagtttttctaactgtcagaccaagtttactcatat




atactttagattgatttaaaacttcatttttaatttaaaaggatctaggtgaagatcctttttgataatc




tcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagat




caaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccacc




gctaccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggct




tcagcagagcgcagataccaaatactgttcttctagtgtagccgtagttaggccaccacttcaa




gaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtg




gcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcggt




cgggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaac




tgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcgg




acaggtatccggtaagcggcagggtcggaacaggagagcgcacgagggagcttccaggg




ggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgt




gatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggcctttttacggttc




ctggccttttgctggccttttgctcacatgttctttcctgcgttatcccctgattctgtggataaccgt




attaccgcctttgagtgagctgataccgctcgccgcagccgaacgaccgagcgcagcgagt




cagtgagcgaggaagcggaagagcgcccaatacgcaaaccgcctctccccgcgcgttggc




cgattcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagtgagcgcaac




gcaattaatgtgagttagctcactcattaggcaccccaggctttacactttatgcttccggctcgt




atgttgtgtggaattgtgagcggataacaatttcacacaggaaacagctatgaccatgattacg




cc





327
SB07473
aagcttgGaattcgagcttgcatgcctgcaggtcgttacataacttacggtaaatggcccgc




ctggctgaccgcccaacgacccccgcccattgacgtcaataatgacgtatgttcccatagta




acgccaatagggactttccattgacgtcaatgggtggagtatttacggtaaactgcccactt




ggcagtacatcaagtgtatcatatgccaagtacgccccctattgacgtcaatgacggtaaat




ggcccgcctggcattatgcccagtacatgaccttatgggactttcctacttggcagtacatct




acgtattagtcatcgctattaccatggtgatgcggttttggcagtacatcaatgggcgtggat




agcggtttgactcacggggatttccaagtctccaccccattgacgtcaatgggagtttgtttt




ggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccgccccattgacgcaaat




gggcggtaggcgtgtacggtgggaggtctatataagcagagctcaataaaagagcccaca




acccctcactcggcgcgccagtcctccgattgactgagtcgcccgggtacccgtgtatccaa




taaaccctcttgcagttgcatccgacttgtggtctcgctgttccttgggagggtctcctctgag




tgattgactacccgtcagcgggggtctttcatttgggggctcgtccgagatcgggagacccct




gcccagggaccaccgacccaccaccgggaggtaagctggccagcaacttatctgtgtctgt




ccgattgtctagtgtctatgactgattttatgcgcctgcgtcggtactagttagctaactagct




ctgtatctggcggacccgtggtggaactgacgagttcggaacacccggccgcaaccctggg




agacgtcccagggacttcgggggccgtttttgtggcccgacctgagtcctaaaatcccgatc




gtttaggactctttggtgcaccccccttagaggagggatatgtggttctggtaggagacgag




aacctaaaacagttcccgcctccgtctgaatttttgctttcggtttgggaccgaagccgcgcc




gcgcgtcttgtctgctgcagcatcgttctgtgttgtctctgtctgactgtgtttctgtatttgtct




gaaaatatgggccccccctcgaggtaacgccattttgcaaggcatggaaaaataccaaacc




aagaatagagaagttcagatcaagggcgggtacatgaaaatagctaacgttgggccaaac




aggatatctgcggtgagcagtttcggccccggcccggggccaagaacagatggtcaccgca




gtttcggccccggcccgaggccaagaacagatggtccccagatatggcccaaccctcagca




gtttcttaagacccatcagatgtttccaggctcccccaaggacctgaaatgaccctgcgcctt




atttgaattaaccaatcagcctgcttctcgcttctgttcgcgcgcttctgcttcccgagctctat




aaaagagctcacaacccctcactcggcgcgccagtcctccgacagactgagtcgcccggg




GCCGCCACCATGCTGCTGCTGGTCACATCTCTGCTGCTGTGCGAGCTG




CCCCATCCTGCCTTTCTGCTGATCCCTCACATGGAAGTGCAGCTGGTG




GAATCTGGCGGAGGACTGGTTCAACCTGGCGGCTCTCTGAGACTGTC




TTGTGCCGCCAGCGGCTTCACCTTCAACAAGAACGCCATGAACTGGG




TCCGACAGGCCCCTGGCAAAGGCCTTGAATGGGTCGGACGGATCCG




GAACAAGACCAACAACTACGCCACCTACTACGCCGACAGCGTGAAGG




CCAGGTTCACCATCTCCAGAGATGACAGCAAGAACAGCCTGTACCTG




CAGATGAACTCCCTGAAAACCGAGGACACCGCCGTGTACTATTGCGT




GGCCGGCAATAGCTTTGCCTACTGGGGACAGGGCACCCTGGTTACAG




TTTCTGCTGGCGGCGGAGGAAGCGGAGGCGGAGGATCCGGTGGTG




GTGGATCTGACATCGTGATGACACAGAGCCCCGATAGCCTGGCCGTG




TCTCTGGGAGAAAGAGCCACCATCAACTGCAAGAGCAGCCAGAGCCT




GCTGTACTCCAGCAACCAGAAGAACTACCTGGCCTGGTATCAGCAAA




AGCCCGGCCAGCCTCCTAAGCTGCTGATCTATTGGGCCAGCTCCAGA




GAAAGCGGCGTGCCCGATAGATTTTCTGGCTCTGGCAGCGGCACCGA




CTTCACCCTGACAATTTCTAGCCTGCAAGCCGAGGACGTGGCCGTGTA




TTACTGCCAGCAGTACTACAACTACCCTCTGACCTTCGGCCAGGGCAC




CAAGCTGGAAATCAAATCTGGCGCCCTGAGCAACAGCATCATGTACT




TCAGCCACTTCGTGCCCGTGTTTCTGCCCGCCAAGCCTACAACAACCC




CTGCTCCTAGACCTCCTACACCAGCTCCTACAATCGCCAGCCAGCCTCT




GTCTCTGAGGCCAGAAGCTTGTAGACCTGCTGCAGGCGGAGCCGTGC




ATACAAGAGGACTGGATTTCGCCTGCGACATCTACATCTGGGCCCCTC




TGGCTGGAACATGTGGTGTCCTGCTGCTGAGCCTGGTCATCACCCTGT




ACTGCAACCACCGGCGGAGCAAGAGAAGCAGACTGCTGCACAGCGA




CTACATGAACATGACCCCTAGACGGCCCGGACCTACCAGAAAGCACT




ACCAGCCTTACGCTCCTCCTAGAGACTTCGCCGCCTACCGGTCCAGAG




TGAAGTTCAGCAGATCCGCCGATGCTCCCGCCTATCAGCAGGGACAG




AACCAGCTGTACAACGAGCTGAACCTGGGGAGAAGAGAAGAGTACG




ACGTGCTGGACAAGCGGAGAGGCAGAGATCCTGAGATGGGCGGCAA




GCCCAGACGGAAGAATCCTCAAGAGGGCCTGTATAATGAGCTGCAG




AAAGACAAGATGGCCGAGGCCTACAGCGAGATCGGAATGAAGGGCG




AGCGCAGAAGAGGCAAGGGACACGATGGACTGTACCAGGGCCTGAG




CACCGCCACCAAGGATACCTATGATGCCCTGCACATGCAGGCCCTGCC




TCCAAGAGGTAGCGGCCAGTGTACCAACTACGCCCTGCTGAAACTGG




CCGGCGACGTGGAATCTAATCCTGGACCTGGATCTGGCGAGGGACGC




GGGAGTCTACTGACGTGTGGAGACGTGGAGGAAAACCCTGGACCTA




TGGACTGGACCTGGATCCTGTTTCTGGTGGCCGCTGCCACAAGAGTG




CACAGCAATTGGGTCAACGTGATCAGCGACCTGAAGAAGATCGAGG




ACCTGATCCAGAGCATGCACATCGACGCCACACTGTACACCGAGAGC




GACGTGCACCCTAGCTGTAAAGTGACCGCCATGAAGTGCTTTCTGCTG




GAACTGCAAGTGATCAGCCTGGAAAGCGGCGACGCCAGCATCCACG




ACACCGTGGAAAACCTGATCATCCTGGCCAACAACAGCCTGAGCAGC




AACGGCAATGTGACCGAGTCCGGCTGCAAAGAGTGCGAGGAACTGG




AAGAGAAGAATATCAAAGAGTTCCTGCAGAGCTTCGTGCACATCGTG




CAGATGTTCATCAACACAAGCTCTGGCGGCGGAGGATCTGGCGGAG




GTGGAAGCGGAGTTACACCCGAGCCTATCTTCAGCCTGATCGGAGGC




GGTAGCGGAGGCGGAGGAAGTGGTGGCGGATCTCTGCAACTGCTGC




CTAGCTGGGCCATCACACTGATCTCCGTGAACGGCATCTTCGTGATCT




GCTGCCTGACCTACTGCTTCGCCCCTAGATGCAGAGAGCGGCGGAGA




AACGAACGGCTGAGAAGAGAATCTGTGCGGCCCGTTtaaggatccggatt




agtccaatttgttaaagacaggatgggctgcaggaattccgataatcaacctctggattaca




aaatttgtgaaagattgactggtattcttaactatgttgctccttttacgctatgtggatacgct




gctttaatgcctttgtatcatgctattgcttcccgtatggctttcattttctcctccttgtataaat




cctggttgctgtctctttatgaggagttgtggcccgttgtcaggcaacgtggcgtggtgtgca




ctgtgtttgctgacgcaacccccactggttggggcattgccaccacctgtcagctcctttccg




ggactttcgctttccccctccctattgccacggcggaactcatcgccgcctgccttgcccgctg




ctggacaggggctcggctgttgggcactgacaattccgtggtgttgtcggggaagctgacgt




cctttccatggctgctcgcctgtgttgccacctggattctgcgcgggacgtccttctgctacgt




cccttcggccctcaatccagcggaccttccttcccgcggcctgctgccggctctgcggcctctt




ccgcgtcttcgccttcgccctcagacgagtcggatctccctttgggccgcctccccgcctgga




gaattcgatatcagtggtccaggctctagttttgactcaacaatatcaccagctgaagcctat




agagtacgagccatagataaaataaaagattttatttagtctccagaaaaaggggggaatg




aaagaccccacctgtaggtttggcaagctagcaataaaagagcccacaacccctcactcgg




ggcgccagtcctccgattgactgagtcgcccggccgcttcgagcagacatgataagatacat




tgatgagtttggacaaaccacaactagaatgcagtgaaaaaaatgctttatttgtgaaattt




gtgatgctattgctttatttgtaaccattataagctgcaataaacaagttaacaacaacaatt




gcattcattttatgtttcaggttcagggggagatgtgggaggttttttaaagcaagtaaaacc




tctacaaatgtggtaaaatcgataaggatcgggtacccgtgtatccaataaaccctcttgca




gttgcatccgacttgtggtctcgctgttccttgggagggtctcctctgagtgattgactacccg




tcagcgggggtctttcacacatgcagcatgtatcaaaattaatttggttttttttcttaagctgt




gccttctagttgccagccatctgttgtttgcccctcccccgtgccttccttgaccctggaaggt




gccactcccactgtcctttcctaataaaatgaggaaattgcatcgcattgtctgagtaggtgt




cattctattctggggggtggggtggggcaggacagcaagggggaggattgggaagacaat




agcaggcatgctggggatgcggtgggctctatggagatcccgcggtacctcgcgaatgcat




ctagatccaatggcctttttggcccagacatgataagatacattgatgagtttggacaaacc




acaactagaatgcagtgaaaaaaatgctttatttgtgaaatttgtgatgctattgctttatttg




taaccattataagctgcaataaacaagttgcggccgcttagccctcccacacataaccaga




gggcagcaattcacgaatcccaactgccgtcggctgtccatcactgtccttcactatggcttt




gatcccaggatgcagatcgagaagcacctgtcggcaccgtccgcaggggctcaagatgcc




cctgttctcatttccgatcgcgacgatacaagtcaggttgccagctgccgcagcagcagcag




tgcccagcaccacgagttctgcacaaggtcccccagtaaaatgatatacattgacaccagt




gaagatgcggccgtcgctagagagagctgcgctggcgacgctgtagtcttcagagatgggg




atgctgttgattgtagccgttgctctttcaatgagggtggattcttcttgagacaaaggcttgg




ccatgcggccgccgctcggtgttcgaggccacacgcgtcaccttaatatgcgaagtggacct




cggaccgcgccgccccgactgcatctgcgtgttcgaattcgccaatgacaagacgctgggc




ggggtttgtgtcatcatagaactaaagacatgcaaatatatttcttccggggggtaccggcc




tttttggccATTGGatcggatctggccaaaaaggcccttaagtatttacattaaatggccat




agtacttaaagttacattggcttccttgaaataaacatggagtattcagaatgtgtcataaat




atttctaattttaagatagtatctccattggctttctactttttcttttatttttttttgtcctctgtc




ttccatttgttgttgttgttgtttgtttgtttgtttgttggttggttggttaatttttttttaaagatc




ctacactatagttcaagctagactattagctactctgtaacccagggtgaccttgaagtcatg




ggtagcctgctgttttagccttcccacatctaagattacaggtatgagctatcatttttggtat




attgattgattgattgattgatgtgtgtgtgtgtgattgtgtttgtgtgtgtgaTtgtgTaTatg




tgtgtatggTtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgttgtgTaTaTatatttatggt




agtgagagGcaacgctccggctcaggtgtcaggttggtttttgagacagagtctttcactta




gcttggaattcactggccgtcgttttacaacgtcgtgactgggaaaaccctggcgttaccca




acttaatcgccttgcagcacatccccctttcgccagctggcgtaatagcgaagaggcccgca




ccgatcgcccttcccaacagttgcgcagcctgaatggcgaatggcgcctgatgcggtattttc




tccttacgcatctgtgcggtatttcacaccgcatatggtgcactctcagtacaatctgctctga




tgccgcatagttaagccagccccgacacccgccaacacccgctgacgcgccctgacgggct




tgtctgctcccggcatccgcttacagacaagctgtgaccgtctccgggagctgcatgtgtcag




aggttttcaccgtcatcaccgaaacgcgcgagacgaaagggcctcgtgatacgcctattttt




ataggttaatgtcatgataataatggtttcttagacgtcaggtggcacttttcggggaaatgt




gcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgagacaa




taaccctgataaatgcttcaataatattgaaaaaggaagagtatgagccatattcaacggg




aaacgtcgaggccgcgattaaattccaacatggatgctgatttatatgggtataaatgggct




cgcgataatgtcgggcaatcaggtgcgacaatctatcgcttgtatgggaagcccgatgcgc




cagagttgtttctgaaacatggcaaaggtagcgttgccaatgatgttacagatgagatggtc




agactaaactggctgacggaatttatgcctcttccgaccatcaagcattttatccgtactcct




gatgatgcatggttactcaccactgcgatccccggaaaaacagcattccaggtattagaag




aatatcctgattcaggtgaaaatattgttgatgcgctggcagtgttcctgcgccggttgcattc




gattcctgtttgtaattgtccttttaacagcgatcgcgtatttcgtctcgctcaggcgcaatcac




gaatgaataacggtttggttgatgcgagtgattttgatgacgagcgtaatggctggcctgttg




aacaagtctggaaagaaatgcataaacttttgccattctcaccggattcagtcgtcactcat




ggtgatttctcacttgataaccttatttttgacgaggggaaattaataggttgtattgatgttg




gacgagtcggaatcgcagaccgataccaggatcttgccatcctatggaactgcctcggtga




gttttctccttcattacagaaacggctttttcaaaaatatggtattgataatcctgatatgaat




aaattgcagtttcatttgatgctcgatgagtttttctaactgtcagaccaagtttactcatatat




actttagattgatttaaaacttcatttttaatttaaaaggatctaggtgaagatcctttttgata




atctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaa




aagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaa




aaaccaccgctaccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaag




gtaactggcttcagcagagcgcagataccaaatactgtTcttctagtgtagccgtagttagg




ccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagt




ggctgctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccgg




ataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaa




cgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccga




agggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcacg




agggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctga




cttgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagca




acgcggcctttttacggttcctggccttttgctggccttttgctcacatgttctttcctgcgttat




cccctgattctgtggataaccgtattaccgcctttgagtgagctgataccgctcgccgcagcc




gaacgaccgagcgcagcgagtcagtgagcgaggaagcggaagagcgcccaatacgcaa




accgcctctccccgcgcgttggccgattcattaatgcagctggcacgacaggtttcccgactg




gaaagcgggcagtgagcgcaacgcaattaatgtgagttagctcactcattaggcaccccag




gctttacactttatgcttccggctcgtatgttgtgtggaattgtgagcggataacaatttcaca




caggaaacagctatgac catgattacgcc
























TABLE 21








Des-
Back-
Seq







SB ID
cription
bone
Type
SS
scFV
Linker
scFV
Hinge





SB06251



GM-
hPY7 VL
(GGGGS)3
hPY7 VH
CD8 S2L






CSF-

(SEQ ID








Ra

NO: 223)







Co-stim





TM


SB ID
TM
ICD
CD3z ICD
E2A
SS
IL15
Cleavage Site
domain





SB06251
OX40
OX40
CD3z
E2A/T2A
IgE
IL15
LR1 split N
B7-1









term linker +










Tace10






Des-
Back-
Seq







SB ID
cription
bone
Type
SS
scFV
Linker
scFV
Hinge






GM-CSF-Ra

DNA
ATGC
GACATCGTGATG
GGCGGC
GAAGTGCAGCTG
ACAAC



(SS)-


TGCT
ACACAGAGCCCC
GGAGGA
GTTGAATCAGGT
AACCC



aGPC3


GCTG
GATAGCCTGGCC
TCTGGCG
GGCGGCCTGGTT
CTGCTC



hPY7 vL-


GTCA
GTGTCTCTGGGA
GAGGTG
CAACCTGGCGGA
CTAGA



(GGGGS)3-


CATC
GAAAGAGCCACC
GAAGTG
TCTCTGAGACTG
CCTCCT



aGPC3


TCTG
ATCAACTGCAAG
GCGGAG
AGCTGTGCCGCC
ACACC



hPY7-CD8


CTGC 
AGCAGCCAGAGC
GCGGAT
AGCGGCTTCACC
AGCTCC



S2L (Hinge)-


TGTG
CTGCTGTACTCC
CT
TTCAACAAGAAC
TACAAT



OX40


CGA
AGCAACCAGAAG

GCCATGAACTGG
CGCCCT



(TM)-


GCTG
AACTACCTGGCC

GTCCGACAGGCC
GCAGC



OX40 (ICD)-


CCCC
TGGTATCAGCAA

CCTGGCAAAGGC
CTCTGT



CD3z


ATCC
AAGCCCGGCCAG

CTTGAATGGGTC
CTCTGA



(ICD)-E2A


TGCC
CCTCCTAAGCTG

GGACGGATCCGG
GGCCA



T2A-IgE


TTTC
CTGATCTATTGG

AACAAGACCAAC
GAAGC



(SS)-IL-15-


TGCT
GCCAGCTCCAGA

AACTACGCCACC
TTGTAG



Tace10


GATC
GAAAGCGGCGTG

TACTACGCCGAC
ACCAG



(cleavage


CCT
CCCGATAGATTT

AGCGTGAAGGCC
CTGCTG



site)-B7-1



TCTGGCTCTGGC

AGATTCACCATC
GCGGA



(TM)



AGCGGCACCGAC

AGCCGGGACGAC
GCCGT



[(GGGGS)3



TTCACCCTGACA

AGCAAGAACAGC
GCATA



is SEQ ID



ATTTCTAGCCTG

CTGTACCTGCAG
CAAGA



NO: 223]



CAAGCCGAGGAC

ATGAACTCCCTG
GGACT







GTGGCCGTGTAC

AAAACCGAGGAC
GGACTT







TACTGCCAGCAG

ACCGCCGTGTAT
CGCCTG







TACTACAACTAC

TATTGCGTGGCC
TGAT







CCTCTGACCTTC

GGCAACAGCTTT








GGCCAGGGCACC

GCCTACTGGGGA








AAGCTGGAAATC

CAGGGAACCCTG








AAA

GTCACCGTGTCT










GCC







Co-stim





TM


SB ID
TM
ICD
CD3z ICD
E2A
SS
IL15
Cleavage Site
domain






GTGG
GCTCTG
AGAGTGAAGTTC
GGTAGCGGC
ATGGA
AATTGGGTCAACGTG
TCTGGCGGC
CTGCTGCCT



CCGCC
TATCTG
AGCAGAAGCGCC
CAGTGTACC
CTGGA
ATCAGCGACCTGAAG
GGAGGATCT
AGCTGGGCC



ATTCT
CTGCG
GACGCACCCGCC
AACTACGCC
CCTGG
AAGATCGAGGACCTG
GGCGGAGGT
ATCACACTG



CGGA
GAGGG
TATAAGCAGGGA
CTGCTGAAA
ATCCT
ATCCAGAGCATGCAC
GGAAGCGGA
ATCTCCGTG



CTGG
ACCAA
CAGAACCAGCTG
CTGGCCGGC
GTTTC
ATCGACGCCACACTGT
GTTACACCC
AACGGCATC



GACTT
AGACT
TACAACGAGCTG
GACGTGGAA
TGGTG
ACACCGAGAGCGACG
GAGCCTATC
TTCGTGATCT



GTTCT
GCCTCC
AACCTGGGGAGA
TCTAATCCTG
GCCGC
TGCACCCTAGCTGTAA
TTCAGCCTG
GCTGCCTGA



GGGA
TGATGC
AGAGAAGAGTAC
GACCTGGAT
TGCCA
AGTGACCGCCATGAA
ATCGGAGGC
CCTACTGCTT



CTGCT
TCACA
GACGTGCTGGAC
CTGGCGAGG
CAAGA
GTGCTTTCTGCTGGAA
GGTAGCGGA
CGCCCCTAG



GGGA
AGCCTC
AAGCGGAGAGGC
GACGCGGGA
GTGCA
CTGCAAGTGATCAGCC
GGCGGAGGA
ATGCAGAGA



CCTCT
CAGGC
AGAGATCCTGAG
GTCTACTGA
CAGC
TGGAAAGCGGCGACG
AGTGGTGGC
GCGGCGGAG



GGCC
GGAGG
ATGGGCGGCAAG
CGTGTGGAG

CCAGCATCCACGACA
GGATCTCTG
AAACGAACG



ATTCT
CAGCTT
CCCAGACGGAAG
ACGTGGAGG

CCGTGGAAAACCTGA
CAA
GCTGAGAAG



GCT
CAGAA
AATCCTCAAGAG
AAAACCCTG

TCATCCTGGCCAACAA

AGAATCTGT




CCCCTA
GGCCTGTATAAT
GACCT

CAGCCTGAGCAGCAA

GCGGCCCGT




TCCAA
GAGCTGCAGAAA


CGGCAATGTGACCGA

T




GAGGA
GACAAGATGGCC


GTCCGGCTGCAAAGA






ACAGG
GAGGCCTACAGC


GTGCGAGGAACTGGA






CCGAC
GAGATCGGAATG


AGAGAAGAATATCAA






GCTCAC
AAGGGCGAGCGC


AGAGTTCCTGCAGAG






AGCAC
AGAAGAGGCAA


CTTCGTGCACATCGTG






CCTGGC
GGGACACGATGG


CAGATGTTCATCAACA






CAAGA
ACTGTACCAGGG


CAAGC






TT
CCTGAGCACCGC










CACCAAGGATAC










CTATGATGCCCT










GCACATGCAGGC










CCTGCCTCCAAG










A






SEQ ID NO


217
221
224
330
227








AA
MLLL
DIVMTQSPDSLAV
GGGGSG
EVQLVESGGGLV
TTTPAP






VTSL
SLGERATINCKSS
GGGSGG
QPGGSLRLSCAAS
RPPTPA






LLCE
QSLLYSSNQKNYL 
GGS
GFTFNKNAMNW
PTIALQ






LPHP
AWYQQKPGQPPK

VRQAPGKGLEWV
PLSLRP






AFLL
LLIYWASSRESGV

GRIRNKTNNYAT
EACRPA






IP
PDRFSGSGSGTDF

YYADSVKARFTIS
AGGAV







TLTISSLQAEDVA

RDDSKNSLYLQM
HTRGLD







VYYCQQYYNYPL

NSLKTEDTAVYY
FACD







TFGQGTKLEIK

CVAGNSFAYWGQ










GTLVTVSA






235
270
278
282
214
286
288
331






VAAIL
ALYLLR
RVKFSRSADAPA
GSGQCTNYA
MDWT
NWVNVISDLKKIEDLIQ
SGGGGSGGG
LLPSWAITLIS



GLGLV
RDQRLP
YKQGQNQLYNEL
LLKLAGDVES
WILFL
SMHIDATLYTESDVHPS
GSGVTPEPIF
VNGIFVICCL



LGLLG
PDAHKP
NLGRREEYDVLD
NPGPGSGEGR
VAAAT
CKVTAMKCFLLELQVI

SLIGGGSGGG

TYCFAPRCRE



PLAIL
PGGGSF
KRRGRDPEMGGK
GSLLTCGDVE
RVHS
SLESGDASIHDTVENLII
GSGGGSLQ
RRRNERLRRE




RTPIQE
PRRKNPQEGLYN
ENPGP

LANNSLSSNGNVTESG

SVRPV




EQADA
ELQKDKMAEAYS


CKECEELEEKNIKEFLQ






HSTLAK
EIGMKGERRRGK


SFVHIVQMFINTS






I
GHDGLYQGLSTA










TKDTYDALHMQA










LPPR






SEQ ID NO


216
208
223
206
226





SB06252



GM-
hPY7 VH
(GGGGS)3
hPY7 VL
CD8FA






CSF-

(SEQ ID








Ra

NO: 223)






