This invention relates generally to armor systems and more specifically to features of armor structure directed to preventing certain aspects of performance degradation.
2. Background Art
Typically, high efficiency armor (composite-backed armor) that works in a non-supported, or freestanding application suffers from delamination of the composite laminate from the strike face side of the target. This delamination could occur between the composite/frontal structure interfaces, or within the composite laminate itself. This is a very common issue with laminates in high efficiency composite armor as fiber movement and inter-laminar delamination are critical to the performance of the system. Previous attempts at attaching the composite backing involved a stiff wrap or backface structure, or a mechanical through-hole attachment in attempts to control the backface deformation, which reduced the efficiency of the composite backing, or in the case of the through fasteners could create a vulnerable location in the armor system.
In typical armor applications, it is common to have a polymer spray coating on the exterior, which is applied to provide environmental protection and limit spallation of the armor. There is typically a high level of deformation that occurs on the back face of a composite backed armor after a strike with a high-energy projectile. The trauma that results from this high-energy impact may cause composite fibers to deform and break in a tensile failure, leaving a frayed, damaged surface on the backside of the armor even in situations where the threat has been defeated. In previous designs, the polymer “spall liner” coatings would “chunk” off the back and leave the armor at a high velocity upon the impact and resultant trauma that occurs when the fibers break. Polymers with properties favorable for this application (high strength, high elongation) were not able to withstand this event, primarily due to the disintegration of the fibers to which the polymer coating was bonded.
This invention relates to the use of an open, plain Leno Aramid fiber weave wrapped around the target in such a fashion that the wrap on the strike face surface is bonded with a thermoset resin while the continuous fibers around the back are left resin-free and able to distort, allowing localized deformation while keeping the remainder of the “wrap” holding tight. This wrap technique keeps the composite backing tight to the strike surface while allowing all of the benefits of localized fiber movement and tensile failure of fibers on the backside of the target. Other high performance fibers, such as fiberglass, also woven in a Leno weave and applied in the same method will yield similar results.
Targets without this composite wrap have suffered from complete structural failure, with the composite portion of the target coming completely delaminated. Targets constructed with this specific wrap technique have been shown to maintain all the efficiencies of a non-wrapped composite backing, while still holding intact for multiple ballistic impacts in close proximity to one another.
This invention also relates to the placement of a “slip layer” between the fiber surface of the armor and the polymer coating. This layer, consists of Teflon, silicone, or other low friction, difficult to bond material. The layer prevents intimate bonding of the polymer coating to the fibers, creating a low friction slip surface that isolates the polymer from the trauma of fiber deformation and breakage.
Targets with coatings applied directly to the fiber surface show the common “chunking” behavior and the resulting damage to witness plates upon testing. Targets with the polymer coating applied over the low friction slip layer showed a completely intact back surface. The trauma and deformation caused by high rate tensile failure of the fibers did not affect the integrity of the polymer coating.
The aforementioned objects and advantages of the present invention, as well as additional objects and advantages thereof, will be more fully understood herein after as a result of a detailed description of a preferred embodiment when taken in conjunction with the following drawings in which:
Referring to the accompanying drawings and initially to
The slip layer feature of the preferred embodiment of the present invention is shown in
It will now be apparent that what has been disclosed herein comprises an improved armor system wherein a slip layer and a containment wrap tend to preserve the back surface of the armor and permit a local deformation of the back surface fiber weave to better protect a user from delamination and spall liner “chunking”. Although a particular embodiment has been disclosed herein, it will be understood that the scope hereof is limited only by the appended claims and their equivalents.