234
269
277
281
218
285
287
219






CD8FA
CD28
CD3z
E2A/T2A
IgE
IL15
LR1 split N
B7-1









term linker +










Tace10






Des-
Back-
Seq







SB ID
cription
bone
Type
SS
scFV
Linker
scFV
Hinge






GM-CSF-Ra

DNA
ATGC
GAAGTGCAGCTG
GGCGGC
GACATCGTGATG
GGCGC



(SS)-


TGCT
GTGGAATCTGGC
GGAGGA
ACACAGAGCCCC
CCTGA



aGPC3


GCTG
GGAGGACTGGTT
AGCGGA
GATAGCCTGGCC
GCAAC



hPY7 vH-


GTCA
CAACCTGGCGGC
GGCGGA
GTGTCTCTGGGA
AGCAT



(GGGGS)3-


CATC
TCTCTGAGACTG
GGATCC
GAAAGAGCCACC
CATGTA



aGPC3


TCTG
TCTTGTGCCGCC
GGTGGT
ATCAACTGCAAG
CTTCAG



hPY7 vL-


TGTG
AGCGGCTTCACC
GGTGGA
AGCAGCCAGAGC
CCACTT



CD8FA


CTGC
TTCAACAAGAAC
TCT
CTGCTGTACTCC
CGTGCC



(Hinge)-


CGA
GCCATGAACTGG

AGCAACCAGAAG
CGTGTT



CD8FA


GCTG
GTCCGACAGGCC

AACTACCTGGCC
TCTGCC



(TM)-


CCCC
CCTGGCAAAGGC

TGGTATCAGCAA
CGCCA



CD28 (ICD)-


ATCC
CTTGAATGGGTC

AAGCCCGGCCAG
AGCCT



CD3z


TGCC
GGACGGATCCGG

CCTCCTAAGCTG
ACAAC



(ICD)-E2A


TTTC
AACAAGACCAAC

CTGATCTATTGG
AACCC



T2A-IgE


TGCT
AACTACGCCACC

GCCAGCTCCAGA
CTGCTC



(SS)-IL-15-


GATC
TACTACGCCGAC

GAAAGCGGCGTG
CTAGA



Tace10


CCT
AGCGTGAAGGCC

CCCGATAGATTT
CCTCCT



(cleavage



AGGTTCACCATC

TCTGGCTCTGGC
ACACC



site)-B7-1



TCCAGAGATGAC

AGCGGCACCGAC
AGCTCC



(TM)



AGCAAGAACAGC

TTCACCCTGACA
TACAAT



[(GGGGS)3



CTGTACCTGCAG

ATTTCTAGCCTG
CGCCA



is SEQ ID



ATGAACTCCCTG

CAAGCCGAGGAC
GCCAG



NO: 223]



AAAACCGAGGAC

GTGGCCGTGTAT
CCTCTG







ACCGCCGTGTAC

TACTGCCAGCAG
TCTCTG







TATTGCGTGGCC

TACTACAACTAC
AGGCC







GGCAATAGCTTT

CCTCTGACCTTC
AGAAG







GCCTACTGGGGA

GGCCAGGGCACC
CTTGTA







CAGGGCACCCTG

AAGCTGGAAATC
GACCT







GTTACAGTTTCT

AAA
GCTGC







GCT


AGGCG










GAGCC










GTGCAT










ACAAG










AGGAC










TGGATT










TCGCCT










GCGAC







Co-stim








SB ID
TM
ICD
CD3z ICD
E2A
SS
IL15
Cleavage Site
TM domain






ATCTA
CGGAG
AGAGTGAAGTTC
GGTAGCGGC
ATGGA
AATTGGGTCAACGTG
TCTGGCGGC
CTGCTGCCT



CATCT
CAAGA
AGCAGATCCGCC
CAGTGTACC
CTGGA
ATCAGCGACCTGAAG
GGAGGATCT
AGCTGGGCC



GGGC
GAAGC
GATGCTCCCGCC
AACTACGCC
CCTGG 
AAGATCGAGGACCTG
GGCGGAGGT
ATCACACTG



CCCTC
AGACT
TATCAGCAGGGA
CTGCTGAAA
ATCCT
ATCCAGAGCATGCAC
GGAAGCGGA
ATCTCCGTG



TGGCT
GCTGC
CAGAACCAGCTG
CTGGCCGGC
GTTTC
ATCGACGCCACACTGT
GTTACACCC
AACGGCATC



GGAA
ACAGC
TACAACGAGCTG
GACGTGGAA
TGGTG
ACACCGAGAGCGACG
GAGCCTATC
TTCGTGATCT



CATGT
GACTA
AACCTGGGGAGA
TCTAATCCTG
GCCGC
TGCACCCTAGCTGTAA
TTCAGCCTG
GCTGCCTGA



GGTGT
CATGA
AGAGAAGAGTAC
GACCTGGAT
TGCCA
AGTGACCGCCATGAA
ATCGGAGGC
CCTACTGCTT



CCTGC
ACATG
GACGTGCTGGAC
CTGGCGAGG
CAAGA
GTGCTTTCTGCTGGAA
GGTAGCGGA
CGCCCCTAG



TGCTG
ACCCCT
AAGCGGAGAGGC
GACGCGGGA
GTGCA
CTGCAAGTGATCAGCC
GGCGGAGGA
ATGCAGAGA



AGCCT
AGACG
AGAGATCCTGAG
GTCTACTGA
CAGC
TGGAAAGCGGCGACG
AGTGGTGGC
GCGGCGGAG



GGTC
GCCCG
ATGGGCGGCAAG
CGTGTGGAG

CCAGCATCCACGACA
GGATCTCTG
AAACGAACG



ATCAC
GACCT
CCCAGACGGAAG
ACGTGGAGG

CCGTGGAAAACCTGA
CAA
GCTGAGAAG



CCTGT
ACCAG
AATCCTCAAGAG
AAAACCCTG

TCATCCTGGCCAACAA

AGAATCTGT



ACTGC
AAAGC
GGCCTGTATAAT
GACCT

CAGCCTGAGCAGCAA

GCGGCCCGT



AACC
ACTACC
GAGCTGCAGAAA


CGGCAATGTGACCGA

T



ACCG
AGCCTT
GACAAGATGGCC


GTCCGGCTGCAAAGA





G
ACGCTC
GAGGCCTACAGC


GTGCGAGGAACTGGA






CTCCTA
GAGATCGGAATG


AGAGAAGAATATCAA






GAGAC
AAGGGCGAGCGC


AGAGTTCCTGCAGAG






TTCGCC
AGAAGAGGCAA


CTTCGTGCACATCGTG






GCCTAC
GGGACACGATGG


CAGATGTTCATCAACA






CGGTCC
ACTGTACCAGGG


CAAGC







CCTGAGCACCGC










CACCAAGGATAC










CTATGATGCCCT










GCACATGCAGGC










CCTGCCTCCAAG










A






SEQ ID NO


217
222
332
333
229








AA
MLLL
EVQLVESGGGLV
GGGGSG
DIVMTQSPDSLAV
GALSNS






VTSL
QPGGSLRLSCAAS
GGGSGG
SLGERATINCKSS
IMYFSH






LLCE
GFTFNKNAMNW
GGS
QSLLYSSNQKNYL
FVPVFL






LPHP
VRRQAPGKGLEWV

AWYQQKPGQPPK
PAKPTT






AFLL
GRIRNKTNNYAT

LLIYWASSRESGV
TPAPRP






IP
YYADSVKARFTIS

PDRFSGSGSGTDF
PTPAPI







RDDSKNSLYLQM

TLTISSLQAEDVA
ASQPLS







NSLKTEDTAVYY

VYYCQQYYNYPL
LRPEAC







CVAGNSFAYWGQ

TFGQGTKLEIK
RPAAG







GTLVTVSA


GAVHT










RGLDFA










CD






243
268
280
282
214
286
288
331






IYIWA
RSKRSR
RVKFSRSADAPA
GSGQCTNYA
MDWT
NWVNVISDLKKIEDLIQ
SGGGGSGGG
LLPSWAITLIS



PLAGT
LLHSDY
YQQGQNQLYNEL

LLKLAGDVE

WILFL
SMHIDATLYTESDVHPS
GSGVTPEPIF
VNGIFVICCL



CGVLL
MNMTP
NLGRREEYDVLD

SNPGPGSGE

VAAAT
CKVTAMKCFLLELQVI

SLIGGGSGGG

TYCFAPRCRE



LSLVI
RRPGPT
KRRGRDPEMGGK

GRGSLLTCG

RVHS
SLESGDASIHDTVENLII
GSGGGSLQ
RRRNERLRRE



TLYCN
RKHYQ
PRRKNPQEGLYN

DVEENPGP


LANNSLSSNGNVTESG

SVRPV



HR
PYAPPR
ELQKDKMAEAYS


CKECEELEEKNIKEFLQ






DFAAY
EIGMKGERRRGK


SFVHIVQMFINTS






RS
GHDGLYQGLSTA










TKDTYDALHMQA










LPPR






SEQ ID NO


216
206
223
208
228





SB06257



GM-
hPY7 VL
(GGGGS)3
hPY7 VH
CD8 S2L






CSF-

(SEQ ID








Ra

NO: 223)






242
267
279
281
218
285
287
219






OX40
OX40
CD3z
E2A/T2A
IgE
IL15
LR1 split N
B7-1









term linker +










Tace10






Des-
Back-
Seq







SB ID
cription
bone
Type
SS
scFV
Linker
scFV
Hinge






GM-CSF-Ra
Sin Vec
DNA
ATGC
GACATCGTGATG
GGCGGC
GAAGTGCAGCTG 
ACAAC



(SS)-


TGCT
ACACAGAGCCCC
GGAGGA
GTTGAATCAGGT
AACCC



aGPC3


GCTG
GATAGCCTGGCC
TCTGGCG
GGCGGCCTGGTT
CTGCTC



hPY7 vL-


GTCA
GTGTCTCTGGGA
GAGGTG
CAACCTGGCGGA
CTAGA



(GGGGS)3-


CATC
GAAAGAGCCACC
GAAGTG
TCTCTGAGACTG
CCTCCT



aGPC3


TCTG
ATCAACTGCAAG
GCGGAG
AGCTGTGCCGCC
ACACC



hPY7 vH-


CTGC
AGCAGCCAGAGC
GCGGAT
AGCGGCTTCACC
AGCTCC



CD8 S2L


TGTG
CTGCTGTACTCC
CT
TTCAACAAGAAC
TACAAT



(Hinge)-


CGA
AGCAACCAGAAG

GCCATGAACTGG
CGCCCT



OX40 (TM)-


GCTG
AACTACCTGGCC

GTCCGACAGGCC
GCAGC



OX40


CCCC
TGGTATCAGCAA

CCTGGCAAAGGC
CTCTGT



(ICD)-


ATCC
AAGCCCGGCCAG

CTTGAATGGGTC
CTCTGA



CD3z (ICD)-


TGCC
CCTCCTAAGCTG

GGACGGATCCGG
GGCCA



E2A T2A-


TTTC
CTGATCTATTGG

AACAAGACCAAC
GAAGC



IgE (SS)-


TGCT
GCCAGCTCCAGA

AACTACGCCACC
TTGTAG



IL-15-


GATC
GAAAGCGGCGTG

TACTACGCCGAC
ACCAG



Tace10


CCT
CCCGATAGATTT

AGCGTGAAGGCC
CTGCTG



(cleavage



TCTGGCTCTGGC

AGATTCACCATC
GCGGA



site)-B7-1



AGCGGCACCGAC

AGCCGGGACGAC
GCCGT



(TM)



TTCACCCTGACA

AGCAAGAACAGC
IGCATA



[(GGGGS)3



ATTTCTAGCCTG

CTGTACCTGCAG
CAAGA



is SEQ ID



CAAGCCGAGGAC

ATGAACTCCCTG
GGACT



NO: 223]



GTGGCCGTGTAC

AAAACCGAGGAC
GGACTT







TACTGCCAGCAG

ACCGCCGTGTAT
CGCCTG







TACTACAACTAC

TATTGCGTGGCC
TGAT







CCTCTGACCTTC

GGCAACAGCTTT








GGCCAGGGCACC

GCCTACTGGGGA








AAGCTGGAAATC

CAGGGAACCCTG








AAA

GTCACCGTGTCT










GCC







Co-stim








SB ID
TM
ICD
CD3z ICD
E2A
SS
IL15
Cleavage Site
TM domain






GTGG
GCTCTG
AGAGTGAAGTTC
GGTAGCGGC
ATGGA
AATTGGGTCAACGTG
TCTGGCGGC
CTGCTGCCT



CCGCC
TATCTG
AGCAGAAGCGCC
CAGTGTACC
CTGGA
ATCAGCGACCTGAAG
GGAGGATCT
AGCTGGGCC



ATTCT
CTGCG
GACGCACCCGCC
AACTACGCC
CCTGG
AAGATCGAGGACCTG
GGCGGAGGT
ATCACACTG



CGGA
GAGGG
TATAAGCAGGGA
CTGCTGAAA
ATCCT
ATCCAGAGCATGCAC
GGAAGCGGA
ATCTCCGTG



CTGG
ACCAA
CAGAACCAGCTG
CTGGCCGGC
GTTTC
ATCGACGCCACACTGT
GTTACACCC
AACGGCATC



GACTT
AGACT
TACAACGAGCTG
GACGTGGAA
TGGTG
ACACCGAGAGCGACG
GAGCCTATC
TTCGTGATCT



GTTCT
GCCTCC
AACCTGGGGAGA
TCTAATCCTG
GCCGC
TGCACCCTAGCTGTAA
TTCAGCCTG
GCTGCCTGA



GGGA
TGATGC
AGAGAAGAGTAC
GACCTGGAT
TGCCA
AGTGACCGCCATGAA
ATCGGAGGC
CCTACTGCTT



CTGCT
TCACA
GACGTGCTGGAC
CTGGCGAGG
CAAGA
GTGCTTTCTGCTGGAA
GGTAGCGGA
CGCCCCTAG



GGGA
AGCCTC
AAGCGGAGAGGC
GACGCGGGA
GTGCA
CTGCAAGTGATCAGCC
GGCGGAGGA
ATGCAGAGA



CCTCT
CAGGC
AGAGATCCTGAG
GTCTACTGA
CAGC
TGGAAAGCGGCGACG
AGTGGTGGC
GCGGCGGAG



GGCC
GGAGG
ATGGGCGGCAAG
CGTGTGGAG

CCAGCATCCACGACA
GGATCTCTG
AAACGAACG



ATTCT
CAGCTT
CCCAGACGGAAG
ACGTGGAGG

CCGTGGAAAACCTGA
CAA
GCTGAGAAG



GCTG
CAGAA
AATCCTCAAGAG
AAAACCCTG

TCATCCTGGCCAACAA

AGAATCTGT




CCCCTA
GGCCTGTATAAT
GACCT

CAGCCTGAGCAGCAA

GCGGCCCGT




TCCAA
GAGCTGCAGAAA


CGGCAATGTGACCGA

T




GAGGA
GACAAGATGGCC


GTCCGGCTGCAAAGA






ACAGG
GAGGCCTACAGC


GTGCGAGGAACTGGA






CCGAC
GAGATCGGAATG


AGAGAAGAATATCAA






GCTCAC
AAGGGCGAGCGC


AGAGTTCCTGCAGAG






AGCAC
AGAAGAGGCAA


CTTCGTGCACATCGTG






CCTGGC
GGGACACGATGG


CAGATGTTCATCAACA






CAAGA
ACTGTACCAGGG


CAAGC






TT
CCTGAGCACCGC










CACCAAGGATAC










CTATGATGCCCT










GCACATGCAGGC










CCTGCCTCCAAG










A






SEQ ID NO


217
221
224
330
227








AA
MLLL
DIVMTQSPDSLAV
GGGGSG
EVOLVESGGGLV
TTTPAP






VTSL
SLGERATINCKSS
GGGSGG
QPGGSLRLSCAAS
RPPTPA






LLCE
QSLLYSSNQKNYL
GGS
GFTFNKNAMNW
PTIALQ






LPHP
AWYQQKPGQPPK

VRQAPGKGLEWV
PLSLRP






AFLL
LLIYWASSRESGV

GRIRNKTNNYAT
EACRPA






IP
PDRFSGSGSGTDF

YYADSVKARFTIS
AGGAV







TLTISSLQAEDVA

RDDSKNSLYLQM
HTRGLD







VYYCQQYYNYPL

NSLKTEDTAVYY
FACD







TFGQGTKLEIK

CVAGNSFAYWGQ










GTLVTVSA






245
270
278
282
214
286
288
331






VAAIL
ALYLLR
RVKFSRSADAPA
GSGQCTNYA
MDWT
NWVNVISDLKKIEDLIQ
SGGGGSGGG
LLPSWAITLIS



GLGLV
PDAHKP
YKQGQNQLYNEL
LLKLAGDVES
WILFL
SMHIDATLYTESDVHPS
GSGVTPEPIF
VNGIFVICCL



LGLLG
PGGGSF
NLGRREEYDVLD
NPGPGSGEGR
VAAAT
CKVTAMKCFLLELQVI

SLIGGGSGGG

TYCFAPRCRE



PLAIL
RDQRLP
KRRGRDPEMGGK
GSLLTCGDVE
RVHS
SLESGDASIHDTVENLII
GSGGGSLQ
RRRNERLRRE



L
RTPIQE
PRRKNPQEGLYN
ENPGP

LANNSLSSNGNVTESG

SVRPV




EQADA
ELQKDKMAEAYS


CKECEELEEKNIKEFLQ






HSTLAK
EIGMKGERRRGK


SFVHIVQMFINTS






I
GHDGLYQGLSTA










TKDTYDALHMQA










LPPR






SEQ ID NO


216
208
223
206
226





SB06258



GM-
hPY7 VH
(GGGGS)3
hPY7 VL
CD8FA






CSF-

(SEQ ID








Ra

NO: 223)






244
269
277
281
218
285
287
219






CD8FA
CD28
CD3z
E2A/T2A
IgE
IL 15
LR1 split N
B7-1









term linker +










Tace10






Des-
Back-
Seq







SB ID
cription
bone
Type
SS
scFV
Linker
scFV
Hinge






GM-CSF-Ra
Sin Vec
DNA
ATGC
GAAGTGCAGCTG
GGCGGC
GACATCGTGAT
GGCGCC



(SS)-


TGCT
GTTGAATCAGGT
GGAGGA
GACACAGAGCC
CTGAGC



aGPC3


GCTG
GGCGGCCTGGTT
TCTGGCG
CCGATAGCCTG
AACAGC



hPY7 vH-


GTCA
CAACCTGGCGGA
GAGGTG
GCCGTGTCTCT
ATCATGT



(GGGGS)3-


CATC
TCTCTGAGACTG
GAAGTG
GGGAGAAAGA
ACTTCAG



aGPC3


TCTG
AGCTGTGCCGCC
GCGGAG
GCCACCATCAA
CCACTTC



hPY7 vL-


CTGC
AGCGGCTTCACC
GCGGAT
CTGCAAGAGCA
GTGCCC



CD8FA


TGTG
TTCAACAAGAAC
CT
GCCAGAGCCTG
GTGTTTC



(Hinge)-


CGA
GCCATGAACTGG

CTGTACTCCAG
TGCCCGC



CD8 (TM)-


GCTG
GTCCGACAGGCC

CAACCAGAAGA
CAAGCC



CD28 (ICD)-


CCCC
CCTGGCAAAGGC

ACTACCTGGCC
TACAAC



CD3z


ATCC
CTTGAATGGGTC

TGGTATCAGCA
AACCCCT



(ICD)-E2A


TGCC
GGACGGATCCGG

AAAGCCCGGCC
GCTCCTA



T2A-IgE


TTTC
AACAAGACCAAC

AGCCTCCTAAG
GACCTCC



(SS)-IL-15-


TGCT
AACTACGCCACC

CTGCTGATCTA
TACACC



Tace10


GATC
TACTACGCCGAC

TTGGGCCAGCT
AGCTCCT



(cleavage


CCT
AGCGTGAAGGCC

CCAGAGAAAGC
ACAATC



site)-B7-1



AGATTCACCATC

GGCGTGCCCGA
GCCAGC



(TM)



AGCCGGGACGAC

TAGATTTTCTGG
CAGCCTC



[(GGGGS)3



AGCAAGAACAGC

CTCTGGCAGCG
TGTCTCT



is SEQ ID



CTGTACCTGCAG

GCACCGACTTC
GAGGCC



NO: 223]



ATGAACTCCCTG

ACCCTGACAAT
AGAAGC







AAAACCGAGGAC

TTCTAGCCTGC
TTGTAGA







ACCGCCGTGTAT

AAGCCGAGGAC
CCTGCTG







TATTGCGTGGCC

GTGGCCGTGTA
CAGGCG







GGCAACAGCTTT

CTACTGCCAGC
GAGCCG







GCCTACTGGGGA

AGTACTACAAC
TGCATAC







CAGGGAACCCTG

TACCCTCTGAC
AAGAGG







GTCACCGTGTCT

CTTCGGCCAGG
ACTGGA







GCC

GCACCAAGCTG
TTTCGCC









GAAATCAAA
TGCGAC







Co-stim








SB ID
TM
ICD
CD3z ICD
E2A
SS
IL15
Cleavage Site
TM domain






ATCTA
CGGAG
AGAGTGAAGTTC
GGTAGCGGC
ATGGA
AATTGGGTCAACGTG
TCTGGCGGC
CTGCTGCCT



CATCT
CAAGA
AGCAGATCCGCC
CAGTGTACC
CTGGA
ATCAGCGACCTGAAG
GGAGGATCT
AGCTGGGCC



GGGC
GAAGC
GATGCTCCCGCC
AACTACGCC
CCTGG
AAGATCGAGGACCTG
GGCGGAGGT
ATCACACTG



CCCTC
AGACT
TATCAGCAGGGA
CTGCTGAAA
ATCCT
ATCCAGAGCATGCAC
GGAAGCGGA
ATCTCCGTG



TGGCT
GCTGC
CAGAACCAGCTG
CTGGCCGGC
GTTTC
ATCGACGCCACACTGT
GTTACACCC
AACGGCATC



GGAA
ACAGC
TACAACGAGCTG
GACGTGGAA
TGGTG
ACACCGAGAGCGACG
GAGCCTATC
TTCGTGATCT



CATGT
GACTA
AACCTGGGGAGA
TCTAATCCTG
GCCGC
TGCACCCTAGCTGTAA
TTCAGCCTG
GCTGCCTGA



GGTGT
CATGA
AGAGAAGAGTAC
GACCTGGAT
TGCCA
AGTGACCGCCATGAA
ATCGGAGGC
CCTACTGCTT



CCTGC
ACATG
GACGTGCTGGAC
CTGGCGAGG
CAAGA
GTGCTTTCTGCTGGAA
GGTAGCGGA
CGCCCCTAG



TGCTG
ACCCCT
AAGCGGAGAGGC
GACGCGGGA
GTGCA
CTGCAAGTGATCAGCC
GGCGGAGGA
ATGCAGAGA



AGCCT
AGACG
AGAGATCCTGAG
GTCTACTGA
CAGC
TGGAAAGCGGCGACG
AGTGGTGGC
GCGGCGGAG



GGTC
GCCCG
ATGGGCGGCAAG
CGTGTGGAG

CCAGCATCCACGACA
GGATCTCTG
AAACGAACG



ATCAC
GACCT
CCCAGACGGAAG
ACGTGGAGG

CCGTGGAAAACCTGA
CAA
GCTGAGAAG



CCTGT
ACCAG
AATCCTCAAGAG
AAAACCCTG

TCATCCTGGCCAACAA

AGAATCTGT



ACTGC
AAAGC
GGCCTGTATAAT
GACCT

CAGCCTGAGCAGCAA

GCGGCCCGT



AACC
ACTACC
GAGCTGCAGAAA


CGGCAATGTGACCGA

T



ACCG
AGCCTT
GACAAGATGGCC


GTCCGGCTGCAAAGA





G
ACGCTC
GAGGCCTACAGC


GTGCGAGGAACTGGA






CTCCTA
GAGATCGGAATG


AGAGAAGAATATCAA






GAGAC
AAGGGCGAGCGC


AGAGTTCCTGCAGAG






TTCGCC
AGAAGAGGCAA


CTTCGTGCACATCGTG






GCCTAC
GGGACACGATGG


CAGATGTTCATCAACA






CGGTCC
ACTGTACCAGGG


CAAGC







CCTGAGCACCGC










CACCAAGGATAC










CTATGATGCCCT










GCACATGCAGGC










CCTGCCTCCAAG










A






SEQ ID NO


217
330
224
221
229








AA
MLLL
EVQLVESGGGLV
GGGGSG
DIVMTQSPDSLA
GALSNSI






VTSL
QPGGSLRLSCAAS
GGGSGG
VSLGERATINCK
MYFSHFV






LLCE
GFTFNKNAMNW
GGS
SSQSLLYSSNQK
PVFLPAK






LPHP
VRQAPGKGLEWV

NYLAWYQQKPG
PTTTPAP






AFLL
GRIRNKTNNYAT

QPPKLLIYWASS
RPPTPAP 






IP
YYADSVKARFTIS

RESGVPDRFSGS
TIASQPLS







RDDSKNSLYLQM

GSGTDFTLTISSL
LRPEACR







NSLKTEDTAVYY

QAEDVAVYYCQ
PAAGGA







CVAGNSFAYWGQ

QYYNYPLTFGQ
VHTRGL







GTLVTVSA

GTKLEIK
DFACD






243
268
280
282
214
286
288
331






IYIWA 
RSKRSR
RVKFSRSADAPA

GSGQCTNYA

MDWT
NWVNVISDLKKIEDLIQ
SGGGGSGGG
LLPSWAITLIS



PLAGT
LLHSDY
YQQGQNQLYNEL
LLKLAGDVES
WILFL
SMHIDATLYTESDVHPS
GSGVTPEPIF
VNGIFVICCL



CGVLL
MNMTP
NLGRREEYDVLD
NPGPGSGEGR
VAAAT
CKVTAMKCFLLELQVI

SLIGGGSGGG

TYCFAPRCRE



LSLVI
RRPGPT
KRRGRDPEMGGK
GSLLTCGDVE
RVHS
SLESGDASIHDTVENLII
GSGGGSLQ
RRRNERLRRE



TLYCN
RKHYQ
PRRKNPQEGLYN
ENPGP

LANNSLSSNGNVTESG

SVRPV



HR
PYAPPR
ELQKDKMAEAYS


CKECEELEEKNIKEFLQ






DFAAY
EIGMKGERRRGK


SFVHIVQMFINTS






RS
GHDGLYQGLSTA










TKDTYDALHMQA










LPPR






SEQ ID NO


216
206
223
208
228





SB06298



GM-
hPY7 VH
(GGGGS)3
hPY7 VL
CD8FA






CSF-

(SEQ ID








Ra

NO: 223)






242
267
279
281
218
285
287
219






CD8FA
CD28
CD3z mut
E2A/T2A
IgE
IL15
LR1 split N
B7-1









term linker +










Tace10






Des-
Back-
Seq







SB ID
cription
bone
Type
SS
scFV
Linker
scFV
Hinge






GM-CSF-Ra
Sin Vec
DNA
ATGC
GAAGTGCAGCTG
GGCGGC
GACATCGTGAT
GGCGCC



(SS)-


TGCT
GTGGAATCTGGC
GGAGGA
GACACAGAGCC
CTGAGC



aGPC3


GCTG
GGAGGACTGGTT
AGCGGA
CCGATAGCCTG
AACAGC



hPY7 vH-


GTCA
CAACCTGGCGGC
GGCGGA
GCCGTGTCTCT
ATCATGT



(GGGGS)3-


CATC
TCTCTGAGACTG
GGATCC
GGGAGAAAGA
ACTTCAG



aGPC3


TCTG
TCTTGTGCCGCC
GGTGGT
GCCACCATCAA
CCACTTC



hPY7 vL-


CTGC
AGCGGCTTCACC
GGTGGA
CTGCAAGAGCA
GTGCCC



CD8FA


TGTG
TTCAACAAGAAC
TCT
GCCAGAGCCTG
GTGTTTC



(Hinge)-


CGA
GCCATGAACTGG

CTGTACTCCAG
TGCCCGC



CD8 (TM)-


GCTG
GTCCGACAGGCC

CAACCAGAAGA
CAAGCC 



CD28 (ICD)-


CCCC
CCTGGCAAAGGC

ACTACCTGGCC
TACAAC



CD3z mut


ATCC
CTTGAATGGGTC

TGGTATCAGCA
AACCCCT



(ICD)-E2A


TGCC
GGACGGATCCGG

AAAGCCCGGCC
GCTCCTA



T2A-IgE


TTTC
AACAAGACCAAC

AGCCTCCTAAG
GACCTCC



(SS)-IL-15-


TGCT
AACTACGCCACC

CTGCTGATCTA
TACACC



Tace10


GATC
TACTACGCCGAC

TTGGGCCAGCT
AGCTCCT



(cleavage


CCT
AGCGTGAAGGCC

CCAGAGAAAGC
ACAATC



site)-B7-1



AGGTTCACCATC

GGCGTGCCCGA
GCCAGC



(TM)



TCCAGAGATGAC

TAGATTTTCTGG
CAGCCTC



[(GGGGS)3



AGCAAGAACAGC

CTCTGGCAGCG
TGTCTCT



is SEQ ID



CTGTACCTGCAG

GCACCGACTTC
GAGGCC



NO: 223]



ATGAACTCCCTG

ACCCTGACAAT
AGAAGC







AAAACCGAGGAC

TTCTAGCCTGC
TTGTAGA







ACCGCCGTGTAC

AAGCCGAGGAC
CCTGCTG







TATTGCGTGGCC

GTGGCCGTGTA
CAGGCG







GGCAATAGCTTT

TTACTGCCAGC
GAGCCG







GCCTACTGGGGA

AGTACTACAAC
TGCATAC







CAGGGCACCCTG

TACCCTCTGAC
AAGAGG







GTTACAGTTTCT

CTTCGGCCAGG
ACTGGA







GCT

GCACCAAGCTG
TTTCGCC









GAAATCAAA
TGCGAC







Co-stim








SB ID
TM
ICD
CD3z ICD
E2A
SS
IL15
Cleavage Site
TM domain






ATCTA
CGGAG
AGAGTGAAGTTC
CAGTGTACC
ATGGA
AATTGGGTCAACGTG
TCTGGCGGC
CTGCTGCCT



CATCT
CAAGA
AGCAGGAGCGCA
AACTACGCC
CTGGA
ATCAGCGACCTGAAG
GGAGGATCT
AGCTGGGCC



GGGC
GAAGC
GACGCCCCCGCG
CTGCTGAAA
CCTGG
AAGATCGAGGACCTG
GGCGGAGGT
ATCACACTG



CCCTC
AGACT
TACAAGCAGGGC
CTGGCCGGC
ATCCT
ATCCAGAGCATGCAC
GGAAGCGGA
ATCTCCGTG



TGGCT
GCTGC
CAGAACCAGCTC
GACGTGGAA
GTTTC
ATCGACGCCACACTGT
GTTACACCC
AACGGCATC



GGAA
ACAGC
TATAACGAGCTC
TCTAATCCTG
TGGTG
ACACCGAGAGCGACG
GAGCCTATC
TTCGTGATCT



CATGT
GACTA
AATCTAGGACGA
GACCTGGAT
GCCGC
TGCACCCTAGCTGTAA
TTCAGCCTG
GCTGCCTGA



GGTGT
CATGA
AGAGAGGAGTAC
CTGGCGAGG
TGCCA
AGTGACCGCCATGAA
ATCGGAGGC
CCTACTGCTT



CCTGC
ACATG
GATGTTTTGGAC
GACGCGGGA
CAAGA
GTGCTTTCTGCTGGAA
GGTAGCGGA
CGCCCCTAG



TGCTG
ACCCCT
AAGAGACGTGGC
GTCTACTGA
GTGCA
CTGCAAGTGATCAGCC
GGCGGAGGA
ATGCAGAGA



AGCCT
AGACG
CGGGACCCTGAG
CGTGTGGAG
CAGC
TGGAAAGCGGCGACG
AGTGGTGGC
GCGGCGGAG



GGTC
GCCCG
ATGGGGGGAAAG
ACGTGGAGG

CCAGCATCCACGACA
GGATCTCTG
AAACGAACG



ATCAC
GACCT
CCGAGAAGGAAG
AAAACCCTG

CCGTGGAAAACCTGA
CAA
GCTGAGAAG



CCTGT
ACCAG
AACCCTCAGGAA
GACCT

TCATCCTGGCCAACAA

AGAATCTGT



ACTGC
AAAGC
GGCCTGTACAAT


CAGCCTGAGCAGCAA

GCGGCCCGT



AACC
ACTACC
GAACTGCAGAAA


CGGCAATGTGACCGA

T



ACCG
AGCCTT
GATAAGATGGCG


GTCCGGCTGCAAAGA





G
ACGCTC
GAGGCCTACAGT


GTGCGAGGAACTGGA






CTCCTA 
GAGATTGGGATG


AGAGAAGAATATCAA






GAGAC
AAAGGCGAGCGC


AGAGTTCCTGCAGAG






TTCGCC
CGGAGGGGCAAG


CTTCGTGCACATCGTG






GCCTAC
GGGCACGATGGC


CAGATGTTCATCAACA






CGGTCC
CTTTACCAGGGT


CAAGC







CTCAGTACAGCC










ACCAAGGACACC










TACGACGCCCTT










CACATGCAGGCC










CTGCCCCCTCGC






SEQ ID NO


217
222
332
333
229








AA
MLLL
EVQLVESGGGLV
GGGGSG
DIVMTQSPDSLA
GALSNSI






VTSL
QPGGSLRLSCAAS
GGGSGG
VSLGERATINCK
MYFSHFV






LLCE
GFTFNKNAMNW
GGS
SSQSLLYSSNQK
PVFLPAK






LPHP
VRQAPGKGLEWV

NYLAWYQQKPG
PTTTPAP






AFLL
GRIRNKTNNYAT

QPPKLLIYWASS
RPPTPAP






IP
YYADSVKARFTIS

RESGVPDRFSGS
TIASQPLS







RDDSKNSLYLQM

GSGTDFTLTISSL
LRPEACR







NSLKTEDTAVYY

QAEDVAVYYCQ
PAAGGA







CVAGNSFAYWGQ

QYYNYPLTFGQ
VHTRGL







GTLVTVSA

GTKLEIK
DFACD






243
268
334
284
214
286
288
331






IYIWA
RSKRSR
RVKFSRSADAPA
QCTNYALLK
MDWT
NWVNVISDLKKIEDLIQ
SGGGGSGGG
LLPSWAITLIS



PLAGT
LLHSDY
YKQGQNQLYNEL
LAGDVESNPG
WILFL
SMHIDATLYTESDVHPS
GSGVTPEPIF
VNGIFVICCL



CGVLL
MNMTP
NLGRREEYDVLD
PGSGEGRGSL
VAAAT
CKVTAMKCFLLELQVI

SLIGGGSGGG

TYCFAPRCRE



LSLVI
RRPGPT
KRRGRDPEMGGK
LTCGDVEENP
RVHS
SLESGDASIHDTVENLII
GSGGGSLQ
RRRNERLRRE



TLYCN
RKHYQ
PRRKNPQEGLYN
GP

LANNSLSSNGNVTESG

SVRPV



HR
PYAPPR
ELQKDKMAEAYS


CKECEELEEKNIKEFLQ






DFAAY
EIGMKGERRRGK


SFVHIVQMFINTS






RS
GHDGLYQGLSTA










TKDTYDALHMQA










LPPR






SEQ ID NO


216
206
223
208
228





SB06254



IgE
IL15
LR1 split N
B7-1
E2A/T2A








term linker










+ Tace10






242
267
277
283
218
285
287
219






GM-
hPY7 VL
(GGGGS)3
hPY7 VH
CD8 S2L
OX40
OX40
CD3z



CSF-Ra






Des-
Back-
Seq







SB ID
cription
bone
Type
SS
scFV
Linker
scFV
Hinge






IgE (SS)-

DNA
ATGG
AATTGGGTCAAC
TCTGGCG
CTGCTGCC
CAGTGT



IL-15


ACTG
GTGATCAGCGAC
GCGGAG
TAGCTGG
ACCAA



Tace10


GACC
CTGAAGAAGATC
GATCTG
GCCATCA
CTACGC



(cleavage


TGGA
GAGGACCTGATC
GCGGAG
CACTGAT
CCTGCT



site)-B7-1


TCCT
CAGAGCATGCAC
GTGGAA
CTCCGTG
GAAAC



(TM)-E2A


GTTT
ATCGACGCCACA
GCGGAG
AACGGCA
TGGCC



T2A-GM-


CTGG
CTGTACACCGAG
TTACACC
TCTTCGTG
GGCGA



CSF-Ra (SS)-


TGGC
AGCGACGTGCAC
CGAGCC
ATCTGCTG
CGTGG



aGPC3


CGCT
CCTAGCTGTAAA
TATCTTC
CCTGACCT
AATCTA



hPY7 vL-


GCCA
GTGACCGCCATG
AGCCTG
ACTGCTTC
ATCCTG



(GGGGS)3-


CAA
AAGTGCTTTCTG
ATCGGA
GCCCCTA
GACCT



aGPC3


GAGT
CTGGAACTGCAA
GGCGGT
GATGCAG
GGATCT



hPY7 vH-


GCAC
GTGATCAGCCTG
AGCGGA
AGAGCGG
GGCGA



CD8 S2L


AGC
GAAAGCGGCGAC
GGCGGA
CGGAGAA
GGGAC



(Hinge)-



GCCAGCATCCAC
GGAAGT
ACGAACG
GCGGG



OX40 (TM)-



GACACCGTGGAA
GGTGGC
GCTGAGA
AGTCTA



OX40



AACCTGATCATC
GGATCTC
AGAGAAT
CTGAC



(ICD)-



CTGGCCAACAAC
TGCAA
CTGTGCG
GTGTG



CD3z (ICD)



AGCCTGAGCAGC

GCCCGTT
GAGAC



[(GGGGS)3



AACGGCAATGTG


GTGGA



is SEQ ID



ACCGAGTCCGGC


GGAAA



NO: 223]



TGCAAAGAGTGC


ACCCTG







GAGGAACTGGAA


GACCT







GAGAAGAATATC










AAAGAGTTCCTG










CAGAGCTTCGTG










CACATCGTGCAG










ATGTTCATCAAC










ACAAGC







Co-stim








SB ID
TM
ICD
CD3z ICD
E2A
SS
IL15
Cleavage Site
TM domain






ATGCT
GACATCGTGATG
GGCGGCG
GAAGTGCAGCTG
ACAACAAC
GTGG
GCTCTGTATCTGCT
AGAGTGAAGTTC



GCTGC
ACACAGAGCCCC
GAGGATC
GTTGAATCAGGT
CCCTGCTCC
CCGCC
GCGGAGGGACCAA
AGCAGAAGCGCC



TGGTC
GATAGCCTGGCC
TGGCGGA
GGCGGCCTGGTT
TAGACCTC
ATTCT
AGACTGCCTCCTGA
GACGCACCCGCC



ACATC
GTGTCTCTGGGA
GGTGGAA
CAACCTGGCGGA
CTACACCA
CGGA
TGCTCACAAGCCTC
TATAAGCAGGGA



TCTGC
GAAAGAGCCACC
GTGGCGG
TCTCTGAGACTG
GCTCCTAC
CTGG
CAGGCGGAGGCAG
CAGAACCAGCTG



TGCTG
ATCAACTGCAAG
AGGCGGA
AGCTGTGCCGCC
AATCGCCC
GACTT
CTTCAGAACCCCTA
TACAACGAGCTG



TGCG
AGCAGCCAGAGC
TCT
AGCGGCTTCACC
TGCAGCCT
GTTCT
TCCAAGAGGAACAG
AACCTGGGGAGA



AGCT
CTGCTGTACTCC

TTCAACAAGAAC
CTGTCTCTG
GGGA
GCCGACGCTCACAG
AGAGAAGAGTAC



GCCCC
AGCAACCAGAAG

GCCATGAACTGG
AGGCCAGA
CTGCT
CACCCTGGCCAAGA
GACGTGCTGGAC



ATCCT
AACTACCTGGCC

GTCCGACAGGCC
AGCTTGTA
GGGA
TT
AAGCGGAGAGGC



GCCTT
TGGTATCAGCAA

CCTGGCAAAGGC
GACCAGCT
CCTCT

AGAGATCCTGAG



TCTGC
AAGCCCGGCCAG

CTTGAATGGGTC
GCTGGCGG
GGCC

ATGGGCGGCAAG



TGATC
CCTCCTAAGCTG

GGACGGATCCGG
AGCCGTGC
ATTCT

CCCAGACGGAAG



CCT
CTGATCTATTGG

AACAAGACCAAC
ATACAAGA
GCTG

AATCCTCAAGAG




GCCAGCTCCAGA

AACTACGCCACC
GGACTGGA


GGCCTGTATAAT




GAAAGCGGCGTG

TACTACGCCGAC
CTTCGCCTG


GAGCTGCAGAAA




CCCGATAGATTT

AGCGTGAAGGCC
TGAT


GACAAGATGGCC




TCTGGCTCTGGC

AGATTCACCATC



GAGGCCTACAGC




AGCGGCACCGAC

AGCCGGGACGAC



GAGATCGGAATG




TTCACCCTGACA

AGCAAGAACAGC



AAGGGCGAGCGC




ATTTCTAGCCTG

CTGTACCTGCAG



AGAAGAGGCAA




CAAGCCGAGGAC

ATGAACTCCCTG



GGGACACGATGG




GTGGCCGTGTAC

AAAACCGAGGAC



ACTGTACCAGGG




TACTGCCAGCAG

ACCGCCGTGTAT



CCTGAGCACCGC




TACTACAACTAC

TATTGCGTGGCC



CACCAAGGATAC




CCTCTGACCTTC

GGCAACAGCTTT



CTATGATGCCCT




GGCCAGGGCACC

GCCTACTGGGGA



GCACATGCAGGC




AAGCTGGAAATC

CAGGGAACCCTG



CCTGCCTCCAAG




AAA

GTCACCGTGTCT



A






GCC






SEQ ID NO


214
286
288
331
284








AA
MDW
NWVNVISDLKKIE
SGGGGSG
LLPSWAIT
QCTNY






TWIL
DLIQSMHIDATLY
GGGSGV
LISVNGIFV
ALLKLA






FLVA
TESDVHPSCKVTA

TPEPIFS

ICCLTYCF
GDVESN






AATR
MKCFLLELQVISL

LIGGGSG

APRCRERR
PGPGSG






VHS
ESGDASIHDTVEN
GGGSGG
RNERLRRE
EGRGSL







LIILANNSLSSNGN
GSLQ
SVRPV
LTCGDV







VTESGCKECEELE


EENPGP







EKNIKEFLQSFVHI










VQMFINTS






217
221
224
330
227
245
270
278






MLLL
DIVMTQSPDSLAV
GGGGSGG
EVQLVESGGGLV
TTTPAPRPP
VAAIL
ALYLLRRDQRLPPD
RVKFSRSADAPA



VTSLL
SLGERATINCKSS
GGSGGGG
QPGGSLRLSCAAS
TPAPTIALQP
GLGLV
AHKPPGGGSFRTPIQ
YKQGQNQLYNEL



LCELP
QSLLYSSNQKNYL 
S
GFTFNKNAMNW
LSLRPEACR
LGLLG
EEQADAHSTLAKI
NLGRREEYDVLD



HPAFL
AWYQQKPGQPPK

VRQAPGKGLEWV
PAAGGAVH
PLAIL

KRRGRDPEMGGK



ILIP
LLIYWASSRESGV

GRIRNKTNNYAT
TRGLDFACD
L

PRRKNPQEGLYN




PDRFSGSGSGTDF

YYADSVKARFTIS



ELQKDKMAEAYS




TLTISSLQAEDVA

RDDSKNSLYLQM



EIGMKGERRRGK




VYYCQQYYNYPL

NSLKTEDTAVYY



GHDGLYQGLSTA




TFGQGTKLEIK

CVAGNSFAYWGQ



TKDTYDALHMQA






GTLVTVSA



LPPR






SEQ ID NO


218
285
287
219
283





SB06255



IgE
IL15
LR1 split
NB7-1
E2A/T2A








term linker










+ Tace10






216
208
223
206
226
244
269
277






GM-
hPY7 VH
(GGGGS)3
hPY7 VL
CD8FA
CD8FA
CD28
CD3z



CSF-Ra

(SEQ ID










NO: 223)






Des-
Back-
Seq







SB ID
cription
bone
Type
SS
scFV
Linker
scFV
Hinge






IgE (SS)-

DNA
ATGG
AATTGGGTCAAC
TCTGGCG
CTGTGCG
CAGTGT



IL-15


ACTG
GTGATCAGCGAC
GCGGAG
TAGCTGG
ACCAA



Tace10


GACC
CTGAAGAAGATC
GATCTG
GCCATCA
CTACGC



(cleavage


TGGA
GAGGACCTGATC
GCGGAG
CACTGAT
CCTGCT



site)-B7-1


TCCT
CAGAGCATGCAC
GTGGAA
CTCCGTG
GAAAC



(TM)-E2A


GTTT
ATCGACGCCACA
GCGGAG
AACGGCA
TGGCC



T2A-GM-


CTGG
CTGTACACCGAG
TTACACC
TCTTCGTG
GGCGA



CSF-Ra (SS)-


TGGC
AGCGACGTGCAC
CGAGCC
ATCTGCTG
CGTGG



aGPC3


CGCT
CCTAGCTGTAAA
TATCTTC
CCTGACCT
AATCTA



hPY7 vL-


GCCA
GTGACCGCCATG
AGCCTG
ACTGCTTC
ATCCTG



(GGGGS)3-


CAA
AAGTGCTTTCTG
ATCGGA
GCCCCTA
GACCT



aGPC3


GAGT
CTGGAACTGCAA
GGCGGT
GATGCAG
GGATCT



hPY7 vH-


GCAC
GTGATCAGCCTG
AGCGGA
AGAGCGG
GGCGA



CD8FA


AGC
GAAAGCGGCGAC
GGCGGA
CGGAGAA
GGGAC



(Hinge)-



GCCAGCATCCAC
GGAAGT
ACGAACG
GCGGG



CD8FA



GACACCGTGGAA
GGTGGC
GCTGAGA
AGTCTA



(TM)-CD28



AACCTGATCATC
GGATCTC
AGAGAAT
CTGAC



(ICD)-



CTGGCCAACAAC
TGCAA
CTGCTGCC
GTGTG



CD3z (ICD)



AGCCTGAGCAGC

GCCCGTT
GAGAC



[(GGGGS)3



AACGGCAATGTG


GTGGA



is SEQ ID



ACCGAGTCCGGC


GGAAA



NO: 223]



TGCAAAGAGTGC


ACCCTG







GAGGAACTGGAA


GACCT







GAGAAGAATATC










AAAGAGTTCCTG










CAGAGCTTCGTG










CACATCGTGCAG










ATGTTCATCAAC










ACAAGC







Co-stim








SB ID
TM
ICD
CD3z ICD
E2A
SS
IL15
Cleavage Site
TM domain






ATGCT
GAAGTGCAGCTG
GGCGGCG
GACATCGTGATG
GGCGCCCT
ATCTA
CGGAGCAAGAGAA
AGAGTGAAGTTC



GCTGC
GTGGAATCTGGC
GAGGAAG
ACACAGAGCCCC
GAGCAACA
CATCT
GCAGACTGCTGCAC
AGCAGATCCGCC



TGGTC
GGAGGACTGGTT
CGGAGGC
GATAGCCTGGCC
GCATCATG
GGGC
AGCGACTACATGAA
GATGCTCCCGCC



ACATC
CAACCTGGCGGC
GGAGGAT
GTGTCTCTGGGA
TACTTCAGC
CCCTC
CATGACCCCTAGAC
TATCAGCAGGGA



TCTGC
TCTCTGAGACTG
CCGGTGG
GAAAGAGCCACC
CACTTCGTG
TGGCT
GGCCCGGACCTACC
CAGAACCAGCTG



TGCTG
TCTTGTGCCGCC
TGGTGGA
ATCAACTGCAAG
CCCGTGTTT
GGAA
AGAAAGCACTACCA
TACAACGAGCTG



TGCG
AGCGGCTTCACC
TCT
AGCAGCCAGAGC
CTGCCCGC
CATGT
GCCTTACGCTCCTC
AACCTGGGGAGA



AGCT
TTCAACAAGAAC

CTGCTGTACTCC
CAAGCCTA
GGTGT
CTAGAGACTTCGCC
AGAGAAGAGTAC



GCCCC
GCCATGAACTGG

AGCAACCAGAAG
CAACAACC
CCTGC
GCCTACCGGTCC
GACGTGCTGGAC



ATCCT
GTCCGACAGGCC

AACTACCTGGCC
CCTGCTCCT
TGCTG

AAGCGGAGAGGC



GCCTT
CCTGGCAAAGGC

TGGTATCAGCAA
AGACCTCC
AGCCT

AGAGATCCTGAG



TCTGC
CTTGAATGGGTC

AAGCCCGGCCAG
TACACCAG
GGTC

ATGGGCGGCAAG



TGATC
GGACGGATCCGG

CCTCCTAAGCTG
CTCCTACA
ATCAC

CCCAGACGGAAG



CCT
AACAAGACCAAC

CTGATCTATTGG
ATCGCCAG
CCTGT

AATCCTCAAGAG




AACTACGCCACC

GCCAGCTCCAGA
CCAGCCTCT
ACTGC

GGCCTGTATAAT




TACTACGCCGAC

GAAAGCGGCGTG
GTCTCTGA
AACC

GAGCTGCAGAAA




AGCGTGAAGGCC

CCCGATAGATTT
GGCCAGAA
ACCG

GACAAGATGGCC




AGGTTCACCATC

TCTGGCTCTGGC
GCTTGTAG
G

GAGGCCTACAGC




TCCAGAGATGAC

AGCGGCACCGAC
ACCTGCTG


GAGATCGGAATG




AGCAAGAACAGC

TTCACCCTGACA
CAGGCGGA


AAGGGCGAGCGC




CTGTACCTGCAG

ATTTCTAGCCTG
GCCGTGCA


AGAAGAGGCAA




ATGAACTCCCTG

CAAGCCGAGGAC
TACAAGAG


GGGACACGATGG




AAAACCGAGGAC

GTGGCCGTGTAT
GACTGGAT


ACTGTACCAGGG




ACCGCCGTGTAC

TACTGCCAGCAG
TTCGCCTGC


CCTGAGCACCGC




TATTGCGTGGCC

TACTACAACTAC
GAC


CACCAAGGATAC




GGCAATAGCTTT

CCTCTGACCTTC



CTATGATGCCCT




GCCTACTGGGGA

GGCCAGGGCACC



GCACATGCAGGC




CAGGGCACCCTG

AAGCTGGAAATC



CCTGCCTCCAAG




GTTACAGTTTCT

AAA



A




GCT






SEQ ID NO


214
286
288
331
284








AA
MDW
NWVNVISDLKKIE
SGGGGSG
LLPSWAIT
QCTNY






TWIL
DLIQSMHIDATLY
GGGSGV
LISVNGIFV
ALLKLA






FLVA
TESDVHPSCKVTA

TPEPIFS

ICCLTYCF
GDVESN






AATR 
MKCFLLELQVISL

LIGGGSG

APRCRERR
PGPGSG






VHS
ESGDASIHDTVEN
GGGSGG
RNERLRRE
EGRGSL







LIILANNSLSSNGN
GSLQ
SVRPV
LTCGDV







VTESGCKECEELE


EENPGP







EKNIKEFLQSFVHI










VQMFINTS






217
222
332
333
229
243
268
280






MLLL
EVQLVESGGGLV
GGGGSGG
DIVMTQSPDSLAV
GALSNSIMY
IYIWA
RSKRSRLLHSDYMN
RVKFSRSADAPA



VTSLL
QPGGSLRLSCAAS
GGSGGGG
SLGERATINCKSS
FSHFVPVFL
PLAGT
MTPRRPGPTRKHYQ
YQQGQNQLYNEL



LCELP
GFTFNKNAMNW
S
QSLLYSSNQKNYL
PAKPTTTPA
CGVLL
PYAPPRDFAAYRS
NLGRREEYDVLD



HPAFL
VRQAPGKGLEWV

AWYQQKPGQPPK
PRPPTPAPTI
LSLVI

KRRGRDPEMGGK



LIP
GRIRNKTNNYAT

LLIYWASSRESGV
ASQPLSLRP
TLYCN

PRRKNPQEGLYN




YYADSVKARFTIS

PDRFSGSGSGTDF
EACRPAAG
HR

ELQKDKMAEAYS




RDDSKNSLYLQM

TLTISSLQAEDVA
GAVHTRGL


EIGMKGERRRGK




NSLKTEDTAVYY

VYYCQQYYNYPL
DFACD


GHDGLYQGLSTA




CVAGNSFAYWGQ

TFGQGTKLEIK



TKDTYDALHMQA




GTLVTVSA





LPPR






SEQ ID NO


218
285
287
219
283





SB06294



IgE
IL15
LR1 split N
B7-1
E2A/T2A








term linker










+ Tace10






216
206
223
208
228
242
267
279



GM-
hPY7 VL
(GGGGS)3
hPY7 VH
CD8 S2L
OX40
OX40
CD3z mut



CSF-Ra

(SEQ ID










NO: 223)






Des-
Back-
Seq







SB ID
cription
bone
Type
SS
scFV
Linker
scFV
Hinge






IgE (SS)-
Retro Vec
DNA
ATGG
AATTGGGTCAAC
TCTGGCG
CTGCTGCC
CAGTGT



IL-15


ACTG
GTGATCAGCGAC
GCGGAG
TAGCTGG
ACCAA



Tace10


GACC
CTGAAGAAGATC
GATCTG
GCCATCA
CTACGC



(cleavage


TGGA
GAGGACCTGATC
GCGGAG
CACTGAT
CCTGCT



site)-B7-1


TCCT
CAGAGCATGCAC
GTGGAA
CTCCGTG
GAAAC



(TM)-E2A


GTTT
ATCGACGCCACA
GCGGAG
AACGGCA
TGGCC



T2A-GM-


CTGG
CTGTACACCGAG
TTACACC
TCTTCGTG
GGCGA



CSF-Ra (SS)-


TGGC
AGCGACGTGCAC
CGAGCC
ATCTGCTG
CGTGG



aGPC3


CGCT
CCTAGCTGTAAA
TATCTTC
CCTGACCT
AATCTA



hPY7 vL-


GCCA
GTGACCGCCATG
AGCCTG
ACTGCTTC
ATCCTG



(GGGGS)3-


CAA
AAGTGCTTTCTG
ATCGGA
GCCCCTA
GACCT



aGPC3


GAGT
CTGGAACTGCAA
GGCGGT
GATGCAG
GGATCT



hPY7 vH-


GCAC
GTGATCAGCCTG
AGCGGA
AGAGCGG
GGCGA



CD8 S2L


AGC
GAAAGCGGCGAC
GGCGGA
CGGAGAA
GGGAC



(Hinge)-



GCCAGCATCCAC
GGAAGT
ACGAACG
GCGGG



OX40 (TM)-



GACACCGTGGAA
GGTGGC
GCTGAGA
AGTCTA



OX40



AACCTGATCATC
GGATCTC
AGAGAAT
CTGAC



(ICD)-



CTGGCCAACAAC
TGCAA
CTGTGCG
GTGTG



CD3z mut



AGCCTGAGCAGC

GCCCGTT
GAGAC



(ICD)



AACGGCAATGTG


GTGGA



[(GGGGS)3



ACCGAGTCCGGC


GGAAA



is SEQ ID



TGCAAAGAGTGC


ACCCTG



NO: 223]



GAGGAACTGGAA


GACCT







GAGAAGAATATC










AAAGAGTTCCTG










CAGAGCTTCGTG










CACATCGTGCAG










ATGTTCATCAAC










ACAAGC







Co-stim








SB ID
TM
ICD
CD3z ICD
E2A
SS
IL15
Cleavage Site
TM domain






ATGCT
GACATCGTGATG
GGCGGCG
GAAGTGCAGCTG
ACAACAAC
GTGG
GCTCTGTATCTGCT
AGAGTGAAGTTC



GCTGC
ACACAGAGCCCC
GAGGATC
GTTGAATCAGGT
CCCTGCTCC
CCGCC
GCGGAGGGACCAA
AGCAGGAGCGCA



TGGTC
GATAGCCTGGCC
TGGCGGA
GGCGGCCTGGTT
TAGACCTC
ATTCT
AGACTGCCTCCTGA
GACGCCCCCGCG



ACATC
GTGTCTCTGGGA
GGTGGAA
CAACCTGGCGGA
CTACACCA
CGGA
TGCTCACAAGCCTC
TACAAGCAGGGC



TCTGC
GAAAGAGCCACC
GTGGCGG
TCTCTGAGACTG
GCTCCTAC
CTGG
CAGGCGGAGGCAG
CAGAACCAGCTC



TGCTG
ATCAACTGCAAG
AGGCGGA
AGCTGTGCCGCC
AATCGCCC
GACTT
CTTCAGAACCCCTA
TATAACGAGCTC



TGCG
AGCAGCCAGAGC
TCT
AGCGGCTTCACC
TGCAGCCT
GTTCT
TCCAAGAGGAACAG
AATCTAGGACGA



AGCT
CTGCTGTACTCC

TTCAACAAGAAC
CTGTCTCTG
GGGA
GCCGACGCTCACAG
AGAGAGGAGTAC



GCCCC
AGCAACCAGAAG

GCCATGAACTGG
AGGCCAGA
CTGCT
CACCCTGGCCAAGA
GATGTTTTGGAC



ATCCT
AACTACCTGGCC

GTCCGACAGGCC
AGCTTGTA
GGGA
TT
AAGAGACGTGGC



GCCTT
TGGTATCAGCAA

CCTGGCAAAGGC
GACCAGCT
CCTCT

CGGGACCCTGAG



TCTGC
AAGCCCGGCCAG

CTTGAATGGGTC
GCTGGCGG
GGCC

ATGGGGGGAAAG



TGATC
CCTCCTAAGCTG

GGACGGATCCGG
AGCCGTGC
ATTCT

CCGAGAAGGAAG



CCT
CTGATCTATTGG

AACAAGACCAAC
ATACAAGA
GCTG

AACCCTCAGGAA




GCCAGCTCCAGA

AACTACGCCACC
GGACTGGA


GGCCTGTACAAT




GAAAGCGGCGTG

TACTACGCCGAC
CTTCGCCTG


GAACTGCAGAAA




CCCGATAGATTT

AGCGTGAAGGCC
TGATG


GATAAGATGGCG




TCTGGCTCTGGC

AGATTCACCATC



GAGGCCTACAGT




AGCGGCACCGAC

AGCCGGGACGAC



GAGATTGGGATG




TTCACCCTGACA

AGCAAGAACAGC



AAAGGCGAGCGC




ATTTCTAGCCTG

CTGTACCTGCAG



CGGAGGGGCAAG




CAAGCCGAGGAC

ATGAACTCCCTG



GGGCACGATGGC




GTGGCCGTGTAC

AAAACCGAGGAC



CTTTACCAGGGT




TACTGCCAGCAG

ACCGCCGTGTAT



CTCAGTACAGCC




TACTACAACTAC

TATTGCGTGGCC



ACCAAGGACACC




CCTCTGACCTTC

GGCAACAGCTTT



TACGACGCCCTT




GGCCAGGGCACC

GCCTACTGGGGA



CACATGCAGGCC




AAGCTGGAAATC

CAGGGAACCCTG



CTGCCCCCTCGC




AAA

GTCACCGTGTCT










GCC






SEQ ID NO


214
286
288
331
284








AA
MDW
NWVNVISDLKKIE
SGGGGSG
LLPSWAIT
QCTNY






TWIL
DLIQSMHIDATLY
GGGSGV
LISVNGIFV
ALLKLA






FLVA
TESDVHPSCKVTA

TPEPIFS

ICCLTYCF
GDVESN






AATR 
MKCFLLELQVISL

LIGGGSG

APRCRERR
PGPGSG






VHS
ESGDASIHDTVEN
GGGSGG
RNERLRRE
EGRGSL







LIILANNSLSSNGN
GSLQ
SVRPV
LTCGDV







VTESGCKECEELE


EENPGP







EKNIKEFLQSFVHI










VQMFINTS






217
221
224
330
362
245
270
334






MLLL
DIVMTQSPDSLAV
GGGGSGG
EVQLVESGGGLV
TTTPAPRPP
VAAIL
ALYLLRRDQRLPPD
RVKFSRSADAPA



VTSLL
SLGERATINCKSS
GGSGGGG
QPGGSLRLSCAAS
TPAPTIALQP
GLGLV
AHKPPGGGSFRTPIQ
YKQGQNQLYNEL



LCELP
QSLLYSSNQKNYL
S
GFTFNKNAMNW
LSLRPEACR
LGLLG
EEQADAHSTLAKI
NLGRREEYDVLD



HPAFL
AWYQQKPGQPPK

VRQAPGKGLEWV
PAAGGAVH
PLAIL

KRRGRDPEMGGK



LIP
LLIYWASSRESGV

GRIRNKTNNYAT
TRGLDFACD
L

PRRKNPQEGLYN




PDRFSGSGSGTDF

YYADSVKARFTIS



ELQKDKMAEAYS




TLTISSLQAEDVA

RDDSKNSLYLQM



EIGMKGERRRGK




VYYCQQYYNYPL

NSLKTEDTAVYY



GHDGLYQGLSTA




TFGQGTKLEIK

CVAGNSFAYWGQ



TKDTYDALHMQA






GTLVTVSA



LPPR






SEQ ID NO
218
285
287
219
283
216
208





SB06692



IgE
IL15
TaceOPT +
B7-1
E2A/T2A








LR1 Linker






216
208
223
206
226
244
269
277



GM-
hPY7 VL
(GGGGS)3
hPY7 VH
CD8 S2L
OX40
OX40
CD3z



CSF-Ra

(SEQ ID










NO: 223)






Des-
Back-
Seq







SB ID
cription
bone
Type
SS
scFV
Linker
scFV
Hinge






IgE (SS)-
Sin Vec
DNA
ATGG
AATTGGGTCAAC
CCCAGA
CTGCTGCC
CAGTGT



IL-15-


ACTG
GTGATCAGCGAC
GCCGAG
TAGCTGG
ACCAA



TaceOPT


GACC
CTGAAGAAGATC
GCTCTGA
GCCATCA
CTACGC



(cleavage


TGGA
GAGGACCTGATC
AAGGCG
CACTGAT
CCTGCT



site)-B7-1


TCCT
CAGAGCATGCAC
GATCAG
CTCCGTG
GAAAC



(TM)-E2A


GTTT
ATCGACGCCACA
GCGGCG
AACGGCA
TGGCC



T2A-GM-


CTGG
CTGTACACCGAG
GTGGTA
TCTTCGTG
GGCGA



CSF-Ra (SS)-


TGGC
AGCGACGTGCAC
GTGGAG
ATCTGCTG
CGTGG



aGPC3


CGCT
CCTAGCTGTAAA
GCGGAG
CCTGACCT
AATCTA



hPY7 vL-


GCCA
GTGACCGCCATG
GCTCAG
ACTGCTTC
ATCCTG



(GGGGS)3-


CAA
AAGTGCTTTCTG
GCGGCG
GCCCCTA
GACCT



aGPC3


GAGT
CTGGAACTGCAA
GAGGTT
GATGCAG
GGATCT



hPY7 vH-


GCAC
GTGATCAGCCTG
CCGGAG
AGAGCGG
GGCGA



CD8 (Hinge)-


AGC
GAAAGCGGCGAC
GTGGCG
CGGAGAA
GGGAC



OX40



GCCAGCATCCAC
GTTCCGG
ACGAACG
GCGGG



(TM)-



GACACCGTGGAA
CGGAGG
GCTGAGA
AGTCTA



OX40 (ICD)-



AACCTGATCATC
ATCTCTT
AGAGAAT
CTGAC



CD3z



CTGGCCAACAAC
CAAT
CTGTGCG
GTGTG



(ICD)



AGCCTGAGCAGC

GCCCGTT
GAGAC



[(GGGGS)3



AACGGCAATGTG


GTGGA



is SEQ ID



ACCGAGTCCGGC


GGAAA



NO: 223]



TGCAAAGAGTGC


ACCCTG







GAGGAACTGGAA


GACCT







GAGAAGAATATC










AAAGAGTTCCTG










CAGAGCTTCGTG










CACATCGTGCAG










ATGTTCATCAAC










ACAAGC







Co-stim
CD3z ICD







SB ID
TM
ICD

E2A
SS
IL15
Cleavage Site
TM domain






ATGCT
GACATCGTGATG
GGCGGCG
GAAGTGCAGCTG
ACAACAAC
GTGG
GCTCTGTATCTGCT
AGAGTGAAGTTC



GCTGC
ACACAGAGCCCC
GAGGATC
GTTGAATCAGGT
CCCTGCTCC
CCGCC
GCGGAGGGACCAA
AGCAGAAGCGCC



TGGTC
GATAGCCTGGCC
TGGCGGA
GGCGGCCTGGTT
TAGACCTC
ATTCT
AGACTGCCTCCTGA
GACGCACCCGCC



ACATC
GTGTCTCTGGGA
GGTGGAA
CAACCTGGCGGA
CTACACCA
CGGA
TGCTCACAAGCCTC
TATAAGCAGGGA



TCTGC
GAAAGAGCCACC
GTGGCGG
TCTCTGAGACTG
GCTCCTAC
CTGG
CAGGCGGAGGCAG
CAGAACCAGCTG



TGCTG
ATCAACTGCAAG
AGGCGGA
AGCTGTGCCGCC
AATCGCCC
GACTT
CTTCAGAACCCCTA
TACAACGAGCTG



TGCG
AGCAGCCAGAGC
TCT
AGCGGCTTCACC
TGCAGCCT
GTTCT
TCCAAGAGGAACAG
AACCTGGGGAGA



AGCT
CTGCTGTACTCC

TTCAACAAGAAC
CTGTCTCTG
GGGA
GCCGACGCTCACAG
AGAGAAGAGTAC



GCCCC
AGCAACCAGAAG

GCCATGAACTGG
AGGCCAGA
CTGCT
CACCCTGGCCAAGA
GACGTGCTGGAC



ATCCT
AACTACCTGGCC

GTCCGACAGGCC
AGCTTGTA
GGGA
TT
AAGCGGAGAGGC



GCCTT
TGGTATCAGCAA

CCTGGCAAAGGC
GACCAGCT
CCTCT

AGAGATCCTGAG



TCTGC
AAGCCCGGCCAG

CTTGAATGGGTC
GCTGGCGG
GGCC

ATGGGCGGCAAG



TGATC
CCTCCTAAGCTG

GGACGGATCCGG
AGCCGTGC
ATTCT

CCCAGACGGAAG



CCT
CTGATCTATTGG

AACAAGACCAAC
ATACAAGA
GCTG

AATCCTCAAGAG




GCCAGCTCCAGA

AACTACGCCACC
GGACTGGA


GGCCTGTATAAT




GAAAGCGGCGTG

TACTACGCCGAC
CTTCGCCTG


GAGCTGCAGAAA




CCCGATAGATTT

AGCGTGAAGGCC
TGAT


GACAAGATGGCC




TCTGGCTCTGGC

AGATTCACCATC



GAGGCCTACAGC




AGCGGCACCGAC

AGCCGGGACGAC



GAGATCGGAATG




TTCACCCTGACA

AGCAAGAACAGC



AAGGGCGAGCGC




ATTTCTAGCCTG

CTGTACCTGCAG



AGAAGAGGCAA




CAAGCCGAGGAC

ATGAACTCCCTG



GGGACACGATGG




GTGGCCGTGTAC

AAAACCGAGGAC



ACTGTACCAGGG




TACTGCCAGCAG

ACCGCCGTGTAT



CCTGAGCACCGC




TACTACAACTAC

TATTGCGTGGCC



CACCAAGGATAC




CCTCTGACCTTC

GGCAACAGCTTT



CTATGATGCCCT




GGCCAGGGCACC

GCCTACTGGGGA



GCACATGCAGGC




AAGCTGGAAATC

CAGGGAACCCTG



CCTGCCTCCAAG




AAA

GTCACCGTGTCT



A






GCC






SEQ ID NO


214
286
292
331
284








AA
MDW
NWVNVISDLKKIE

PRAEAL

LLPSWAIT
QCTNY






TWIL
DLIQSMHIDATLY

KGGSGG

LISVNGIFV 
ALLKLA






FLVA
TESDVHPSCKVTA
GGSGGG
ICCLTYCF
GDVESN






AATR 
MKCFLLELQVISL
GSGGGGS
APRCRERR
PGPGSG






VHS
ESGDASIHDTVEN
GGGGSG
RNERLRRE
EGRGSL







LIILANNSLSSNGN
GGSLQ
SVRPV
LTCGDV







VTESGCKECEELE


EENPGP







EKNIKEFLQSFVHI










VQMFINTS






217
221
224
330
227
245
270
278






MLLL
DIVMTQSPDSLAV
GGGGSGG
EVqLVESGGGLV
TTTPAPRPP
VAAIL
ALYLLRRDQRLPPD
RVKFSRSADAPA



VTSLL
SLGERATINCKSS
GGSGGGG
QPGGSLRLSCAAS
TPAPTIALQP
GLGLV
AHKPPGGGSFRTPIQ
YKQGQNQLYNEL



LCELP
QSLLYSSNQKNYL
S
GFTFNKNAMNW
LSLRPEACR
LGLLG
EEQADAHSTLAKI
NLGRREEYDVLD



HPAFL
AWYQQKPGQPPK

VRQAPGKGLEWV
PAAGGAVH
PLAIL

KRRGRDPEMGGK



LIP
LLIYWASSRESGV

GRIRNKTNNYAT
TRGLDFACD
L

PRRKNPQEGLYN




PDRFSGSGSGTDF

YYADSVKARFTIS



ELQKDKMAEAYS




TLTISSLQAEDVA

RDDSKNSLYLQM



EIGMKGERRRGK




VYYCQQYYNYPL

NSLKTEDTAVYY



GHDGLYQGLSTA




TFGQGTKLEIK

CVAGNSFAYWGQ



TKDTYDALHMQA






GTLVTVSA



LPPR






SEQ ID NO


218
285
289
219
283





SB06261



IgE
IL15
TaceOPT +
B7-1
E2A/T2A








LR1 linker






216
208
223
206
226
244
269
277



GM-
hPY7 VH
(GGGGS)3
hPY7 VL
CD8FA
CD8FA
CD28
CD3z



CSF-Ra

(SEQ ID










NO: 223)






Des-
Back-
Seq







SB ID
cription
bone
Type
SS
scFV
Linker
scFV
Hinge






IgE (SS)-
Sin Vec
DNA
ATGG
AATTGGGTCAAC
TCTGGCG
CTGCTGCC
CAGTGT



IL-15


ACTG
GTGATCAGCGAC
GCGGAG
TAGCTGG
ACCAA



Tace10


GACC
CTGAAGAAGATC
GATCTG
GCCATCA
CTACGC



(cleavage


TGGA
GAGGACCTGATC
GCGGAG
CACTGAT
CCTGCT



site)-B7-1


TCCT
CAGAGCATGCAC
GTGGAA
CTCCGTG
GAAAC



(TM)-E2A


GTTT 
ATCGACGCCACA
GCGGAG
AACGGCA
TGGCC



T2A-GM-


CTGG
CTGTACACCGAG
TTACACC
TCTTCGTG
GGCGA



CSF-Ra (SS)-


TGGC
AGCGACGTGCAC
CGAGCC
ATCTGCTG
CGTGG



aGPC3


CGCT
CCTAGCTGTAAA
TATCTTC
CCTGACCT
AATCTA



hPY7 vL-


GCCA
GTGACCGCCATG
AGCCTG
ACTGCTTC
ATCCTG



(GGGGS)3-


CAA
AAGTGCTTTCTG
ATCGGA
GCCCCTA
GACCT



aGPC3


GAGT
CTGGAACTGCAA
GGCGGT
GATGCAG
GGATCT



hPY7 vH-


GCAC
GTGATCAGCCTG
AGCGGA
AGAGCGG
GGCGA



CD8FA


AGC
GAAAGCGGCGAC
GGCGGA
CGGAGAA
GGGAC



(Hinge)-



GCCAGCATCCAC
GGAAGT
ACGAACG
GCGGG



CD8FA



GACACCGTGGAA
GGTGGC
GCTGAGA
AGTCTA



(TM)-CD28



AACCTGATCATC
GGATCTC
AGAGAAT
CTGAC



(ICD)-



CTGGCCAACAAC
TGCAA
CTGTGCG
GTGTG



CD3z (ICD)



AGCCTGAGCAGC

GCCCGTT
GAGAC



[(GGGGS)3



AACGGCAATGTG


GTGGA



is SEQ ID



ACCGAGTCCGGC


GGAAA



NO: 223]



TGCAAAGAGTGC


ACCCTG







GAGGAACTGGAA


GACCT







GAGAAGAATATC










AAAGAGTTCCTG










CAGAGCTTCGTG










CACATCGTGCAG










ATGTTCATCAAC










ACAAGC







Co-stim








SB ID
TM
ICD
CD3z ICD
E2A
SS
IL15
Cleavage Site
TM domain






ATGCT
GAAGTGCAGCTG
GGCGGCG
GACATCGTGATG
GGCGCCCT
ATCTA
CGGAGCAAGAGAA
AGAGTGAAGTTC



GCTGC
GTGGAATCTGGC
GAGGAAG
ACACAGAGCCCC
GAGCAACA
CATCT
GCAGACTGCTGCAC
AGCAGATCCGCC



TGGTC
GGAGGACTGGTT
CGGAGGC
GATAGCCTGGCC
GCATCATG
GGGC
AGCGACTACATGAA
GATGCTCCCGCC



ACATC
CAACCTGGCGGC
GGAGGAT
GTGTCTCTGGGA
TACTTCAGC
CCCTC
CATGACCCCTAGAC
TATCAGCAGGGA



TCTGC
TCTCTGAGACTG
CCGGTGG
GAAAGAGCCACC
CACTTCGTG
TGGCT
GGCCCGGACCTACC
CAGAACCAGCTG



TGCTG
TCTTGTGCCGCC
TGGTGGA
ATCAACTGCAAG
CCCGTGTTT
GGAA
AGAAAGCACTACCA
TACAACGAGCTG



TGCG
AGCGGCTTCACC
TCT
AGCAGCCAGAGC
CTGCCCGC
CATGT
GCCTTACGCTCCTC
AACCTGGGGAGA



AGCT
TTCAACAAGAAC

CTGCTGTACTCC
CAAGCCTA
GGTGT
CTAGAGACTTCGCC
AGAGAAGAGTAC



GCCCC
GCCATGAACTGG

AGCAACCAGAAG
CAACAACC
CCTGC
GCCTACCGGTCC
GACGTGCTGGAC



ATCCT
GTCCGACAGGCC

AACTACCTGGCC
CCTGCTCCT
TGCTG

AAGCGGAGAGGC



GCCTT
CCTGGCAAAGGC

TGGTATCAGCAA
AGACCTCC
AGCCT

AGAGATCCTGAG



TCTGC
CTTGAATGGGTC

AAGCCCGGCCAG
TACACCAG
GGTC

ATGGGCGGCAAG



TGATC
GGACGGATCCGG

CCTCCTAAGCTG
CTCCTACA
ATCAC

CCCAGACGGAAG



CCT
AACAAGACCAAC

CTGATCTATTGG
ATCGCCAG
CCTGT

AATCCTCAAGAG




AACTACGCCACC

GCCAGCTCCAGA
CCAGCCTCT
ACTGC

GGCCTGTATAAT




TACTACGCCGAC

GAAAGCGGCGTG
GTCTCTGA
AACC

GAGCTGCAGAAA




AGCGTGAAGGCC

CCCGATAGATTT
GGCCAGAA
ACCG

GACAAGATGGCC




AGGTTCACCATC

TCTGGCTCTGGC
GCTTGTAG
G

GAGGCCTACAGC




TCCAGAGATGAC

AGCGGCACCGAC
ACCTGCTG


GAGATCGGAATG




AGCAAGAACAGC

TTCACCCTGACA
CAGGCGGA


AAGGGCGAGCGC




CTGTACCTGCAG

ATTTCTAGCCTG
GCCGTGCA


AGAAGAGGCAA




ATGAACTCCCTG

CAAGCCGAGGAC
TACAAGAG


GGGACACGATGG




AAAACCGAGGAC

GTGGCCGTGTAT
GACTGGAT


ACTGTACCAGGG




ACCGCCGTGTAC

TACTGCCAGCAG
TTCGCCTGC


CCTGAGCACCGC




TATTGCGTGGCC

TACTACAACTAC
GAC


CACCAAGGATAC




GGCAATAGCTTT

CCTCTGACCTTC



CTATGATGCCCT




GCCTACTGGGGA

GGCCAGGGCACC



GCACATGCAGGC




CAGGGCACCCTG

AAGCTGGAAATC



CCTGCCTCCAAG




GTTACAGTTTCT

AAA



A




GCT






SEQ ID NO


214
286
288
331
284








AA
MDW
NWVNVISDLKKIE
SGGGGSG
LLPSWAIT
QCTNY






TWIL
DLIQSMHIDATLY
GGGSGV
LISVNGIFV
ALLKLA






FLVA
TESDVHPSCKVTA

TPEPIFS

ICCLTYCF
GDVESN






AATR 
MKCFLLELQVISL

LIGGGSG

APRCRERR
PGPGSG






VHS
ESGDASIHDTVEN
GGGSGG
RNERLRRE
EGRGSL







LIILANNSLSSNGN
GSLQ
SVRPV
LTCGDV







VTESGCKECEELE


EENPGP







EKNIKEFLQSFVHI










VQMFINTS






217
222
332
333
229
243
268
280






MLLL
EVQLVESGGGLV
GGGGSGG
DIVMTQSPDSLAV 
GALSNSIMY
IYIWA
RSKRSRLLHSDYMN
RVKFSRSADAPA



VTSLL
QPGGSLRLSCAAS
GGSGGGG
SLGERATINCKSS
FSHFVPVFL
PLAGT
MTPRRPGPTRKHYQ
YQQGQNQLYNEL



LCELP
GFTFNKNAMNW
S
QSLLYSSNQKNYL
PAKPTTTPA
CGVLL
PYAPPRDFAAYRS
NLGRREEYDVLD



HPAFL
VRQAPGKGLEWV

AWYQQKPGQPPK
PRPPTPAPTI
LSLVI

KRRGRDPEMGGK



LIP
GRIRNKTNNYAT

LLIYWASSRESGV
ASQPLSLRP
TLYCN

PRRKNPQEGLYN




YYADSVKARFTIS

PDRFSGSGSGTDF
EACRPAAG
HR

ELQKDKMAEAYS




RDDSKNSLYLQM

TLTISSLQAEDVA
GAVHTRGL


EIGMKGERRRGK




NSLKTEDTAVYY

VYYCQQYYNYPL
DFACD


GHDGLYQGLSTA




CVAGNSFAYWGQ

TFGQGTKLEIK



TKDTYDALHMQA




GTLVTVSA





LPPR






SEQ ID NO


218
285
287
219
283





SB05009



IgE
IL15
TaceOPT +
B7-1
E2A/T2A








LR1 linker






216
206
223
208
228
242
267
279



GM-
hPY7 VH
(GGGGS)3
hPY7 VL
CD8FA
CD8FA
CD28
CD3z



CSF-Ra

(SEQ ID










NO: 223)






Des-
Back-
Seq







SB ID
cription
bone
Type
SS
scFV
Linker
scFV
Hinge






(IgE (SS)-
Sin Vec
DNA
ATGG
AATTGGGTCAAC
TCTGGCG
CTGCTGCC
None



IL-15


ACTG
GTGATCAGCGAC
GCGGAG
TAGCTGG




Tace10


GACC
CTGAAGAAGATC
GATCTG
GCCATCA




(cleavage


TGGA
GAGGACCTGATC
GCGGAG
CACTGAT




site)-B7-1


TCCT
CAGAGCATGCAC
GTGGAA
CTCCGTG




(TM)}


GTTT
ATCGACGCCACA
GCGGAG
AACGGCA




(Reverse


CTGG
CTGTACACCGAG
TTACACC
TCTTCGTG




Orientation)-


TGGC
AGCGACGTGCAC
CGAGCC
ATCTGCTG




GM-CSF-


CGCT
CCTAGCTGTAAA
TATCTTC
CCTGACCT




Ra (SS)-


GCCA
GTGACCGCCATG
AGCCTG
ACTGCTTC




aGPC3


CAA
AAGTGCTTTCTG
ATCGGA
GCCCCTA




hPY7 vL-


GAGT
CTGGAACTGCAA
GGCGGT
GATGCAG




(GGGGS)3-


GCAC
GTGATCAGCCTG
AGCGGA
AGAGCGG




aGPC3


AGC
GAAAGCGGCGAC
GGCGGA
CGGAGAA




hPY7 vH-



GCCAGCATCCAC
GGAAGT
ACGAACG




CD8FA



GACACCGTGGAA
GGTGGC
GCTGAGA




(Hinge)-



AACCTGATCATC
GGATCTC
AGAGAAT




CD8FA



CTGGCCAACAAC
TGCAA
CTGTGCG




(TM)-CD28



AGCCTGAGCAGC

GCCCGTT




(ICD)-



AACGGCAATGTG






CD3z (ICD)



ACCGAGTCCGGC






[(GGGGS)3



TGCAAAGAGTGC






is SEQ ID



GAGGAACTGGAA






NO: 223]



GAGAAGAATATC










AAAGAGTTCCTG










CAGAGCTTCGTG










CACATCGTGCAG










ATGTTCATCAAC










ACAAGC







Co-stim








SB ID
TM
ICD
CD3z ICD
E2A
SS
IL15
Cleavage Site
TM domain






ATGCT
GAAGTGCAGCTG
GGCGGCG
GACATCGTGATG
GCCCTGAG
ATCTA
CGGAGCAAGAGAA
AGAGTGAAGTTC



GCTGC
GTGGAATCTGGC
GAGGAAG
ACACAGAGCCCC
CAACAGCA
CATCT
GCAGACTGCTGCAC
AGCAGATCCGCC



TGGTC
GGAGGACTGGTT
CGGAGGC
GATAGCCTGGCC
TCATGTACT
GGGC
AGCGACTACATGAA
GATGCTCCCGCC



ACATC
CAACCTGGCGGC
GGAGGAT
GTGTCTCTGGGA
TCAGCCAC
CCCTC
CATGACCCCTAGAC
TATCAGCAGGGA



TCTGC
TCTCTGAGACTG
CCGGTGG
GAAAGAGCCACC
TTCGTGCCC
TGGCT
GGCCCGGACCTACC
CAGAACCAGCTG



TGCTG
TCTTGTGCCGCC
TGGTGGA
ATCAACTGCAAG
GTGTTTCTG
GGAA
AGAAAGCACTACCA
TACAACGAGCTG



TGCG
AGCGGCTTCACC
TCT
AGCAGCCAGAGC
CCCGCCAA
CATGT
GCCTTACGCTCCTC
AACCTGGGGAGA



AGCT
TTCAACAAGAAC

CTGCTGTACTCC
GCCTACAA
GGTGT
CTAGAGACTTCGCC
AGAGAAGAGTAC



GCCCC
GCCATGAACTGG

AGCAACCAGAAG
CAACCCCT
CCTGC
GCCTACCGGTCC
GACGTGCTGGAC



ATCCT
GTCCGACAGGCC

AACTACCTGGCC
GCTCCTAG
TGCTG

AAGCGGAGAGGC



GCCTT
CCTGGCAAAGGC

TGGTATCAGCAA
ACCTCCTAC
AGCCT

AGAGATCCTGAG



TCTGC
CTTGAATGGGTC

AAGCCCGGCCAG
ACCAGCTC
GGTC

ATGGGCGGCAAG



TGATC
GGACGGATCCGG

CCTCCTAAGCTG
CTACAATC
ATCAC

CCCAGACGGAAG



CCT
AACAAGACCAAC

CTGATCTATTGG
GCCAGCCA
CCTGT

AATCCTCAAGAG




AACTACGCCACC

GCCAGCTCCAGA
GCCTCTGTC
ACTGC

GGCCTGTATAAT




TACTACGCCGAC

GAAAGCGGCGTG
TCTGAGGC
AACC

GAGCTGCAGAAA




AGCGTGAAGGCC

CCCGATAGATTT
CAGAAGCT
ACCG

GACAAGATGGCC




AGGTTCACCATC

TCTGGCTCTGGC
TGTAGACC
G

GAGGCCTACAGC




TCCAGAGATGAC

AGCGGCACCGAC
TGCTGCAG


GAGATCGGAATG




AGCAAGAACAGC

TTCACCCTGACA
GCGGAGCC


AAGGGCGAGCGC




CTGTACCTGCAG

ATTTCTAGCCTG
GTGCATAC


AGAAGAGGCAA




ATGAACTCCCTG

CAAGCCGAGGAC
AAGAGGAC


GGGACACGATGG




AAAACCGAGGAC

GTGGCCGTGTAT
TGGATTTCG


ACTGTACCAGGG




ACCGCCGTGTAC

TACTGCCAGCAG
CCTGCGAC


CCTGAGCACCGC




TATTGCGTGGCC

TACTACAACTAC



CACCAAGGATAC




GGCAATAGCTTT

CCTCTGACCTTC



CTATGATGCCCT




GCCTACTGGGGA

GGCCAGGGCACC



GCACATGCAGGC




CAGGGCACCCTG

AAGCTGGAAATC



CCTGCCTCCAAG




GTTACAGTTTCT

AAA



A




GCT






SEQ ID NO


214
286
288
331








AA
MDW
NWVNVISDLKKIE
SGGGGSG
LLPSWAIT
None






TWIL
DLIQSMHIDATLY
GGGSGV
LISVNGIFV







FLVA
TESDVHPSCKVTA 

TPEPIFS

ICCLTYCF







AATR
MKCFLLELQVISL

LIGGGSG

APRCRERR







VHS
ESGDASIHDTVEN
GGGSGG
RNERLRRE








LIILANNSLSSNGN
GSLQ
SVRPV








VTESGCKECEELE










EKNIKEFLQSFVHI










VQMFINTS






217
222
332
333
335
243
268
280






MLLL
EVQLVESGGGLV
GGGGSGG
DIVMTQSPDSLAV
ALSNSIMYF
IYIWA
RSKRSRLLHSDYMN
RVKFSRSADAPA



VTSLL
QPGGSLRLSCAAS
GGSGGGG
SLGERATINCKSS
SHFVPVFLP
PLAGT
MTPRRPGPTRKHYQ
YQQGQNQLYNEL



LCELP
GFTFNKNAMNW
S
QSLLYSSNQKNYL
AKPTTTPAP
CGVLL
PYAPPRDFAAYRS
NLGRREEYDVLD



HPAFL
VRQAPGKGLEWV

AWYQQKPGQPPK
RPPTPAPTIA
LSLVI

KRRGRDPEMGGK



LIP
GRIRNKTNNYAT

LLIYWASSRESGV
SQPLSLRPE
TLYCN

PRRKNPQEGLYN




YYADSVKARFTIS

PDRFSGSGSGTDF
ACRPAAGG
HR

ELQKDKMAEAYS




RDDSKNSL YLQM

TLTISSLQAEDVA
AVHTRGLD


EIGMKGERRRGK




NSLKTEDTAVYY

VYYCQQYYNYPL
FACD


GHDGLYQGLSTA




CVAGNSFAYWGQ

TFGQGTKLEIK



TKDTYDALHMQA




GTLVTVSA





LPPR






SEQ ID NO


218
285
287
219





SB05605



IgE
IL15
TaceOPT +
B7-1
E2A/T2A








LR1 linker






206
216
223
208
353
242
267
279






hPY7 VH
IGM-
(GGGGS)3
hPY7 VL
Hinge CD8a
CD8FA
41BB
CD3z




CSF-Ra
(SEQ ID










NO: 223)






Des-
Back-
Seq







SB ID
cription
bone
Type
SS
scFV
Linker
scFV
Hinge






(IgE (SS)-


ATGG
AATTGGGTCAAC
TCTGGCG
CTGCTGCC
None



IL-15


ACTG
GTGATCAGCGAC
GCGGAG
TAGCTGG




Tace10


GACC
CTGAAGAAGATC
GATCTG
GCCATCA




(cleavage


TGGA
GAGGACCTGATC
GCGGAG
CACTGAT




site)-B7-1


TCCT
CAGAGCATGCAC
GTGGAA
CTCCGTG




(TM))


GTTT
ATCGACGCCACA
GCGGAG
AACGGCA




(Reverse


CTGG
CTGTACACCGAG
TTACACC
TCTTCGTG




Orientation)-


TGGC
AGCGACGTGCAC
CGAGCC
ATCTGCTG




GM-CSF-


CGCT
CCTAGCTGTAAA
TATCTTC
CCTGACCT




Ra (SS)-


GCCA
GTGACCGCCATG
AGCCTG
ACTGCTTC




aGPC3


CAA
AAGTGCTTTCTG
ATCGGA
GCCCCTA




hPY7 vL-


GAGT
CTGGAACTGCAA
GGCGGT
GATGCAG




(GGGGS)3-


GCAC
GTGATCAGCCTG
AGCGGA
AGAGCGG




aGPC3


AGC
GAAAGCGGCGAC
GGCGGA
CGGAGAA




hPY7 vH-



GCCAGCATCCAC
GGAAGT
ACGAACG




CD8a



GACACCGTGGAA
GGTGGC
GCTGAGA




(Hinge)-



AACCTGATCATC
GGATCTC
AGAGAAT




CD8 (TM)-



CTGGCCAACAAC
TGCAA
CTGTGCG




41BB (ICD)-



AGCCTGAGCAGC

GCCCGTT




CD3z



AACGGCAATGTG






(ICD)



ACCGAGTCCGGC






[(GGGGS)3



TGCAAAGAGTGC






is SEQ ID



GAGGAACTGGAA






NO: 223]



GAGAAGAATATC










AAAGAGTTCCTG










CAGAGCTTCGTG










CACATCGTGCAG










ATGTTCATCAAC










ACAAGC







Co-stim








SB ID
TM
ICD
CD3z ICD
E2A
SS
IL15
Cleavage Site
TM domain






ATGCT
GAAGTGCAGCTG
GGCGGCG
GACATCGTGATG
ACCACCAC
ATCTA
AAGCGGGGCAGAA
AGAGTGAAGTTC



GCTGC
GTGGAATCTGGC
GAGGAAG
ACACAGAGCCCC
ACCAGCTC
CATCT
AGAAGCTGCTGTAC
AGCAGGAGCGCA



TGGTC
GGAGGACTGGTT
CGGAGGC
GATAGCCTGGCC
CTCGGCCA
GGGC
ATCTTCAAGCAGCC
GACGCCCCCGCG



ACATC
CAACCTGGCGGC
GGAGGAT
GTGTCTCTGGGA
CCAACTCC
CCCTC
CTTCATGCGGCCCG
TACAAGCAGGGC



TCTGC
TCTCTGAGACTG
CCGGTGG
GAAAGAGCCACC
AGCTCCAA
TGGCT
TGCAGACCACACAA
CAGAACCAGCTC



TGCTG
TCTTGTGCCGCC
TGGTGGA
ATCAACTGCAAG
CAATTGCC
GGAA
GAGGAAGATGGCTG
TATAACGAGCTC



TGCG
AGCGGCTTCACC
TCT
AGCAGCCAGAGC
AGCCAGCC
CATGT
CAGCTGTCGGTTCC
AATCTAGGACGA



AGCT
TTCAACAAGAAC

CTGCTGTACTCC
TCTGTCTCT
GGTGT
CCGAGGAAGAAGA
AGAGAGGAGTAC



GCCCC
GCCATGAACTGG

AGCAACCAGAAG
GAGGCCCG
CTTGC
AGGCGGCTGCGAGC
GATGTTTTGGAC



ATCCT
GTCCGACAGGCC

AACTACCTGGCC
AAGCTTGT
TGCTG
TG
AAGAGACGTGGC



GCCTT
CCTGGCAAAGGC

TGGTATCAGCAA
AGACCTGC
AGCCT

CGGGACCCTGAG



TCTGC
CTTGAATGGGTC

AAGCCCGGCCAG
TGCAGGCG
GGTC

ATGGGGGGAAAG



TGATC
GGACGGATCCGG

CCTCCTAAGCTG
GAGCCGTG
ATCAC

CCGAGAAGGAAG



CCT
AACAAGACCAAC

CTGATCTATTGG
CATACAAG
C

AACCCTCAGGAA




AACTACGCCACC

GCCAGCTCCAGA
AGGACTGG


GGCCTGTACAAT




TACTACGCCGAC

GAAAGCGGCGTG
ATTTCGCCT


GAACTGCAGAAA




AGCGTGAAGGCC

CCCGATAGATTT
GCGAC


GATAAGATGGCG




AGGTTCACCATC

TCTGGCTCTGGC



GAGGCCTACAGT




TCCAGAGATGAC

AGCGGCACCGAC



GAGATTGGGATG




AGCAAGAACAGC

TTCACCCTGACA



AAAGGCGAGCGC




CTGTACCTGCAG

ATTTCTAGCCTG



CGGAGGGGCAAG




ATGAACTCCCTG

CAAGCCGAGGAC



GGGCACGATGGC




AAAACCGAGGAC

GTGGCCGTGTAT



CTTTACCAGGGT




ACCGCCGTGTAC

TACTGCCAGCAG



CTCAGTACAGCC




TATTGCGTGGCC

TACTACAACTAC



ACCAAGGACACC




GGCAATAGCTTT

CCTCTGACCTTC



TACGACGCCCTT




GCCTACTGGGGA

GGCCAGGGCACC



CACATGCAGGCC




CAGGGCACCCTG

AAGCTGGAAATC



CTGCCCCCTCGC




GTTACAGTTTCT

AAG








GCT






SEQ ID NO


214
286
288
331









MDW
NWVNVISDLKKIE
SGGGGSG
LLPSWAIT
None






TWIL
DLIQSMHIDATLY
GGGSGV
LISVNGIFV







FLVA
TESDVHPSCKVTA
TPEPIFSLI
ICCLTYCF







AATR 
MKCFLLELQVISL
GGGSGG
APRCRERR







VHS
ESGDASIHDTVEN
GGSGGGS
RNERLRRE








LIILANNSLSSNGN
ILQ
SVRPV








VTESGCKECEELE










EKNIKEFLQSFVHI










VQMFINTS






217
222
332
336
337
338
339
334






MLLL
EVQL VESGGGLV
GGGGSGG
DIVMTQSPDSLAV
TTTPAPRPP
IYIWA
KRGRKKLLYIFKQPF
RVKFSRSADAPA



VTSLL
QPGGSLRLSCAAS
GGSGGGG
SLGERATINCKSS
TPAPTIASQP
PLAGT
MRPVQTTQEEDGCS
YKQGQNQLYNEL



LCELP
GFTFNKNAMNW
S
QSLLYSSNQKNYL
LSLRPEACR
CGVLL
CRFPEEEEGGCEL
NLGRREEYDVLD



HPAFL
VRQAPGKGLEWV

AWYQQKPGQPPK
PAAGGAVH
LSLVI

KRRGRDPEMGGK



LIP
GRIRNKTNNYAT

LLIYWASSRESGV
TRGLDFACD
T

PRRKNPQEGLYN




YYADSVKARFTIS

PDRFSGSGSGTDF



ELQKDKMAEAYS




RDDSKNSL YLQM

TLTISSLQAEDVA



EIGMKGERRRGK




NSLKTEDTAVYY

VYYCQQYYNYPL



GHDGL YQGLSTA




CVAGNSFAYWGQ

TFGQGTKLEIK



TKDTYDALHMQA




GTLVTVSA





LPPR






SEQ ID NO


218
285
287
219






216
206
223
208
196
236
271
277























TABLE 22










Seq
TM
Cleavage

Syn


SB ID
Description
Backbone
Type
domain
Site
IL-12
promoter





SB05042



B7-1
LR1 split N
IL12p70
YB_TATA







term linker +

4X ZF5 BD







CD16 TACE














Insulator
Promoter
SynTF

















A2
SV40
SV40
miniVPR
NS3
ZF5-7 DBD





NLS




















Seq
TM
Cleavage

Syn


SB ID
Description
Backbone
Type
domain
Site
IL-12
promoter






B7-1 (TM)-
Sin Vec
DNA
CTGCT
AGCGGCG
ATGTGTCACCAGCAGCTGGTCATCAGCTG
AATTAAcg



CD16 TACE


GCCA
GAGGTGG
GTTCAGCCTGGTGTTCCTGGCCTCTCCTCT
ggtttcgtaacaa



(cleavage


AGCT
TAGCGGA
GGTGGCCATCTGGGAGCTGAAGAAAGAC
tcgcatgaggatt



site)-IL12-


GGGC
GGCGGAG
GTGTACGTGGTGGAACTGGACTGGTATCC
cgcaacgccttt



YB TATA


CATCA
GATCTGG
CGATGCTCCTGGCGAGATGGTGGTGCTGA
GAAGCAG



ZFBD (syn


CACTG
AATTACA
CCTGCGATACCCCTGAAGAGGACGGCATC
TCGACGC



prmoter)-


ATCTC
CAGGGAC
ACCTGGACACTGGATCAGTCTAGCGAGGT
CGAAgtccc



A2


CGTG
TCGCCGT
GCTCGGCAGCGGCAAGACCCTGACCATCC
gtctcagtaaag



(insulator)-


AACG
GTCTACA
AAGTGAAAGAGTTTGGCGACGCCGGCCA
gttGAAGCA



SV40


GCATC
ATCTCCA
GTACACCTGTCACAAAGGCGGAGAAGTGC
GTCGACG



(promoter)-


TTCGT
GCTTCTTT
TGAGCCACAGCCTGCTGCTGCTCCACAAG
CCGAAgaat



Syn TF


GATCT
GGTGGCG
AAAGAGGATGGCATTTGGAGCACCGACAT
cggactgccttc



(NLS +


GTTGC
GTAGTGG
CCTGAAGGACCAGAAAGAGCCCAAGAAC
gtatGAAGC



miniVPR


CTGAC
CGGCGGT
AAGACCTTCCTGAGATGCGAGGCCAAGAA
AGTCGAC



activation


CTACT
GGCAGTG
CTACAGCGGCCGGTTCACATGTTGGTGGC
GCCGAAgg



domain +


GCTTC
GCGGTGG
TGACCACCATCAGCACCGACCTGACCTTC
tatcagtcgcctc



NS3 protease


GCCCC
ATCTCTTC
AGCGTGAAGTCCAGCAGAGGCAGCAGTG
ggaatGAAG



+ ZFBD


TCGGT
AA
ATCCTCAGGGCGTTACATGTGGCGCCGCT
CAGTCGA



DNA


GCAG

ACACTGTCTGCCGAAAGAGTGCGGGGCGA
CGCCGAA



binding


AGAG

CAACAAAGAATACGAGTACAGCGTGGAA
gattcgtaagag



domain)


CGGA

TGCCAAGAGGACAGCGCCTGTCCAGCCGC
gctcactctccct






GAAG

CGAAGAGTCTCTGCCTATCGAAGTGATGG
tacacggagtgg






AAAC

TGGACGCCGTGCACAAGCTGAAGTACGAG
ataACTAGT






GAAC

AACTACACCTCCAGCTTTTTCATCCGGGA
TCTAGAG






GGCT

CATCATCAAGCCCGATCCTCCAAAGAACC
GGTATAT






GCGG

TGCAGCTGAAGCCTCTGAAGAACAGCAGA
AATGGGG






AGAG

CAGGTGGAAGTGTCCTGGGAGTACCCCGA
GCCAACG






AATCT

CACCTGGTCTACACCCCACAGCTACTTCA
CGTACCG






GTGC

GCCTGACCTTTTGCGTGCAAGTGCAGGGC
GTGTC






GGCCT

AAGTCCAAGCGCGAGAAAAAGGACCGGG







GTG

TGTTCACCGACAAGACCAGCGCCACCGTG









ATCTGCAGAAAGAACGCCAGCATCAGCGT









CAGAGCCCAGGACCGGTACTACAGCAGCT









CTTGGAGCGAATGGGCCAGCGTGCCATGT









TCTGGCGGAGGAAGCGGTGGCGGATCAG









GTGGTGGATCTGGCGGCGGATCTAGAAAC









CTGCCTGTGGCCACTCCTGATCCTGGCAT









GTTCCCTTGTCTGCACCACAGCCAGAACC









TGCTGAGAGCCGTGTCCAACATGCTGCAG









AAGGCCAGACAGACCCTGGAATTCTACCC









CTGCACCAGCGAGGAAATCGACCACGAG









GACATCACCAAGGATAAGACCAGCACCGT









GGAAGCCTGCCTGCCTCTGGAACTGACCA









AGAACGAGAGCTGCCTGAACAGCCGGGA









AACCAGCTTCATCACCAACGGCTCTTGCC









TGGCCAGCAGAAAGACCTCCTTCATGATG









GCCCTGTGCCTGAGCAGCATCTACGAGGA









CCTGAAGATGTACCAGGTGGAATTCAAGA









CCATGAACGCCAAGCTGCTGATGGACCCC









AAGCGGCAGATCTTCCTGGACCAGAATAT









GCTGGCCGTGATCGACGAGCTGATGCAGG









CCCTGAACTTCAACAGCGAGACAGTGCCC









CAGAAGTCTAGCCTGGAAGAACCCGACTT









CTACAAGACCAAGATCAAGCTGTGCATCC









TGCTGCACGCCTTCCGGATCAGAGCCGTG









ACCATCGACAGAGTGATGAGCTACCTGAA









CGCCTCT













SB ID
Insulator
Promoter
SynTF

















ACAAT
GTGTGTC
ATGC
GACGCCCTGGACGACTT
GAGGATGTCGTGTGCTG
ATGTCTAGACCTGGC



GGCTG
AGTTAGG
CCAA
CGATCTGGATATGCTGG
CCACAGCATCTACGGCA
GAGAGGCCCTTCCAG



GCCCAT
GTGTGGA
GAA
GCAGCGACGCTCTGGAT
AGAAGAAGGGCGACAT
TGCCGGATCTGCATG



AGTAA
AAGTCCC
AAA
GATTTTGACCTGGACAT
CGACACCTACCGGTACA
CGGAACTTCAGCAAC



ATGCC
CAGGCTC
GCG
GCTCGGCTCTGATGCAC
TCGGCAGCTCTGGCACA
ATGAGCAACCTGACC



GTGTTA
CCCAGCA
GAA
TCGACGATTTCGACCTC
GGCTGTGTGGTCATCGT
AGACACACCCGGACA



GTGTGT
GGCAGAA
GGTG
GATATGTTGGGATCTGA
GGGCAGAATCGTGCTGT
CACACAGGCGAGAA



TAGTTG
GTATGCA

TGCCCTTGATGACTTTG
CTGGCAGCGGAACAAG
GCCTTTTCAGTGCAG



CTGTTC
AAGCATG

ATCTCGACATGTTGATC
CGCCCCTATCACAGCCT
AATCTGTATGCGCAA



TTCCAC
CATCTCA

AATAGCCGGTCCAGCGG
ATGCTCAGCAGACAAG
TTTCTCCGACAGAAG



GTCAG
ATTAGTC

CAGCCCCAAGAAGAAG
AGGCCTGCTGGGCTGCA
CGTGCTGCGGAGACA



AAGAG
AGCAACC

AGAAAAGTCGGCTCTGG
TCATCACAAGCCTGACC
CCTGAGAACCCACAC



GCACA
AGGTGTG

CGGCGGATCTGGCGGTT
GGCAGAGACAAGAACC
CGGCAGCCAGAAACC



GACAA
GAAAGTC

CTGGATCTGTTTTGCCC
AGGTGGAAGGCGAGGT
ATTCCAGTGTCGCAT



ATTACC
CCCAGGC

CAAGCTCCTGCTCCTGC
GCAGATCGTGTCTACAG
CTGTATGAGAAACTT



ACCAG
TCCCCAG

ACCAGCTCCAGCTATGG
CTACCCAGACCTTCCTG
TAGCGACCCCTCCAA



GTGGC
CAGGCAG

TTTCTGCTCTGGCTCAG
GCCACCTGTATCAATGG
TCTGGCCCGGCACAC



GCTCA
AAGTATG

GCTCCAGCTCCTGTGCC
CGTGTGCTGGGCCGTGT
CAGAACACATACCGG



GAGTCT
CAAAGCA

TGTTCTTGCTCCTGGAC
ATCACGGCGCTGGAACC
GGAAAAACCCTTTCA



GCGGA
TGCATCTC

CTCCTCAGGCTGTTGCT
AGAACAATCGCCTCTCC
GTGTAGGATATGCAT



GGCAT
AATTAGT

CCACCAGCACCTAAACC
TAAGGGCCCCGTGATCC
GAGGAATTTTTCCGA



CACAA
CAGCAAC

TACACAGGCCGGCGAG
AGATGTACACCAACGTG
CCGGTCCAGCCTGAG



CAGCC
CATAGTC

GGAACACTGTCTGAAGC
GACCAGGACCTCGTTGG
GCGGCACCTGAGGAC



CTGAAT
CCGCCCCT

TCTGCTGCAGCTCCAGT
CTGGCCTGCTCCTCAAG
ACATACTGGCTCCCA



TTGAAT
AACTCCG

TCGACGACGAAGATCTG
GCAGCAGAAGCCTGAC
AAAGCCGTTCCAATG



CCTGCT
CCCATCCC

GGAGCCCTGCTGGGCAA
ACCTTGCACCTGTGGCT
TCGGATATGTATGCG



CTGCCA
GCCCCTA

TAGCACAGATCCTGCCG
CCAGCGATCTGTACCTG
CAACTTTAGCCAGAG



CTGCCT
ACTCCGC

TGTTCACCGATCTGGCC
GTCACCAGACACGCCGA
CGGCACCCTGCACAG



AGTTG
CCAGTTCC

AGCGTGGACAATAGCG
CGTGATCCCTGTCAGAA
ACACACAAGAACCCA



AGACC
GCCCATTC

AGTTCCAGCAGCTCCTG
GAAGAGGGGATTCCAG
TACTGGCGAGAAACC



TTTTAC
TCCGCCCC

AACCAGGGCATTCCTGT
AGGCAGCCTGCTGAGCC
TTTCCAATGTAGAAT



TACCTG
ATGGCTG

GGCTCCTCACACCACCG
CTAGACCTATCAGCTAC
CTGCATGCGAAATTT



ACTAG
ACTAATTT

AGCCTATGCTGATGGAA
CTGAAGGGCTCTAGCGG
TTCCCAGCGGCCTAA



CTGAG
TTTTTATT

TACCCCGAGGCCATCAC
CGGACCTCTGCTTTGTC
TCTGACCAGGCATCT



ACATTT
TATGCAG

CAGACTGGTCACCGGTG
CTGCTGGACATGCCGTG
GAGGACCCACCTGAG



ACGAC
AGGCCGA

CTCAAAGACCACCTGAT
GGCCTGTTTAGAGCCGC
AGGATCT



ATTTAC
GGCCGCC

CCGGCTCCAGCACCTCT
CGTGTGTACAAGAGGCG




TGGCTC
TCTGCCTC

TGGAGCACCTGGACTGC
TGGCCAAAGCCGTGGAC




TAGGA
TGAGCTA

CTAATGGACTGCTGTCT
TTCATCCCCGTGGAAAA




CTCATT
TTCCAGA

GGCGACGAGGACTTCA
CCTGGAAACCACCATGC




TTATTC
AGTAGTG

GCTCTATCGCCGACATG
GGAGCCCCGTGTTCACC




ATTTCA
AGGAGGC

GATTTCAGCGCCCTGCT
GACAATTCTAGCCCTCC




TTACTT
TTTTTTGG

CAGTGGCGGTGGAAGC
AGCCGTGACACTGACAC




TTTTTT
AGGCCTA

GGAGGAAGTGGCAGCG
ACCCCATCACCAAGATC




TCTTTG
GGCTTTTG

ATCTTTCTCACCCTCCA
GACAGAGAGGTGCTGT




AGACG
CAAA

CCTAGAGGCCACCTGGA
ACCAAGAGTTCGACGA




GAATCT


CGAGCTGACAACCACAC
GATGGAAGAGTGCAGC




CGCTCT


TGGAATCCATGACCGAG
CAGCAC







GACCTGAACCTGGACAG








CCCTCTGACACCCGAGC








TGAACGAGATCCTGGAC








ACCTTCCTGAACGACGA








GTGTCTGCTGCACGCCA








TGCACATCTCTACCGGC








CTGAGCATCTTCGACAC








CAGCCTGTTT


















SEQ ID NO


220
291
294
298








AA
LLPSW
SGGGGSG
MCHQQLVISWFSLVFLASPLVAIWELKKDV







AITLIS
GGGSGITQ
YVVELDWYPDAPGEMVVLTCDTPEEDGIT







VNGIF

GLAVSTIS

WTLDQSSEVLGSGKTLTIQVKEFGDAGQYT







VICCL

SFFGGGSG

CHKGGEVLSHSLLLLHKKEDGIWSTDILKD







TYCFA
GGGSGGG
QKEPKNKTFLRCEAKNYSGRFTCWWLTTIS







PRCRE
SLQ
TDLTFSVKSSRGSSDPQGVTCGAATLSAERV







RRRNE

RGDNKEYEYSVECQEDSACPAAEESLPIEV







RLRRE

MVDAVHKLKYENYTSSFFIRDIIKPDPPKNL







SVRPV

QLKPLKNSRQVEVSWEYPDTWSTPHSYFSL









TFCVQVQGKSKREKKDRVFTDKTSATVICR









KNASISVRAQDRYYSSSWSEWASVPCSGGG









SGGGSGGGSGGGSRNLPVATPDPGMFPCLH









HSQNLLRAVSNMLQKARQTLEFYPCTSEEI









DHEDITKDKTSTVEACLPLELTKNESCLNSR









ETSFITNGSCLASRKTSFMMALCLSSIYEDL









KMYQVEFKTMNAKLLMDPKRQIFLDQNML









AVIDELMQALNFNSETVPQKSSLEEPDFYKT









KIKLCILLHAFRIRAVTIDRVMSYLNAS







300
295
340
322
195
323






MPK
DALDDFDLDMLGSDALD
EDVVCCHSIYGKKKGDI
MSRPGERPFQCRICMR






KKR
DFDLDMLGSDALDDFDL
DTYRYIGSSGTGCVVIVG
NFSNMSNLTRHTRTH






KV
DMLGSDALDDFDLDMLI
RIVLSGSGTSAPITAYAQ
TGEKPFQCRICMRNFS







NSRSSGSPKKKRKVGSG
QTRGLLGCIITSLTGRDK
DRSVLRRHLRTHTGS







GGSGGSGSVLPQAPAPAP
NQVEGEVQIVSTATQTFL
QKPFQCRICMRNFSDP







APAMVSALAQAPAPVPV
ATCINGVCWAVYHGAGT
SNLARHTRTHTGEKPF







LAPGPPQAVAPPAPKPTQ
RTIASPKGPVIQMYTNVD
QCRICMRNFSDRSSLR







AGEGTLSEALLQLQFDDE
QDLVGWPAPQGSRSLTP
RHLRTHTGSQKPFQCR







DLGALLGNSTDPAVFTD
CTCGSSDLYLVTRHADVI
ICMRNFSQSGTLHRHT







LASVDNSEFQQLLNQGIP
PVRRRGDSRGSLLSPRPIS
RTHTGEKPFQCRICMR







VAPHTTEPMLMEYPEAIT
YLKGSSGGPLLCPAGHA
NFSQRPNLTRHLRTHL







RLVTGAQRPPDPAPAPLG
VGLFRAAVCTRGVAKAV
RGS







APGLPNGLLSGDEDFSSI
DFIPVENLETTMRSPVFT








ADMDFSALLSGGGSGGS
DNSSPPAVTLTHPITKIDR








GSDLSHPPPRGHLDELTT
EVLYQEFDEMEECSQH








TLESMTEDLNLDSPLTPE









LNEILDTFLNDECLLHAM









HISTGLSIFDTSLF






SEQ ID NO


219
290
293





SB05058



B7-1
LR1 split N
IL12p70
YB TATA







term linker +

4X ZF5 BD







CD16 TACE








296
325
321
320






A2
SV40
SV40
ZF5-7 DBD
NS3
mini VPR






NLS





SB
Description
Backbone
Seq Type
TM domain
Clevage site
IL-12
Syn promoter






B7-1 (TM)-
Sin Vec
DNA
CTGCT
AGCGGCG
ATGTGTCACCAGCAGCTGGTCATCAGCTG
AATTAAcg



CD16 TACE


GCCA
GAGGTGG
GTTCAGCCTGGTGTTCCTGGCCTCTCCTCT
ggtttcgtaacaa



(cleavage


AGCT
TAGCGGA
GGTGGCCATCTGGGAGCTGAAGAAAGAC
tcgcatgaggatt



site)-IL12


GGGC
GGCGGAG
GTGTACGTGGTGGAACTGGACTGGTATCC
cgcaacgccttt



YB TATA


CATCA
GATCTGG
CGATGCTCCTGGCGAGATGGTGGTGCTGA
GAAGCAG



ZFBD (syn


CACTG
AATTACA
CCTGCGATACCCCTGAAGAGGACGGCATC
TCGACGC



prmoter)-


ATCTC
CAGGGAC
ACCTGGACACTGGATCAGTCTAGCGAGGT
CGAAgtccc



A2


CGTG
TCGCCGT
GCTCGGCAGCGGCAAGACCCTGACCATCC
gtctcagtaaag



(insulator)-


AACG
GTCTACA
AAGTGAAAGAGTTTGGCGACGCCGGCCA
gttGAAGCA



SV40


GCATC
ATCTCCA
GTACACCTGTCACAAAGGCGGAGAAGTGC
GTCGACG



(promoter)-


TTCGT
GCTTCTTT
TGAGCCACAGCCTGCTGCTGCTCCACAAG
CCGAAgaat



Syn TF


GATCT
GGTGGCG
AAAGAGGATGGCATTTGGAGCACCGACAT
cggactgccttc



(NLS +


GTTGC
GTAGTGG
CCTGAAGGACCAGAAAGAGCCCAAGAAC
gtatGAAGC



ZFBD DNA


CTGAC
CGGCGGT
AAGACCTTCCTGAGATGCGAGGCCAAGAA
AGTCGAC



binding


CTACT
GGCAGTG
CTACAGCGGCCGGTTCACATGTTGGTGGC
GCCGAAgg



domain +


GCTTC
GCGGTGG
TGACCACCATCAGCACCGACCTGACCTTC
tatcagtcgcctc



NS3 protease


GCCCC
ATCTCTTC
AGCGTGAAGTCCAGCAGAGGCAGCAGTG
ggaatGAAG



+ miniVPR


TCGGT
AA
ATCCTCAGGGCGTTACATGTGGCGCCGCT
CAGTCGA



activation


GCAG

ACACTGTCTGCCGAAAGAGTGCGGGGCGA
CGCCGAA



domain)


AGAG

CAACAAAGAATACGAGTACAGCGTGGAA
gattcgtaagag






CGGA

TGCCAAGAGGACAGCGCCTGTCCAGCCGC
gctcactctccct






GAAG

CGAAGAGTCTCTGCCTATCGAAGTGATGG
tacacggagtgg






AAAC

TGGACGCCGTGCACAAGCTGAAGTACGAG
ataACTAGT






GAAC

AACTACACCTCCAGCTTTTTCATCCGGGA
TCTAGAG






GGCT

CATCATCAAGCCCGATCCTCCAAAGAACC
GGTATAT






GCGG

TGCAGCTGAAGCCTCTGAAGAACAGCAGA
AATGGGG






AGAG

CAGGTGGAAGTGTCCTGGGAGTACCCCGA
GCCAACG






AATCT

CACCTGGTCTACACCCCACAGCTACTTCA
CGTACCG






GTGC

GCCTGACCTTTTGCGTGCAAGTGCAGGGC
GTGTC






GGCCT

AAGTCCAAGCGCGAGAAAAAGGACCGGG







GTG

TGTTCACCGACAAGACCAGCGCCACCGTG









ATCTGCAGAAAGAACGCCAGCATCAGCGT









CAGAGCCCAGGACCGGTACTACAGCAGCT









CTTGGAGCGAATGGGCCAGCGTGCCATGT









TCTGGCGGAGGAAGCGGTGGCGGATCAG









GTGGTGGATCTGGCGGCGGATCTAGAAAC









CTGCCTGTGGCCACTCCTGATCCTGGCAT









GTTCCCTTGTCTGCACCACAGCCAGAACC









TGCTGAGAGCCGTGTCCAACATGCTGCAG









AAGGCCAGACAGACCCTGGAATTCTACCC









CTGCACCAGCGAGGAAATCGACCACGAG









GACATCACCAAGGATAAGACCAGCACCGT









GGAAGCCTGCCTGCCTCTGGAACTGACCA









AGAACGAGAGCTGCCTGAACAGCCGGGA









AACCAGCTTCATCACCAACGGCTCTTGCC









TGGCCAGCAGAAAGACCTCCTTCATGATG









GCCCTGTGCCTGAGCAGCATCTACGAGGA









CCTGAAGATGTACCAGGTGGAATTCAAGA









CCATGAACGCCAAGCTGCTGATGGACCCC









AAGCGGCAGATCTTCCTGGACCAGAATAT









GCTGGCCGTGATCGACGAGCTGATGCAGG









CCCTGAACTTCAACAGCGAGACAGTGCCC









CAGAAGTCTAGCCTGGAAGAACCCGACTT









CTACAAGACCAAGATCAAGCTGTGCATCC









TGCTGCACGCCTTCCGGATCAGAGCCGTG









ACCATCGACAGAGTGATGAGCTACCTGAA









CGCCTCT














Insulator
Promoter
SynTF


















ACAAT
GTGTGTC
ATGC
ATGTCTAGACCTGGCGA
GAGGATGTCGTGTGCTG
GACGCCCTGGACGAC




GGCTG
AGTTAGG
CCAA
GAGGCCCTTCCAGTGCC
CCACAGCATCTACGGCA
TTCGATCTGGATATG




GCCCAT
GTGTGGA
GAA
GGATCTGCATGCGGAAC
AGAAGAAGGGCGACAT
CTGGGCAGCGACGCT




AGTAA
AAGTCCC
AAA
TTCAGCAACATGAGCAA
CGACACCTACCGGTACA
CTGGATGATTTTGAC




ATGCC
CAGGCTC
GCG
CCTGACCAGACACACCC
TCGGCAGCTCTGGCACA
CTGGACATGCTCGGC




GTGTTA
CCCAGCA
GAA
GGACACACACAGGCGA
GGCTGTGTGGTCATCGT
TCTGATGCACTCGAC




GTGTGT
GGCAGAA
GGTG
GAAGCCTTTTCAGTGCA
GGGCAGAATCGTGCTGT
GATTTCGACCTCGAT




TAGTTG
GTATGCA

GAATCTGTATGCGCAAT
CTGGCAGCGGAACAAG
ATGTTGGGATCTGAT




CTGTTC
AAGCATG

TTCTCCGACAGAAGCGT
CGCCCCTATCACAGCCT
GCCCTTGATGACTTT




TTCCAC
CATCTCA

GCTGCGGAGACACCTGA
ATGCTCAGCAGACAAG
GATCTCGACATGTTG




GTCAG
ATTAGTC

GAACCCACACCGGCAG
AGGCCTGCTGGGCTGCA
ATCAATAGCCGGTCC




AAGAG
AGCAACC

CCAGAAACCATTCCAGT
TCATCACAAGCCTGACC
AGCGGCAGCCCCAAG




GCACA
AGGTGTG

GTCGCATCTGTATGAGA
GGCAGAGACAAGAACC
AAGAAGAGAAAAGT




GACAA
GAAAGTC

AACTTTAGCGACCCCTC
AGGTGGAAGGCGAGGT
CGGCTCTGGCGGCGG




ATTACC
CCCAGGC

CAATCTGGCCCGGCACA
GCAGATCGTGTCTACAG
ATCTGGCGGTTCTGG




ACCAG
TCCCCAG

CCAGAACACATACCGG
CTACCCAGACCTTCCTG
ATCTGTTTTGCCCCA




GTGGC
CAGGCAG

GTAGGATATGCATGAGG
GCCACCTGTATCAATGG
AGCTCCTGCTCCTGC




GCTCA
AAGTATG

GGAAAAACCCTTTCAGT
CGTGTGCTGGGCCGTGT
ACCAGCTCCAGCTAT




GAGTCT
CCGCCCCT

AATTTTTCCGACCGGTC
ATCACGGCGCTGGAACC
GGTTTCTGCTCTGGC




GCGGA
GCCCCTA

CAGCCTGAGGCGGCACC
AGAACAATCGCCTCTCC
TCAGGCTCCAGCTCC




GGCAT
ATGGCTG

TGAGGACACATACTGGC
TAAGGGCCCCGTGATCC
TGTGCCTGTTCTTGCT




CACAA
GGCCGCC

TCCCAAAAGCCGTTCCA
AGATGTACACCAACGTG
CCTGGACCTCCTCAG




CAGCC
AGTAGTG

ATGTCGGATATGTATGC
GACCAGGACCTCGTTGG
GCTGTTGCTCCACCA




CTGAA
AGGAGGC

GCAACTTTAGCCAGAGC
CTGGCCTGCTCCTCAAG
GCACCTAAACCTACA




TTGAAT
CAAAGCA

GGCACCCTGCACAGACA
GCAGCAGAAGCCTGAC
CAGGCCGGCGAGGG




CCTGCT
TGCATCTC

CACAAGAACCCATACTG
ACCTTGCACCTGTGGCT
AACACTGTCTGAAGC




CTGCCA
AATTAGT

GCGAGAAACCTTTCCAA
CCAGCGATCTGTACCTG
TCTGCTGCAGCTCCA




CTGCCT
CAGCAAC

TGTAGAATCTGCATGCG
GTCACCAGACACGCCGA
GTTCGACGACGAAGA




AGTTG
CATAGTC

AAATTTTTCCCAGCGGC
CGTGATCCCTGTCAGAA
TCTGGGAGCCCTGCT




AGACC
AACTCCG

CTAATCTGACCAGGCAT
GAAGAGGGGATTCCAG
GGGCAATAGCACAG




TTTTAC
CCCATCCC

CTGAGGACCCACCTGAG
AGGCAGCCTGCTGAGCC
ATCCTGCCGTGTTCA




TACCTG
ACTCCGC

AGGATCT
CTAGACCTATCAGCTAC
CCGATCTGGCCAGCG




ACTAG
CCAGTTCC


CTGAAGGGCTCTAGCGG
TGGACAATAGCGAGT




CTGAG
GCCCATTC


CGGACCTCTGCTTTGTC
TCCAGCAGCTCCTGA




ACATTT
TCCGCCCC


CTGCTGGACATGCCGTG
ACCAGGGCATTCCTG




ACGAC
ACTAATTT


GGCCTGTTTAGAGCCGC
TGGCTCCTCACACCA




ATTTAC
TTTTTATT


CGTGTGTACAAGAGGCG
CCGAGCCTATGCTGA




TGGCTC
TATGCAG


TGGCCAAAGCCGTGGAC
TGGAATACCCCGAGG




TAGGA
AGGCCGA


TTCATCCCCGTGGAAAA
CCATCACCAGACTGG




CTCATT
TCTGCCTC


CCTGGAAACCACCATGC
TCACCGGTGCTCAAA




TTATTC
TGAGCTA


GGAGCCCCGTGTTCACC
GACCACCTGATCCGG




ATTTCA
TTCCAGA


GACAATTCTAGCCCTCC
CTCCAGCACCTCTTG




TTACTT
TTTTTTGG


AGCCGTGACACTGACAC
GAGCACCTGGACTGC




TTTTTT
AGGCCTA


ACCCCATCACCAAGATC
CTAATGGACTGCTGT




TCTTTG
GGCTTTTG


GACAGAGAGGTGCTGT
CTGGCGACGAGGACT




AGACG
CAAA


ACCAAGAGTTCGACGA
TCAGCTCTATCGCCG




GAATCT



GATGGAAGAGTGCAGC
ACATGGATTTCAGCG




CGCTCT



CAGCAC
CCCTGCTCAGTGGCG









GTGGAAGCGGAGGA









AGTGGCAGCGATCTT









TCTCACCCTCCACCT









AGAGGCCACCTGGAC









GAGCTGACAACCACA









CTGGAATCCATGACC









GAGGACCTGAACCTG









GACAGCCCTCTGACA









CCCGAGCTGAACGAG









ATCCTGGACACCTTC









CTGAACGACGAGTGT









CTGCTGCACGCCATG









CACATCTCTACCGGC









CTGAGCATCTTCGAC









ACCAGCCTGTTT


















SEQ ID NO


220
291
294
298








AA
LLPSW
SGGGGSG
MCHQQLVISWFSLVFLASPLVAIWELKKDV







AITLIS
GGGSGITQ
YVVELDWYPDAPGEMVVLTCDTPEEDGIT







VNGIF

GLAVSTIS

WTLDQSSEVLGSGKTLTIQVKEFGDAGQYT







VICCL

SFFGGGSG

CHKGGEVLSHSLLLLHKKEDGIWSTDILKD







TYCFA
GGGSGGG
QKEPKNKTFLRCEAKNYSGRFTCWWLTTIS







PRCRE
SLQ
TDLTFSVKSSRGSSDPQGVTCGAATLSAERV







RRRNE

RGDNKEYEYSVECQEDSACPAAEESLPIEV







RLRRE

MVDAVHKLKYENYTSSFFIRDIIKPDPPKNL







SVRPV

QLKPLKNSRQVEVSWEYPDTWSTPHSYFSL









TFCVQVQGKSKREKKDRVFTDKTSATVICR









KNASISVRAQDRYYSSSWSEWASVPCSGGG









SGGGSGGGSGGGSRNLPVATPDPGMFPCLH









HSQNLLRAVSNMLQKARQTLEFYPCTSEEI









DHEDITKDKTSTVEACLPLELTKNESCLNSR









ETSFITNGSCLASRKTSFMMALCLSSIYEDL









KMYQVEFKTMNAKLLMDPKRQIFLDQNML









AVIDELMQALNFNSETVPQKSSLEEPDFYKT









KIKLCILLHAFRIRAVTIDRVMSYLNAS


















300
295
340
323
195
322









MPK
MSRPGERPFQCRICMRNF
EDVVCCHSIYGKKKGDI
DALDDFDLDMLGSDA






KKR
SNMSNLTRHTRTHTGEK
DTYRYIGSSGTGCVVIVG
LDDFDLDMLGSDALD






KV
PFQCRICMRNFSDRSVLR
RIVLSGSGTSAPITAYAQ
DFDLDMLGSDALDDF







RHLRTHTGSQKPFQCRIC
QTRGLLGCIITSLTGRDK
DLDMLINSRSSGSPKK







MRNFSDPSNLARHTRTH
NQVEGEVQIVSTATQTFL
KRKVGSGGGSGGSGS







TGEKPFQCRICMRNFSDR
ATCINGVCWAVYHGAGT
VLPQAPAPAPAPAMV







SSLRRHLRTHTGSQKPFQ
RTIASPKGPVIQMYTNVD
SALAQAPAPVPVLAPG







CRICMRNFSQSGTLHRHT
QDLVGWPAPQGSRSLTP
PPQAVAPPAPKPTQAG







RTHTGEKPFQCRICMRNF
CTCGSSDLYLVTRHADVI
EGTLSEALLQLQFDDE







SQRPNLTRHLRTHLRGS
PVRRRGDSRGSLLSPRPIS
DLGALLGNSTDPAVFT








YLKGSSGGPLLCPAGHA
DLASVDNSEFQQLLN








VGLFRAAVCTRGVAKAV
QGIPVAPHTTEPMLME








DFIPVENLETTMRSPVFT
YPEAITRLVTGAQRPP








DNSSPPAVTLTHPITKIDR
DPAPAPLGAPGLPNGL








EVLYQEFDEMEECSQH
LSGDEDFSSIADMDFS









ALLSGGGSGGSGSDLS









HPPPRGHLDELTTTLE









SMTEDLNLDSPLTPEL









NEILDTFLNDECLLHA









MHISTGLSIFDTSLF


















SEQ ID NO


219
290
293






SB04599





IL 12p70
YB TATA









4X ZF10-1









BD








296
320
321
325






A2
SFFV
SV40
ZF10-1 DBD
NS3
mini VPR






NLS









S IL12
Lenti
DNA


ATGTGCCATCAGCAACTCGTCATCTCCTG
cgggtttcgtaac



YB_TATA




GTTCTCCCTTGTGTTCCTCGCTTCCCCTCT
aatcgcatgagg



ZFBD (syn




GGTCGCCATTTGGGAACTGAAGAAGGACG
attcgcaacgcc



prmoter)-




TCTACGTGGTCGAGCTGGATTGGTACCCG
ttcGGCGTA



A2




GACGCCCCTGGAGAAATGGTCGTGCTGAC
GCCGATG



(insulator)-




TTGCGATACGCCAGAAGAGGACGGCATA
TCGCGctcc



SV40




ACCTGGACCCTGGATCAGAGCTCCGAGGT
cgtctcagtaaa



(promoter)-




GCTCGGAAGCGGAAAGACCCTGACCATTC
ggtcGGCGT



Syn TF




AAGTCAAGGAGTTCGGCGACGCGGGCCA
AGCCGAT



(NLS +




GTACACTTGCCACAAGGGTGGCGAAGTGC
GTCGCGca



ZFBD DNA




TGTCCCACTCCCTGCTGCTGCTGCACAAG
atcggactgcctt



binding




AAAGAGGATGGAATCTGGTCCACTGACAT
cgtacGGCG



domain +




CCTCAAGGACCAAAAAGAACCGAAGAAC
TAGCCGA



NS3 protease




AAGACCTTCCTCCGCTGCGAAGCCAAGAA
TGTCGCGc



+ mini VPR




CTACAGCGGTCGGTTCACCTGTTGGTGGC
gtatcagtCcgcct



activation




TGACGACAATCTCCACCGACCTGACTTTC
cggaacGGC



domain)




TCCGTGAAGTCGTCACGGGGATCAAGCGA
GTAGCCG








TCCTCAGGGCGTGACCTGTGGAGCCGCCA
ATGTCGC








CTCTGTCCGCCGAGAGAGTCAGGGGAGAC
Gcattcgtaaga








AACAAGGAATATGAGTACTCCGTGGAATG
ggctcactctcc








CCAGGAGGACAGCGCCTGCCCTGCCGCGG
cttacacggagt








AAGAGTCCCTGCCTATCGAGGTCATGGTC
ggataACTA








GATGCCGTGCATAAGCTGAAATACGAGAA
GTTCTAG








CTACACTTCCTCCTTCTTTATCCGCGACAT
AGGGTAT








CATCAAGCCTGACCCCCCCAAGAACTTGC
ATAATGG








AGCTGAAGCCACTCAAGAACTCCCGCCAA
GGGCCA








GTGGAAGTGTCTTGGGAATATCCAGACAC









TTGGAGCACCCCGCACTCATACTTCTCGCT









CACTTTCTGTGTGCAAGTGCAGGGAAAGT









CCAAACGGGAGAAGAAAGACCGGGTGTT









CACCGACAAAACCTCCGCCACTGTGATTT









GTCGGAAGAACGCGTCAATCAGCGTCCGG









GCGCAGGATAGATACTACTCGTCCTCCTG









GAGCGAATGGGCCAGCGTGCCTTGTTCCG









GTGGCGGATCAGGCGGAGGTTCAGGAGG









AGGCTCCGGAGGAGGTTCCCGGAACCTCC









CTGTGGCAACCCCCGACCCTGGAATGTTC









CCGTGCCTACACCACTCCCAAAACCTCCT









GAGGGCTGTGTCGAACATGTTGCAGAAGG









CCCGCCAGACCCTTGAGTTCTACCCCTGC









ACCTCGGAAGAAATTGATCACGAGGACAT









CACCAAGGACAAGACCTCGACCGTGGAA









GCCTGCCTGCCGCTGGAACTGACCAAGAA









CGAATCGTGTCTGAACTCCCGCGAGACAA









GCTTTATCACTAACGGCAGCTGCCTGGCG









TCGAGAAAGACCTCATTCATGATGGCGCT









CTGTCTTTCCTCGATCTACGAAGATCTGAA









GATGTATCAGGTCGAGTTCAAGACCATGA









ACGCCAAGCTGCTCATGGACCCGAAGCGG









CAGATCTTCCTGGACCAGAATATGCTCGC









CGTGATTGATGAACTGATGCAGGCCCTGA









ATTTCAACTCCGAGACTGTGCCTCAAAAG









TCCAGCCTGGAAGAACCGGACTTCTACAA









GACCAAGATCAAGCTGTGCATCCTGTTGC









ACGCTTTCCGCATTCGAGCCGTGACCATT









GACCGCGTGATGTCCTACCTGAACGCCAG









T














SB ID
Insulator
Promoter
SynTF



















ACAAT
gtaacgccatttt
ATGC
TCCCGGCCTGGCGAGAG
GAGGATGTCGTGTGCTG
GACGCTCTTGATGAC




GGCTG
gcaaggcatgg
CCAA
GCCTTTCCAGTGCAGAA
CCACAGCATCTACGGA
TTTGACCTGGATATG




GCCCAT
aaaaataccaaa
GAA
TCTGCATGCGGAACTTC 
AGAAGAAGGGCGACAT
CTCGGATCAGATGCC




AGTAA
ccaagaatagag
GAA
AGCAGACGGCACGGCC
CGACACCTATCGGTACA
CTGGACGATTTCGAT




ATGCC
aagttcagatca
GCG
TGGACAGACACACCAG
TCGGCAGCAGCGGCAC
CTGGACATGTTGGGG




GTGTTA
agggcgggtac
GAA
AACACACACAGGCGAG
AGGCTGTGTTGTGATCG
TCTGATGCTCTCGAC




GTGTGT
atgaaaatagct
GGTT
AAACCCTTCCAGTGCCG
TGGGCAGAATCGTGCTG
GACTTCGATCTGGAT




TAGTTG
aacgttgggcca

GATCTGTATGAGAAATT
AGCGGCTCTGGAACAA
ATGCTTGGAAGTGAC




CTGTTC
aacaggatatct

TCAGCGACCACAGCAGC
GCGCCCCTATCACAGCC
GCGCTGGATGATTTC




TTCCAC
gcggtgagcagt

CTGAAGCGGCACCTGAG
TACGCTCAGCAGACAAG
GACCTTGACATGCTC




GTCAG
ttcggccccggc

AACCCATACCGGCAGCC
AGGCCTGCTGGGCTGCA
ATCAATTCTCGATCC




AAGAG
ccggggccaag

AGAAACCATTTCAGTGT
TCATCACAAGCCTGACC
AGTGGAAGCCCGAA




GCACA
aacagatggtca

AGGATATGCATGCGCAA
GGCAGAGACAAGAACC
AAAGAAACGCAAGG




GACAA
ccgcagtttcgg

TTTCTCCGTGCGGCACA
AGGTGGAAGGCGAGGT
TGGGAAGTGGGGGC




ATTACC
ccccggcccga

ACCTGACCAGACACCTG
GCAGATCGTGTCTACAG
GGCTCCGGTGGGAGC




ACCAG
ggccaagaaca

AGGACACACACCGGGG
CTACCCAGACCTTCCTG
GGTAGTGTATTGCCT




GTGGC
gatggtccccag

AGAAGCCTTTTCAATGT
GCCACCTGTATCAATGG
CAAGCTCCCGCGCCC




GCTCA
atatggcccaac

CGCATATGCATGAGAAA
CGTGTGCTGGGCCGTGT
GCTCCTGCTCCGGCA




GAGTCT
cctcagcagtttc

CTTCTCTGACCACTCCA
ATCACGGCGCTGGCACA
ATGGTTTCAGCTCTG




GCGGA
ttaagacccatca

ACCTGAGCCGCCACCTC
AGAACAATCGCCTCTCC
GCACAAGCTCCAGCT




GGCAT
gatgtttccaggc

AAAACCCACACCGGCTC
AAAGGGCCCCGTGATCC
CCAGTGCCTGTGCTC




CACAA
tcccccaaggac

TCAAAAGCCCTTCCAAT
AGATGTACACCAACGTG
GCCCCTGGCCCTCCG




CAGCC
ctgaaatgaccc

GTAGAATATGTATGAGG
GACCAGGACCTCGTTGG
CAGGCCGTAGCACCT




CTGAAT
tgcgccttatttg

AACTTTAGCCAGCGGAG
CTGGCCTGCTCCTCAAG
CCCGCCCCCAAACCG




TTGAAT
aattaaccaatca

CAGCCTCGTGCGCCATC
GCAGCAGAAGCCTGAC
ACGCAAGCCGGTGAG




CCTGCT
gcctgcttctcgc

TGAGAACTCACACTGGC
ACCTTGCACCTGTGGCT
GGGACTCTCTCTGAA




CTGCCA
ttctgttcgcgcg

GAAAAGCCGTTTCAATG
CCAGCGATCTGTACCTG
GCCTTGCTGCAGCTT




CTGCCT
cttctgcttcccg

CCGTATCTGTATGCGCA
GTCACCAGACACGCCGA
CAGTTCGATGATGAA




AGTTG
agctctataaaa

ACTTTAGCGAGAGCGGC
CGTGATCCCTGTCAGAA
GATCTGGGCGCGCTC




AGACC
gagctcacaacc

CACCTGAAGAGACATCT
GAAGAGGGGATTCCAG 
TTGGGGAACAGCACG




TTTTAC
cctcactcggcg

GCGCACACACCTGAGA
AGGCAGCCTGCTGAGCC
GATCCGGCAGTATTT




TACCTG
cgccagtectcc

GGCAGC
CTAGACCTATCAGCTAC
ACGGACCTCGCATCA




ACTAG
gacagactgagt


CTGAAGGGCAGCTCTGG
GTTGACAATAGTGAA




CTGAG
cgcccggg


CGGACCTCTGCTTTGTC
TTTCAACAACTTCTT




ACATTT



CTGCTGGACATGCCGTG
AACCAGGGAATACCG




ACGAC



GGCCTGTTTAGAGCCGC
GTTGCGCCCCATACG




ATTTAC



CGTGTGTACAAGAGGCG
ACGGAACCTATGCTG




TGGCTC



TGGCCAAAGCCGTGGAC
ATGGAGTACCCTGAA




TAGGA



TTCATCCCCGTGGAAAA
GCTATAACCAGACTC




CTCATT



CCTGGAAACCACCATGC
GTAACTGGCGCCCAA




TTATTC



GGAGCCCCGTGTTCACC
CGCCCGCCCGACCCG




ATTTCA



GACAATTCTAGCCCTCC
GCTCCTGCGCCGCTG




TTACTT



AGCCGTGACACTGACAC
GGTGCGCCGGGTCTT




TTTTTT



ACCCCATCACCAAGATC
CCGAATGGTCTTCTC




TCTTTG



GACAGAGAGGTGCTGT
TCAGGGGACGAAGAT




AGACG



ACCAAGAGTTCGACGA
TTCAGTTCCATTGCG




GAATCT



GATGGAAGAGTGCAGC
GATATGGACTTTTCC




CGCTCT



CAGCAC
GCGCTCCTGAGTGGG









GGTGGCTCTGGAGGC









TCTGGTTCCGACCTC









AGCCATCCTCCACCG









AGAGGACACCTCGAC









GAGCTGACAACCACC









CTCGAAAGTATGACG









GAAGATCTGAACTTG









GATTCCCCCCTTACC









CCAGAACTGAATGAA









ATCCTCGATACGTTC









TTGAACGATGAGTGC









CTTTTGCACGCCATG









CATATATCAACAGGT









TTGTCTATCTTCGAC









ACGTCCCTCTTTTGA


















SEQ ID NO




57
299








AA


MCHQQLVISWFSLVFLASPLVAIWELKKDV









YVVELDWYPDAPGEMVVLTCDTPEEDGIT









WTLDQSSEVLGSGKTLTIQVKEFGDAGQYT









CHKGGEVLSHSLLLLHKKEDGIWSTDILKD









QKEPKNKTFLRCEAKNYSGRFTCWWLTTIS









TDLTFSVKSSRGSSDPQGVTCGAATLSAERV









RGDNKEYEYSVECQEDSACPAAEESLPIEV









MVDAVHKLKYENYTSSFFIRDIIKPDPPKNL









QLKPLKNSRQVEVSWEYPDTWSTPHSYFSL









TFCVQVQGKSKREKKDRVFTDKTSATVICR









KNASISVRAQDRYYSSSWSEWASVPCSGGG









SGGGSGGGSGGGSRNLPVATPDPGMFPCLH









HSQNLLRAVSNMLQKARQTLEFYPCTSEEI









DHEDITKDKTSTVEACLPLELTKNESCLNSR









ETSFITNGSCLASRKTSFMMALCLSSIYEDL









KMYQVEFKTMNAKLLMDPKRQIFLDQNML









AVIDELMQALNFNSETVPQKSSLEEPDFYKT









KIKLCILLHAFRIRAVTIDRVMSYLNAS


















300
17
297
354
342
343









MPK
SRPGERPFQCRICMRNFS
EDVVCCHSIYGKKKGDI
DALDDFDLDMLGSDA






KKR
RRHGLDRHTRTHTGEKP
DTYRYIGSSGTGCVVIVG
ILDDFDLDMLGSDALD






KV
FQCRICMRNFSDHSSLKR
RIVLSGSGTSAPITAYAQ
DFDLDMLGSDALDDF







HLRTHTGSQKPFQCRICM
QTRGLLGCIITSLTGRDK
DLDMLINSRSSGSPKK







RNFSVRHNLTRHLRTHT
NQVEGEVQIVSTATQTFL
KRKVGSGGGSGGSGS







GEKPFQCRICMRNFSDHS
ATCINGVCWAVYHGAGT
VLPQAPAPAPAPAMV







NLSRHLKTHTGSQKPFQC
RTIASPKGPVIQMYTNVD
SALAQAPAPVPVLAPG







RICMRNFSQRSSLVRHLR
QDLVGWPAPQGSRSLTP
PPQAVAPPAPKPTQAG







THTGEKPFQCRICMRNFS
CTCGSSDLYLVTRHADVI
EGTLSEALLQLQFDDE







ESGHLKRHLRTHLRGS
PVRRRGDSRGSLLSPRPIS
DLGALLGNSTDPAVFT








YLKGSSGGPLLCPAGHA
DLASVDNSEFQQLLN








VGLFRAAVCTRGVAKAV
QGIPVAPHTTEPMLME








DFIPVENLETTMRSPVFT
YPEAITRLVTGAQRPP








DNSSPPAVTLTHPITKIDR
DPAPAPLGAPGLPNGL








EVLYQEFDEMEECSQH
LSGDEDFSSIADMDFS









ALLSGGGSGGSGSDLS









HPPPRGHLDELTTTLE









SMTEDLNLDSPLTPEL









NEILDTFLNDECLLHA









MHISTGLSIFDTSLF






SEQ ID NO




293






296
342
321
325









Interpretations

All references, patents and patent applications disclosed herein are incorporated by reference with respect to the subject matter for which each is cited, which in some cases may encompass the entirety of the document.


The indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.”


It should also be understood that, unless clearly indicated to the contrary, in any methods claimed herein that include more than one step or act, the order of the steps or acts of the method is not necessarily limited to the order in which the steps or acts of the method are recited.


In the claims, as well as in the specification above, all transitional phrases such as “comprising,” “including,” “carrying,” “having,” “containing,” “involving,” “holding,” “composed of,” and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of” shall be closed or semi-closed transitional phrases, respectively, as set forth in the United States Patent Office Manual of Patent Examining Procedures, Section 2111.03.

Claims
  • 1-15. (canceled)
  • 16. An immunoresponsive cell comprising: a first engineered nucleic acid comprising a first expression cassette comprising a first promoter operably linked to a first exogenous polynucleotide sequence encoding a chimeric antigen receptor (CAR) and a second exogenous polynucleotide sequence encoding a first cytokine; andwherein the second exogenous polynucleotide sequence encodes a membrane-cleavable chimeric protein, oriented from N-terminal to C-terminal, having the formula:S-C-MT or MT-C-SwhereinS comprises a secretable effector molecule comprising the first and/or second cytokine,C comprises a protease cleavage site, andMT comprises a cell membrane tethering domain,wherein S-C-MT or MT-C-S is configured to be expressed as a single polypeptide.
  • 17. The immunoresponsive cell of claim 16, wherein the CAR binds to GPC3.
  • 18. The immunoresponsive cell of claim 16, wherein: (a) the first promoter comprises a constitutive promoter, an inducible promoter, or a synthetic promoter, optionally wherein the first promoter is a constitutive promoter selected from the group consisting of: CAG, HLP, CMV, EFS, SFFV, SV40, MND, PGK, UbC, hEF1aV1, hCAGG, hEF1aV2, hACTb, heIF4A1, hGAPDH, hGRP78, hGRP94, hHSP70, hKINb, and hUBIb; and/or(b) the first exogenous polynucleotide sequence and the second exogenous polynucleotide sequence are separated by a linker polynucleotide sequence, optionally wherein the linker polynucleotide sequence is operably associated with the translation of the first cytokine and the CAR as separate polypeptides, optionally wherein the linker polynucleotide sequence encodes one or more 2A ribosome skipping elements, optionally wherein the one or more 2A ribosome skipping elements are each selected from the group consisting of: P2A, T2A, E2A, F2A, and combinations thereof, optionally wherein the one or more 2A ribosome skipping elements comprises an E2A/T2A combination, optionally wherein the E2A/T2A combination comprises the amino acid sequence of SEQ ID NO: 281; and/or(c) the first cytokine is IL-15, optionally wherein the IL-15 comprises the amino acid sequence of SEQ ID NO: 285.
  • 19. The immunoresponsive cell of claim 16, wherein the immunoresponsive cell further comprises a third exogenous polynucleotide encoding a second cytokine, optionally wherein the second cytokine is selected from the group consisting of: IL12, an IL12p70 fusion protein, IL18, and IL21, optionally wherein the second cytokine is the IL12p70 fusion protein or IL21, optionally wherein the IL12p70 fusion protein comprises the amino acid sequence of SEQ ID NO: 293.
  • 20. The immunoresponsive cell of claim 16, wherein: (a) the protease cleavage site is cleavable by a protease selected from the group consisting of: a Type 1 transmembrane protease, a Type II transmembrane protease, a GPI anchored protease, an ADAM8 protease, an ADAM9 protease, an ADAM10 protease, an ADAM12 protease, an ADAM15 protease, an ADAM17 protease, an ADAM19 protease, an ADAM20 protease, an ADAM21 protease, an ADAM28 protease, an ADAM30 protease, an ADAM33 protease, a BACE1 protease, a BACE2 protease, a SIP protease, an MT1-MMP protease, an MT3-MMP protease, an MT5-MMP protease, a furin protease, a PCSK7 protease, a matriptase protease, a matriptase-2 protease, an MMP9 protease, and an NS3 protease; or(b) the protease cleavage site is cleavable by an ADAM17 protease; or(c) the protease cleavage site comprises a first region having the amino acid sequence of PRAE (SEQ ID NO: 176) and/or the protease cleavage site comprises a second region having the amino acid sequence of KGG (SEQ ID NO: 177), optionally wherein the first region is located N-terminal to the second region; or(d) the protease cleavage site comprises the amino acid sequence of PRAEXlX2KGG (SEQ ID NO: 178), wherein X1 is A, Y, P, S, or F, andwherein X2 is V, L, S, I, Y, T, or A; or(e) the protease cleavage site comprises the amino acid sequence of PRAEAVKGG (SEQ ID NO: 179); or(f) the protease cleavage site comprises the amino acid sequence of PRAEALKGG (SEQ ID NO: 180); or(g) the protease cleavage site comprises the amino acid sequence of PRAEYSKGG (SEQ ID NO: 181); or(h) the protease cleavage site comprises the amino acid sequence of PRAEPIKGG (SEQ ID NO: 182); or(i) the protease cleavage site comprises the amino acid sequence of PRAEAYKGG (SEQ ID NO: 183); or(j) the protease cleavage site comprises the amino acid sequence of PRAESSKGG (SEQ ID NO: 184); or(k) the protease cleavage site comprises the amino acid sequence of PRAEFTKGG (SEQ ID NO: 185); or(l) the protease cleavage site comprises the amino acid sequence of PRAEAAKGG (SEQ ID NO: 186); or(m) the protease cleavage site comprises the amino acid sequence of DEPHYSQRR (SEQ ID NO: 187); or(n) the protease cleavage site comprises the amino acid sequence of PPLGPIFNPG (SEQ ID NO: 188); or(o) the protease cleavage site comprises the amino acid sequence of PLAQAYRSS (SEQ ID NO: 189); or(p) the protease cleavage site comprises the amino acid sequence of TPIDSSFNPD (SEQ ID NO: 190); or(q) the protease cleavage site comprises the amino acid sequence of VTPEPIFSLI (SEQ ID NO: 191); or(r) the protease cleavage site comprises the amino acid sequence of ITQGLAVSTISSFF (SEQ ID NO: 198), andoptionally wherein the protease cleavage site is comprised within a peptide linker,optionally wherein the protease cleavage site is N-terminal to a peptide linker, and/oroptionally wherein the peptide linker comprises a glycine-serine (GS) linker.
  • 21. The immunoresponsive cell of claim 16, wherein: (a) the cell membrane tethering domain comprises a transmembrane-intracellular domain or a transmembrane domain, optionally wherein the transmembrane-intracellular domain and/or transmembrane domain is derived from PDGFR-beta, CD8, CD28, CD3zeta-chain, CD4, 4-1BB, OX40, ICOS, CTLA-4, PD-1, LAG-3, 2B4, LNGFR, NKG2D, EpoR, TNFR2, B7-1, or BTLA, optionally wherein the transmembrane-intracellular domain and/or transmembrane domain is derived from B7-1, optionally wherein the transmembrane-intracellular domain and/or transmembrane domain comprises the amino acid sequence of SEQ ID NO: 219; and/or(b) the cell membrane tethering domain comprises a post-translational modification tag, or motif capable of post-translational modification to modify the chimeric protein to include a post-translational modification tag, wherein the post-translational modification tag is capable of association with a cell membrane, optionally wherein the post-translational modification tag comprises a lipid-anchor domain, optionally wherein the lipid-anchor domain is selected from the group consisting of: a GPI lipid-anchor, a myristoylation tag, and a palmitoylation tag; and/or(c) the cell membrane tethering domain comprises a cell surface receptor, or a cell membrane-bound portion thereof; and/or(d) the cytokine of the membrane-cleavable chimeric protein is tethered to a cell membrane of the cell; and/or(e) wherein the cell further comprises a protease capable of cleaving the protease cleavage site, optionally wherein the protease is endogenous to the cell, optionally wherein the protease is selected from the group consisting of: a Type 1 transmembrane protease, a Type II transmembrane protease, a GPI anchored protease, an ADAM8 protease, an ADAM9 protease, an ADAM10 protease, an ADAM12 protease, an ADAM15 protease, an ADAM17 protease, an ADAM19 protease, an ADAM20 protease, an ADAM21 protease, an ADAM28 protease, an ADAM30 protease, an ADAM33 protease, a BACE1 protease, a BACE2 protease, a SIP protease, an MT1-MMP protease, an MT3-MMP protease, an MT5-MMP protease, a furin protease, a PCSK7 protease, a matriptase protease, a matriptase-2 protease, and an MMP9 protease, optionally wherein the protease is an ADAM17 protease, optionally wherein the protease is expressed on the cell membrane of the cell, optionally wherein the protease is capable of cleaving the protease cleavage site, optionally wherein cleavage of the protease cleavage site releases the cytokine of the membrane-cleavable chimeric protein from the cell membrane of the cell; and/or(f) the first exogenous polynucleotide sequence encodes a membrane-cleavable chimeric protein; and/or(g) the first exogenous polynucleotide sequence further comprises a polynucleotide sequence encoding a secretion signal peptide, optionally wherein the secretion signal peptide is derived from a protein selected from the group consisting of: IL-12, Trypsinogen-2, Gaussia Luciferase, CD5, IgKVII, VSV-G, prolactin, serum albumin preproprotein, azurocidin preproprotein, osteonectin (BM40), CD33, IL-6, IL-8, CCL2, TIP2, VEGFB, osteoprotegerin, serpin-E1, GROalpha, CXCL12, IL-21, CD8, GMCSFRa, NKG2D, and IgE, optionally wherein the secretion signal peptide is derived from GMCSFRa, optionally wherein the secretion signal peptide comprises the amino acid sequence of SEQ ID NO: 216, optionally wherein the secretion signal peptide is operably associated with the CAR; and/or(h) the second exogenous polynucleotide sequence further comprises a polynucleotide sequence encoding a secretion signal peptide, optionally wherein the secretion signal peptide is derived from a protein selected from the group consisting of: IL-12, Trypsinogen-2, Gaussia Luciferase, CD5, IgKVII, VSV-G, prolactin, serum albumin preproprotein, azurocidin preproprotein, osteonectin (BM40), CD33, IL-6, IL-8, CCL2, TIP2, VEGFB, osteoprotegerin, serpin-E1, GROalpha, CXCL12, IL-21, CD8, GMCSFRa, NKG2D, and IgE, optionally wherein the secretion signal peptide is derived from IgE, optionally wherein the secretion signal peptide comprises the amino acid sequence of SEQ ID NO: 218, optionally wherein the secretion signal peptide is operably associated with the first cytokine; and/or(j) the second exogenous polynucleotide sequence encodes a first membrane-cleavable chimeric protein.
  • 22. The immunoresponsive cell of claim 18, wherein the third polynucleotide sequence encodes a membrane cleavable chimeric protein.
  • 23. The immunoresponsive cell of claim 16, wherein: (a) the CAR comprises an antigen-binding domain comprising a heavy chain variable (VH) region and a light chain variable (VL) region, wherein the VH comprises:a heavy chain complementarity determining region 1 (CDR-H1) having the amino acid sequence of KNAMN (SEQ ID NO: 199),a heavy chain complementarity determining region 2 (CDR-H2) having the amino acid sequence of RIRNKTNNYATYYADSVKA (SEQ ID NO: 200), anda heavy chain complementarity determining region 3 (CDR-H3) having the amino acid sequence of GNSFAY (SEQ ID NO: 201), andwherein the VL comprises:a light chain complementarity determining region 1 (CDR-L1) having the amino acid sequence of KSSQSLLYSSNQKNYLA (SEQ ID NO: 202),a light chain complementarity determining region 2 (CDR-L2) having the amino acid sequence of WASSRES (SEQ ID NO: 203), anda light chain complementarity determining region 3 (CDR-L3) having the amino acid sequence of QQYYNYPLT (SEQ ID NO: 204); and/or(b) the VH region comprises the amino acid sequence of
  • 24. The immunoresponsive cell of claim 16, wherein: the first engineered nucleic acid comprises the nucleotide sequence of SEQ ID NO: 309, the nucleotide sequence of SEQ ID NO: 326, the nucleotide sequence of SEQ ID NO: 310, the nucleotide sequence of SEQ ID NO: 327, the nucleotide sequence of SEQ ID NO: 314, or the nucleotide sequence of SEQ ID NO: 315.
  • 25. The immunoresponsive cell of claim 16, wherein the cell is selected from the group consisting of: a T cell, a CD8+ T cell, a CD4+ T cell, a gamma-delta T cell, a cytotoxic T lymphocyte (CTL), a regulatory T cell, a viral-specific T cell, a Natural Killer T (NKT) cell, a Natural Killer (NK) cell, a B cell, a tumor-infiltrating lymphocyte (TIL), an innate lymphoid cell, a mast cell, an eosinophil, a basophil, a neutrophil, a myeloid cell, a macrophage, a monocyte, a dendritic cell, an erythrocyte, a platelet cell, a human embryonic stem cell (ESC), an ESC-derived cell, a pluripotent stem cell, a mesenchymal stromal cell (MSC), an induced pluripotent stem cell (iPSC), and an iPSC-derived cell, optionally wherein the cell is autologous or the cell is allogeneic.
  • 26. The immunoresponsive cell of claim 16, wherein the cell is an NK cell.
  • 27. An engineered nucleic acid comprising: a first expression cassette comprising a first promoter operably linked to a first, exogenous polynucleotide sequence encoding a chimeric antigen receptor (CAR) that binds to GPC3 and a second exogenous polynucleotide sequence encoding IL15, wherein the first exogenous polynucleotide sequence encodes a membrane-cleavable chimeric protein, oriented from N-terminal to C-terminal, having the formula:S-C-MT or MT-C-SwhereinS comprises a secretable effector molecule comprising the IL15,C comprises a protease cleavage site, andMT comprises a cell membrane tethering domain, andwherein S-C-MT or MT-C-S is configured to be expressed as a single polypeptide,optionally wherein the first exogenous polynucleotide sequence and the second exogenous polynucleotide sequence are separated by a linker polynucleotide sequence comprising an E2A/T2A ribosome skipping element,optionally wherein the CAR that binds to GPC3 comprises a CD28 intracellular signaling domain,optionally wherein the engineered nucleic acid comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 309, 326, 310, 327, 314 and 315.
  • 28. An expression vector comprising the engineered nucleic acid of claim 27.
  • 29. An immunoresponsive cell comprising the engineered nucleic acid of claim 27.
  • 30. A pharmaceutical composition comprising the immunoresponsive cell of claim 16, and a pharmaceutically acceptable carrier, pharmaceutically acceptable excipient, or a combination thereof.
  • 31. A method of stimulating a cell-mediated immune response to a tumor cell, reducing tumor volume, or providing an anti-tumor immunity in a subject, the method comprising administering to a subject in need thereof a therapeutically effective dose of the immunoresponsive cells of claim 16, optionally wherein the tumor comprises a GPC3-expressing tumor, optionally wherein the tumor is selected from the group consisting of: hepatocellular carcinoma (HCC), ovarian clear cell carcinoma, melanoma, squamous cell carcinoma of the lung, hepatoblastoma, nephroblastoma (Wilms tumor), and yolk sac tumor,optionally wherein the administering comprises systemic administration or intratumoral administration,optionally wherein the immunoresponsive cell is derived from the subject or is allogeneic with reference to the subject.
  • 32. A method of treating a subject having cancer, the method comprising administering a therapeutically effective dose of the immunoresponsive cells of claim 16, optionally wherein the cancer comprises a GPC3-expressing cancer,optionally wherein the cancer is selected from the group consisting of: hepatocellular carcinoma (HCC), ovarian clear cell carcinoma, melanoma, squamous cell carcinoma of the lung, hepatoblastoma, nephroblastoma (Wilms tumor), and yolk sac tumor,optionally wherein the administering comprises systemic administration or intratumoral administration,optionally wherein the immunoresponsive cell is derived from the subject or is allogeneic with reference to the subject.
  • 33. A method of stimulating a cell-mediated immune response, the method comprising administering to a subject in need thereof a therapeutically effective dose of the immunoresponsive cells of claim 16, optionally wherein the administering comprises systemic administration or intratumoral administration, optionally wherein the immunoresponsive cell is derived from the subject or is allogeneic with reference to the subject.
CROSS REFERENCE

This application is a continuation application of PCT/US2022/033893, filed on Jun. 16, 2022, which claims the benefit of U.S. Provisional Patent Application No. 63/211,468, filed Jun. 16, 2021, and U.S. Provisional Patent Application No. 63/305,155, filed Jan. 31, 2022, both of which are hereby incorporated by reference in their entirety for all purposes.

Provisional Applications (2)
Number Date Country
63305155 Jan 2022 US
63211468 Jun 2021 US
Continuations (1)
Number Date Country
Parent PCT/US2022/033893 Jun 2022 WO
Child 18541684 US